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Abstract

Reward engineering has long been a challenge

in Reinforcement Learning (RL) research, as it

often requires extensive human effort and itera-

tive processes of trial-and-error to design effective

reward functions. In this paper, we propose RL-

VLM-F, a method that automatically generates

reward functions for agents to learn new tasks,

using only a text description of the task goal

and the agent’s visual observations, by leverag-

ing feedbacks from vision language foundation

models (VLMs). The key to our approach is

to query these models to give preferences over

pairs of the agent’s image observations based on

the text description of the task goal, and then

learn a reward function from the preference la-

bels, rather than directly prompting these mod-

els to output a raw reward score, which can be

noisy and inconsistent. We demonstrate that RL-

VLM-F successfully produces effective rewards

and policies across various domains — including

classic control, as well as manipulation of rigid,

articulated, and deformable objects — without

the need for human supervision, outperforming

prior methods that use large pretrained models

for reward generation under the same assump-

tions. Videos can be found on our project website:

https://rlvlmf2024.github.io/.

1. Introduction

One of the key challenges of applying reinforcement learn-

ing (RL) is designing an appropriate reward function that

will lead to the desired behavior. This procedure, known
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as reward engineering, demands considerable human effort

and trial-and-error iterations, but is often required for good

results (Laud, 2004; Silver et al., 2016; OpenAI et al., 2019;

Gupta et al., 2022). In this work, we aim to develop a fully

automated system that can generate a reward function and

use it to teach agents to perform a task with RL by using only

a language description of the task, eliminating the extensive

human effort required to craft reward functions manually.

Prior work has studied replacing human supervision by

prompting large language models (LLMs) to write code-

based reward functions (Xie et al., 2023; Ma et al., 2023b;

Wang et al., 2023). However, these methods usually as-

sume access to the environment code, rely on the low-level

ground-truth state information for reward generation, and

face challenges with scaling up to high-dimensional environ-

ments and observations, such as manipulating complex de-

formable objects. Others (Klissarov et al., 2023; Chu et al.,

2023) extract an intrinsic reward and combine it with the

task reward using preference labels generated by an LLM

comparing text descriptions of two agent states. However,

text descriptions of the states can be non-trivial for certain

tasks, such as manipulating deformable objects, as the exact

states are hard to describe accurately using language. Fur-

ther, these works rely on the ground-truth low-level state

information to generate the text descriptions of the states,

which may not be easily accessible.

Another related line of work obtains rewards from visual

observations by using contrastively trained vision language

models, such as CLIP (Radford et al., 2021), to align image

or video observations with task descriptions in a learned la-

tent space (Cui et al., 2022b; Mahmoudieh et al., 2022; Ma

et al., 2023a; Sontakke et al., 2023; Adeniji et al., 2023;

Rocamonde et al., 2023). However, the reward signals

produced in these works are often of high variance and

noisy (Sontakke et al., 2023; Mahmoudieh et al., 2022). As

a result, prior work often has to fine-tune these CLIP-style

models for their specific tasks at hand (Ma et al., 2023a;

Mahmoudieh et al., 2022).

To this end, we present RL-VLM-F, a method that automat-

ically generates reward functions for agents to learn new

task. RL-VLM-F (Figure 1) requires only a single text de-

scription of the task goal and the agent’s visual observations,
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RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback

Figure 1. RL-VLM-F automatically generates reward functions for policy learning on new tasks, using only a text description of the task

goal and the agent’s visual observations. The key to RL-VLM-F is to query VLMs to give preferences over pairs of the agent’s image

observations based on the text description of the task goal, and then learn a reward function from the preference labels.

leveraging vision language foundation models (VLMs) that

are trained on diverse, general text and image corpora (e.g.,

GPT-4V (OpenAI, 2023), Gemini (Team et al., 2023)). The

key to our approach is to query these models to give pref-

erences over pairs of the agent’s image observations based

on the text description of the task goal and then learn a

reward function from the preference labels, rather than di-

rectly prompting these models to output a raw reward score,

which can be noisy and inconsistent (Sontakke et al., 2023;

Rocamonde et al., 2023). This allows us to draw from the

rich literature on reinforcement learning from human prefer-

ences (Christiano et al., 2017; Wirth et al., 2017; Lee et al.,

2021a), without requiring actual humans, to train reward

functions automatically for new tasks. Furthermore, by us-

ing a VLM to compare image observations instead of text

descriptions of the states, RL-VLM-F does not need access

to the low-level ground-truth states for reward generation

and can be applied to complex tasks involving deformable

objects where accurate text description of the states are non-

trivial. We test our method on 7 tasks involving classic

control, rigid, articulated, and deformable object manip-

ulation. We show that our approach can produce reward

functions that lead to policies that solve diverse tasks, and

our approach substantially outperforms prior methods and

alternative ways to use VLMs to generate rewards. We also

perform extensive analysis and ablation studies to provide

insights into RL-VLM-F’s learning procedure and perfor-

mance gains.

In summary, we make the following contributions:

• We propose RL-VLM-F, a method that automatically gen-

erates reward functions for agents to learn new tasks, us-

ing only a text description of the task goal and the agent’s

visual observations, eliminating the extensive human ef-

fort involved in manually crafting reward functions.

• We show that RL-VLM-F can be used to generate reward

functions and learn policies that can solve a series of

rigid, articulated, and deformable object manipulation

tasks, and it greatly outperforms prior methods.

