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Abstract
Global climate models (GCMs) and Earth system models (ESMs) exhibit biases, with resolutions too coarse to capture local 
variability for fine-scale, reliable drought and climate impact assessment. However, conventional bias correction approaches 
may cause implausible climate change signals due to unrealistic representations of spatial and intervariable dependences. 
While purely data-driven deep learning has achieved significant progress in improving climate and earth system simulations 
and predictions, they cannot reliably learn the circumstances (e.g., extremes) that are largely unseen in historical climate but 
likely becoming more frequent in the future climate (i.e., climate non-stationarity). This study shows an integrated trend-
preserving deep learning approach that can address the spatial and intervariable dependences and climate non-stationarity 
issues for downscaling and bias correcting GCMs/ESMs. Here we combine the super-resolution deep residual network 
(SRDRN) with the trend-preserving quantile delta mapping (QDM) to downscale and bias correct six primary climate vari-
ables at once (including daily precipitation, maximum temperature, minimum temperature, relative humidity, solar radiation, 
and wind speed) from five state-of-the-art GCMs/ESMs in the Coupled Model Intercomparison Project Phase 6 (CMIP6). 
We found that the SRDRN-QDM approach greatly reduced GCMs/ESMs biases in spatial and intervariable dependences 
while significantly better-reducing biases in extremes compared to deep learning. The estimated drought based on the six 
bias-corrected and downscaled variables captured the observed drought intensity and frequency, which outperformed state-
of-the-art multivariate bias correction approaches, demonstrating its capability for correcting GCMs/ESMs biases in spatial 
and multivariable dependences and extremes.

Keywords  Multivariate bias correction · Downscaling · Trend preserving · Deep learning · Climate model · Drought 
assessment

1  Introduction

Global climate models (GCMs) and Earth system models 
(ESMs), which are based on our physical understanding of 
the climate and earth system and its evolutions in the future, 
play a key role in climate impacts, adaptation, and resilience 
studies. However, GCM/ESM outputs suffer from systematic 
biases, and their spatial resolutions are too coarse to capture 
local variability. Therefore, it needs to reduce, postprocess, 
or cope with GCMs/ESMs model biases and scale issues for 
subsequent climate impact modeling and analysis.

Many statistical bias correction and downscaling methods 
have been developed to correct the discrepancies between 
GCM simulations and observed references. Most of these 
methods, such as the widely used quantile mapping (QM), 
are designed to correct variables individually at each loca-
tion [QM; e.g., Panofsky and Brier (1968); Thrasher et al. 
(2012); Wood et al. (2002)] without accounting for biases 
of spatial and intervariable dependences (Bürger et  al. 
2011; Nahar et al. 2018). Spatial and intervariable depend-
ences in downscaled and bias-corrected GCMs/ESMs are 
particularly important in subsequent impact modeling and 
analysis that depend on multiple variables such as droughts 
(Van Loon et al. 2016; Zscheischler et al. 2018). Neglecting 
those biases can cause generated outputs not to obey physi-
cal laws (Agbazo and Grenier 2020; Thrasher et al. 2012; 
Wang and Tian 2022), distorting the results of impact studies 
(Zscheischler et al. 2018), or causing implausible climate 
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change signals (Maraun 2016; Maraun et al. 2017). These 
issues have led to the recent development of multivariate 
bias correction methods based on different statistical tech-
niques. These techniques either directly adjust multivari-
ate distributions over a region (e.g., MBCn; Cannon 2018; 
Lange 2019) or assume predefined intervariable relation-
ships, including Pearson correlation (Bürger et al. 2011; 
Cannon 2016; Mehrotra and Sharma 2012), Spearman rank 
correlation (Cannon 2016) and lag one autocorrelation for 
rank dependence (Mehrotra and Sharma 2012). Due to the 
difficulties of adjusting multivariate distributions at very 
high dimensions (i.e., multiple variables at many point loca-
tions over a large area) and inherent assumptions, the current 
multivariate bias correction methods have limited capability 
of bias correcting spatial and intervariable dependences for a 
large geographical area (François et al. 2020). For example, 
Multivariate Bias Correction with N-dimensional probabil-
ity density function transform (MBCn) maps a multivariate 
source distribution to a same-dimensional target distribution 
through orthogonal matrix rotation operations iteratively, 
which has been shown competitive performance compared 
to either univariate (e.g., QM) or other multivariate bias 
correction approaches for bias correcting climate data at a 
relatively small number of point locations (Cannon 2018; 
François et al. 2020). However, when it was applied to bias-
correct gridded precipitation over a large geographic region 
(i.e., the contiguous United States (CONUS) with a spatial 
resolution of 1°), it performed much worse compared to the 
QM method, potentially due to its difficulties in handling a 
large number of grid points (Pan et al. 2021).

