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Causal Discovery Analysis Reveals Global Sources of
Predictability for Regional Flash Droughts
Sudhanshu Kumar' and Di Tian"

1Department of Crop, Soil & Environmental Sciences, Auburn University, Auburn, AL, USA

Abstract Detecting and quantifying the global teleconnections with flash droughts (FDs) and
understanding their causal relationships is crucial to improve their predictability. This study employs causal
effect networks (CENs) to explore the global predictability sources of subseasonal soil moisture FDs in three
regions of the United States (US): upper Mississippi, South Atlantic Gulf (SAG), and upper and lower Colorado
river basins. We analyzed the causal relationships of FD events with global 2-m air temperature, sea surface
temperature, water deficit (precipitation minus evaporation), and geopotential height at 500 hPa at the weekly
timescale over the warm season (April to September) from 1982 to 2018. CENs revealed that the Indian Ocean
Dipole, Pacific North Atlantic patterns, Bermuda high-pressure system, and teleconnection patterns via Rossby
wave train and jet streams strongly influence FDs in these regions. Moreover, a strong link from South America
suggests that atmospheric circulation forcings could affect the SAG through the low-level atmospheric flow,
reducing inland moisture transport, and leading to a precipitation deficit. Machine learning utilizing the
identified causal regions and factors can well predict major FD events up to 4 weeks in advance, providing
useful insights for improved subseasonal forecasting and early warnings.

Plain Language Summary This study investigates the global factors affecting flash droughts (FDs)
in the upper Mississippi, South Atlantic Gulf, and upper and lower Colorado river basins in the United States.
Using causal effect networks, the research identifies key global influences, such as the Indian Ocean Dipole,
Pacific North Atlantic patterns, and Bermuda high-pressure system, which affect FDs through atmospheric
circulation and jet streams. Findings show that these factors, along with local and remote climate processes, can
predict FDs up to 4 weeks in advance. Machine learning models utilizing these climate variables effectively
forecast FDs events. The study highlights the importance of large-scale climate oscillations and teleconnections
in predicting FDs, offering useful insights for improving early warnings and climate risk management.

1. Introduction

Over the past few decades, increasing drought events have been observed around the globe, causing severe effects
(Chiang et al., 2021), from energy shortages to significant food and water insecurity. Under global warming, the
intensity and frequency of droughts are predicted to increase in the upcoming decades and will have deleterious
impacts on natural resources, crop production, and the environment (Seneviratne et al., 2012). The increasing
drought poses an increased risk for wildfire and heatwave development, depletion of water resources, reduction of
air quality, and threatened food security (Christian et al., 2020; Hoell et al., 2020; Otkin et al., 2019; Yuan
et al., 2019).

Droughts typically occur at larger spatiotemporal scales (Konapala & Mishra, 2017), spread over hundreds of
kilometers and often lasting for weeks to months and years (Konapala & Mishra, 2017; Mishra & Singh, 2010).
However, the absence of precipitation events during the growing season, combined with high temperatures and
abundant sunshine, led to rapid decreases in soil moisture (SM) content and the rapid emergence of flash drought
(FD) conditions (Mo & Lettenmaier, 2015; Otkin et al., 2013). FDs, as an extreme hydro-climate event at the
subseasonal (weeks to months) timescale, are still challenging to understand and predict (Hoerling et al., 2014),
due to their rapid onset and development and complex processes and phenomena that contribute to or affect their
onset and development (DeAngelis et al., 2020; Hoell et al., 2020; Mo & Lettenmaier, 2020; Pendergrass
et al., 2020). These FDs can cause a dramatic increase in water stress and even crop failure in a few weeks
(Hoffmann et al., 2021; USDA, 2017). The 2012 U.S. FD exemplifies this phenomenon, where drought coverage
and intensity rapidly increased during June and July due to anomalous weather conditions, resulting in nearly 80%
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of the contiguous U.S. being characterized by at least abnormally dry conditions by the end of summer, according
to the U.S. Drought Monitor (USDM; Svoboda et al., 2002).

Studies have been performed extensively to understand FDs over the past few years. Hoerling et al. (2014) found
that the proximate cause of the 2012 Great Plains FD was due to a reduction in atmospheric moisture transport
from the Gulf of Mexico to the Great Plains, resulting from natural variations in atmospheric circulation
anomalies. Extreme heatwave conditions and precipitation deficits over the Great Plains in 2012 were associated
with an arid atmosphere and led to rapid additional soil drying. Another study, which looked at the prior
meteorological conditions of FDs during 1979 and 2010, discovered that FDs over the eastern United States (US)
were likely driven by atmospheric ridging in the mid to upper level troposphere (Ford & Labosier, 2017), which
was part of a quasi-stationary Rossby wave train (Ambrizzi et al., 1995). Recently, based on numerical modeling
experiments, Schubert et al. (2021) showed the impact of the Indian Ocean Dipole (IOD), an irregular oscillation
of sea surface temperature (SST), on the 2019 southeastern US FD. Long-term statistical analysis has revealed
that SST over a region of the Pacific Ocean had strong influences on heatwaves from 1950 to 2015 in the US
(McKinnon et al., 2016), the events often compounded with FDs (Miralles et al., 2019; Mo & Lettenmaier, 2015).
Since SST in the Indian, Pacific, and Atlantic oceans were found to be connected with Rossby wave trains
(Lim, 2015; McIntosh & Hendon, 2018), a large-scale circulation phenomenon associated with FDs (DeAngelis
et al., 2020; Ford & Labosier, 2017; Wang et al., 2014), SST in Indian, Pacific, and Atlantic oceans will likely
cause FDs over different regions; and increase in surface temperatures at landmasses nearby these oceans are
directly linked with SM deficits (Christian et al., 2020; Manthos et al., 2022). Additionally, lower evapotrans-
piration due to SM deficits reduces atmospheric moisture, further increasing atmospheric evaporative demand and
exacerbating SM depletion (Teuling et al., 2013). Yin et al. (2023) suggest that the precipitation shortage and the
vapor pressure deficit increase also cause the occurrence of FDs. However, these previous studies only focused on
analyzing either temperature impacts on a single FD event or local impacts from mesoscale meteorological
conditions. The long-term causal relationships of subseasonal FDs with temperature, pressure, and water deficit
(WD) (precipitation minus evaporation) from different regions of the globe have not yet been systematically
investigated.

Studies explored proximate causes of FDs based on simple correlation and regression or sophisticated numerical
modeling experiments (Ford & Labosier, 2017; Schubert et al., 2021; Wang et al., 2014). Ford and Lab-
osier (2017) used logistic regression to account for variables linked with the likelihood of FD occurrence. Mahto
and Mishra (2023) used the Pearson's Correlation Coefficient to estimate the relationship between two variables
and dominance analysis to evaluate the percentage contribution of precipitation and vapor pressure deficit in FD
occurrence. Correlation and regression approaches are affected by autocorrelation effects, indirect connections
via a third process, or a typical driver leading to noncausal, spurious correlations that limit interpretability (Runge,
Nowack, et al., 2019). Additionally, numerical modeling experiments are limited by the physical realism of the
model, which experiences difficulties in capturing important processes, such as land-atmosphere feedback
(Miralles et al., 2019), land surface water and energy budgets (Tian et al., 2016, 2018), moisture transport (Roy
et al., 2019), and Rossby wave propagation (Gray et al., 2014) due to model resolutions and biases. Such limi-
tations can affect modeling performance for analyzing the causes of the 2019 southeastern U.S. FD (Schubert
et al., 2021). As a result, the accuracy and predictive capabilities of the current S2S models' forecasts are still
limited, with the predictive skill for FD events often lower than that of climatology for forecasts extending beyond
2 weeks (Lesinger et al., 2024; Ma & Yuan, 2023; Su et al., 2023). Research by Ma and Yuan (2023) showed that
only 20% of FD events could be accurately predicted 1 week in advance in China, but this accuracy dropped to 4%
by the third week, highlighting the significant challenges in predicting FDs at the subseasonal scale. Lorenz
et al. (2021) evaluated week 3—4 changes in Root-Zone Soil Moisture (RZSM), which is a FD indicator, and
identified low skill due in part to autocorrelation.