• We perform extensive analysis and ablation studies to

provide insights into RL-VLM-F’s learning procedure

and performance gains.

2. Related Works

Inverse Reinforcement Learning. Similar to our work,

inverse reinforcement learning (IRL) aims to learn a reward

function that can be used to train a policy to solve tasks.

IRL methods usually learn a reward function from expert

demonstrations (Ng & Russell, 2000; Abbeel & Ng, 2004;

Ziebart et al., 2008; Ho & Ermon, 2016; Fu et al., 2018;

Ni et al., 2021). In contrast, while RL-VLM-F also learns

a reward function to train a policy, it only requires a text

description of the task goal and does not require collecting

expert demonstrations.

Learning from Human Feedback. Another line of work

directly learns a reward function from human feedback,

in the form of pairwise trajectory preference or ranking

comparisons, to train a reward function (Christiano et al.,

2017; Wirth et al., 2017; Ibarz et al., 2018; Leike et al.,

2018; Biyik et al., 2019; 2020; Lee et al., 2021a; Myers

et al., 2021; Bıyık et al., 2022). In most cases, human

preferences and rankings of robot trajectories are easier to

collect than demonstrations of robot trajectories. However,

because each comparison conveys little information on its

own, many preference queries are needed before the reward
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function is well-trained enough to train an agent to perform

the task. RL-VLM-F instead queries a VLM to perform the

comparison to train a reward function, removing the need

for extensive human labor in giving preference labels.

Large Pre-trained Models as Reward Functions. Kwon

et al. (2023) first demonstrated that large pre-trained

models—large language models (LLM) specifically—can

generate rewards for RL agents in text-based tasks. Other

works followed by demonstrating that LLMs can write struc-

tured code for training robots (Yu et al., 2023) or directly

write Python code for training many kinds of agents (Xie

et al., 2023; Ma et al., 2023b; Wang et al., 2023). However,

many tasks are challenging to write reward functions for.

For example, cloth folding requires tracking the locations

of many individual cloth keypoints, which can change from

one folding task to another. In these instances, visual rea-

soning is better suited for understanding how to reward the

agent. RL-VLM-F queries a VLM to compare agent ob-

servation images so that it can use visual observations to

reason about how well the agent is progressing in a task.

In addition, prior methods usually assume access to the en-

vironment source code when writing the reward functions,

whereas our method does not require such assumptions.

Another line of prior works rewards agents from image ob-

servations by aligning agent trajectory images with task

language descriptions or demonstrations with contrastively

trained visual language models (Cui et al., 2022a; Fan

et al., 2022; Nottingham et al., 2023; Ma et al., 2023a;

Sontakke et al., 2023; Rocamonde et al., 2023; Nam et al.,

2023). However, experiments from these papers directly

demonstrate that contrastive alignment is noisy and its accu-

racy relies heavily on the input task specification and how

well-aligned the agent observations are to the pre-training

data (Ma et al., 2023a; Sontakke et al., 2023; Rocamonde

et al., 2023; Nam et al., 2023). Further, CLIP-style models

have thus far been limited to outputting noisy raw scores.

We demonstrate that using preferences results in superior

performance to outputting raw scores, shown in our experi-

ments in Section 6. Finally, our work shares a similar idea

to RLAIF (Bai et al., 2022), which proposed to mix pref-

erence labels generated by an LLM and a human in the

context of fine-tuning LLMs, and Motif (Klissarov et al.,

2023), which proposed to generate intrinsic rewards using

preference feedback from an LLM in the game of NetHack

based on ground-truth text descriptions of the game state.

In contrast, we use a VLM to generate the preference labels

without any human labeling and learn the reward function

from visual image observations without the need to access

ground-truth states, focus on the domain of robotics control

and manipulation, and directly generate task rewards instead

of intrinsic rewards.

3. Background

We consider the standard Markov Decision Process and rein-

forcement learning setup (Sutton & Barto, 2018). At every

timestep t, the agent receives a state st from the environ-

ment and chooses an action at based on a policy π(at | st).
The environment gives a reward rt after the agents executes

action at and transitions to st+1. The goal of the agent is to

maximize the return, which is defined as discounted sum of

rewards R =
∑

∞

k=0
γkr(sk, ak) with discount factor γ.

Preference-based reinforcement learning. Our work

builds upon preference-based RL, in which an agent learns

a reward function from preference labels over its behav-

iors (Christiano et al., 2017; Ibarz et al., 2018; Lee et al.,

2021a;b). Formally, a segment σ is a sequence of states

{s1, ..., sH}, H g 1. In this paper we consider the case

where the segment is represented using a single image, i.e.,

H = 1. Given a pair of segments (σ0, σ1), an annotator

gives a feedback label y indicating which segment is pre-

ferred: y ∈ {−1, 0, 1}, where 0 indicates the first segment

σ1 is preferred, 1 indicates the second segment is preferred,

and −1 indicates they are incomparable or equally prefer-

able. Given a parameterized reward function rψ over the

states, we follow the standard Bradley-Terry model (Bradley

& Terry, 1952) to compute the preference probability of a

pair of segments:

Pψ[σ
1 { σ0] =

exp
(

∑H

t=1 rψ(s
1
t )
)

∑

i∈{0,1} exp
(

∑H

t=1 rψ(s
i
t)
) , (1)

where σi { σj denotes segment i is preferred to segment

j. Given a dataset of preferences D = {(σ0
i , σ

1
i , yi)},

preference-based RL algorithms optimize the reward func-

tion rψ by minimizing the following loss:

LReward =− E(σ0,σ1,y)∼D

[

I{y = (σ0 { σ1)} logPψ[σ
0 { σ1]

+ I{y = (σ1 { σ0)} logPψ[σ
1 { σ0]

]

.

