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Abstract

Global climate models (GCMs) and Earth system models (ESMs) exhibit biases, with resolutions too coarse to capture local
variability for fine-scale, reliable drought and climate impact assessment. However, conventional bias correction approaches
may cause implausible climate change signals due to unrealistic representations of spatial and intervariable dependences.
While purely data-driven deep learning has achieved significant progress in improving climate and earth system simulations
and predictions, they cannot reliably learn the circumstances (e.g., extremes) that are largely unseen in historical climate but
likely becoming more frequent in the future climate (i.e., climate non-stationarity). This study shows an integrated trend-
preserving deep learning approach that can address the spatial and intervariable dependences and climate non-stationarity
issues for downscaling and bias correcting GCMs/ESMs. Here we combine the super-resolution deep residual network
(SRDRN) with the trend-preserving quantile delta mapping (QDM) to downscale and bias correct six primary climate vari-
ables at once (including daily precipitation, maximum temperature, minimum temperature, relative humidity, solar radiation,
and wind speed) from five state-of-the-art GCMs/ESMs in the Coupled Model Intercomparison Project Phase 6 (CMIP6).
We found that the SRDRN-QDM approach greatly reduced GCMs/ESMs biases in spatial and intervariable dependences
while significantly better-reducing biases in extremes compared to deep learning. The estimated drought based on the six
bias-corrected and downscaled variables captured the observed drought intensity and frequency, which outperformed state-
of-the-art multivariate bias correction approaches, demonstrating its capability for correcting GCMs/ESMs biases in spatial
and multivariable dependences and extremes.

Keywords Multivariate bias correction - Downscaling - Trend preserving - Deep learning - Climate model - Drought
assessment

1 Introduction

Global climate models (GCMs) and Earth system models
(ESMs), which are based on our physical understanding of
the climate and earth system and its evolutions in the future,
play a key role in climate impacts, adaptation, and resilience
studies. However, GCM/ESM outputs suffer from systematic
biases, and their spatial resolutions are too coarse to capture
local variability. Therefore, it needs to reduce, postprocess,
or cope with GCMs/ESMs model biases and scale issues for
subsequent climate impact modeling and analysis.
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Many statistical bias correction and downscaling methods
have been developed to correct the discrepancies between
GCM simulations and observed references. Most of these
methods, such as the widely used quantile mapping (QM),
are designed to correct variables individually at each loca-
tion [QM; e.g., Panofsky and Brier (1968); Thrasher et al.
(2012); Wood et al. (2002)] without accounting for biases
of spatial and intervariable dependences (Biirger et al.
2011; Nahar et al. 2018). Spatial and intervariable depend-
ences in downscaled and bias-corrected GCMs/ESMs are
particularly important in subsequent impact modeling and
analysis that depend on multiple variables such as droughts
(Van Loon et al. 2016; Zscheischler et al. 2018). Neglecting
those biases can cause generated outputs not to obey physi-
cal laws (Agbazo and Grenier 2020; Thrasher et al. 2012;
Wang and Tian 2022), distorting the results of impact studies
(Zscheischler et al. 2018), or causing implausible climate
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change signals (Maraun 2016; Maraun et al. 2017). These
issues have led to the recent development of multivariate
bias correction methods based on different statistical tech-
niques. These techniques either directly adjust multivari-
ate distributions over a region (e.g., MBCn; Cannon 2018;
Lange 2019) or assume predefined intervariable relation-
ships, including Pearson correlation (Biirger et al. 2011;
Cannon 2016; Mehrotra and Sharma 2012), Spearman rank
correlation (Cannon 2016) and lag one autocorrelation for
rank dependence (Mehrotra and Sharma 2012). Due to the
difficulties of adjusting multivariate distributions at very
high dimensions (i.e., multiple variables at many point loca-
tions over a large area) and inherent assumptions, the current
multivariate bias correction methods have limited capability
of bias correcting spatial and intervariable dependences for a
large geographical area (Francgois et al. 2020). For example,
Multivariate Bias Correction with N-dimensional probabil-
ity density function transform (MBCn) maps a multivariate
source distribution to a same-dimensional target distribution
through orthogonal matrix rotation operations iteratively,
which has been shown competitive performance compared
to either univariate (e.g., QM) or other multivariate bias
correction approaches for bias correcting climate data at a
relatively small number of point locations (Cannon 2018;
Francois et al. 2020). However, when it was applied to bias-
correct gridded precipitation over a large geographic region
(i.e., the contiguous United States (CONUS) with a spatial
resolution of 1°), it performed much worse compared to the
QM method, potentially due to its difficulties in handling a
large number of grid points (Pan et al. 2021).

Deep learning techniques have emerged as a promis-
ing approach for simulating highly nonlinear and complex
relationships between different variables. In particular,
deep learning models with convolutional neural networks
[CNNs, LeCun et al. (2015)] can capture complex spatial
structures showing great performances. Originally devel-
oped for computer vision problems, CNNs for climate and
Earth system sciences have been growing rapidly during
recent years (Reichstein et al. 2019) including detection of
extreme weather events (Liu et al. 2016; Racah et al. 2017)
and weather and climate forecasting (Chapman et al. 2019;
Ham et al. 2019; Liang et al. 2021; Ravuri et al. 2021; Scher
and Messori 2019; Shi et al. 2015). Besides capturing com-
plex spatial features, recent study has shown deep learning
with deep convolutional layers and upsampling layers can
process multiple input—output spatial variables at one time,
accounting for their physical relations, suggesting a great
potential for bias correcting and downscaling dependences
of multiple variables (Wang and Tian 2022). Since the inter-
variable relationships are integrated into model training with
no prior assumptions, deep learning models with convolu-
tional layers taking multiple physically associated variables
at once have opportunities to capture complex relationships
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beyond our prior knowledge and provide potentials for
improving bias corrections of both spatial and intervariable
dependences in GCMs/ESMs.

Deep learning with convolutional layers models have
been applied to downscale and bias correcting climate vari-
ables and show superiority over traditional methods (Bafio-
Medina et al. 2022; Francois et al. 2021; Fulton et al. 2023;
Hess et al. 2023; Hess et al. 2022; Liu et al. 2020; Pan et al.
2021; Quesada-Chacon et al. 2022; Quesada-Chacon et al.
2023; Rodrigues et al. 2018; Vandal et al. 2017; Wang and
Tian 2022). However, most of these studies focus on bias
correcting individual climate variables, neglecting their
physical relationships, while only several studies accounted
for the intervariable relationships among multiple climate
variables. Wang and Tian (2022) used a Super Resolution
Deep Residual Network (SRDRN) deep learning model to
simultaneously bias correct and downscale minimum tem-
perature (T,;,) and maximum temperature (T,,) of 20
CMIP6 GCMs, showing that the intervariable relationship
between T,;, and T, is well captured, while statistical
multivariate bias correction methods experienced unrealis-
tic artifacts (e.g., showing T i, > T,,.« in the downscaled and
bias-corrected fields). Fulton et al. (2023) used a genera-
tive adversarial network (GAN) based model, namely the
Unsupervised Image-to-Image Translation (UNIT) neural
network architecture, to simultaneously bias correct five
climate variables. The results indicate that the UNIT model
creates fewer extreme values than the target distribution and
applying the quantile mapping (QM) method to postprocess
the UNIT model outputs show the optimum outcome. This
method, however, has a strict stationary assumption between
model training (past) and testing (future) periods and may
face great challenges when a distinct trend exists between
past and future periods, considering climate non-stationarity,
particularly when applying to the GCMs/ESMs projections.
This, in fact, is a common issue of using deep learning for
climate change projections due to its inability to extrapolate
beyond their training data to unseen circumstances where
system has considerably changed (de Silva et al. 2020; Read
et al. 2019; Wi and Steinschneider 2022).