Pendergrass et al. (2020) noted that the development of FD events is influenced by a variety of global and regional
factors, including land-atmosphere interactions, the Madden-Julian Oscillation (MJO), and the IOD. Discovering
and harnessing existing and new sources of predictability over the globe can be potentially useful for improving
regional FD predictions. Causal inference analysis based on long-term observational data has the potential to
discover underlying drivers and predictability sources of FDs. It can overcome spurious correlations due to
autocorrelation, indirect effects, or common drivers, and discover the complex interactions among different
driving factors and the variable of interest (Kretschmer et al., 2017; Kumar et al., 2023; Runge, Nowack,
et al., 2019). With growing volume and quality of observational-based climate data being available, causal
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inference approach can provide a great opportunity to disentangle the complex effects of both local and remote
drivers of FDs and discover their sources of predictability by directly learning from observations.

In summary, the causal relationships between FDs and their potential global drivers are still not well understood,
and current dynamic models show limited predictive capabilities beyond 2 weeks. In this study, we attempt to
address these research gaps by exploring global sources of predictability of SM FDs using causal inference
framework. We quantified the causal relationships of regional FDs in the U.S. with 2-m air temperature, SST,
geopotential height at 500 hPa, and WD over the quasi-globe. The analysis revealed local and remote sources of
predictability, which, combined with machine learning, well predicted FD events up to 4 weeks in advance.
Moreover, we discussed plausible mechanisms related to the identified sources of predictability. The findings of
this study may be helpful for improving FD predictability and early warnings.

2. Methods
2.1. Data and Potential Drivers

The Root-Zone Soil Moisture (RZSM) was obtained from a multi-decadal SMERGEV2.0 product developed by
merging satellite retrievals from the European Space Agency Climate Change Initiative (ESA-CCI) SM and
model output from the North American Land Data Assimilation System (NLDAS; Crow & Tobin, 2018), which
significantly enhances its accuracy and relevance for long- and short-term climate analysis. The data set has been
validated and compared with other satellite and in situ observations (Tobin et al., 2019, 2021) and has been found
to be a reliable data set for agricultural drought applications (Tobin et al., 2019). This product has been used in
several previous research relating SM and FD (Corak et al., 2024; Lorenz et al., 2021; Osman et al., 2022; Shin
et al., 2023). Hence, for this study, daily RZSM data with rooting depth up to 40 cm and a spatial resolution of
0.125° over the entire continental US (CONUS) was used from January 1982 to December 2018. SM at 40 cm
closely aligns with the active root zone for crops, directly impacting agricultural productivity and water man-
agement. This depth offers the most relevant data for assessing crop health, whereas shallower or deeper mea-
surements may be less representative of plant-available water (de Moraes et al., 2023; Fan et al., 2016; Liu
et al., 2023).

MERRA-2 is the climate reanalysis developed by the National Aeronautics and Space Administration (NASA),
which uses the latest V5 Global Modeling and Assimilation Office (GMAO) (GOES) data assimilation with an
updated grid-to-point statistical interpolation (Gelaro et al., 2017) and has a horizontal resolution of 0.5° X 0.625°.
Gelaro et al. (2017) presents the underlying alterations implemented in the reanalysis framework for MERRA-2,
which set it apart from its predecessor, MERRA. This study used the Geopotential height at 500 hPa (Z500;
GMAO, 2015a), 2m air temperature (T2m), sea level pressure, eastward wind at 850 hPa, northward wind at
850 hPa (GMAO, 2015¢), surface latent heat flux and bias-corrected total precipitation (GMAO, 2015b). More
details are available in the published MERRA-2 data product file (Bosilovich et al., 2015).

All data sets have been obtained for a common period from 01 Jan 1982, to 31 Dec 2018, and have been bilinearly
interpolated to a consistent 1° X 1° grid. Evaporation is converted from latent heat flux by dividing latent heat of
vapourization (1), where: 1 = 2.501 — (2.361 x 107>) x T2m. Finally, we calculated weekly WD using the
MERRA? precipitation and evaporation (precipitation-evaporation, P-E). Since this research focuses on the
subseasonal variability, we removed the centered 120-day moving average for each variable at each grid point
(Arcodia et al., 2020; Malloy & Kirtman, 2023). We perform the analysis only for the warm season (April to
September) given the occurrences and impacts of FD events during the warm period (Koster et al., 2019; Lesinger
& Tian, 2022). All variables were aggregated into weekly, a timescale commonly considered for monitoring FDs
(Pendergrass et al., 2020).

2.2. FD and Study Region

For this work, we used RZSM percentile to quantify agricultural drought, while a specific criterion will be used to
define “flash.” Previous studies noted that although the principle of rapid intensification of drought conditions has
been widely adopted in FD definitions, currently there is not a universally accepted definition or criteria for FD
(Lisonbee et al., 2022; Osman et al., 2021). Since this research focuses on agricultural FDs, our FD definition is
based on SM given its direct influence on plant productivity and water use (e.g., Novick et al., 2016; Rigden
et al., 2020). For detecting a FD event, the SM percentile drop (SMPD) was used, which is one of the most
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representative SM-based definitions (e.g., Osman et al., 2021; Yuan et al., 2019). Specifically, FD occurs when
the 1-week running average SM falls from the 40th to the twentieth percentile in less than or equal to four weeks.
Osman et al. (2021) concluded that the RZSM shows the clearest signal when FDs occur. After FD event
identification, each grid point over the region is binarized depending on whether it was under FD or not and was
assigned 1 (occur) or O (not occur) (Zhou et al., 2020). To obtain a single quantity representative of the occurrence
and spatial extent of weekly SM FD from 1982 to 2018, we calculated the area under FD over each study region
for each week, referred as FD percentage coverage (FD-pc). FD-pc is a single quantity representative of both the
occurrence and spatial extent of FDs for each week during the study period. Various definitions of FD have been
applied across different contexts to detect its occurrence (Tyagi et al., 2022). However, those definitions often
lead to underestimation or overestimation of the frequency of occurrence and spatial extent of FD (Hoffmann
et al., 2021; Mo & Lettenmaier, 2020; Zhang et al., 2017). In our study, both the occurrence and coverage of FD
are critical factors.

We selected the three study regions of the US— South Atlantic-Gulf (SAG), upper Mississippi (UM), and upper
and lower Colorado (ULC) river basins—using the US Geological Survey- Hydrologic Unit Code (USGS
HUCO02) on NCA-LDAS grid and are marked as A, B, and C respectively in Figure 1a. The SAG in the southeast
has experienced more frequent FD events than the other regions over the past decades (Lesinger & Tian, 2022; Mo
& Lettenmaier, 2016). Projected increase in warming in the upcoming decades can increase the frequency of FDs
in the SAG (Mahto & Mishra, 2023). This region has already been experiencing increased irrigation demand due
to rising climate pressures during the past decades (USDA, 2017) and has strong teleconnections with large-scale
climate patterns (Hansen et al., 1998). The major land use in the UM basin is cropland dominated by corn and
soybean (USDA, 2014). These agricultural areas witnessed many droughts in the last decades. The ULC river
basin in the southwest is one of the most over-allocated basins of the world, providing water to 40 million people
in Colorado and downstream states. However, temperature rise, and extended droughts have been observed since
2000 due to anthropogenic climate change, and the future of the ULC river basin is looming (Hung et al., 2022;
Tran et al., 2022). Analyzing FD causal factors and teleconnections of these basins can help understand FD
predictability and improve FD assessment and early warning. Moreover, these three regions were chosen for this
study to demonstrate the replicability of the model across different locations with diverse SM and climate pat-
terns. By selecting regions with varying environmental conditions, we aim to validate that the model can be
effectively applied in any region, showcasing its versatility and robustness.

2.3. Causal Discovery Framework

We use causal discovery framework to detect and visualize the causal relationships from reanalysis/observa-
tional-based data. Causal discovery aims to uncover the underlying causal structure that explains how variables
influence each other. It moves beyond mere associations to understand the mechanisms and interventions that can
reveal the effects of changes in one variable on another, which is crucial for understanding and predicting global
spatial and temporal teleconnections of U.S. FDs. The causal discovery framework includes causal effect network
(CEN) and causal inference analysis, as described below.