(2)

In preference-based RL algorithms, a policy πθ and reward

function rψ are updated alternatively: the reward function

is updated with a dataset of preferences as described above,

and the policy is updated with respect to this learned re-

ward function using standard reinforcement learning algo-

rithms. Specifically, we use PEBBLE (Lee et al., 2021a), a

preference-based RL method with unsupervised pre-training

and off-policy learning, as the underlying preference-based

RL algorithm.

4. Assumptions

We make the following assumptions on the VLMs to be

used in this paper: 1) We assume that the VLMs have been

3
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Figure 2. We use a two-stage VLM-querying process for generating preference labels to train the reward function. In the analysis stage,

we query the VLM to generate free-form responses describing and comparing how well each of the two image observations achieves

the task goal. Then, in the labeling stage, we prompt the VLM with the VLM-generated text responses from the first stage to extract a

preference label between the two image observations. The template shown here is the actual entire template we use for all experiments.

Algorithm 1 RL-VLM-F

input Text description of task goal l
1: Initialize policy πθ and reward rψ
2: Initialize the preference buffer D ← ∅, RL replay buffer
B ← ∅, image observation buffer I ← ∅, policy gradient
update steps Nπ , reward gradient update steps Nr , VLM
query frequency K, number of preference queries per time
M

3: for each iteration iter do
4: // POLICY LEARNING AND DATA COLLECTION

5: for t = 1 to T do
6: Collect state st+1, image It+1 by taking at ∼ πθ(at|st)
7: Add transition B ← B ∪ {(st, at, st+1, rψ(st))}
8: Add image observation I ← I ∪ {It+1}
9: end for

10: for n = 1 toNπ do
11: Sample random batch {(st, at, st+1, rψ(st))j}

B
j=1 ∼ B

12: Optimize policy πθ using the sampled batch with any
off-policy RL algorithm

13: end for
14: // PREFERENCE BY VLM AND REWARD LEARNING

15: if iter % K == 0 then
16: for m = 1 to M do
17: Randomly sample two images (σ0, σ1) from buffer I
18: Query VLM with (σ0, σ1) and task goal l for label y
19: Store preference D ← D ∪ {(σ0, σ1, y)}
20: end for
21: for n = 1 toNr do
22: Sample minibatch {(σ0, σ1, y)j}

D
j=1 ∼ D

23: Optimize rψ in Equation (2) with respect to ψ
24: end for
25: Relabel entire replay buffer B using updated rψ
26: end if
27: end for

trained on diverse text and image corpora, enabling them to

generalize well and reason across various environments and

tasks. 2) The VLMs should be capable of processing mul-

tiple images simultaneously and performing comparative

analyses on pairs of images as this is crucial for generating

preference labels. 3) RL-VLM-F is designed to operate

on tasks for which the quality or success of a state can be

discerned from a single image or a sequence of images.

We consider large pretrained vision-language foundation

models, such as Gemini (Team et al., 2023) and GPT-4

Vision (OpenAI, 2023), to satisfy these assumptions.

5. Method

Figure 1 provides an overview of RL-VLM-F. Unlike previ-

ous preference-based RL algorithms that require a human

annotator to give the preference labels, RL-VLM-F lever-

ages a VLM to do so based solely on a text description of

the task’s goal, thus automating preference-based RL and

mitigating the time-intensive human supervision required

in writing reward functions or providing preference labels.

RL-VLM-F works as follows: first, the policy πθ and the

reward function rψ are randomly initialized. Given a task

goal description, our method then iterates through the fol-

lowing cycle: (1) The policy πθ is updated using RL with

the reward function rψ , interacts with the environment, and

stores image observations into a buffer; (2) A batch of im-

age pairs is randomly sampled from the stored buffer and

sent to a VLM. The VLM is queried to produce preference

labels for these image pairs in terms of which one better

performs the task based on the text description of the task

goal; (3) The reward model is updated with the loss in Equa-

tion (2) using the preference labels produced by the VLM.

The full detailed procedure of RL-VLM-F can be found in

Algorithm 1.

5.1. Prompting VLMs to Generate Preference labels for

Reward Learning

To train the reward model rψ, we first need to generate

preference labels from the VLM. To do this, we sample two

images from the “image observation buffer” I , which stores

image observations of the policy during learning, and then

query the VLM for which of the two images better performs
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the task according to the text goal description (Algorithm 1

lines 17-18).

The querying process is illustrated in Figure 2. It consists of

two stages: an analysis stage and then a labeling stage. In

the analysis stage, we query the VLM to generate free-form

responses describing and comparing how well each of the

two images achieves the task goal. Then, in the labeling

stage, we prompt the VLM with the VLM-generated text

responses from the first stage to extract a preference label

between the two images.1 Specifically, the labeling stage

prompt repeats the questions in the analysis prompt, fills in

the VLM’s response from the analysis stage, and then asks

the VLM to generate a preference label y ∈ {−1, 0, 1}. We

specify in the prompt that 0 or 1 indicates that the first or

second image is better, respectively, and -1 indicates no dis-

cernible differences. We do not use the image pairs to train

the reward model if the VLM returns -1 as the preference

label. Finally, as shown at line 19 of Algorithm 1, we store

the preference labels produced by the VLM into the prefer-

ence label buffer D during the training process. Standard

preference-based reward learning can then be performed

(as detailed in Section 3) to train the reward function with

Equation 2 using the preference buffer D. Reward learning

corresponds to lines 21-24 in Algorithm 1.