This study shows an integrated trend-preserving deep
learning approach can address the spatial and intervariable
dependences and climate non-stationarity issues for downs-
caling and bias correcting GCMs/ESMs. Here we combine
the SRDRN model (Wang et al. 2021) with a trend-preserv-
ing quantile delta mapping approach (QDM; Cannon 2018)
for bias correcting and downscaling six primary climate
variables at once, including daily precipitation, maximum
temperature, minimum temperature, relative humidity, solar
radiation, and wind speed, from five state-of-the-art GCMs/
ESMs in the Coupled Model Intercomparison Project phase
6 (CMIP6) over the CONUS. This trend preserving deep
learning approach, hereafter referred to as SRDRN-QDM,
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accounts for spatial and intervariable relations and non-
stationarity. We show SRDRN-QDM greatly improve state-
of-the-art GCMs/ESMs by significantly reducing biases of
individual variables, and better reducing biases in spatial and
multivariate dependences compared to the current multivari-
ate bias correction approach, and better reducing biases in
extreme events compared to the current deep learning down-
scaling and bias correction approach. We performed com-
prehensive evaluations of the SRDRN-QDM downscaled
and bias-corrected variables, as well as drought character-
istics derived from the six downscaled and bias-corrected
variables, in comparison with the current approaches. The
structure of this paper is organized as follows: Sect. 2 intro-
duced data and methodology, including the SRDRN model,
QDM method to preserve trend, and calculation of drought
index. Section 3 presents results; discussion and conclusions
are provided in Sect. 4.

2 Data and methodology
2.1 Data and study area

In this study, we consider historical simulations from five
state-of-the-art CMIP6 GCMs/ESMs (Eyring et al. 2016)
and six climate variables, including daily accumulative pre-
cipitation, minimum temperature at 2-m, maximum tem-
perature at 2-m, relative humidity at 2-m, solar radiation,
and wind speed at 10-m. The five GCMs/ESMs were devel-
oped by major climate centers all over the world and have
different spatial resolutions varying from 0.7° to 2.5° (see
Table 1). These selected variables are commonly used for
climate impact studies such as drought (e.g., Ahmadalipour
et al. 2017; Haile et al. 2020; Lee et al. 2019), wildfire (e.g.,
Bedia et al. 2013; Brown et al. 2023; Grose et al. 2014) and
crop failures (e.g., Goulart et al. 2023, 2021; Schillerberg
and Tian 2023). While most of the five CMIP6 GCMs/ESMs
include multiple ensemble members (named with rninpnfn,
where r represents realization, i represents initialization
method, p represents physics, f represents forcing, and n can
be different numbers), only one single member (rlilplfl)
for each model was used in this study for fair comparisons.
Prior to bias correction and downscaling, the GCM/ESM

outputs were re-gridded into a common 1° spatial resolution
with bilinear interpolation.

The European Center for Medium-Range Weather Fore-
cast’s (ECMWF) ERAS dataset was used as high-resolution
observational references (Hersbach et al. 2020), which has
a spatial resolution of 0.25°. The overlapped period from
1979 to 2014 was used for both GCMs and ERAS reanaly-
sis data. The multivariate bias correction and downscaling
experiments were performed over the CONUS, where a wide
range of climatic zones exist, including the temperate to con-
tinental climate in the Northeast, subtropical climate in the
Southeast, and Mountains and Great Plains climate in the
West as well as oceanic climate at the western coast from the
Pacific Ocean and Gulf of Mexico in the Southeast.

2.2 Improving SRDRN for multivariate bias
correction and downscaling

The SRDRN model is a deep learning architecture inspired
by a novel single-image super-resolution study in the com-
puter vision field (Ledig et al. 2017). This model has been
tested for downscaling daily precipitation and temperature
individually through synthetic experiments (Wang et al.
2021), bias correcting minimum temperature and maximum
temperature at once for GCM/ESM outputs (Wang and Tian
2022), and customized for bias correcting and downscal-
ing hourly precipitation from reanalysis data using radar
observations (Wang et al. 2023). These previous studies
have demonstrated its superiority over conventional deep
learning approaches. Compared with the widely used U-Net
architectue (e.g., Sha et al. 2020; Sun and Tang 2020), the
SRDRN model directly extracts features at the coarse reso-
lution input; therefore, the coarse resolution input data do
not need to be firstly interpolated into higher resolution as
observational references, resulting in the decrease of com-
putational and memory complexity.

The model is mainly comprised of residual blocks and
upsampling blocks with CNN layers, parametric ReLU
activation function, and batch normalization layers. The
residual blocks enable a very deep architecture that has nota-
ble advantages for extracting fine spatial features without
degradation issues (He et al. 2016). The upsampling blocks
equipped with upsampling 2D layers enable the model to

Table 1 Selected GCM

information No GCMs Horizontal resolution Institutions
1 EC-Earth3 0.7°x0.7° European EC-Earth Consortium (Europe)
2 GFDL-ESM4 1.0°x0.8° Geophysical Fluid Dynamics Laboratory (USA)
3 IPSL-CM6A-LR 1.26°x2.5° Institute Pierre Simon Laplace (France)
4 MPI-ESM1-2-HR 0.94°x0.94° Max Planck Institute for Meteorology (Germany)
5 MRI-ESM2-0 1.125°x 1.125° Meteorological Research Institute, Japan Mete-

orological Agency (Japan)
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Fig. 1 Climatology of daily precipitation (1st column) and maximum
temperature (2nd column) for ERAS from 1979 to 2004 (1st row) and
differences (2nd row) between the period of 2005 to 2014 and the

have downscaling capability for generating high-resolution
data. Each upsampling block sequentially and gradually
increases the input coarse resolution feature maps by a fac-
tor of 2 or 3. In this study, the downscaling ratio (the ratio
of spatial resolutions between GCMs/ESMs and ERAS5)
is 4, and thus, we used two upsampling blocks, with each
increasing spatial resolution by a factor of 2. There are 37
CNN layers in this architecture including one CNN layer
in the first layer, 33 CNN layers in the residual blocks, two
CNN layers in the upsampling blocks and one CNN layer
for reconstruction at the end. For more details about the
original model architecture, the readers refer to Wang et al.
(2021). Through a series of additional tests, we made modi-
fications to the SRDRN architecture to achieve optimum
results for multivariate bias correction and downscaling.
Specifically, the number of filters for the CNN layers in the
upsampling blocks increased from 256 to 512, and a spatial
2D channel-wise dropout layer was added at the end of the
second upsampling block based on suggestions from Kong
et al. (2022). These adjustments increase model complexity
for handling six variables at once but also increase gener-
alization ability to battle overfitting issues (Srivastava et al.
2014).