2.3.1. Causal Effect Network (CEN)

(CEN) analysis goes beyond merely identifying connections between variables, as seen in causal networks, by
pinpointing how changes in one variable can cause changes in another. This distinction between correlation,
which shows variables moving together without implying a direct influence, and causation, where one variable's
alteration directly affects another, is crucial. Causation demands stronger evidence, often through experimental or
longitudinal studies, to eliminate other potential influences. This analysis is especially useful for understanding
complex causal relationships in climate science, such as the mechanisms leading to FDs, by mapping out the
global causal links, their directions, and timings. The PCMCI algorithm is pivotal in CEN analysis for causal
discovery in time series data, effectively handling high-dimensional data sets and identifying true causal re-
lationships amidst indirect connections (Kretschmer et al., 2016; Runge, Nowack, et al., 2019). This methodology
is foundational for interpreting CEN outcomes, enabling researchers to uncover underlying causal mechanisms in
complex systems where direct experimentation may not be feasible, thus facilitating discoveries based on data
insights.
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Figure 1. (a) Spatial variations of number of weeks under flash drought in United States in the warm period (1982-2018) with
at least two events occurring concurrently. Regions A, B, and C represent the three study regions namely South Atlantic-
Gulf, upper Mississippi, and upper & lower Colorado river basins respectively. (b) Yearly variation of FD-pc in the three
study regions for the warm period. The median value for each distribution is shown with a black horizontal line, and the
dashed line is at one standard deviation above the mean of FD-pc.

The PCMCI (Peter and Clark Momentary Conditional Independence) algorithm is efficient for detecting causal
relationships between data sets (Runge, Bathiany, et al., 2019). It has advantages over existing approaches, such
as Granger causality (Granger, 1969), in terms of detection power, which identifies the presence of causal re-
lationships and quantifies their strength (Runge, Nowack, et al., 2019). This method combines the PC (Peter and
Clark) technique (Spirtes & Glymour, 1991) and the momentary conditional independence (MCI) test.

The PC approach identifies a series of causal parents, considering both true positive and false positive linkages. In
the PC step, the significance threshold () is selected to retain or discard a certain parent after calculating the
partial correlation. This step involves first identifying the set P of n variables designated for analysis. The PC
algorithm calculates direct correlations between the ith element (at zero lag) in set P and each of the remaining
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elements in set P at a certain lag 7; the significant correlations form a set of potential parents X? at time lag ,
which is in increasing order of the correlation strength. Then, the algorithm calculates the partial correlation
between the ith variable and each potential parent in the set X?. This calculation was performed with the condition
that the first variable in the set has the strongest correlation with this ith variable. The assessment aims to ascertain
whether a common variable mediates the relationship between these variables. For instance, where three variables
a, b, and c are in X, we calculate the partial correlation between a and b conditioned on ¢ by performing a linear
regression of a on ¢ and b on ¢, followed by the correlation of the resultant residuals. If the partial correlation
between a and b is still significant at a given confidence level @, a and b are conditionally dependent given
variable c, that is, the correlation between a and b cannot be (exclusively) explained by the influence of variable ¢
(not spurious link). This may reduce the set of parents for the next iteration X? The process is repeated for this set
of parents but with now two conditions (and three in the next step), leading to a next (possibly reduced) set of
parents X?. The algorithm converges when the number of parents equals or exceeds the number of conditions
needed to calculate the partial correlation. With a selected set of parents, the MCI test is then performed as the
second step of the PCMCI algorithm.

The MCI test eliminates unnecessary conditions, even for data sets with high autocorrelation. The maximum time
delay parameter (z,,,,) is chosen to estimate time-lagged causal links (Runge, Nowack, et al., 2019). In the MCI
step, we calculate the partial correlation between a variable and its parents at different time lags but are condi-
tioned on the set of parents of the parents of the variable we are interested in. It removes common driver effects
and reduces to a final set of causal parents. More details of this algorithm can be found in Runge, Nowack,
et al. (2019).

Based on Causal Sufficiency, Faithfulness, and the Markov condition assumptions, the upgraded
PCMCI+ method extends PCMCI by discovering full, lagged, and contemporaneous causal graphs. Contem-
poraneous link denotes a non-directional, simultaneous causal relationship between variables at the same time,
challenging the causal precedence assumption. PCMCI+ has an additional orientation phase after the PC and MCI
steps. The information of separating sets in MCI tests is used in the orientation phase, which results in a completed
partially directed acyclic graph representing a Markov equivalence class. A Markov equivalence class contains all
the causal graphs compatible with the data's conditional independence. PCMCI+ yields well-controlled false
positives, higher recall, and optimized conditioning sets with substantially shorter runtimes than the original PC
algorithm for autocorrelated time series (Runge, 2020). It flexibly combines nonlinear or linear conditional in-
dependence tests with a directed graphical causal model to estimate causal networks from time series data sets
(Goswami et al., 2022).

To implement PCMCI+, the Tigramite v4.2 Python package (https://github.com/jakobrunge/tigramite) and the
partial correlation conditional independence test were utilized (Kretschmer et al., 2018; Nowack et al., 2020;
Runge, Nowack, et al., 2019). This study considered time-lagged linkages of up to 7 weeks, the maximum time
delay for optimized results. The teleconnection indices were generated separately from the FD-pc time series to
determine the causal relationships. The strength of causal links (climate variables — FD-pc) and their statistical
significance (p < 0.01) were tracked, and, for the causation analysis at different lags, the strongest significant
causal links and the associated week were recorded. For a detailed description of PCMCI+, the readers refer to the
article by Runge (2020). Prior knowledge of physical systems and relevant variables with timescales is required
for applying the PCMCI+ algorithm (Malloy & Kirtman, 2023; Runge, Nowack, et al., 2019); hence, we analyzed
the causal maps of potential variables as described below.

2.3.2. Causal Inference Analysis

CEN is used in the causal inference analysis (Figure S4 in Supporting Information S1), which consists of three
steps:

Step 1: Spatial causal maps for defining potential precursors from gridded climate variables.

To find potential global regions showing teleconnections with FD-pc, we investigate causal maps, which plot the
linking coefficient from the causal effect network (CEN) spatially at each grid point over the quasi-globe (Di
Capua et al., 2020). This step determines the causal link between a time series at each grid point for climate
variables (weekly T2m, SST, Z500, or WD) and area-averaged one-dimensional time series (FD-pc). The analysis
was performed on a weekly time scale with a statistical significance level of p < 0.01. The climate variables
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should have a lagged effect with FD-pc, as these variables influence the occurrence of FD events. Hence, this
analysis was computed iteratively with a lag (7) from O to 7 weeks, as the results do not change much after week 7.
The strongest significant causal links were aggregated for each grid cell, and the spatial maps were generated. In
this step, we also removed the links with a strength less than 0.05 as they are weak (Malloy & Kirtman, 2023) and
do not influence the occurrence of FD much. Findings from these maps motivates us to test linkages from global
T2m, 7500, and WD to regional FD-pc with a CEN and to confirm if the teleconnection from these global
variables to regional FD-pc exists and the time lags for different connections.

Step 2: Clustering significant grid cells of climate variable driving FD from causal maps.

Grid cells with statistically significant higher strength magnitudes, identified as potential precursors, were
clustered using the application of density-based spatial clustering of applications with noise (DBSCAN, Ester
et al., 1996; Lehmann et al., 2020). Within the DBSCAN framework, a radius of 120 km was selected to define
neighboring grid cells, as it was found to generate regions of reasonable sizes and spatial separation. The top six
clusters with the maximum grid points were selected for further analysis. The clustered regions named as regions
A to F are in decreasing order of number of grids in a cluster (Table S1 in Supporting Information S1), with
clustered region A being the largest for a particular variable.

Step 3: Identification of teleconnections links and time lags.

For each selected clustered region for each climate variable, a time series was created by calculating the spatial
average for individual clusters. This procedure reduces the data's dimensionality but preserves the spatiotemporal
patterns (Kretschmer et al., 2017). Using CENs, we calculated the strength and temporal lags between the time
series of six selected regions (clusters) for each variable (T2m, Z500, and WD) and FD-pc in all three study
regions. Like previous analysis, time lags of 0—7 weeks were explored with a statistical significance of p < 0.01.
In this step, we considered only links from climate variables toward FD-pc and removed all links emerging from
FD-pc. By doing this, the potential factors will cover all the possible drivers of FD from different locations over
the quasi-globe.