To minimize prompt engineering effort, we use a unified

template across all environments (the exact entire template

is shown in Figure 2). Therefore, to train a policy for a new

environment with RL-VLM-F, one only needs to provide

the task goal description; the labels and subsequently the

reward function will then be automatically trained with the

above process.

5.2. Implementation Details

For policy training, we use SAC (Haarnoja et al., 2018) as

the underlying RL algorithm. As in PEBBLE (Lee et al.,

2021a), we relabel all the transitions stored in the SAC

replay buffer once the reward function rψ is updated (line

25 in Algorithm 1). We set the policy gradient update step

Nπ to be 1. The values of all other parameters in Alg. 1 can

be found in Appendix B.

6. Experiments

6.1. Setup

We evaluate RL-VLM-F on a set of tasks, spanning from

straightforward classic control tasks to complex manipu-

lation tasks involving rigid, articulated, and deformable

objects. The tasks are as follows.

1We can also use an LLM in this stage as it only requires text
inputs, but for simplicity, we use the same model as for the first
stage of the querying process (a VLM).

• One task from OpenAI Gym (Brockman et al., 2016):

– CartPole where the goal is to balance a pole on a mov-

ing cart.

• Three rigid and articulated object manipulation tasks from

MetaWorld (Yu et al., 2020) with a simulated Sawyer

robot:

– Open Drawer, where the robot needs to pull out a

drawer;

– Soccer, where the robot needs to push a soccer ball

into a goal; and

– Sweep Into, where the robot needs to sweep a green

cube into a hole on the table.

• Three deformable object manipulation tasks from Soft-

Gym (Lin et al., 2021):

– Fold Cloth, where the goal is to diagonally fold a cloth

from the top left corner to the bottom right corner;

– Straighten Rope, where the goal is to straighten a rope

from a random configuration; and

– Pass Water, where the goal is to pass a glass of water

to a target location without water being spilled out.

See Figure 3 for visualizations of these tasks. Further details

about the tasks can be found in Appendix A.

We compare to the following baselines that make similar

assumptions to us when generating the reward function, i.e.,

those requiring only a text description and image observa-

tions from the agents (without access to environment code).

Below is a brief description of each baseline:

• VLM Score. Instead of querying the VLM to give prefer-

ence labels over two images, this baseline directly asks

the VLM to give a raw score between 0 to 1 for a given

image based on the task goal description. We inform the

VLM in the prompt that the score should be 1 if the task

goal is perfectly achieved in the image. A reward model

is then learned to regress to the scores given by the VLM.

• CLIP Score (Rocamonde et al., 2023). Given an image,

the reward is computed as the cosine similarity score

between the embedding of the image and the text descrip-

tion of the task goal using the CLIP model (Radford et al.,

2021). Such a reward computation method has also been

explored in several other prior works (Cui et al., 2022b;

Mahmoudieh et al., 2022; Adeniji et al., 2023).

• BLIP-2 Score. Similar to the CLIP Score baseline but

uses BLIP-2 (Li et al., 2023) instead of CLIP to compute

the cosine similarity score.

• RoboCLIP (Sontakke et al., 2023). This baseline uses a

pre-trained video-language model, S3D (Xie et al., 2018),

to compute the reward as the similarity score between the

embedding of the video of the policy trajectories and a

demonstration video. Since we do not assume to have

access to demonstrations of the task in our method, we

use the text version of RoboCLIP for a fair compari-

son. RoboCLIP-Text uses the pre-trained video-language

5
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Figure 3. We evaluate RL-VLM-F on 7 tasks including classic control, rigid and articulated object manipulation, as well as deformable

object manipulation. For Pass Water, the red dot represents the target location.

Figure 4. Learning curves of all compared methods on 7 tasks. RL-VLM-F outperforms all baselines in all tasks, and matches or surpasses

the performance of GT preference on 6 of the 7 tasks. Results are averaged over 5 seeds, and shaded regions represent standard error.

RoboCLIP is only evaluated on the MetaWorld tasks, as this is the set of tasks where the original method is evaluated.

model to generate rewards as the similarity score between

the video embedding of the trajectory and the text embed-

ding of the task description.

• GT Preference. We use the original ground-truth reward

function (provided by the authors of each benchmark) to

give the preference label. This should in theory serve as

an oracle and upper bound on the learning performance.

Further details on the baselines, including all the text

prompts we use, can be found in Appendices C and D.

For MetaWorld tasks, we use the author-defined task suc-

cess rate of the policy as the evaluation metric (Yu et al.,

2020). For all other tasks, we report the episode return of

the learned policy. For all methods, the policy is learned

with state observations, and we use the same policy learning

hyper-parameters for all methods, i.e., the only difference

between all compared methods is the reward function. For

methods where a reward function needs to be learned (RL-

VLM-F and VLM Score), the reward function is learned

using image observations. For RL-VLM-F and the VLM

Score baseline, we use Gemini-Pro (Team et al., 2023) as the

VLM for all tasks except Fold Cloth. We find Gemini-Pro

to perform poorly on Fold Cloth, so we instead use GPT-

4V (OpenAI, 2023) as the VLM for this task for these two

methods (see Appendix E.2 for a comparison of Gemini-Pro

and GPT-4V on this specific task). We did not run GPT-4V

on all tasks due to its quota limitations. For all methods

except RoboCLIP, we remove the robot from the image for

the MetaWorld tasks, as these tasks are all object-centric

and removing the robot allows the VLM to focus on the

target object when analyzing the images. Since these tasks

are simulated, we conveniently use the simulator to make

the robot transparent when rendering the images. For real-

world applications, techniques such as inpainting can be

used to remove the robot from image observations as done

in prior work (Bahl et al., 2022; Bharadhwaj et al., 2023).