Deep learning techniques have emerged as a promis-
ing approach for simulating highly nonlinear and complex 
relationships between different variables. In particular, 
deep learning models with convolutional neural networks 
[CNNs, LeCun et al. (2015)] can capture complex spatial 
structures showing great performances. Originally devel-
oped for computer vision problems, CNNs for climate and 
Earth system sciences have been growing rapidly during 
recent years (Reichstein et al. 2019) including detection of 
extreme weather events (Liu et al. 2016; Racah et al. 2017) 
and weather and climate forecasting (Chapman et al. 2019; 
Ham et al. 2019; Liang et al. 2021; Ravuri et al. 2021; Scher 
and Messori 2019; Shi et al. 2015). Besides capturing com-
plex spatial features, recent study has shown deep learning 
with deep convolutional layers and upsampling layers can 
process multiple input–output spatial variables at one time, 
accounting for their physical relations, suggesting a great 
potential for bias correcting and downscaling dependences 
of multiple variables (Wang and Tian 2022). Since the inter-
variable relationships are integrated into model training with 
no prior assumptions, deep learning models with convolu-
tional layers taking multiple physically associated variables 
at once have opportunities to capture complex relationships 

beyond our prior knowledge and provide potentials for 
improving bias corrections of both spatial and intervariable 
dependences in GCMs/ESMs.

Deep learning with convolutional layers models have 
been applied to downscale and bias correcting climate vari-
ables and show superiority over traditional methods (Baño-
Medina et al. 2022; François et al. 2021; Fulton et al. 2023; 
Hess et al. 2023; Hess et al. 2022; Liu et al. 2020; Pan et al. 
2021; Quesada-Chacón et al. 2022; Quesada‐Chacón et al. 
2023; Rodrigues et al. 2018; Vandal et al. 2017; Wang and 
Tian 2022). However, most of these studies focus on bias 
correcting individual climate variables, neglecting their 
physical relationships, while only several studies accounted 
for the intervariable relationships among multiple climate 
variables. Wang and Tian (2022) used a Super Resolution 
Deep Residual Network (SRDRN) deep learning model to 
simultaneously bias correct and downscale minimum tem-
perature (Tmin) and maximum temperature (Tmax) of 20 
CMIP6 GCMs, showing that the intervariable relationship 
between Tmin and Tmax is well captured, while statistical 
multivariate bias correction methods experienced unrealis-
tic artifacts (e.g., showing Tmin > Tmax in the downscaled and 
bias-corrected fields). Fulton et al. (2023) used a genera-
tive adversarial network (GAN) based model, namely the 
Unsupervised Image-to-Image Translation (UNIT) neural 
network architecture, to simultaneously bias correct five 
climate variables. The results indicate that the UNIT model 
creates fewer extreme values than the target distribution and 
applying the quantile mapping (QM) method to postprocess 
the UNIT model outputs show the optimum outcome. This 
method, however, has a strict stationary assumption between 
model training (past) and testing (future) periods and may 
face great challenges when a distinct trend exists between 
past and future periods, considering climate non-stationarity, 
particularly when applying to the GCMs/ESMs projections. 
This, in fact, is a common issue of using deep learning for 
climate change projections due to its inability to extrapolate 
beyond their training data to unseen circumstances where 
system has considerably changed (de Silva et al. 2020; Read 
et al. 2019; Wi and Steinschneider 2022).