2.4. Predicting FD Using Machine Learning With CEN-Identified Drivers

After identifying regions that drive FD-pc using CEN analysis, we selected T2m, Z500, and WD time series over
regions demonstrating significant direct causal links for predicting FD (Figure S5 in Supporting Information S1)
using Random Forest (RF) model (Breiman, 2001). The predictions focus on both major FD events over each
study region and FD occurrence spatially at each grid point over each study region. Here, we classified major (1)
and non-major (0) FD events using weekly values of FD-pc depending on whether the percentage of FD coverage
exceeded one standard deviation above the mean or not (Mo and Lettenmaier, 2015, 2016). Since there are fewer
significant events (exceeding 1SD above the mean in the FD-pc binary data set) compared to the non-significant
events, a classification algorithm directly leads to high accuracy in predicting the majority class (low FD-pc) but
fails to capture the minority class (high FD-pc) adequately. To mitigate this issue, we applied the Synthetic
Minority Oversampling TEchnique (SMOTE, Chawla et al., 2002) to the training data set. SMOTE operates
within the feature space rather than the data space by generating synthetic minority class samples along the link
between each minority class instance and its specific number of neighbors of the same class (Fernandez
et al., 2018; He & Garcia, 2009). The RF models were implemented using scikit-learn Python library and trained
using 100 estimators (representing the number of trees in the forest) with the oversampled data set, and the
maximum number of features evaluated at each tree node was determined as the square root of the total number of
features. The data was divided into 70% for training and 30% for testing set. The feature importance was
quantified based on Gini impurity (Breiman, 2001).

2.5. Evaluation Metrics

The evaluation of FD predictions involves a comprehensive analysis of the RF model's performance in dis-
tinguishing between drought and non-drought conditions. It requires a nuance understanding of various factors
such as sensitivity, specificity, and overall predictive accuracy. We have used two prominent evaluation metrics
to evaluate FD prediction model effectively up to a 4-week in advance, which are Receiver Operating Charac-
teristic (ROC) curve and the Precision-Recall (PR) curve. The Area Under the Curve (AUC) for both ROC and PR
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curves further quantifies the overall performance, providing a comprehensive measure of a model's predictive
accuracy in the context of FD forecasting. Below we briefly explain these skill measures.

The parameters used for calculating these metrices are true positive (Tpogiive) Value, True negative (Tnegative)
value, False positive (Fpygtive) Value, and False negative (Fyegarive) Value. For our model evaluation, the Tpgiive
value indicates the number of FD occurrences the model predicts correctly. Tyegaive value indicates the number of
FD non-occurrences the model predicts correctly. Fp.give Value indicates the number of FD occurrences the
model predicts incorrectly, that is, predicts the FD when there is 10 FD. Fyegqive value indicates the number of FD
non-occurrences the model predicts incorrectly, that is, does not predict FD when there is FD.

A receiver operating characteristic (ROC) curve is constructed by plotting the Tp, iy rate versus the Fp o rate
at various thresholds. Each point on the curve represents a different classification threshold, ranging from O to 1.
The model shows higher accuracy if the ROC curve is toward the upper-left-hand corner and lower accuracy if the
curve is closer to the 45° diagonal line in the ROC space. The area under the ROC curve (AUCg) is a summary
index of the model's skill for predicting the FD. An AUC score of 0 means the model's probability of predicting
FD is 100% wrong, a score of 0.5 suggests that the model's ability to discriminate between the FD event and non-
FD event classes is no better than random guessing, scores greater than (.5 indicate that the model has a predictive
capacity above random chance, with its ability to distinguish between classes improving as the score approaches
1. A score of 1 means the model's probability of predicting FD event is 100% correct. Therefore, an AUCgoc
score greater than 0.5 is generally considered an indication of a model's useful predictive performance, with
higher scores reflecting higher accuracy in distinguishing between the classes.

The Precision-Recall (PR) curve has frequently been employed as complementary to ROC curves for evaluating
the performance of binary classification models (Davis & Goadrich, 2006). When confronted with imbalanced
data sets where the minority class is of particular interest, PR curves have proven to be an effective means of
enhancing the statistical assessment of algorithm performance (Saito & Rehmsmeier, 2015). In PR space, recall
versus precision is plotted at various thresholds; Recall (RC) is defined as the Tpq,. rate. Precision (PC) is a
metric used to quantify the proportion of FD events accurately identified as positive among all FD events
classified as positive, indicating the model's ability to predict the positive class accurately. In the context of
performance evaluation in precision-recall (PR) space, models are deemed more accurate when their corre-
sponding PR curves approach the upper-right-hand corner. Conversely, the models are considered less accurate
when the curves approach a low-precision horizontal line. The area under the PR curve (AUCpy) provides another
summary index for evaluating model's predictive skill to identify FD. The AUCg evaluates a model's ability to
distinguish between classes, emphasizing the trade-off between sensitivity (Tp.ve rate) and specificity (1 -
Fositive Tate) across all thresholds and performs well with balanced data sets. In contrast, the AUCpg focuses on
the trade-off between precision (the proportion of true positives among positive predictions) and recall (Tpygigive
rate), making it more informative for imbalanced data sets, where positive class instances are rare or more
important to identify accurately.

3. Results

Based on the FD definition using weekly RZSM during the warm season (see Methods), we identified the total
number of FD events occurring at different grid points in the US over 36 years (1982-2018) (Figure 1a). Figure 1b
shows the variation for FD percentage of coverage (FD-pc) in three study regions: SAG, UM, and ULC. A
maximum of ~37%, 36%, and 41% (and a minimum of zero) of the region in SAG, UM, and ULC has experienced
FD in a single week, and 13, 8, and 16 events, respectively have occurred over the study period having FD-pc
greater than 30%. We use FD-pc because it can represent both the magnitude and spatial extent of FD. The
mean of all FD-pc was observed to be ~7% for all three regions. For warm period (April-September), the
variation of FD-pc shows that more FD are observed in May, April, and June for South Atlantic-Gulf (SAG), UM
and Upper and lower Colorado (ULC) river basins respectively (Figure S1 in Supporting Information S1).

3.1. Causal Maps of U.S. FDs

The causal maps of three study regions: SAG, UM, and ULC river basins (Figure 1a) show the causal strengths
(see Methods) between FD-pc and each climate variable, including 2-m air temperature (T2m), geopotential
height at 500-hPa (Z500), and WD are presented in Figure 2. In SAG river basin region (Figures 2a-2c), T2m
shows the strongest causal associations with FD-pc from the southeast US (SEUS ~0.27) and western north
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Figure 2. Causal analysis map of T2m (a, d, g), Z500 (b, e, h), and water deficit (c, f, i) at each grid point with FD-pc in South Atlantic Gulf (left column), upper
Mississippi (middle column), and and upper and lower Colorado (right column) basin region (blue contour region). The maps show the highest causal strength
(teleconnection index — FD-pc) between no lag to 7-week lag. Insignificant values at 99% confidence level and a magnitude <0.05 are removed.

Atlantic region (~—0.26), as well as strong negative causal associations from Russia and central South America
and a positive causation from southern Australia. Similar to T2m, for Z500, the prominent causal regions are
mainly in the north subtropical regions, Russia and central South America. For WD, the most significant causal
associations with FD-pc are from SEUS and the central North Atlantic Ocean. In the UM river basin region
(Figures 2d-2f), positive causal relations from T2m occurs mainly between equator and 30°S in the southern
hemisphere and negative relations in the northern hemisphere, especially in the Atlantic Ocean near SEUS and the
Pacific Ocean near central south America. Significant causal associations with Z500 are from the SEUS, the
tropics of the Indian and Atlantic Oceans, areas affected by the IOD and El Nifio-Southern Oscillation, with
additional influences from Russia and Spain regions. WD in the UM region drives FD in this region, with
additional causal influences from the north central Pacific and equatorial Atlantic and Pacific regions. For ULC
river basin (Figures 2g-21i), causal associations with FD-pc are observed for T2m from the north Pacific Ocean
and Tasman Sea. For Z500, the causal associations with FD-pc are mainly from northern North America, with
additional influences from the Bay of Bengal and southern Iran regions. The FD in ULC shows strong causal
associations with T2m, Z500, and WD in the same region. Causation for WD shows heterogeneous global pat-
terns, including influences from the Arabian Sea, Atlantic, and Pacific Ocean regions.