We keep the robot within the image for RoboCLIP follow-

ing the original paper’s setup. We test RoboCLIP only on

the MetaWorld tasks, as this is the set of tasks where the

original method is evaluated.

6
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Figure 5. Comparison of the achieved final state of different methods on SoftGym deformable object manipuation tasks: Fold Cloth (Top),

Straighten Rope (Middle), and Pass Water (Bottom). RL-VLM-F achieves better final states compared to all the baselines.

6.2. Does RL-VLM-F Learn Effective Rewards and

Policies?

We first examine if RL-VLM-F leads to useful rewards and

policies that can solve the tasks. The learning curves of all

compared methods on all tasks are shown in Figure 4. As

shown, RL-VLM-F outperforms all other baselines in all

tasks. We find that prior approaches using CLIP or BLIP-2

score can only solve the easiest task – CartPole, and strug-

gle for more complex environments, such as the rigid object

manipulation tasks in MetaWorld and the deformable object

manipulation tasks in SoftGym. The text version of Robo-

CLIP performs poorly on all three MetaWorld tasks, align-

ing with the original paper’s results, as RoboCLIP works

the best with video demonstrations available. RL-VLM-F

also outperforms VLM Score in all tasks, which indicates

that prompting VLMs to output a preference label for re-

ward learning results in better task performance in contrast

to treating the VLM as a reward function that outputs raw

reward scores. We also observe that RL-VLM-F is able to

match the performance of using GT preference in all tasks

except Cloth Fold, which suggests we can use a single text

description with RL-VLM-F to mitigate human efforts in

writing complex reward functions for these tasks.

Interestingly, for the task of Sweep Into, the performance of

RL-VLM-F actually surpasses that of using GT preference.

We suspect the reason could be as follows: the ground-truth

reward function written by the authors for this task includes

terms that are not directly correlated to task success. This

includes a reward term for grasping the cube, which is not

critical for pushing the cube into the hole. In contrary, RL-

VLM-F simply uses a text description of the task goal as

“minimize the distance between the cube and the hole”, thus

the learned reward is less prone to bias in human-written

reward functions and may better reflect the true task goal,

leading to better performance.

We show the final states achieved by the policies learned

with different methods on the three SoftGym deformable ob-

ject manipulation tasks in Figure 5. As shown, for all three

tasks, RL-VLM-F achieves a final state that is quantifiably

better than the baselines. For Fold Cloth, RL-VLM-F is

closest to a diagonal fold. For Straighten Rope, RL-VLM-F

is able to fully straighten the rope and match the perfor-

mance of GT preference, where all other baselines failed to

fully straighten it. For Pass Water, RL-VLM-F is able to

transport the water to the target location without any water

being spilled, and the baselines either do not move the glass,

or move it in a way that spills large amounts of water.

6.3. What is the Accuracy of VLM Preference Labeling?

Given that RL-VLM-F can learn effective rewards and poli-

cies that solve the tasks, we perform further analysis on the

accuracy of the preference labels generated by a VLM. To

compute accuracy, the VLM outputs {−1, 0, 1} (no prefer-

ence, first image preferred, second image preferred) which

we compare to a ground truth preference label defined ac-

cording to the environment’s reward function. Note that we

7
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Figure 6. We provide analysis of the accuracy of the VLM preference labels, compared to ground-truth preference labels defined according

to the environment’s reward function. The x-axis represents different levels of differences between the image pairs, discretized into 10

bins, where the difference is measured as the difference between the ground-truth task progress associated with the image pairs. The y-axis

shows the percentage where the VLM preference labels are correct, incorrect, or when it does not have a preference over the image pairs.

Figure 7. We compare how well the learned reward by RL-VLM-F and VLM Score align with the ground-truth task progress on 3

MetaWorld tasks along an expert trajectory. As shown, RL-VLM-F generates rewards that align better with the ground-truth task progress.

The learned rewards are averaged over 3 trained reward models with different seeds, and the shaded region represents the standard error.

discard the image pairs with a label -1 (no preference) when

training the reward model.

Our intuition is that, like humans, it would be hard for the

VLM to give correct preference labels when comparing two

similar images, and easier to produce correct preference

labels when the two images are noticeably dissimilar in

terms of achieving the goal. Figure 6 presents the accuracy

of the VLM at various levels of differences between the two

images. The “difference” between two images is measured

as the difference between the ground-truth task progress

associated with the images. We discretize the differences

into 10 bins along the x axis in Figure 6, where a larger

number indicates a greater difference between two images

in terms of task progress. On the y axis, the green, orange,

and blue bars represent the percentage where the VLM

preference label is correct, incorrect, or when there is no

preference. For all tasks, we observe a general trend of

increasing accuracy, decreasing uncertainty, and decreasing

error as the differences between the images increase, which

aligns with intuition. This trend is most clear and consistent

for the CartPole, Open Drawer and Soccer tasks. Overall,

for all tasks, we find that the VLM is able to generate more

correct preference labels than incorrect ones, and as shown

in Figure 4, the accuracy of VLM-generated preference

labels is sufficient for learning a good reward function and

policy.