This study shows an integrated trend-preserving deep 
learning approach can address the spatial and intervariable 
dependences and climate non-stationarity issues for downs-
caling and bias correcting GCMs/ESMs. Here we combine 
the SRDRN model (Wang et al. 2021) with a trend-preserv-
ing quantile delta mapping approach (QDM; Cannon 2018) 
for bias correcting and downscaling six primary climate 
variables at once, including daily precipitation, maximum 
temperature, minimum temperature, relative humidity, solar 
radiation, and wind speed, from five state-of-the-art GCMs/
ESMs in the Coupled Model Intercomparison Project phase 
6 (CMIP6) over the CONUS. This trend preserving deep 
learning approach, hereafter referred to as SRDRN-QDM, 
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accounts for spatial and intervariable relations and non-
stationarity. We show SRDRN-QDM greatly improve state-
of-the-art GCMs/ESMs by significantly reducing biases of 
individual variables, and better reducing biases in spatial and 
multivariate dependences compared to the current multivari-
ate bias correction approach, and better reducing biases in 
extreme events compared to the current deep learning down-
scaling and bias correction approach. We performed com-
prehensive evaluations of the SRDRN-QDM downscaled 
and bias-corrected variables, as well as drought character-
istics derived from the six downscaled and bias-corrected 
variables, in comparison with the current approaches. The 
structure of this paper is organized as follows: Sect. 2 intro-
duced data and methodology, including the SRDRN model, 
QDM method to preserve trend, and calculation of drought 
index. Section 3 presents results; discussion and conclusions 
are provided in Sect. 4.

2 � Data and methodology

2.1 � Data and study area

In this study, we consider historical simulations from five 
state-of-the-art CMIP6 GCMs/ESMs (Eyring et al. 2016) 
and six climate variables, including daily accumulative pre-
cipitation, minimum temperature at 2-m, maximum tem-
perature at 2-m, relative humidity at 2-m, solar radiation, 
and wind speed at 10-m. The five GCMs/ESMs were devel-
oped by major climate centers all over the world and have 
different spatial resolutions varying from 0.7° to 2.5° (see 
Table 1). These selected variables are commonly used for 
climate impact studies such as drought (e.g., Ahmadalipour 
et al. 2017; Haile et al. 2020; Lee et al. 2019), wildfire (e.g., 
Bedia et al. 2013; Brown et al. 2023; Grose et al. 2014) and 
crop failures (e.g., Goulart et al. 2023, 2021; Schillerberg 
and Tian 2023). While most of the five CMIP6 GCMs/ESMs 
include multiple ensemble members (named with rninpnfn, 
where r represents realization, i represents initialization 
method, p represents physics, f represents forcing, and n can 
be different numbers), only one single member (r1i1p1f1) 
for each model was used in this study for fair comparisons. 
Prior to bias correction and downscaling, the GCM/ESM 

outputs were re-gridded into a common 1° spatial resolution 
with bilinear interpolation.

The European Center for Medium-Range Weather Fore-
cast’s (ECMWF) ERA5 dataset was used as high-resolution 
observational references (Hersbach et al. 2020), which has 
a spatial resolution of 0.25°. The overlapped period from 
1979 to 2014 was used for both GCMs and ERA5 reanaly-
sis data. The multivariate bias correction and downscaling 
experiments were performed over the CONUS, where a wide 
range of climatic zones exist, including the temperate to con-
tinental climate in the Northeast, subtropical climate in the 
Southeast, and Mountains and Great Plains climate in the 
West as well as oceanic climate at the western coast from the 
Pacific Ocean and Gulf of Mexico in the Southeast.