For global temperature, we have also examined the causal associations of FD-pc with global SST (besides T2m)
for all three study regions individually (Fig. S2 in Supporting Information S1), given that SST in Indian, Pacific,
and Atlantic oceans are associated with FDs via Rossby wave trains (DeAngelis et al., 2020; Mclntosh &
Hendon, 2018). It can be noted that the causal maps over oceans in all three study regions for SST (Figure S2 in
Supporting Information S1) and T2m (Figures 2a, 2d, and 2g) are almost similar. For example, the Northeast
Pacific and Northwest Atlantic Ocean regions in SAG and UM; equator to 30°S for UM; and the North Pacific and
North Atlantic Ocean region for ULC. However, the results are not as prominent as T2m; the strength of causal
associations is more than 0.2 for T2m and less than 0.15 for SST. Since T2m is also captured over land, we
observed the influence of T2m from southeast US, central south America, California, a part of Russia, and
southeast Australia for SAG (Figure 2a); southeast US, southern Australia, India, and a part of northern North
America for UM (Figure 2d); and Colorado and part of British Columbia in Canada for ULC region (Figure 2g),
which cannot be observed for SST. Additionally, various studies have found an influence of SST over SM and
FDs for specific events (Mo & Lettenmaier, 2015; Schubert et al., 2021; Wang et al., 2014), but for FDs (a
subseasonal phenomenon), the influence of SST seems not prominent (relative to T2m). This can be because SST
has a long-term memory and is resistant to sudden change due to relatively slow circulation systems (Dangendorf
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et al., 2014). These observations made T2m a better variable for analyzing causal associations for subseasonal
FD-pc.

3.2. Causal Links Between U.S. FDs and CEN Discovered Causal Regions

The clustered regions around the globe for T2m, Z500, and WD influencing FD-pc in SAG, UM, and ULC river
basins are shown in Figures 3—5a—5c, (see Methods, step 2 of the model-building). With all these regions, the
teleconnection links, their strength of causal influence (positive/negative), and lag times are shown in the CEN
(CEN; Figures 3—5d-5f) of the areal averaged time series over the six prominent regions and FD-pc (see Methods,
Step 3 of the model-building). Refer to Table 1 for teleconnection regions and Table S2 in Supporting Infor-
mation S1 for strength of each causal link.

The SEUS region A has the strongest direct causal link with SAG FD (0.255) indicating that T2m increases in
SEUS and nearby cause SAG FD (Figures 3a and 3d). Central South America (B) has a positive impact on SAG
FD with a lag of 2 weeks, while the Northeast Pacific (E) shows a positive effect with a 1-week lag. A temperature
rises in SEUS (A) and Central South America (B) amplifies SAG FD, while rise in Northwest Atlantic Ocean (C)
and Northeast Pacific Ocean (E) reduce its occurrence. Region F from ULC and nearby affects region E at a 3-
week lag, which then impacts SAG FD in 1 week. Eastern Russia's region D influences region C, which directly
and indirectly (through A) influences SAG FD-pc. Every Z500 region except C (near North Pacific Ocean) have
direct causal links to SAG FD-pc (Figures 3b and 3e). The strongest positive causal link is from region D in SEUS
(0.249) at no lag and same region shows negative link at 3 weeks lag to SAG FD. Region F in Central South
America and Region E in Eastern Russia has a direct positive and negative causal links at a two and 1-week lag.
Region A in Northeastern Pacific and California has a direct negative link at a 1-week lag. The WD cluster from
region A in SEUS is the largest and has the strongest direct negative influence on FD-pc in SAG with a strength of
—0.427 and —0.286 at zero- and 1-week lag, respectively (Figures 3¢ and 3f). Region B in the northwest US and E
in the Equatorial Atlantic Ocean have a direct positive link with SAG FD at zero lags. Region C in the Southern
Atlantic and D in the Northwest Atlantic Ocean have indirect positive links via E at4 and 1 week lag, respectively.

For UM region FD-pc, the T2m from Northwest Atlantic region (A) have direct negative link at zero lag
(Figures 4a and 4d, Table 1). T2m region B (near Northern Australia) and D (near Southeast Pacific Ocean)
influence temperature in region E (near Northeast Pacific Ocean) at a 6-week and O-week lag, respectively, which
finally influences UM FD at 4 and 6 weeks lag equally (Figure 4d). Thus, there will be a 10- to 12-week lag for
T2m in B to influence UM FD. Z500 from regions A (in Northwest Atlantic and SEUS) and E (near North central
Atlantic) has a direct negative link at zero- and 1-week lag, respectively (Figures 4b and 4e). Region B from
eastern Russia has a direct negative and positive causal link at zero- and 7-week lag. Region F near northwest US
strongly influences UM FD (0.215) at a 1-week lag. North Indian Ocean (C) has an indirect link through A at
1 week lag. WD from UM & nearby regions (E) has a strongest negative causal influence on UM FD (—0.297) at
week zero and an additional link at 1 week lag (Figures 4c and 4f). Northeast Pacific Ocean region (D) has a
negative causal link at 1 week lag. Equatorial east-Pacific (A) and Equatorial Atlantic Ocean region (B) have a
direct positive link. The negative link suggests that a decrease in WD in these areas can increase FD in UM or vice
versa.

For ULC FD-pc, T2m from regions A, D, and E are observed to have a direct link (Figures 5a and 5d, Table 1)
with E in ULC & nearby regions having the highest causal strength (0.308) at zero lag but link is contempora-
neous that is, directionality is undecided due to conflicting orientation rules (Runge, 2020). Regions B, C, and F
have indirect positive causal link to ULC FD via A or E (refer to Figure 5 or Table 1 for locations). Z500 from
regions B, D, and F have a direct positive causation at zero, five, and 7-weeks lag (Figures 5b and 5e) suggesting
that the time lag from a region is distance dependent. Regions A and E have a direct negative causation at a lag of
one and 0 weeks, with ULC FD. WD regions, all six regions have direct link with ULC FD-pc (Figures 5c and 5f),
suggesting that WD from these regions can amplify or reduce FD-affected regions in ULC. Regions A, B, D, and
F have negative causal links at a lag of 0, 4, 1, and 4 weeks, respectively and regions C and E have positive causal
links at 4 and 1-week lag, respectively.

3.3. CEN Discovered Sources of Causations Predict U.S. FDs

We forecast FD events using the RF algorithm by leveraging the direct CEN links to FD-pc (see Methods). The
locations of all these regions are summarized in Figures 3-5.
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Figure 3. Left column figure (a—c) shows six prominent and larger regions of causal maps selected regions using DBSCAN
algorithm. Right column figure (d—f) shows causal effect network built with area averaged timeseries of six different regions
selected for T2m (a, d), Z500 (b, e), and water deficit (c, f) with FD-pc in South Atlantic-Gulf River basin (with p < 0.01) and
up to 7-week lag for period 1982-2018. The names in the nodes represent the climate variable followed by the region as
suffixes. The color of an arrow or node represents the strength of the cross- or auto-dependency, respectively. All auto-
dependencies have a time delay of 7 = 1. Arrows with cross at ends represent conflicting contemporaneous links
(directionality is undecided due to conflicting orientation rules). Arrows with circles at ends represent unoriented,
contemporaneous links (collider and orientation rules could not be applied). Numbers on arrow demonstrate lag period for
maximum strength of causal link (no number meaning no lag).

The ROC curve in Figures 6a—6¢ shows the RF model's performances based on actual direct links to FD-pc lags
shown in CENs (Figures 3-5) for classifying the major FD-pc events (see Methods). The RF classifier model built
on T2m, Z500, and WD regions showing direct global teleconnections for FD-pc shows a high AUCR score of
0.806, 0.796, and 0.740 in SAG, UM, and ULC regions, respectively, for predicting the major FD-pc class in the
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Figure 4. Same as Figure 3, but for upper Mississippi River basin region.

test set. Figures 6d—6f shows a precision-recall (PR) curve with an AUCpg of 0.966, 0.950, and 0.937 for SAG,
UM, and ULC regions, respectively.