Data normalization was executed as a data preprocess-
ing step. Specifically, each variable was normalized by
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period of 1979 to 2004. Units for the color bars are mm for precipita-
tion and °C for maximum temperature

subtracting the grid mean and dividing by the grid standard
deviation at each grid point, which is different from our pre-
vious studies (Wang and Tian 2022; Wang et al. 2023; Wang
et al. 2021) in which variables are normalized with mean and
standard deviation calculated based on the flattened variable
of all the grid points (i.e., the flattened vectors). Our tests
indicate that normalization with grid mean and grid standard
deviation better captures spatial variability at the continental
scale potentially because these grid-based parameters accu-
rately attain the long term climatological features at local
scale, which is very important for retaining spatial variabil-
ity at the large scale. Note that precipitation data was firstly
logarithmically transformed to reduce skewness (Sha et al.
2020b; Wang et al. 2023) before being normalized.

2.3 SRDRN-QDM trend-preserving deep learning

Global warming continues to increase under different scenar-
ios and modeled pathways, causing increased extreme events
(IPCC 2023, Lee et al. 2023). Figure 1 shows the climatol-
ogy differences between the period of 1979 to 2004 and the
period of 2005 to 2014 for daily precipitation and maximum
temperature over the CONUS based on the observational ref-
erence dataset (i.e., ERAS). We can see that precipitation cli-
matology decreased as much as 20% in the south of CONUS,
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while maximum temperature climatology increased in a simi-
lar area as large as 1 °C. These differences between histori-
cal and future climate will likely be greater, especially under
the higher emission scenarios (IPCC 2023, Lee et al. 2023).
However, pure data-driven deep learning models have experi-
enced difficulties in inferring testing dataset that have differ-
ent distributions with the training dataset (e.g., non-stationary
data such as climate) (Arik et al. 2022; Li et al. 2022), and
have difficulties capturing extreme events that are never or
rarely seen in the training dataset (e.g., Wilson et al. 2022).
This is a common issue of using deep learning for climate
change projections due to its inability to extrapolate beyond
their training data to unseen circumstances where system has
considerably changed (de Silva et al. 2020; Read et al. 2019;
Wi and Steinschneider 2022).

In order to address this issue, we combined the adjusted
trend-preserving quantile delta mapping approach (QDM;
Cannon et al. 2015) with SRDRN deep learning approach
for better capturing climate trends and extremes (denoted as
SRDRN-QDM). Here we take the precipitation variable as an
example. Firstly, we calculate the non-exceedance probability
associated with the value in the projection period at time ¢ for
the SRDRN model output, Tggppy (1)

— ®
Tsgrprn p(1) = F SRDRN.p [XSRDRN,p(t)] (D
where F is the estimated empirical cumulative density

SRDRN p
function (CDF) over a time window around ¢ in the projec-

tion period for SRDRN model output. xggpry ,(#) is the pre-
cipitation value from the SRDRN model at time ¢ in the
projection period. Secondly, we calculate the relative change
of precipitation value at the GCM CDFs between the projec-
tion and historical periods based on GCM model data,

Agem (D)

—1
F ot [Tsrorn,p )]
Agen® = —7 (2)

oo [sroryp ()]

where F g)C_Aj,‘p (F g)C_All,h) is the inverse CDF of GCM outputs
in the projection (historical) period. Fg)c_zx;p [TSRDRN’[,(I)] is
the precipitation value in the projection period correspond-
ing to Tggppy (1), While Fg)C_A}I A [TSRDRN’[,(I)] is the precipita-
tion value in the historical period corresponding to the same
probability gppgy ,(¢). Similar to other trend preserving
studies (Cannon 2016, 2018; Lange 2019), here we assume
the trends from the GCM outputs (A ;,(?)) are realistic and
no trend biases exist. Thirdly, the SRDRN model output is
also bias-corrected with quantile mapping based on the
observed data.

Xo:srorRN 3 p(0) = F (;111 [TSRDRN,p(t)] 3)

where X,.srpryi:p(1) 1s quantile mapping bias-corrected
precipitation for SRDRN model output. F;;, is the inverse
CDF for the observed data in the historical period. Finally,
the QDM bias-corrected result, Xggppy ,(7), is calculated by
multiplying the relative change A;q,(?),

Xsrorn p () = Xo: sroRN 1:p (D) = Agem (D) “)

The time window to construct the empirical CDF around
time ¢ was set to be 45 days to preserve the seasonality. Tak-
ing 20 years of historical period and 10 years of projection
period as an example, the total number of days for construct-
ing the empirical CDF will be 1820 days [(45+45+ 1) x20]
for the historical period and 910 [(45+45+ 1) x 10] days
for the projection period. Since the 45 days are moving with
time # moving and the days within the 45 days are also used
to construct empirical CDF at other times around time ¢, any
changes within the 45 days would not be neglected. In this
study, we consider precipitation, relative humidity, and wind
speed as relative changes in quantiles in Eqs. (2 and 4). To
preserve absolute changes in quantiles, the Eqs. (2 and 4)
can simply be applied additively rather than multiplicatively.
The variables of minimum temperature, maximum tempera-
ture, and solar radiation are considered absolute changes in
this study.

2.4 Model training

We first performed SRDRN bias correction and downscaling
using the first 26 years (1979 to 2004) as the training dataset
and the remaining ten years (2005 to 2014) as the testing
dataset. We used grid mean and grid standard deviation cal-
culated from the training dataset to normalize the training
data and used the same ones for denormalization during the
inference period. The parameters of grid mean and standard
deviation are obtained from all year round training data-
set without season separations. Similar to Wang and Tian
(2022), we stacked the five GCMs daily data with six chan-
nels, which greatly augments the data size and also allows
the model to consider inter-model variability. The referenced
data of ERAS were replicated and stacked to match each
set of GCMs. While GCM outputs are not synchronized in
time with ERAS, we synchronously paired coarse resolu-
tion data from GCMs and observations and assumed that the
SRDRN has the capability of reproducing distributions of
the observations if synchronized biases are well corrected.
The GCM GFDL-ESM4 (see Table 1) used the 365-day cal-
endar, while ERAS and the other four GCMs used Grego-
rian calendar. In order to synchronize GCMs and ERAS for
model training, we removed the data on days of Feb. 29 so
that all the GCMs and ERAS to have 365 days each year. The
mean absolute error (MAE) was chosen as the loss function.

@ Springer
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For the channel of precipitation, weighted MAE was used
according to Wang et al. (2023) to better balance the precipi-
tation data and weights w were calculated following,

0.1 y <01
w=1qy,.. 01<y <10 3)

1.0y .210

where y/  is the natural log transformed ERAS precipita-
tion scaled by dividing the maximum value of natural log
transformed ERAS precipitation. For other channels, MAE
loss is used. The Adam optimization algorithm was used to
train the network with a learning rate of 0.0001, and default
values for other parameters were used during model train-
ing. The mini-batch size of 64 was used, and the number
of epochs was set to 160. We applied QDM as introduced
above to each output variable from SRDRN to better pre-
serve trends and extremes. The historical and projection
periods mentioned in the previous section correspond to the
training and testing periods in this study, respectively. The
model was trained with approximately 1.2 x 103 iterations
and was executed using NVIDIA V100 GPU provided by
the Advanced Cyberinfrastructure Coordination Ecosystem:
Services and Support (ACCESS), formerly known as the
Extreme Science and Engineering Discovery Environment
(XSEDE) (Towns et al., 2014).