2.2 � Improving SRDRN for multivariate bias 
correction and downscaling

The SRDRN model is a deep learning architecture inspired 
by a novel single-image super-resolution study in the com-
puter vision field (Ledig et al. 2017). This model has been 
tested for downscaling daily precipitation and temperature 
individually through synthetic experiments (Wang et al. 
2021), bias correcting minimum temperature and maximum 
temperature at once for GCM/ESM outputs (Wang and Tian 
2022), and customized for bias correcting and downscal-
ing hourly precipitation from reanalysis data using radar 
observations (Wang et al. 2023). These previous studies 
have demonstrated its superiority over conventional deep 
learning approaches. Compared with the widely used U-Net 
architectue (e.g., Sha et al. 2020; Sun and Tang 2020), the 
SRDRN model directly extracts features at the coarse reso-
lution input; therefore, the coarse resolution input data do 
not need to be firstly interpolated into higher resolution as 
observational references, resulting in the decrease of com-
putational and memory complexity.

The model is mainly comprised of residual blocks and 
upsampling blocks with CNN layers, parametric ReLU 
activation function, and batch normalization layers. The 
residual blocks enable a very deep architecture that has nota-
ble advantages for extracting fine spatial features without 
degradation issues (He et al. 2016). The upsampling blocks 
equipped with upsampling 2D layers enable the model to 

Table 1   Selected GCM 
information

No GCMs Horizontal resolution Institutions

1 EC-Earth3 0.7° × 0.7° European EC-Earth Consortium (Europe)
2 GFDL-ESM4 1.0° × 0.8° Geophysical Fluid Dynamics Laboratory (USA)
3 IPSL-CM6A-LR 1.26° × 2.5° Institute Pierre Simon Laplace (France)
4 MPI-ESM1-2-HR 0.94° × 0.94° Max Planck Institute for Meteorology (Germany)
5 MRI-ESM2-0 1.125° × 1.125° Meteorological Research Institute, Japan Mete-

orological Agency (Japan)
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have downscaling capability for generating high-resolution 
data. Each upsampling block sequentially and gradually 
increases the input coarse resolution feature maps by a fac-
tor of 2 or 3. In this study, the downscaling ratio (the ratio 
of spatial resolutions between GCMs/ESMs and ERA5) 
is 4, and thus, we used two upsampling blocks, with each 
increasing spatial resolution by a factor of 2. There are 37 
CNN layers in this architecture including one CNN layer 
in the first layer, 33 CNN layers in the residual blocks, two 
CNN layers in the upsampling blocks and one CNN layer 
for reconstruction at the end. For more details about the 
original model architecture, the readers refer to Wang et al. 
(2021). Through a series of additional tests, we made modi-
fications to the SRDRN architecture to achieve optimum 
results for multivariate bias correction and downscaling. 
Specifically, the number of filters for the CNN layers in the 
upsampling blocks increased from 256 to 512, and a spatial 
2D channel-wise dropout layer was added at the end of the 
second upsampling block based on suggestions from Kong 
et al. (2022). These adjustments increase model complexity 
for handling six variables at once but also increase gener-
alization ability to battle overfitting issues (Srivastava et al. 
2014).

Data normalization was executed as a data preprocess-
ing step. Specifically, each variable was normalized by 

subtracting the grid mean and dividing by the grid standard 
deviation at each grid point, which is different from our pre-
vious studies (Wang and Tian 2022; Wang et al. 2023; Wang 
et al. 2021) in which variables are normalized with mean and 
standard deviation calculated based on the flattened variable 
of all the grid points (i.e., the flattened vectors). Our tests 
indicate that normalization with grid mean and grid standard 
deviation better captures spatial variability at the continental 
scale potentially because these grid-based parameters accu-
rately attain the long term climatological features at local 
scale, which is very important for retaining spatial variabil-
ity at the large scale. Note that precipitation data was firstly 
logarithmically transformed to reduce skewness (Sha et al. 
2020b; Wang et al. 2023) before being normalized.