6.4. How Does the Learned Reward Align With the Task

Progress?

Figure 7 plots the learned rewards (averaged over 3 trained

reward models with different random seeds) as well as the

true task progress on three MetaWorld environments along

an expert trajectory that fully solves the task. Note the

ground-truth task progress is not the same as the author-

provided reward function: the author provided reward is a

shaped version of the task progress. For Open Drawer, the

task progress is measured as the distance the drawer has

been pulled out; For Soccer, it is measured as the negative

8
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Figure 8. We compare RL-VLM-F using the proposed two-stage prompting strategy, and an ablated version of using a single-stage

prompting strategy. The performance of the single-stage prompting is lower on 3 of the 4 tasks.

distance between the soccer ball and the goal; For Sweep

Into, it is measured as the negative distance between the

cube and the hole. We normalize both the ground-truth task

progress and the learned reward into the range of [0, 1] for

a better comparison between them. An ideal learned reward

should increase as the time step increases along the expert

trajectory, as like the ground-truth task progress. As shown,

the reward learned by RL-VLM-F aligns better with the

ground-truth task progress compared with the VLM Score

baseline. We do observe that the learned reward tends to

be noisy and includes many local minima. Despite this,

the learned reward still achieves the highest value when the

task progresses the most (except for the task of Sweep Into).

As shown in Figure 4, the learned reward is sufficient for

learning successful policies. For Open drawer, we notice

that the reward produced by VLM Score remains zero. This

is likely because, during training, most of the scores given by

the VLM are 0, and the model learns to predict 0 at all time

steps to minimize the regression loss. We find the CLIP and

BLIP-2 scores on these environments are generally noisy;

the corresponding plots can be found in Appendix E.3.

6.5. Ablation on the Prompt Strategy

We used a two-stage prompting strategy for RL-VLM-F,

where the VLM is first asked to analyze the pair of images

in the analysis stage, and then output the preference label in

the labeling stage. Here we compare it with a single-stage

prompting strategy where we query the VLM to directly

output a preference label over the two image observations

in a single stage. The detailed single-stage prompt can be

found in Appendix D.4. Figure 8 presents the comparison

on 4 tasks: Open Drawer, Soccer, Sweep Into and Straighten

Rope. As shown, the success rate of using the VLM with the

single-stage prompt is lower than that of using the two-stage

prompt on 3 out of the 4 tasks.

7. Conclusion and Future Work

In this work, we present RL-VLM-F, a method that auto-

matically generates reward functions via querying VLMs

with preferences given a task descriptions and image ob-

servations for a wide range of tasks. We demonstrate our

proposed method’s effectiveness on rigid, articulated, and

deformable object manipulation tasks.

Future work could extend RL-VLM-F to an active learning

context, exploring both easy and informative VLM queries

for more efficient reward learning. The adaptable nature

of our method allows for the integration of more advanced

VLMs when they become available, potentially addressing

more complex tasks. It would also be interesting to test

RL-VLM-F on tasks with a longer horizon. One could first

decompose the tasks into subtasks with shorter horizons, ei-

ther via manual decomposition or foundation models (Ahn

et al., 2022). Then, RL-VLM-F can be used to solve each

subtask. Additionally, our approach offers a practical path-

way to applying RL in real-world settings, where obtaining

reward functions is often difficult.
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Appendix

A. Details on Tasks and Environments

We run our method and baselines on CartPole from openAI

Gym (Brockman et al., 2016), three rigid and articulated

object manipulation tasks from MetaWorld (Yu et al., 2020),

and three deformable object manipulation tasks from Soft-

Gym (Lin et al., 2021). For the three MetaWorld tasks, we

modified the gripper initial state such that it starts close

to the target object to manipulate. Figure 3 in the paper

shows the initial state for these 3 tasks. We also adjusted

the camera view such that the target object is clearly visible

at around the center of the image, to provide good images

for VLM to give preferences. We describe the observation

space and action space for those tasks as follows:

A.1. Observation Space

For policy learning with SAC, we use state-based observa-

tions; for reward learning, we use high dimensional RGB

image observations, rendered by the simulator. We now

detail the state-based observation space for each task.

MetaWorld Tasks. For MetaWorld tasks, we follow the

setting in the original paper (Yu et al., 2020). The state

observation always has 39 dimensions. It consists of the

position and gripper status of the robot’s end-effector, the

position and orientation of objects in the scene, and the

position of the goal.

CartPole. The state observation has 4 dimensions, including

the position and velocity of the cart, as well as the angle and

angular velocity of the pole.

Cloth Fold. The state observation is the position of a subset

of the particles in the cloth mesh. The cloth is of size 40 x

40, and we uniformly subsample it to be of size 8 x 8. The

state is then the position of the picker, and the positions of

all those subsampled particles.

Straighten Rope. The state observation is the positions of

all particles on the rope and has 36 dimensions.

Pass Water. The state observation includes the size (width,

length, height) of the container, the target container position,

height of the water in the container, amount of water inside

and outside of the container. The state observation has 7

dimensions.

A.2. Action Space

For all environments, we normalize the action space to be

within [−1, 1]. Below we describe the action space for each

environment.