2.5 Model evaluations

We evaluated the SRDRN-QDM model performance for
each variable as well as spatial and intervariable relation-
ships against ERAS observations during the testing period.
The agreements between the modeled and observed values
were quantified by the root mean squared error (RMSE),
Kling-Gupta efficiency (KGE) and Kolmogorov—Smirnov
(KSS) statistics. The KGE is an overall performance met-
ric combining correlation, bias, and variability (Kling et al.
2012), representing perfect agreement when it equals 1. The
KSS statistic is used to test whether the modeled sample
came from the same distribution as the referenced data,
which has been used in climate downscaling and bias correc-
tion (e.g., Quesada-Chacén et al. 2023). Besides evaluating
each individual variable as well as spatial and intervariable
relationships, we also take drought as an example to evalu-
ate the SRDRN-QDM performance for capturing climate
extreme events that are characterized by multiple variables.
We used a multivariate drought index, the standardized pre-
cipitation evapotranspiration index (SPEI; developed by
Vicente-Serrano et al. 2010), to examine the inter-variable
physical coherence of involved key essential variables, i.e.,
the six variables, including precipitation, maximum tem-
perature, minimum temperature, relative humidity, solar
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radiation, and wind speed from the SRDRN-QDM out-
puts. The procedure of SPEI calculation involves a climatic
water balance, and it considers both the role of precipita-
tion and evaporation in drought assessment. SPEI is based
on variations in the deficit of precipitation and potential
evapotranspiration (P-PET). Various methods have been
proposed for calculating PET, and it has been shown that
the Penman—Monteith (PM) approach provides more accu-
rate results due to a more physically-based formulation of
atmospheric evaporative demand (Donohue et al. 2010).
Therefore, our PET is calculated based on the FAO-56 PM
equation (FAO 56 PM; Allen et al. 1998), which is recom-
mended by the World Meteorological Organization (WMO)
as the standard method for estimating PET. The FAO-56
PM equation requires five variables: minimum temperature,
maximum temperature, solar radiation, relative humidity,
and wind speed. Therefore, we calculated daily PET accord-
ing to the FAO-56 PM equation with the five bias-corrected
and downscaled variables. Based on Vicente-Serrano et al.
(2010), monthly precipitation and PET are used to calculate
the climatic water deficits. Thus, we aggregated daily pre-
cipitation and daily PET into the monthly timescale. It is
worth noting that the calculated climatic water deficits at the
monthly timescale can be aggregated at different time scales.
In this study, we focus on the monthly timescale for short-
or long-term drought analysis (Ansari et al. 2023). After
calculating monthly climatic water deficits, normalization
is performed based on a log-logistic probability distribution
to obtain the SPEI series. The log-logistic distribution is
used and recommended by many researchers (e.g., Ansari
et al. 2023; Vicente-Serrano et al. 2010). The R package
‘SPEI” was used to calculate SPEI in this study (Begueria
and Vicente-Serrano 2017). As a summary, Fig. 2 outlines
the overall deep learning-based framework of multivariate
bias correction and downscaling for drought assessment.

3 Results

We first present the effects of QDM on adjusting distribu-
tions for the outputs of SRDRN and statistics at 1st, 33rd,
66th, and 99th percentiles for each variable. Then, we show
the SRDRN-QDM model performance for individual varia-
bles on climatological statistics. Bias reduction is quantified
by comparing the SRDRN-QDM bias-corrected and down-
scaled results with the bilinear interpolation of raw GCMs
without bias correction (named Bilinear). We also include
two state-of-the-art trend preserving multivariate bias cor-
rection methods, including MBCn (Cannon 2018) and
Inter-Sectoral Impact Model Intercomparison Project ver-
sion 3 (ISIMIP3) (Lange 2019). Furthermore, the SRDRN-
QDM model performance on reducing biases of spatial and
intervariable dependences is presented and compared with
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Fig.2 Schematic of the experiment for downscaling and bias correcting six variables using SRDRN-QDM model for five GCMs/ESMs

MBCn and ISIMIP3. Finally, we present a drought assess-
ment based on the SPEI index as a case study.

3.1 Effects of QDM

Figure 3 shows the probability distributions of all the six
variables flattened in the spatial and temporal dimensions
from ERAS, five raw GCMs, bias-corrected by SRDRN
and SRDRN-QDM. There are large biases between the
ERAS and raw GCMs at the extreme percentiles par-
ticularly for precipitation and wind speed variables.
The SRDRN model reduces the occurrence of both high
and low extremes and shifts more of the distributions
toward ERAS5’s central peak for all the variables. The

SRDRN-QDM approach, however, greatly improved the
distributions and well-matched distributions from ERAS
for all the six variables, particularly at the extreme per-
centiles (less than 1st percentile and greater than 99th
percentile). QDM is explicitly designed to match one-
dimensional distributions at grid point, while the SRDRN
deep learning model matches the distributions only as an
emergent feature of optimizing its loss function and tends
to neglect the small portion of data examples that occurred
extremely infrequent (e.g., < 1%), making it especially
challenging to correct large biases at extremes between the
coarse resolution GCMs/ESMs and fine resolution ERAS
observational reference.
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Fig.3 Probability distributions of maximum temperature, minimum
temperature, precipitation, relative humidity, solar radiation and
wind speed for 5 raw GCMs and bias-corrected models (SRDRN and

3.2 Overall performance

We further evaluated the performance of each variable at
four different percentiles (1st, 33rd, 66th, and 99th percen-
tiles) from SRDRN-QDM, compared to bilinear interpo-
lation of GCMs/ESMs without bias correction (Bilinear).
Table 2 shows the RMSE and KGE values between the mod-
els (bias-corrected products of the ensemble mean of the five
GCMs/ESMs) and referenced data at the four percentiles. As
shown in the table, the SRDRN-QDM model greatly reduced
RMSE and increased KGE values at all four percentiles,
indicating that the model captures the distributions of each
individual variable at each grid point. Taking RMSE at the
extreme 99th percentile as an example, the SRDRN-QDM
model reduced biases of 82.2% for relative humidity, 75.2%
for solar radiation, 70.5% for maximum temperature, 80.7%
for minimum temperature, 85.0% for wind speed and 54.6%
for precipitation, respectively. The increases in KGE values
between SRDRN-QDM and Bilinear at the extreme percen-
tile are substantial, particularly for the variables of relative
humidity and wind speed.
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Solar radiation (W/m2)

Wind (m/s)

SRDRN-QDM) as well as the referenced ERAS. Note that the nor-
malized histogram in the y axis is a log scale so that the differences in
the distribution can be better seen