2.3 � SRDRN‑QDM trend‑preserving deep learning

Global warming continues to increase under different scenar-
ios and modeled pathways, causing increased extreme events 
(IPCC 2023, Lee et al. 2023). Figure 1 shows the climatol-
ogy differences between the period of 1979 to 2004 and the 
period of 2005 to 2014 for daily precipitation and maximum 
temperature over the CONUS based on the observational ref-
erence dataset (i.e., ERA5). We can see that precipitation cli-
matology decreased as much as 20% in the south of CONUS, 

Fig. 1   Climatology of daily precipitation (1st column) and maximum 
temperature (2nd column) for ERA5 from 1979 to 2004 (1st row) and 
differences (2nd row) between the period of 2005 to 2014 and the 

period of 1979 to 2004. Units for the color bars are mm for precipita-
tion and °C for maximum temperature
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while maximum temperature climatology increased in a simi-
lar area as large as 1 °C. These differences between histori-
cal and future climate will likely be greater, especially under 
the higher emission scenarios (IPCC 2023, Lee et al. 2023). 
However, pure data-driven deep learning models have experi-
enced difficulties in inferring testing dataset that have differ-
ent distributions with the training dataset (e.g., non-stationary 
data such as climate) (Arik et al. 2022; Li et al. 2022), and 
have difficulties capturing extreme events that are never or 
rarely seen in the training dataset (e.g., Wilson et al. 2022). 
This is a common issue of using deep learning for climate 
change projections due to its inability to extrapolate beyond 
their training data to unseen circumstances where system has 
considerably changed (de Silva et al. 2020; Read et al. 2019; 
Wi and Steinschneider 2022).

In order to address this issue, we combined the adjusted 
trend-preserving quantile delta mapping approach (QDM; 
Cannon et al. 2015) with SRDRN deep learning approach 
for better capturing climate trends and extremes (denoted as 
SRDRN-QDM). Here we take the precipitation variable as an 
example. Firstly, we calculate the non-exceedance probability 
associated with the value in the projection period at time t for 
the SRDRN model output, �SRDRN,p(t),

where F(t)

SRDRN,p
 is the estimated empirical cumulative density 

function (CDF) over a time window around t in the projec-
tion period for SRDRN model output. xSRDRN,p(t) is the pre-
cipitation value from the SRDRN model at time t in the 
projection period. Secondly, we calculate the relative change 
of precipitation value at the GCM CDFs between the projec-
tion and historical periods based on GCM model data, 
ΔGCM(t),

where F(t)−1

GCM,p
 ( F(t)−1

GCM,h
 ) is the inverse CDF of GCM outputs 

in the projection (historical) period. F(t)−1

GCM,p

[
�SRDRN,p(t)

]
 is 

the precipitation value in the projection period correspond-
ing to �SRDRN,p(t) , while F(t)−1

GCM,h

[
�SRDRN,p(t)

]
 is the precipita-

tion value in the historical period corresponding to the same 
probability �SRDRN,p(t) . Similar to other trend preserving 
studies (Cannon 2016, 2018; Lange 2019), here we assume 
the trends from the GCM outputs ( ΔGCM(t)) are realistic and 
no trend biases exist. Thirdly, the SRDRN model output is 
also bias-corrected with quantile mapping based on the 
observed data.