Regions (of T2m, Z500, and WD regions showing direct global teleconnections) used in the RF model are ar-
ranged in decreasing order of variable importance, that is, their influence in accurately classifying the FD-pc
(Figures 6g—61). For SAG FD prediction (Figure 6g), WD from region A in SAG contributes the most to FD
occurrence in SEUS, followed by WD from region E in the equatorial Atlantic Ocean. For T2m and Z500, region
B in central South America and region F from central South America have a higher influence than all other
locations (Figure 3). For UM FD prediction (Figure 6h), WD from region B in the Equatorial Atlantic Ocean
contributes the most, followed by WD from region A in the Equatorial East-Pacific. Both variables, T2m and
7500, the greater influence is observed from common region A in Northwest Atlantic Ocean which has maximum
grid points in the cluster (Figure 4). Regarding ULC FD modeling (Figure 6i), T2m from region A in the Northeast
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Figure 5. Same as Figure 3, but for upper & lower Colorado River basin region.

Pacific Ocean and E in the Northwest Atlantic Ocean have a strong influence. For Z500 and WD, region A in
Southwest Canada and region C in the north Indian Ocean has relatively stronger influences on FD prediction in
ULC among all six analyzed regions (Figure 5).

We obtained the results of the AUCR score for predicting FD over the space from weeks 1-4 in advance using
the same RF model, as shown in Figure 7. The results show that the prediction is skilful up to 4-week lead time,
with spatial average ROC score of 0.544, 0.669, and 0.608 for SAG, UM, and ULC regions. Notably, the SAG
region, particularly around Florida, demonstrates a higher prediction accuracy compared to the other regions. In
the UM region, predictions are highly accurate (ROC > 0.8), especially in the northeast, maintaining this accuracy
up to 3 weeks. At a 4-week lead, the northeast still exhibits relatively high ROC scores, whereas the central UM
region, the score increased at week 4 after an observed lower ROC score during the second and third weeks. At a
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Table 1
Approximate Locations of the Significant Teleconnection Regions Observed in Figures 35 for the South Atlantic Gulf, Upper

Mississippi, and Upper and Lower Colorado River Basins Respectively in the World Map

Regions T2m

7500

WD

SAG River basin teleconnection regions

A Southeastern US Northeastern Pacific & California Southeastern US

B Central South America Northwest Atlantic Ocean Northwest US

C Northwest Atlantic Ocean North Pacific Ocean Southern Atlantic

D Eastern Russia Southeastern US Northwest Atlantic Ocean

E Northeast Pacific Ocean Eastern Russia Equatorial Atlantic Ocean

F ULC & nearby regions Central South America Northcentral Atlantic Ocean
UM River basin teleconnection regions

A Northwest Atlantic Ocean Northwest Atlantic and SEUS Equatorial east-Pacific

B Northern Australia Eastern Russia Equatorial Atlantic Ocean

C Southwest Indian Ocean North Indian Ocean South Africa

D Southeast Pacific Ocean Spain & nearby regions Northeast Pacific Ocean

E Northeast Pacific Ocean North central Atlantic UM & nearby regions

g

Northeast Atlantic Ocean

ULC River basin teleconnection regions

Northwest US

Western equatorial Indian ocean

A Northeast Pacific Ocean Southwest Canada ULC & nearby regions

B Northcentral Pacific Ocean ULC & nearby regions Equatorial Atlantic Ocean

C North Pacific Ocean Iran North Indian Ocean

D Tasman Sea Central south Pacific Ocean Northeastern Pacific Ocean
E ULC & nearby regions Northeast Pacific Ocean Central north Atlantic Ocean
F Northwest Atlantic Ocean North Indian Ocean Southern Atlantic Ocean

Note. Teleconnection regions are denoted in different colors based on causal links to FD-pc: red (direct positive), blue (direct
negative), green (both positive and negative link at different lead times), and black (no direct link, indirect link might be
present). Italic fonts in the table show contemporaneous causal link to FD-pc.

1-week lead, the entire UM region demonstrates excellent predictive performance with a ROC score of 0.721. The
model performed more accurately in the UM region (0.669) at a 4-week lead compared to the 1-week leads in
SAG (0.621) and ULC (0.655). In the ULC region, the eastern and northern areas consistently exhibit ROC scores
above 0.70 across all 1-4-week lead times. The central ULC area also demonstrates higher ROC scores during the
first 2 weeks, with a decline in the third week, followed by a slight increase in the fourth week.

4. Discussion

In this study, we revealed global causal sources of FD in three river basins over the US using causal discovery
framework. The results identified causal regions that align with established teleconnection sources or reveal
potential new sources, as summarized in Table 2. Moreover, using identified FD driving regions, the ML model
can well predict U.S. FDs up to 4 weeks in advance, which confirmed the usefulness of the discovered tele-
connection links and their capability for predicting extreme events. In the following paragraphs, we attempted to
corroborate our results with previous studies and interpret the probable reasons for causations, as indicated by
causal maps and CENs from various global regions (Table 2).

Regions A-D (Figure 3b) for Z500 (and E, F, A, and C for T2m; Figure 3a) are observed to influence FD-pc in
SAG on the weekly timescale. They might be linked via a wave train of positive and negative values (~=£0.2)
spanning the regions from the North Pacific Ocean to the North Atlantic Ocean via North American landmass.
These regions generate a wave train response of low and high temperature/pressure systems over the northwestern
region (Sellars et al., 2017) that powers FDs over the SAG region. These semi-permanent Pacific/North American
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Figure 6. The Receiver Operating Characteristic curve (a—c), PR curve (d—f), and Evaluation of variable importance (g—i) for the Random Forest (RF) model at actual
time lags as observed on direct links of causal effect networks (CENs) between all three climate variables (T2m, Z500 and water deficit) and FD-pc (Figure 3) for higher
FD-pc classification on the test data set in South Atlantic Gulf, upper Mississippi, and upper and lower Colorado river basins. The x-axis in figure g shows the decrease
in average accuracy among all trials and y-axis shows the variables ordered from top-to-bottom as most-to-least important in classifying major FD-pc events. Number
Suffixes at the end of region name denotes week lag considered in our RF model obtained from CEN (Figure 3). Figure h is same as g but using direct links from Figure 4
for UM River basin. Figure (i) is same as g but using direct links from Figure 5 for upper & lower Colorado River basin.

(PNA) patterns, along with Quasi Biennial oscillations (QBO), may interact and propagate with jet streams, which
can cause changes in SM in SEUS regions.

Furthermore, for T2m, region E in Figures 3a and 4a and regions A & C in Figure 3b are influenced by extreme
Pacific patterns during the warm period and show association with high temperatures and droughts in the eastern
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Figure 7. Area Under the Curve (AUC) score of the Receiver Operating Characteristic curve for predicting flash drought at
each grid points of the South Atlantic-Gulf (a—d), upper Mississippi (e-h), and upper & lower Colorado (i-1) from lead week
1 to week 4. Average of AUC score of all grid points at each lead time is noted in each map.

US (McKinnon et al., 2016). Our findings of T2m region A, Z500 region D, and WD region A for SAG (Figure 3)
and T2m region A, Z500 region A, and WD region E for UM (Figure 4) are consistent with Ford and Lab-
osier (2017) at similar time lags, which provided detailed reasons for these atmospheric variables causing rapid
SM desiccation in the eastern US. Drier conditions (WD region A in Figures 3c and 5c) are driven by increased
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Table 2

Identified Causal Regions for Flash Droughts of the Three River Basins, Including Findings Confirming With Previous Studies (References Cited), Required Further
Investigations, or Explained in the Discussion Section

Regions

T2m

7500

WD

SAG River basin teleconnection regions

A

UM

MmUY QW » ®TH YO ®

Ford and Labosier (2017)
Refer to discussions

Refer to discussions

Clark and Feldstein (2022)
McKinnon et al. (2016)

Refer to discussions

iver basin teleconnection regions

Ford and Labosier (2017)

Further investigation needed
Further investigation needed

Further investigation needed

McKinnon et al. (2016)

No direct/indirect link to FD-pc

ULC River basin teleconnection regions

A

T m g AW

Beaudin et al. (2023)
Beaudin et al. (2023)
Beaudin et al. (2023)
Further investigation needed
Refer to discussions

Further investigation needed

McKinnon et al. (2016)
Luo et al. (2021)
McKinnon et al. (2016)
Ford and Labosier (2017)
Clark and Feldstein (2022)

Refer to discussions

Ford and Labosier (2017); Luo et al. (2021)
Clark and Feldstein (2022)

Schubert et al. (2021)

No direct/indirect link to FD-pc

Luo et al. (2021)

Further investigation needed

Ren et al. (2023); Vijverberg and Coumou (2022)

Further investigation needed
No direct/indirect link to FD-pc

Further investigation needed

Ren et al. (2023); Vijverberg and Coumou (2022)

Schubert et al. (2021)

Ford and Labosier (2017)
Refer to discussions

Further investigation needed
Luo et al. (2021)

Further investigation needed

No direct/indirect link to FD-pc

Further investigation needed
Further investigation needed
No direct/indirect link to FD-pc
Lesinger and Tian (2022)

Ford and Labosier (2017)

No direct/indirect link to FD-pc

Refer to discussions

Further investigation needed
Schubert et al. (2021)
Dettinger (2013)

Further investigation needed

Further investigation needed

evapotranspiration from rising temperatures. Reduced water availability forces tradeoffs between competing
water use, including agriculture, ecosystems, and urban areas.