Besides Bilinear, we also ran two state-of-the-art multi-
variate bias correction methods at the grid basis including
MBCn and ISIMIP3. Previous studies have demonstrated
the competitive performance of the MBCn approach com-
pared to univariate (e.g., QDM) or other multivariate bias
correction approaches with limited dimensional data (Can-
non 2018; Francgois et al. 2020). Given the deterioration
issue of MBCn on handling very high dimensional data
(over 6 x 10* dimensions in this study), we applied MBCn
at each grid point to bias correct intervariable depend-
ences among the six variables on a grid point basis. The
method ISIMIP3 was designed at grid point basis, which
firstly applied parametric quantile mapping for bias cor-
rection at coarse resolution and then used MBCn for bias
correcting the bilinear interpolated variables at the fine
resolution (Lange 2019). Table 2 indicates that the KGE
for MBCn, ISIMIP3 and SRDRN-QDM are all close to
each other for all the six variables at the four percentiles,
while ISIMIP3 have relatively higher RMSE compared
to SRDRN-QDM and MBCn for all the six variables at
most of the four percentiles. The KSS statistics (Table S1
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Table2 RMSE and KGE at 1st,

. Variables Model 1st percentile  33rd percentile 66th percen-  99th percentile
33rd, 66th, and 99th percentiles tile
RMSE KGE RMSE KGE RMSE KGE RMSE KGE
Relative humidity Bilinear 0.064 0.85 0.099 0.71 0.12 036 0.077 -0.026
MBCn 0.036 0.88 0.029 0.90 0.0305 0.85 0.015 091
ISIMIP3 0.037 091 0.038 091 0.0361 0.87 0.0219 0.89
SRDRN-QDM 0.033 0.89 0.031 0.89 0.027 0.89 0.014 0.92
Solar radiation Bilinear 16 0.34 11 093 11 092 9.6 0.57
MBCn 3.4 094 34 095 3.2 095 23 091
ISIMIP3 4.7 091 37 097 4.1 096 2.7 0.92
SRDRN-QDM 3.1 097 35 091 31 096 24 0.93
Maximum temperature Bilinear 2.5 041 32 0.67 2.6 0.88 22 0.81
MBCn 084 098 0.61 0.95 0.57 092 0.75 0.96
ISIMIP3 1.2 097 0.79 095 098 093 13 0.93
SRDRN-QDM 0.81 094 0.59 0.96 0.58 093 0.65 0.97
Minimum temperature  Bilinear 2.6 085 14 0.70 1.5 095 23 0.88
MBCn 095 099 0.53 0.76 0.50 094 052 097
ISIMIP3 1.27 099 0.89 0.75 0.83 095 0.87 0.97
SRDRN-QDM 0.95  0.96 0.66 0.81 0.50 093 045 099
Wind speed Bilinear 0.12 056 042 0.47 0.63 047 22 0.50
MBCn 0.041 093 0.070 097 0.12 096 029 0.94
ISIMIP3 0.15 093 0.20 092 0.31 093 070 091
SRDRN-QDM 0.034 0.95 0.064 099 0.14 097 033 0.98
Precipitation Bilinear 0 - 0.082 -0.23 0.80 028 49 0.75
MBCn 0 - 0.015 0.56 0.19 079 24 0.95
ISIMIP3 0 - 0.0289 -23 026 085 28 0.94
SRDRN-QDM 0 - 0.014 0.60 0.18 080 2.2 0.96

*RMSE units for relative humidity are unitless, solar radiation is W/m?, maximum and minimum tempera-
tures are °C, wind speed is m/s, and precipitation is mm/day

in the Supplementary Information) indicate that most of
the distributions at grids from Bilinear are very differ-
ent from the ones of the referenced ERA5 and SRDRN-
QDM greatly increased the percentages of grids that match
the distributions of the referenced ERA5. Compared to
MBCn and ISIMIP3, SRDRN-QDM has an overall better
performance.

Figure 4 shows the box plots of the differences of the
model outputs (Bilinear, MBCn, ISIMIP3 and SRDRN-
QDM) compared to the observational reference data at the
33rd and 99th percentiles for all six variables from each
GCM/ESM simulation, respectively. The differences of the
SRDRN-QDM bias-corrected products compared to the
referenced data are around 0, with a small spread for each
variable and GCM/ESM, indicating that the bias-corrected
results from the SRDRN-QDM model well match the dis-
tribution of the referenced data, much better compared to
Bilinear. Comparing MBCn and SRDRN-QDM, ISIMIP3
has relatively larger spread for most of the GCMs particu-
larly at 99th percentile.

3.3 Climatology

We evaluated the long-term mean (i.e., climatology) dur-
ing the testing period for all six variables with multi-model
(five GCMs/ESMs) ensemble mean compared with Bilinear.
Figure 5 shows the climatology mean for each daily variable
at each grid point over the CONUS, including the differ-
ences between models and reference data (ERAS) during
the testing period. We can see that the SRDRN-QDM model
greatly reduced biases for all six variables over the CONUS.
The effects are more obvious over the regions with com-
plex topographies (Great Plains and Mountains region in the
West) in which there are large biases from bilinear interpo-
lated GCMs/ESMs, while the ISIMIP3 model has relatively
large climatology mean differences from ERAS in those
areas for all the variables. We further present the root mean
squared error (RMSE) and Kling-Gupta efficiency (KGE)
statistics for the climatology mean in Table 3 including
Bilinear, MBCn, ISIMIP3 and SRDRN-QDM. The results
indicate that the SRDRN-QDM model reduced RMSE and
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Fig.4 Box plots for differences between models (Bilinear, MBChn,
ISIMIP3 and SRDRN-QDM) and referenced ERAS at the 33rd per-
centile a and 99th percentile b for maximum temperature, minimum

increased KGE values of all six variables. SRDRN-QDM
reduced RMSE by 71.6% for relative humidity, 77.7% for
solar radiation, 83.8% for maximum temperature, 64.4% for
minimum temperature, 82.4% for wind speed, and 70.0% for
precipitation, respectively. In particular, the increase of KGE
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temperature, precipitation, relative humidity, solar radiation, and
wind speed for each GCM

values from the SRDRN-QDM model is tremendous for the
variables of relative humidity, wind speed, and precipitation
since these three variables are difficult to simulate and have
larger biases compared to the other three variables even at
the monthly timescale (Xuan et al. 2017).
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Fig.5 Climatology means for maximum temperature (1st row), mini-
mum temperature (2nd row), precipitation (3rd row), relative humid-
ity (4th row), solar radiation (5th row), and wind speed (6th row) at
each grid point over the CONUS. 1st column is the climatology mean
for ERAS, 2nd column is the climatology mean difference between
Bilinear and ERAS, 3rd column is the climatology mean difference

Besides the climatology mean, we also evaluated the
standard deviation of all six variables in the testing period.
Figure 6 indicates that the SRDRN-QDM model greatly
reduced biases of standard deviations for all six variables,
while the ISIMIP3 model has relatively large standard devia-
tion differences from ERAS, particularly for the variables
of maximum temperature, minimum temperature and wind