(1)�SRDRN,p(t) = F
(t)

SRDRN,p

[
xSRDRN,p(t)

]

(2)ΔGCM(t) =
F
(t)−1

GCM,p

[
�SRDRN,p(t)

]

F
(t)−1

GCM,h

[
�SRDRN,p(t)

]

(3)x̂o∶SRDRN,h∶p(t) = F−1

o,h

[
𝜏SRDRN,p(t)

]

where x̂o∶SRDRN,h∶p(t) is quantile mapping bias-corrected 
precipitation for SRDRN model output. F−1

o,h
 is the inverse 

CDF for the observed data in the historical period. Finally, 
the QDM bias-corrected result, x̂SRDRN,p(t) , is calculated by 
multiplying the relative change ΔGCM(t),

The time window to construct the empirical CDF around 
time t was set to be 45 days to preserve the seasonality. Tak-
ing 20 years of historical period and 10 years of projection 
period as an example, the total number of days for construct-
ing the empirical CDF will be 1820 days [(45 + 45 + 1) × 20] 
for the historical period and 910 [(45 + 45 + 1) × 10] days 
for the projection period. Since the 45 days are moving with 
time t moving and the days within the 45 days are also used 
to construct empirical CDF at other times around time t, any 
changes within the 45 days would not be neglected. In this 
study, we consider precipitation, relative humidity, and wind 
speed as relative changes in quantiles in Eqs. (2 and 4). To 
preserve absolute changes in quantiles, the Eqs. (2 and 4) 
can simply be applied additively rather than multiplicatively. 
The variables of minimum temperature, maximum tempera-
ture, and solar radiation are considered absolute changes in 
this study.

2.4 � Model training

We first performed SRDRN bias correction and downscaling 
using the first 26 years (1979 to 2004) as the training dataset 
and the remaining ten years (2005 to 2014) as the testing 
dataset. We used grid mean and grid standard deviation cal-
culated from the training dataset to normalize the training 
data and used the same ones for denormalization during the 
inference period. The parameters of grid mean and standard 
deviation are obtained from all year round training data-
set without season separations. Similar to Wang and Tian 
(2022), we stacked the five GCMs daily data with six chan-
nels, which greatly augments the data size and also allows 
the model to consider inter-model variability. The referenced 
data of ERA5 were replicated and stacked to match each 
set of GCMs. While GCM outputs are not synchronized in 
time with ERA5, we synchronously paired coarse resolu-
tion data from GCMs and observations and assumed that the 
SRDRN has the capability of reproducing distributions of 
the observations if synchronized biases are well corrected. 
The GCM GFDL-ESM4 (see Table 1) used the 365-day cal-
endar, while ERA5 and the other four GCMs used Grego-
rian calendar. In order to synchronize GCMs and ERA5 for 
model training, we removed the data on days of Feb. 29 so 
that all the GCMs and ERA5 to have 365 days each year. The 
mean absolute error (MAE) was chosen as the loss function. 

(4)x̂SRDRN,p(t) = x̂o∶SRDRN,h∶p(t) ⋅ ΔGCM(t)



9656	 F. Wang, D. Tian 

For the channel of precipitation, weighted MAE was used 
according to Wang et al. (2023) to better balance the precipi-
tation data and weights w were calculated following,

where y′
true

 is the natural log transformed ERA5 precipita-
tion scaled by dividing the maximum value of natural log 
transformed ERA5 precipitation. For other channels, MAE 
loss is used. The Adam optimization algorithm was used to 
train the network with a learning rate of 0.0001, and default 
values for other parameters were used during model train-
ing. The mini-batch size of 64 was used, and the number 
of epochs was set to 160. We applied QDM as introduced 
above to each output variable from SRDRN to better pre-
serve trends and extremes. The historical and projection 
periods mentioned in the previous section correspond to the 
training and testing periods in this study, respectively. The 
model was trained with approximately 1.2 × 105 iterations 
and was executed using NVIDIA V100 GPU provided by 
the Advanced Cyberinfrastructure Coordination Ecosystem: 
Services and Support (ACCESS), formerly known as the 
Extreme Science and Engineering Discovery Environment 
(XSEDE) (Towns et al., 2014).