MetaWorld Tasks. For MetaWorld tasks, the action space

always has four dimensions. It includes the change in 3D

position of the robot’s end-effector followed by a normalized

torque that the gripper fingers should apply.

CartPole. The original action space is a discrete value in

0, 1, indicating the direction of the fixed force the cart is

pushed with. We modified it to be continuous within range

[0, 1] such that SAC can be used as the learning algorithm.

The continuous action represents the force applied to the

pole.

Cloth Fold. For this task, we use a pick-and-place action

primitive. We assume that the corner of the cloth is grasped

when the task is initialized. The action is the 2D target place

location.

Straighten Rope. For this task, we use two pickers, one at

each end of the rope, to control the rope. Therefore, the

action space is the 3D delta positions for each picker and

has 6 dimensions in total. We assume the two end points of

the rope is already grasped at the beginning of the task.

Pass Water. The motion of the glass container is constrained

to be in one dimension. Therefore, the action also has a

dimension of 1 and is the delta position of the container

along the dimension.

B. Hyper-parameters and Network

Architectures

B.1. Image-based Reward Learning

For the image-based reward model, we use a 4-layer Con-

volutional Neural Network for MetaWorld tasks and Cart-

Pole and a standard ResNet-18 (He et al., 2016) for the

three deformable object manipulation tasks. Following PEB-

BLE (Lee et al., 2021a), we also use an ensemble of three

reward models and use tanh as the activation function for

outputting reward. For RL-VLM-F, we train the model by

optimizing the cross-entropy loss, defined in Equation 2. For

VLM Score, we train the mode by optimizing the MSE loss

between the predicted score and ground-truth score output

by the VLM. For both methods, we use ADAM (Kingma &

Ba, 2014) as the optimizer with an initial learning rate of

0.0003.

B.2. Policy Learning

Following PEBBLE (Lee et al., 2021a), we use SAC as the

off-policy learning algorithm. We follow the network archi-

tectures for the actor and critic and all the hyper-parameter

settings in the original paper for policy learning.

B.3. Training details

Our implementation is based on PEBBLE (Lee et al., 2021a).

Below we describe the feedback collection schedule for

each task. For all tasks, we use a segment size of 1. We
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M K N

Open Drawer 40 4000 20000

Soccer 40 4000 20000

Sweep Into 40 4000 20000

CartPole 50 5000 10000

Cloth Fold 50 1000 500

Straighten Rope 100 5000 12000

Pass Water 100 5000 12000

Table 1. Hyper-parameters for feedback learning schedule.

Figure 9. On the Fold Cloth task, we find the performance of GPT-

4V to be better than Gemini-Pro, possibly due to the complex

visual appearance of the cloth.

summarize the number of queries per feedback session (M

in Algorithm 1), the frequency at which we collect feedback

in terms of environment steps (K in Algorithm 1), and the

maximum budget of queries (N ) for each task in Table 1.

For Cloth Fold, we have to use a small number of maximum

budget of queries due to the quota limitation of GPT-4V.

C. Baselines

C.1. VLM score

For this baseline, we use the same amount of queries (K)

at the same frequency (M ) as in our method to ask VLM to

directly output a score between 0 to 1. The reward model’s

architecture is the same as our method, except that the model

is trained with regression loss to regress to VLM’s output

score instead of classification loss as done in our method.

C.2. RoboCLIP

In RoboCLIP, the backbone video-language model is

S3D (Xie et al., 2018), trained on clips of human activi-

ties paired with textual descriptions from the HowTo100M

dataset (Miech et al., 2019). Given the assumption that the

model generalizes to unseen robotic environments, we ap-

plied this baseline solely to the three MetaWorld tasks that

contain a robot in the scene. We obtain the implementation

directly from the authors. To maintain uniform assumptions
across methods, we compare against the RoboCLIP variant

that only uses a text description instead of a video demon-

stration to compute the similarity score with the agent’s

episode rollout for reward computation. According to the

original paper, this text-only variant of RoboCLIP under-

performs the video-based method, corroborating the lower

performance observed in our tasks.

D. Prompts

D.1. RL-VLM-F and VLM Score

For both RL-VLM-F and VLM Score, we use a unified

query template combined with specific task goal descrip-

tions. The templates for RL-VLM-F and VLM Score are

shown in Figure 11 and Figure 13:

The only task-specific part in both prompts is the task goal

description. We use the same set of descriptions for both

methods. We summarize the textual description for each

task in Table 2.

D.2. CLIP Score and BLIP-2 Score

The task descriptions for both CLIP Score and BLIP-2 Score

baselines are summarized in Table 3. The semantic meaning

is almost identical to those used by RL-VLM-F and VLM

Score, except that the description is structured differently.

For CartPole, we used the exact same prompt as in (Roca-

monde et al., 2023), since they reported successful learning

of this task using that prompt.

D.3. RoboCLIP

For the task descriptions for the RoboCLIP baseline, we

followed the format used in the original paper (Sontakke

et al., 2023). We summarize the text descriptions in Table 4.

D.4. RL-VLM-F single stage prompt

In Section 6.5 we compared to an ablated version of RL-

VLM-F where a single-stage prompting strategy is used.

The single-stage prompt used is shown in Figure 12. For a

fair comparison, it is kept to be the same as the two-stage

prompt with only minor differences.