120°W  110°W 100°W  90°W  80°W  70°W  120°W 110°W 100°W  90°W

-2 -1 0 1 2 -2 -1 0

between the SRDRN-QDM model and ERAS, 4th column is the cli-
matology mean difference between the ISIMIP3 model and ERAS.
Units for the color bars are °C for maximum and minimum tempera-
ture, mm/day for precipitation, no unit for relative humidity, W/m? for
solar radiation, and m/s for wind speed

speed around the boundary areas between the land and the
ocean. Table 3 also shows that the SRDRN-QDM model
has much lower RMSE and higher KGE values for stand-
ard deviation compared to bilinear interpolation over all the
grid points in the CONUS. Specifically, SRDRN-QDM has
reduced the standard deviation RMSE by 76.0% for relative
humidity, 73.3% for solar radiation, 69.8% for maximum
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Table3 RMSE and KGE for climatology mean and standard devia-
tion

Variables Model Climatology  standard

mean deviation
RMSE KGE RMSE KGE
Relative humidity Bilinear 0.096 059 0.036 0.75
MBCn 0.027 0.89 0.0071 0.98
ISIMIP3 0.034  0.90 0.0091 0.96
SRDRN-QDM 0.027 090 0.0087 0.96
Solar radiation Bilinear 8.9 091 6.8 0.62
MBCn 22 095 1.7 0.96
ISIMIP3 32 096 2.0 0.95
SRDRN-QDM 2.0 094 1.8 0.98
Maximum tempera-  Bilinear 2.5 0.85 0.81 0.80
ture MBCn 040 096 0.25 0.98
ISIMIP3 0.78 098 0.37 0.92
SRDRN-QDM 0.41 096 024 0.97
Minimum tempera-  Bilinear 1.4 091 0.62 0.94
ture MBCn 048 092 0.28 0.99
ISIMIP3 082 092 030 094
SRDRN-QDM 0.50 096 0.27  0.98
Wind speed Bilinear 0.58 047 042 0.51
MBCn 010 097 0.09 092
ISIMIP3 027 092 0.15 0.92
SRDRN-QDM 0.10 097 0.09  0.93
Precipitation Bilinear 0.66 0.61 1.0 0.71
MBCn 024 091 046 094
ISIMIP3 026 094 054 096

SRDRN-QDM 0.20 093 042 095

*RMSE units for relative humidity are unitless, solar radiation is W/

m?, maximum and minimum temperatures are °C, wind speed is m/s,

and precipitation is mm/day

temperature, 56.1% for minimum temperature, 77.2% for
wind speed, and 58.1% for precipitation, suggesting great
improvements. Similar to Table 2, Table 3 shows that KGE
values are close to each other for climatology mean and
standard deviation for MBCn, ISIMIP3 and SRDRN-QDM,
while ISIMIP3 has relative higher RMSE than MBCn and
SRDRN-QDM.

3.4 Intervariable dependence

SRDRN-QDM took multiple variables at once as input—out-
put channels (six input variables and six output variables
in this study; see Fig. 2), making the model learn very
complex relationships beyond our prior knowledge, so that
the intervariable dependences can be captured during the
training process. In particular, the intervariable correlation
between temperature and precipitation has been extensively
explored in previous studies (e.g., Guo et al. 2020, 2019; Li
et al. 2014), since the biases at intervariable dependences
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greatly affect GCM/ESM simulated processes such as snow-
melt, evapotranspiration, and runoff generation (Buishand
and Brandsma 2001; Immerzeel et al. 2014; Maurer et al.
2010; Mueller and Seneviratne 2014) and further affect cli-
mate change on crop yields (Lobell and Field 2007). Fig-
ure 7 shows the Spearman correlation coefficients between
anomalies of precipitation and maximum temperature at
daily time scale in winter months (December to February,
DJF) and summer months (June to August, JJA) for the
ERAS observational reference, and differences between
model bias-corrected results from the multi-model ensem-
ble mean for Bilinear, MBCn, ISIMIP3 and SRDRN-QDM.
We can see that the observed Spearman correlations from
the referenced data vary regionally and seasonally. In the
winter months, the relationship is positive in the moun-
tain areas in the west and eastern CONUS, while negative
around the west coast and middle to high altitudes areas. In
the summer months, negative relationship is dominant at
southern coastal area, while positive relationship is located
at the Southwestern arid area (i.e., South California, Ari-
zona and New Mexico states) and Northeast area around
the Great Lakes. The Bilinear product from the 5-model
ensemble mostly overestimated the correlations in winter
months (RMSE of 0.139) and underestimated the correla-
tion in south central and the arid areas in the west (RMSE of
0.109). MBCn appears reducing more biases for the winter
months with lower RMSE of 0.115, while MBCn slightly
increased the correlation biases in the summer months with a
RMSE of 0.120 particularly at the arid area around Arizona
state. ISIMIP3 performs worse than MBCn with a RMSE
of 0.151 in winter months and 0.124 in summer months.
In contrast, SRDRN-QDM reduces biases in the simulated
precipitation-temperature correlation fields in both winter
and summer months with a RMSE of 0.107 in winter months
and 0.113 in summer months. We also aggregated daily time
scale to monthly (see Figure S1 in the Supplementary Infor-
mation). Most noticeably in the monthly time scale, the posi-
tive high correlations (i.e., hot spots) in the middle-to-high
altitudes in the winter months and in the Southwestern arid
area in the summer months are well enhanced. However,
we noticed that SRDRN-QDM still overestimated the cor-
relation in the west coastal areas in both winter and summer
months and overestimated the correlation around Florida
state in the summer months at both daily and monthly time
scale, highlighting the challenges for capturing intervariable
relationships at once across various climate regions over the
CONUS.

3.5 Spatial dependence
To evaluate the performance of SRDRN-QDM on cor-

recting spatial biases, we calculated map correlation (also
called spatial correlation) of day of the year average between
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Fig.6 The standard deviation for maximum temperature (Ist row),
minimum temperature (2nd row), precipitation (3rd row), relative
humidity (4th row), solar radiation (5th row), and wind speed (6th
row) at each grid point over the CONUS. Ist column is the standard
deviation for ERAS5, 2nd column is the standard deviation differ-
ence between Bilinear and ERAS, 3rd column is the standard devia-

models (Bilinear, MBCn, ISIMIP3 or SRDRN-QDM) and
referenced data for each GCM/ESM and each variable
(Fig. 8). Figure 8 shows that correlation coefficients for all
the six variables are mostly higher than 0.9, while SRDRN-
QDM model further increased map correlations for all of
the six variables with relatively narrower spread and much
better than either MBCn or ISIMIP3. The map correlations

120°W  110°W 100°W 90°W  80°W  70°W  120°W 110°W 100°W 90°W  80°W  70°W

=2 -1 0 1 2 =2 -1 0 1 2

tion difference between the SRDRN-QDM model and ERAS, and
4th column is the standard deviation difference between the ISIMIP3
model and ERAS. Units for the color bars are °C for maximum and
minimum temperature, mm/day for precipitation, no unit for relative
humidity, W/m? for solar radiation, and m/s for wind speed

from MBCn are mostly lower than Bilinear, indicating grid-
based bias correction process may increases spatial biases.
ISIMIP3 performs much worst for precipitation variable,
which potentially caused by assuming precipitation distri-
bution follows gamma distribution (Lange 2019). This result
suggests that SRDRN-QDM mostly reduced biases on spa-
tial dependence, showing better performance than other two
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Fig.7 Spatial distribution of Spearman correlation coefficient
between precipitation and maximum temperature for referenced
ERAS5 (1st row), and difference between bilinear interpolation (2nd
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row), bias-corrected by MBCn (3rd row), ISIMIP3 (4th row) and
SRDRN-QDM (5rd row) with ERAS in winter days (DJF, 1st col-
umn) and summer days (JJA, 2nd column)
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Fig.8 Box plots for day of the year average map correlation between
models (Bilinear and bias-corrected products by SRDRN-QDM and
MBChn for each GCM/ESM) and referenced ERAS5 for maximum tem-

bias correction methods. This is likely because both MBCn
and ISIMIP3 were executed on the grid basis (due to its
limitations in handling high dimensional data), which did
not account for spatial dependences when performing bias
corrections, while SRDRN-QDM includes convolutional
layers accounting for spatial patterns between inputs and
outputs when learning their relationships.