2.5 � Model evaluations

We evaluated the SRDRN-QDM model performance for 
each variable as well as spatial and intervariable relation-
ships against ERA5 observations during the testing period. 
The agreements between the modeled and observed values 
were quantified by the root mean squared error (RMSE), 
Kling-Gupta efficiency (KGE) and Kolmogorov–Smirnov 
(KSS) statistics. The KGE is an overall performance met-
ric combining correlation, bias, and variability (Kling et al. 
2012), representing perfect agreement when it equals 1. The 
KSS statistic is used to test whether the modeled sample 
came from the same distribution as the referenced data, 
which has been used in climate downscaling and bias correc-
tion (e.g., Quesada‐Chacón et al. 2023). Besides evaluating 
each individual variable as well as spatial and intervariable 
relationships, we also take drought as an example to evalu-
ate the SRDRN-QDM performance for capturing climate 
extreme events that are characterized by multiple variables. 
We used a multivariate drought index, the standardized pre-
cipitation evapotranspiration index (SPEI; developed by 
Vicente-Serrano et al. 2010), to examine the inter-variable 
physical coherence of involved key essential variables, i.e., 
the six variables, including precipitation, maximum tem-
perature, minimum temperature, relative humidity, solar 

(5)w =

⎧
⎪⎨⎪⎩

0.1 y�
true

≤ 0.1

y�
true

0.1 < y�
true

< 1.0

1.0 y�
true

≥ 1.0

radiation, and wind speed from the SRDRN-QDM out-
puts. The procedure of SPEI calculation involves a climatic 
water balance, and it considers both the role of precipita-
tion and evaporation in drought assessment. SPEI is based 
on variations in the deficit of precipitation and potential 
evapotranspiration (P-PET). Various methods have been 
proposed for calculating PET, and it has been shown that 
the Penman–Monteith (PM) approach provides more accu-
rate results due to a more physically-based formulation of 
atmospheric evaporative demand (Donohue et al. 2010). 
Therefore, our PET is calculated based on the FAO-56 PM 
equation (FAO 56 PM; Allen et al. 1998), which is recom-
mended by the World Meteorological Organization (WMO) 
as the standard method for estimating PET. The FAO-56 
PM equation requires five variables: minimum temperature, 
maximum temperature, solar radiation, relative humidity, 
and wind speed. Therefore, we calculated daily PET accord-
ing to the FAO-56 PM equation with the five bias-corrected 
and downscaled variables. Based on Vicente-Serrano et al. 
(2010), monthly precipitation and PET are used to calculate 
the climatic water deficits. Thus, we aggregated daily pre-
cipitation and daily PET into the monthly timescale. It is 
worth noting that the calculated climatic water deficits at the 
monthly timescale can be aggregated at different time scales. 
In this study, we focus on the monthly timescale for short- 
or long-term drought analysis (Ansari et al. 2023). After 
calculating monthly climatic water deficits, normalization 
is performed based on a log-logistic probability distribution 
to obtain the SPEI series. The log-logistic distribution is 
used and recommended by many researchers (e.g., Ansari 
et al. 2023; Vicente-Serrano et al. 2010). The R package 
‘SPEI’ was used to calculate SPEI in this study (Beguería 
and Vicente-Serrano 2017). As a summary, Fig. 2 outlines 
the overall deep learning-based framework of multivariate 
bias correction and downscaling for drought assessment.

3 � Results

We first present the effects of QDM on adjusting distribu-
tions for the outputs of SRDRN and statistics at 1st, 33rd, 
66th, and 99th percentiles for each variable. Then, we show 
the SRDRN-QDM model performance for individual varia-
bles on climatological statistics. Bias reduction is quantified 
by comparing the SRDRN-QDM bias-corrected and down-
scaled results with the bilinear interpolation of raw GCMs 
without bias correction (named Bilinear). We also include 
two state-of-the-art trend preserving multivariate bias cor-
rection methods, including MBCn (Cannon 2018) and 
Inter-Sectoral Impact Model Intercomparison Project ver-
sion 3 (ISIMIP3) (Lange 2019). Furthermore, the SRDRN-
QDM model performance on reducing biases of spatial and 
intervariable dependences is presented and compared with 
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MBCn and ISIMIP3. Finally, we present a drought assess-
ment based on the SPEI index as a case study.