E. Additional Experiment Results

E.1. GT Task Reward (Oracle) and GT Sparse Reward

(Oracle)

To better contextualize the results from different reward

models, we test two more baselines, i.e., GT Task Reward

(Oracle) and GT Sparse Reward (Oracle). For GT Task

Reward (Oracle), we use the original ground-truth human-

written reward function with SAC as the RL algorithm to

train the policy. For GT Sparse Reward (Oracle), we use
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Figure 10. Learning curves of GT Task Reward (Oracle) and GT Sparse Reward (Oracle), along with RL-VLM-F and all baselines.

sparse reward with SAC. The reward is 1 when the goal is

achieved and 0 otherwise. The results of GT Task Reward

(Oracle) and GT Sparse Reward (Oracle), along with our

method and all baselines, are shown in Figure 10. For most

tasks, RL-VLM-F ’s final performance can match that of

using ground-truth reward, highlighting the effectiveness of

our method.

E.2. Ablation Study: Influence of Using Different VLMs

For RL-VLM-F and the VLM score baseline, we use

Gemini-Pro (Team et al., 2023) as the VLM for all tasks

except Fold Cloth. We find Gemini-Pro to perform poorly

on Fold Cloth, so we instead use GPT-4V (OpenAI, 2023) as

the VLM for this task for both methods. Figure 9 compares

the learning performance of Gemini-Pro versus GPT-4V on

the task of Fold Cloth. We do observe GPT-4V to achieve

much better performance on this task than Gemini-Pro. The

poorer performance of Gemini-Pro on this task could be

possibly due to the more complex visual reasoning required

for deformable cloth.

E.3. More Visualization of the Learned Reward

Here we show the learned reward from RL-VLM-F and the

VLM Score baseline, as well as the CLIP and BLIP-2 score

along an expert trajectory on three MetaWorld tasks. We

compare the learned reward from RL-VLM-F and the VLM

Score / CLIP and BLIP-2 score to the ground-truth task

progress. The results are shown in Figure 14. For all three

tasks, the reward learned by RL-VLM-F aligns the best with

the ground-truth task progress.
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Prompt Template for RL-VLM-F (ours)

Analysis Template

Consider the following two images:

Image 1:

[Image 1]

Image 2:

[Image 2]

1. What is shown in Image 1?

2. What is shown in Image 2?

3. The goal is to [task description]. Is there any difference between Image 1 and Image 2 in terms of achieving the goal?

Labeling Template

Based on the text below to the questions:

[Repeat the 3 questions in the Analysis Template]

[VLM response]

Is the goal better achieved in Image 1 or Image 2? Reply a single line of 0 if the goal is better achieved in Image 1, or 1 if

it is better achieved in Image 2.

Reply -1 if the text is unsure or there is no difference.

Figure 11. Prompt Template for RL-VLM-F.

Task Name Goal Description

Open Drawer to open the drawer

Soccer to move the soccer ball into the goal

Sweep Into to minimize the distance between the green cube and the hole

CartPole to balance the brown pole on the black cart to be upright

Cloth Fold to fold the cloth diagonally from top left corner to bottom right corner

Straighten Rope to straighten the blue rope

Pass Water to move the container, which holds water, to be as close to the red circle as possible without causing

too many water droplets to spill

Table 2. Goal description used in RL-VLM-F and VLM Score baseline.

Single Stage Prompt Template for RL-VLM-F

Consider the following two images:

Image 1:

[Image 1]

Image 2:

[Image 2]

1. What is shown in Image 1?

2. What is shown in Image 2?

3. The goal is [task description]. Is there any difference between Image 1 and Image 2 in terms of achieving the goal?

Is the goal better achieved in Image 1 or Image 2? Reply a single line of 0 if the goal is better achieved in Image 1, or 1 if

it is better achieved in Image 2.

Reply -1 if the text is unsure or there is no difference.

Figure 12. The single stage prompt Template for RL-VLM-F.
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Prompt Template for VLM Score

Analysis Template Consider the following image:

[Image]

1. What is shown in the image?

2. The goal is [task description]. On a scale of 0 to 1, the score is 1 if the goal is achieved. What score would you give

the image in terms of achieving the goal?

Labeling Template

Based on the text below to the questions:

[Repeat the 3 questions in the Analysis Template]

[VLM response]

Please reply a single line of the score the text has given. Reply -1 if the text is unsure.

Figure 13. Prompt Template for VLM Score.

Task Name Goal Description

Open Drawer The drawer is opened.

Soccer The soccer ball is in the goal.

Sweep Into The green cube is in the hole.

CartPole pole vertically upright on top of the cart.

Cloth Fold The cloth is folded diagonally from top left corner to bottom right corner.

Straighten Rope The blue rope is straightened.

Pass Water The container, which holds water, is as close to the red circle as possible without causing too many

water droplets to spill.

Table 3. Goal description used in CLIP Score and BLIP-2 Score.

Task Name Goal Description

Open Drawer robot opening green drawer

Soccer robot pushing the soccer ball into the goal

Sweep Into robot sweeping the green cube into the hole on the table

Table 4. Goal description used in RoboCLIP.
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Figure 14. Comparison of learned reward functions from RL-VLM-F and VLM Score, as well as CLIP and BLIP-2 score to the ground-

truth task progress along a trajectory rollout on three MetaWorld tasks. From left column to right: reward learned by RL-VLM-F, reward

learned by VLM Score, CLIP Score, BLIP-2 Score. From top row to bottom: Open Drawer, Soccer, and Sweep Into. The reward learned

by RL-VLM-F aligns the best across all compared methods.
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