3.6 Assessing drought

We defined a drought event as a negative SPEI
(SPEI < =— 1) lasting for at least one consecutive month.
Based on this definition, the duration of most drought events
is one month based on the reference data (ERAS) during the
testing period. Figure 9 shows the average drought inten-
sity for all the drought events for ERAS and model outputs
(Bilinear, MBCn, ISIMIP3 and SRDRN-QDM) for each
GCM/ESM. As shown in the figure, drought intensity var-
ies across the CONUS, and high intensity presents in the
southwestern region, the central south, and part of the north-
east region. For the same GCM/ESM, the spatial patterns of
drought intensity from MBCn and ISIMIP3 models appear
to be similar to Bilinear, but very different from ERAS,
indicating grid-based bias correction methods are not able
to bias correct spatial patterns of drought intensity. Among
different GCMSs/ESMs, there are dramatic spatial pattern
differences of drought intensity for the Bilinear, MBCn and
ISIMIP3 models, causing the multi-model ensemble mean

5
gcgarth3 o) pSMa {poL-CMEA LR R prEsM1 2 AR R1ESM20

gcath® ool EsM Lo cmea R R pLESML 2" AR R1-ESM2-0

perature, minimum temperature, precipitation, relative humidity, solar
radiation, and wind speed

results greatly underestimated the drought intensity over
the regions where the observed absolute drought intensity
is relatively high while overestimated the drought intensity
at locations where the observed absolute drought intensity is
relatively low (Figure S4 in the Supplementary Information).
The SRDRN-QDM model, however, corrected the spatial
patterns of drought intensity from original GCMs, while not
exactly matching the ones from the referenced ERAS, but
appear close to it, causing the multi-model ensemble mean
from the SRDRN-QDM model roughly captured the hot spot
areas with high absolute drought intensity (Figure S4 in the
Supplementary Information). Nevertheless, we must admit
that SRDRN-QDM still experiences difficulties to capture
exact spatial patterns and exact locations of high drought
intensity from ERAS.

We further classified droughts into three categories
based on different thresholds (McKee et al. 1993), and
calculated their frequencies for each category. SPEI
index of — 1to — 1.49, — 1.5 to — 1.99, and less than — 2
corresponds to moderate, severe, and extreme drought,
respectively. Figure 10 shows the spatial distribution of
frequency for the three classified drought conditions from
the ERAS observational reference and model products
from a GCM/ESM (EC-Earth3). We find large frequen-
cies of moderate drought over the northern regions (states
of Montana, North Dakota, and Minnesota), west coastal
states (California and Arizona), western Appalachians, and
southeastern regions. The frequencies of severe drought

@ Springer



9666

F.Wang, D.Tian

ERAS

45°N| I
40°N
35°N

30°N

120°wW  110°W 100°W

90°W 80°W 70°W

-1.50 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20

Bilinear for EC-Earth3

MBCn for EC-Earth3

ISIMIP3 for EC-Earth3 SRDRN-QDM for EC-Earth3

45°N | s
40°N
35°N

30°N

TR =

3 S

45°N
40°N
35°N

30°N

200N |
35°N
30°N

45°N
40°N
35°N

30°N

45°N
40°N |{#

35°N

30°N

120°W  110°W 100°W  90°W

\C)
80°W  70°W  120°W 110°W 100°W 90°W  80°W  70°W

ISIMIP3 for MRI-ESM2-0

120°W 110°W 100°W 90°W  80°W  70°W 120°W 110°W 100°W 90°W  80°W  70°W

-1.50 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20

Fig.9 Spatial distribution of average drought intensity for drought
events (SPEI index <-1) for referenced ERAS (top plot), bilinear
interpolation (Bilinear, 1st column), bias-corrected by MBCn (2nd
column), ISIMIP3 (3rd column), and SRDRN-QDM (4th column)

appear to be different from the moderate drought condi-
tions, with high frequencies in the central CONUS and
around the Appalachians. The high frequencies of extreme
drought are scattered around the western and central south
regions. The simulations from Bilinear greatly underes-
timated observed frequencies over the north regions for
moderate drought and overestimated observed frequencies
over these regions for severe drought. The scattered high
frequency spatial pattern for extreme drought from Bilin-
ear appears very different from the observed one. The per-
formance of drought frequencies from the SRDRN-QDM
shows improvements over the north regions and western
coastal area for the moderate drought, central south region
for severe drought, and spatial patterns for the extreme
drought appear roughly match with the observations. By
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from each GCM/ESM, including EC-Earth3 (1st row), GFDL-ESM4
(2nd row), IPSL-CM6A-LR (3rd row), MPI-ESM1-2-HR (4th row)
and MRI-ESM2-0 (5th row)

contrast, the spatial patterns of drought frequencies from
either MBCn or ISIMIP3 appears to be very close to Bilin-
ear for all three drought categories, suggesting little effects
from bias corrections.

Figure 11 shows the distribution of frequency difference
between modeled products from the five GCMs/ESMs and
ERAS5 for moderate and severe drought (the one for the
extreme drought category was not plotted due to limited
nonzero frequencies). As shown in the figure, frequency dif-
ferences between modeled products and ERAS are around
zero, indicating simulations and bias-corrected products
all captured observed mean frequencies for all five GCMs.
Overall, the frequency differences of the SRDRN-QDM
have relatively narrower spread around zero compared to
MBCn and ISIMIP3 for most GCMs/ESMs for moderate
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Fig. 10 Frequency spatial distribution of moderate drought (Ist
column), severe drought (2nd column), and extreme drought (3rd
column) for ERAS (Ist row), bilinear interpolation (2nd row), bias-

drought and for all five GCMs for severe drought, suggesting
that SRDRN-QDM reduced more biases of all six variables,
resulting in lower biases in drought characteristics. Notably,
ISIMIP3 shows greater spread for the severe drought fre-
quency differences.