The T2m of region A (SEUS) in Figure 3a and region E (ULC) in Figure 5a positively influence FD in respective
regions. The warming in the US west coast and Eastern Pacific can induce change in vapor fluxes and reduce
precipitation in the ULC are impacted by northeast Pacific temperatures (Beaudin et al., 2023) indicated as T2m
region A at 1 week lag, which is influenced by region B and C (Figures 5a and 5d). The cooler temperatures along
the US West Coast and hotter in the central Northeast Pacific decrease the extent of moisture transported over
ULC, thus increasing WD. These vapor fluxes are driven by large-scale changes in the wind associated with the
atmospheric adjustment to the strong North Pacific SST (Beaudin et al., 2023).

Region B (Figure 3b) and A/E (Figure 4b) negatively influence SAG and UM FD can be attributed to the moving
Bermuda high-pressure system, which sits over the Atlantic Ocean in the summer (Luo et al., 2021). This high-
pressure system influences moisture transport to the SAG and UM regions. A similar mechanism is also observed
for region D of Figure 3c. The moisture from the Gulf of Mexico and the equatorial Atlantic Ocean is transported
to SAG as the Bermuda high is far enough east; the resulted wind direction is perfect for bringing in a large
amount of moisture and heat to the eastern USA.

The region C in Figure 4b and C in Figure 5c¢/F in Figure 5b influence FD in UM and ULC, respectively, by
positive 10D. Various studies suggested that 10D, along with tropical pacific ENSO events, influences the
temperature and precipitation in the US through the Rossby wave train and contributes to making them drier
(McKinnon et al., 2016; Mo & Lettenmaier, 2016; Schubert et al., 2021). For WD, regions A in Figure 3c, E in
Figure 4c, and A in Figure Sc are just above the study region, and it can be observed that WD causes FD in the
region. Moreover, WD regions B and D influence SAG FD (Figure 3c) by deep convection from both sides. It was
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also noted that for WD, these regions may not have enough time to adapt to the sudden onset of large WDs and
heat extremes (Deng et al., 2022; Yuan et al., 2023) when more frequent FDs are observed.

WD region D in the Northeastern Pacific Ocean near the California coast negatively influences FD-pc (Figure 5c¢)
in the ULC region. Precipitation in ULC should be driven by moisture transport from region D through atmo-
spheric rivers (ARs; Ralph & Dettinger, 2011), which increases the amount of precipitation in California and
nearby regions (Dettinger, 2013). ARs are projected to increase with global warming (Wang et al., 2023) and will
carry water vapor with them, increasing precipitation on the west coast and nearby, helping in reducing FD and
drought events in ULC regions. Increased temperature in ULC will increase the Z500 in the region, causing low
pressure there (Figure S3 in Supporting Information S1). Moreover, the moist air from regions A and E
(Figure 5b) will also be transported to this region and will negatively affect (Figure 5e) the occurrence of FD in
ULC. Warmer west coast SST during a positive Pacific Decadal Oscillation phase with reduced cold upwelling
and increased net downward heat flux plays a role in moisture transport with low-level jet in ULC and nearby
(Ren et al., 2023; Vijverberg & Coumou, 2022). The WD region D in Figure 4c in the Southeast Pacific Ocean is
influenced by the study region's Pacific Decadal Oscillation associated with FD (Lesinger & Tian, 2022).

A diabatic heating source in South America could affect the SAG by exerting a low-level low anomaly in the
northern tropical and SEUS. The low anomaly could counteract the climatological low-level atmospheric flow,
reducing inland moisture transport and leading to precipitation deficits in the SAG. It suggests that T2m (region
B) and Z500 (region F) in central South America (Figures 3a and 3b) are typically associated with atmospheric
circulation forcings (e.g., diabatic heating)—the source for atmospheric teleconnection to SAG. This is confirmed
by the 850 hPa anomaly wind pattern during warm period, showing a general direction from central South
America to SEUS, with central South America having higher surface pressure than SEUS (Figure S3 in Sup-
porting Information S1).

Consistent with our teleconnection observations from eastern Russia (region E in Figure 3b, D in Figure 3a, and B
in Figure 4b), Clark and Feldstein (2022) concluded that eastern Russia and the eastern US are linked by PNA
teleconnections and influence through advection of air temperature by the anomalous meridional wind and
vertical mixing. Schubert et al. (2011) concluded that the observed wave pattern, characterized by its primary
association with the leading 250-hPa zonal wind component, manifests initially within the North Atlantic jet
stream. This wave undergoes bifurcation upon its departure from the jet stream axis. A significant fraction of the
wave's energy is observed to propagate along a trajectory northward of the Eurasian jet, traversing over Northern
Europe and Russia. In these regions, the wave considerably influences the spatiotemporal variability of surface
meteorological parameters, notably temperature and precipitation. Subsequent wave exits exhibit a global span,
with one such exit extending from the Indian subcontinent across to North America. The ensuing pathways,
encompassing the third and fourth exits, originate from the eastern Pacific, stretching towards Europe. These wind
pathways link the regions of Europe, Russia, the Indian subcontinent region, and the eastern Pacific. These
trajectories are critically implicated in modulating the hydroclimatic conditions of North America (Schubert
et al., 2011), denoting their significant impact on regional US precipitation and temperature patterns and, sub-
sequently, the regional FDs.

Dry SM condition corresponds well to Z500 (Zhang et al., 2019) and WD (Deng et al., 2022; Mahto & Mis-
hra, 2023; Wang & Yuan, 2022). The increased Z500 may raise downward solar radiation reaching the land
surface and enhance subsidence warming, leading to relatively warmer T2m and warmer days. Higher Z500 may
also decrease precipitation, resulting in drier soil. This drier surface soil leads to even greater sensible heat fluxes
and greater heat entertainment (HE) into the planetary boundary layer (PBL). SHF and HE may further increase
the T2m of the region. The higher PBL also helps to maintain the higher Z500. These conditions are favorable for
the occurrence of FDs. It was observed that WD over the study region has the strongest influence on FD in these
regions (Figures 3-5). Many previous studies also suggested WD to be a dominant reason for FD occurrence in
the SAG region (Mahto & Mishra, 2023) and globally (Deng et al., 2022; Wang & Yuan, 2022). We observed
stronger causal links from WD regions to FD-pc study region, while the WD far from the study region show
minimal influence. Z500 from Russia in SAG and UM, or Z500 and WD from the north Indian Ocean in the ULC,
has causal links over long distances that influence FD. There are a few contemporaneous links observed in the
CEN analysis, which can be due to the conflicts of directionality or collider, and orientation rules could not be
applied (Markov equivalence; Runge, 2020). The linkages considered to be contemporaneous on a weekly scale
may be causal on a sub-weekly timescale. For instance, the conflicting link between region E of T2m and ULC
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FD-pc (Figure 5d) or the unoriented link for Z500 of region B with A or FD-pc in SAG (Figure 3e) may be
considered causal on a different timescale. Malloy & Kirtman (2023) found that these links change to causal links
on changing the analysis period, that is, in our case, less/more than 7 days.