90°W  80°W  70°W  120°W 110°W 100°W 90°W  80°W  70°W

b 6 7 8 0 1 2 3

corrected by MBCn (3rd row), ISIMIP3 (4th row) and SRDRN-QDM
(5rd row) from a single GCM/ESM (EC-Earth3) with the unit of
month for the color bars

4 Discussion and conclusions

The study provides a trend-preserving deep learning frame-
work for downscaling and bias correcting multiple variables
from GCMs/ESMs at once, accounting for complex spatial
and intervariable relations and climate non-stationarity. We
presented and evaluated the SRDRN-QDM trend-preserving
deep learning for multivariate bias correcting and downs-
caling daily precipitation, maximum temperature, minimum
temperature, solar radiation, relative humidity, and wind
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Fig. 11 Box plots of frequency difference (unit: month) between models (Bilinear, MBCn, ISIMIP3, and SRDRN-QDM) and ERAS for moder-

ate and severe drought categories

speed from five GCMSs/ESMs at once over the CONUS. This
approach applied the trend preservation approach, quantile
delta mapping (QDM) to the SRDRN to adjust distributions
at extremes and preserve climate trends. The performance
of the six SRDRN-QDM bias-corrected and downscaled
variables were comprehensively evaluated for assessing
climatology, extremes, spatial dependences, intervariable
dependences, and droughts, in comparison with state-of-
the-art methods.

The SRDRN-QDM model greatly reduced discrepan-
cies between the model and observations compared to
SRDRN only, particularly at the extremes (Fig. 3), and spa-
tial distributions of statistics at thelst, 33rd, 66th, and 99th
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percentiles also match well with the observations (Fig. 4
and Table 2). The model greatly reduced biases in terms of
climatology statistics (mean and standard deviation, Figs. 5
and 6, and Table 3). It is worth noting that Quesada-Chacén
et al. (2023) explored downscaling and bias correcting seven
variables both individually and multivariately using a deep
learning model in a small region in Germany, while the eval-
uations only focused on individual variables. They noted that
multivariately trained models tend to focus more on certain
variables resulting in better performance on these variables,
while performing poorly in the others. However, multivari-
ate bias correction and downscaling is needed, since bias
correcting and downscaling individual variables may lose
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the physically coherent or intervariable dependences, which
is critical for most of the impact studies that need multiple
variables at the same time (Cannon 2018; Guo et al. 2020;
Zscheischler et al. 2019) or assessing compound events
(Zscheischler et al. 2018). To further improve multivariate
bias correction and downscaling approach for addressing
biases in individual variables and interdependencies, one
potential avenue is to bring physical constraints among vari-
ables through mass and energy balance into the loss function
or customized layers as discussed by Harder et al. (2022).

The SRDRN-QDM model also reduces biases on inter-
variable dependencies (e.g., the relationship between pre-
cipitation and temperature in Fig. 7) and spatial dependen-
cies for most of the variables (e.g., increased correlation
coefficients of map correlation in Fig. 8). The intervariable
dependencies are learned during model training process
without defining any pre-established functional relation-
ships. The SRDRN-QDM model includes 37 CNN layers
and has the potential to capture more complex spatial rela-
tionships and correct fine spatial feature differences between
model simulations and observations. The SRDRN-QDM
model has difficulties to fully handle the complex intervari-
able dependencies over the Florida peninsular in the summer
months at both daily and monthly time scale. This is likely
because climate conditions in the Florida peninsular are very
different with other CONUS regions. These limitations may
be improved by performing the SRDRN-QDM locally in
individual climate regions with relatively homogeneous
conditions.

Taking drought assessment as an example, the SRDRN-
QDM model to some extent reduced biases of the SPEI
drought index in terms of both intensities (Fig. 9) and
frequencies under moderate, severe, and extreme drought
categories (Figs. 10 and 11). In a previous study, the added
value of multivariate bias correction methods for the SPEI
index was explored by Ansari et al. (2023). The authors
found comparable performance for different multivari-
ate bias correction methods, including MBCn, in terms
of reduced biases for the SPEI index. In this study, we
showed the improved performance of SRDRN-QDM com-
pared to the MBCn and ISIMIP3 multivariate bias cor-
rection methods. The spatial patterns of drought intensity
and frequency from the SRDRN-QDM model (Figs. 9,
10 and S4 in the Supplementary Information) generally
match with the observations (ERAS), while still not pre-
cisely capturing the exact hot spot locations. This is poten-
tially due to the challenges for the model to learn across
high spatial heterogeneity of climate conditions over the
CONUS, and the model has difficulties in reducing biases
for all the regions at one time. Training the SRDRN-QDM
locally at each climate region has the potential to improve
performance on the SPEI index while at the expense of
increasing computing cost.

Combining SRDRN with QDM particularly improved
the model performance at extremes by considering climate
trends simulated by physics based GCMs/ESMs models.
SRDRN-QDM model greatly reduced biases at extreme
percentiles (less than 1st percentile and greater than 99th
percentile) for each variable compared with the SRDRN
model output (Fig. 3). While recent studies found that com-
bining GAN-based model with quantile mapping (QM) led
to overall improvement (Fulton et al. 2023; Hess et al. 2023),
they did not account for climate trends or non-stationarity in
these approaches. The importance of GCM trend preserva-
tion becomes more significant for GCM projections under a
strong anthropogenic signature on the climate (IPCC 2023,
Lee et al. 2023). Previous studies have found that impact
studies are sensitive to non-stationary biases, and bias cor-
rection approaches performed worse in the testing period
due to model stationary assumptions (e.g., Chen et al. 2021;
Guo et al. 2020). SRDRN-QDM tackles this issue and can
be used to bias correct and downscale climate projec-
tions from GCMs/ESMs accounting for climate trends or
non-stationarity.

As mentioned in the methodology section, we synchro-
nized the referenced ERAS and model simulations in time,
which means daily maps from the 5 GCMs are forced to
match with those observed and used MAE as loss function
without considering the atmospheric state of the different
climate models. As a result, while the results from this work
showed notably improved performance for correcting spatial
and intervariable dependences, the representation of climate
model dynamics at the daily timescale may be affected dur-
ing the correction procedure, which may restrict the use-
fulness of the output data for assessing compound extreme
events at the daily timescale. This issue may be potentially
addressed in the future by modifying loss function to match
distributions of climate models with observed distributions
instead of day-to-day matches (Tao et al. 2016).

The SRDRN-QDM model treated daily spatial data
independently and did not explicitly account for temporal
dependence during bias correction. The SRDRN-QDM
model is capable of capturing seasonality for all the six vari-
ables (Figure S2 in the Supplementary Information), but the
SRDRN-QDM slightly underestimated the lag-1 autocorre-
lations for most of the variables (see Figure S3 in the Sup-
plementary Information). Incorporating time dependence
between sequence images by replacing 2-dimention convo-
lutional layers with 3-dimention ones has the potentials to
further improve model performance on temporal depend-
ence, which can be explored in the future study.

This study evaluated the SRDRN-QDM model perfor-
mance on the joint effects of the six variables in terms of
drought index SPEI at monthly time scale. However, even
at the monthly time scale, notable biases still exist after
bias corrections (see Figs. 9 and 10). We also evaluated the
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SPEI at the daily scale. However, the results indicate that
the SRDRN-QDM greatly overestimated drought intensity
in the eastern CONUS and drought duration in the western
CONUS, much worse compared to the monthly scale (not
shown), which is likely due to larger noises/biases for the
joint variability of the six variables at daily time scale.
Thus, further work is still needed to improve multivariate
aspects of the model performance at the daily time scale.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00382-024-07406-9.
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