For our model predicting FD, the high AUC values for PR and ROC curve suggest that the model is robust and can
be used to identify the extent of any FD-pc in the future using T2m, Z500, and WD data from the identified
regions and teleconnections. Here, it is worth noting that for SAG and UM, WD was the major variable for FD
predictions; however, for ULC, T2m seems to be the major predictor. In other words, the surface temperature has
more influence than WD (and Z500) for ULC FD occurrence; however, WD is the most influential variable for
SAG and UM FD. Our results for AUCR score (Figure 7) are consistent with Pendergrass et al. (2020); they
indicated that the ability to predict drought events improves from the southern to the northern regions of the US.
Overall, the ROC score generally decreases from the first to the fourth week across all regions, except for the ULC
region, where the ROC score in the fourth week nearly equals to that of the third week due to the model's accurate
predictions for the eastern ULC region at the 4-week lead. Consequently, these findings affirm the model's
effectiveness in forecasting the potential scope of future FD events by leveraging T2m, Z500, and WD data from
specific areas. Our model demonstrates improved prediction skills for all weeks 1-4 compared to previous FD
forecast results. For instance, Su et al. (2023) showed that while predictions for the onset and end of major
droughts in the Coastal Western U.S. were reliable at 1- and 2-week lead times, their accuracy declined signif-
icantly at 3 weeks, with no predictive skill beyond 4 weeks. Lesinger et al. (2024) demonstrated that the anomaly
correlation coefficient for RZSM forecasts reaches nearly 0.6 for lead weeks 3—4. Accurate FD predictions allow
operational agencies to issue early warning alerts, effectively helping to mitigate drought impacts. While sub-
seasonal predictions offer the potential to inform users about impending extreme climate events, further research
is needed to enhance the accuracy of FD predictions.

This study has several limitations that could be addressed in future studies. First, this study used regional RZSM
simulations and global reanalysis data sets, which can be different from the ground SM and climate observations
(Mishra et al., 2017). It requires improving SM and climate data for more accurate FD characterizations. Second,
this study only considered SM at 40 cm for FD definitions, while the response of SM is closely related to soil
depth, with moisture in deeper soil layers being relatively more stable and insensitive to short-term atmospheric
changes (Li et al., 2020; Zhang et al., 2017). Therefore, the FD causal analysis and prediction results could be
affected if FDs are analyzed at a different depth. Moreover, CEN was performed only based on four variables
(T2m, SST, Z500, and WD). Additional known variables, for example, surface wind patterns and surface pressure
may influence the FDs in the study areas (SAG, UM, and ULC), and their inclusion in CEN may find additional
teleconnection regions. Utilizing the CEN and causal maps alongside model data makes it possible to uncover
causal linkages that differ from what is observed, which would be valuable in understanding the model biases
associated with these teleconnections. Additionally, large-scale climate oscillations strongly influence FD in-
tensity and severity through teleconnections; many of them have been confirmed by evidence or past research;
however, there are identified regions still require further investigations (See Table 2 for summary). This includes,
(a) The influence of WD region C and E in the central and south Atlantic Ocean to SAG FD (Figure 3). (b) The
link from T2m regions B, C, and D, Z500 region F and WD region A and B to UM FD (Figure 4). It can be noted
that WD regions A, B, and F (Figure 4c) are near the equator (same for WD region E in Figure 3c), and summer
ITCZ moving towards the east may show some teleconnection pattern. (c) The link from T2m regions D and F,
7500 region B and D, and WD regions B, E, and F to ULC FD (Figure 5). Moreover, other characteristics of FDs,
like severity and duration may be explored extensively in future providing new insights.

While CENs are useful for identifying causal relationships between the potential drivers and FD, CEN:ss still have
limitations in fully capturing the complexity of climate system dynamics (Nowack et al., 2020). These systems
involve intricate interactions and teleconnections, such as the global impacts of ENSO, which can be over-
simplified by causal networks that focus on a subset of variables and linear relationships (Donges et al., 2009;
Runge, Nowack, et al., 2019). The networks are also highly dependent on what variables and timescales are
selected for analysis, meaning that omitting key drivers or using inappropriate temporal resolutions can lead to
biased conclusions (Runge, Nowack, et al., 2019). Additionally, causal networks emphasize statistical re-
lationships without directly diving into physical mechanisms, which may limit their interpretability and predictive
power, especially in the context of changing climate conditions (Kretschmer et al., 2017). Furthermore, they
struggle to capture nonlinear behaviors and threshold effects, which are critical in climate systems (Dijk-
stra, 2013; Runge, 2020). Consequently, while CENs provide insights, they need to be complemented with
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physical models, nonlinear dynamics, and multi-scale analyses to fully understand the complexities of hydro-
climate systems.

The robustness of the CENs in identifying global drivers of FDs depends on the quality of meteorological and
climate data. Our study uses the MERRA-2 data set, which benefits from the GEOS-5 model's advanced pa-
rameterizations, including gravity wave schemes for improved representation of tropical oscillations and addi-
tional assimilation of ground-based and satellite observations like Microwave Limb Sounder temperature data
(Gong et al., 2022; Molod et al., 2015). However, limitations such as biases from model parameterizations,
artificial damping (Rayleigh friction) at high altitudes, and uncertainties in assimilated observations could impact
the validity of the causal inferences (Gong et al., 2022). Furthermore, runoff plays a significant role in the water
budget; however, in this study, we did not include runoff for estimating WD due to the potentially large un-
certainties associated with the global runoff reanalysis data, which would compromise the robustness of the
results. Given the uncertainties from global reanalysis data, it deserves a separate study to incorporate runoff into
WD estimation and FD analysis. Similarly, SMERGE SM data has notable limitations and uncertainties. Dis-
continuities in variance, likely due to changes in satellite instruments, observation systems, or land-use changes
(Wang et al., 2021), can introduce artificial trends, complicating long-term analyses. The reanalysis data sets
assimilated into SMERGE have evolved over time, causing inconsistencies between pre- and post-satellite pe-
riods, with degraded data quality in the 1980s and 1990s due to lower remote sensing frequency (Crow &
Tobin, 2018). Additionally, interpolation of missing ESA-CCI data (Reichle et al., 2008) and RZSM measure-
ment issues—such as coarse spatial and temporal resolutions, sampling biases, model uncertainties, and data
assimilation errors—further contribute to uncertainties. These are common issues across similar data sets and do
not significantly undermine the overall reliability of SMERGE. These points may affect the robustness of the
causal relationships identified using the CEN method.

5. Conclusion

In summary, we identified local and remote regions that drive the occurrences of FDs using causal discovery
analysis. Different regional and global processes can explain causal links from different parts of the world.
Observed causal links suggest that FDs are driven by land—atmospheric interactions, Pacific/North Atlantic
patterns, and the QBO, which affect SM. The Bermuda High influences FD events via changes in Z500. Large-
scale processes like deep convection also influence them due to pressure differences, increased ET, and rising
temperature due to global warming. We have also observed links from Indian, Atlantic, and Pacific Ocean regions
suggesting that Global phenomena like IOD, ENSO, and MJO play a role through Rossby wave trains and jet
streams. Moreover, atmospheric circulation forcings in South America could potentially affect the SAG FD
through the low-level atmospheric flow, reducing inland moisture transport. In several study regions, regional
scale processes like the Pacific Decadal Oscillation and California ARs influence SM. All discovered causal
regions that are consistent with known teleconnection sources and potentially new sources are summarized in
Table 2. Our research suggests that large-scale climate oscillations strongly influence FD through tele-
connections, and these oscillations can serve as windows of opportunity for S2S forecasting. Finally, considering
the regions with a direct connection from T2m, Z500, and WD influencing FD-pc in individual river basins, we
successfully built a ML model to predict the FD events up to 4 weeks in advance. This accurate predictability also
verifies our causal links and teleconnections from different parts of the world to US FD occurrences.

The findings from this work could lead to better understanding of the causality for extreme events in Earth
systems and inform climate risk management and adaptation through improved early warning of FD by incor-
porating data-driven models, such as random forests demonstrated in this research. These models can improve
predictive accuracy and extend forecast lead times by integrating the identified teleconnections. Tailored
monitoring of key variables like WD, Z500 and T2m over identified regions, along with region-specific models,
can provide proactive warnings for FD risks. Specific applications include their integration into established
drought early warning systems such as the National Integrated Drought Information System, the United Nations
Convention to Combat Desertification's (UNCCD) drought monitoring and forecasting system, Famine Early
Warning Systems Network (FEWS NET), and Food and Agriculture Organization's drought system, which can
enhance preparedness and regional forecasting of FD risks. Moreover, with the model's robustness and global
teleconnections observed for FDs in three U.S. regions having distinct SM and climate patterns, we can conclude
that the model can be re-run to other global hotspots of FDs to identify teleconnections affecting FDs at specific
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