3.1 � Effects of QDM

Figure 3 shows the probability distributions of all the six 
variables flattened in the spatial and temporal dimensions 
from ERA5, five raw GCMs, bias-corrected by SRDRN 
and SRDRN-QDM. There are large biases between the 
ERA5 and raw GCMs at the extreme percentiles par-
ticularly for precipitation and wind speed variables. 
The SRDRN model reduces the occurrence of both high 
and low extremes and shifts more of the distributions 
toward ERA5’s central peak for all the variables. The 

SRDRN-QDM approach, however, greatly improved the 
distributions and well-matched distributions from ERA5 
for all the six variables, particularly at the extreme per-
centiles (less than 1st percentile and greater than 99th 
percentile). QDM is explicitly designed to match one-
dimensional distributions at grid point, while the SRDRN 
deep learning model matches the distributions only as an 
emergent feature of optimizing its loss function and tends 
to neglect the small portion of data examples that occurred 
extremely infrequent (e.g., < 1%), making it especially 
challenging to correct large biases at extremes between the 
coarse resolution GCMs/ESMs and fine resolution ERA5 
observational reference.

Fig. 2   Schematic of the experiment for downscaling and bias correcting six variables using SRDRN-QDM model for five GCMs/ESMs
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3.2 � Overall performance

We further evaluated the performance of each variable at 
four different percentiles (1st, 33rd, 66th, and 99th percen-
tiles) from SRDRN-QDM, compared to bilinear interpo-
lation of GCMs/ESMs without bias correction (Bilinear). 
Table 2 shows the RMSE and KGE values between the mod-
els (bias-corrected products of the ensemble mean of the five 
GCMs/ESMs) and referenced data at the four percentiles. As 
shown in the table, the SRDRN-QDM model greatly reduced 
RMSE and increased KGE values at all four percentiles, 
indicating that the model captures the distributions of each 
individual variable at each grid point. Taking RMSE at the 
extreme 99th percentile as an example, the SRDRN-QDM 
model reduced biases of 82.2% for relative humidity, 75.2% 
for solar radiation, 70.5% for maximum temperature, 80.7% 
for minimum temperature, 85.0% for wind speed and 54.6% 
for precipitation, respectively. The increases in KGE values 
between SRDRN-QDM and Bilinear at the extreme percen-
tile are substantial, particularly for the variables of relative 
humidity and wind speed.

Besides Bilinear, we also ran two state-of-the-art multi-
variate bias correction methods at the grid basis including 
MBCn and ISIMIP3. Previous studies have demonstrated 
the competitive performance of the MBCn approach com-
pared to univariate (e.g., QDM) or other multivariate bias 
correction approaches with limited dimensional data (Can-
non 2018; François et al. 2020). Given the deterioration 
issue of MBCn on handling very high dimensional data 
(over 6 × 104 dimensions in this study), we applied MBCn 
at each grid point to bias correct intervariable depend-
ences among the six variables on a grid point basis. The 
method ISIMIP3 was designed at grid point basis, which 
firstly applied parametric quantile mapping for bias cor-
rection at coarse resolution and then used MBCn for bias 
correcting the bilinear interpolated variables at the fine 
resolution (Lange 2019). Table 2 indicates that the KGE 
for MBCn, ISIMIP3 and SRDRN-QDM are all close to 
each other for all the six variables at the four percentiles, 
while ISIMIP3 have relatively higher RMSE compared 
to SRDRN-QDM and MBCn for all the six variables at 
most of the four percentiles. The KSS statistics (Table S1 

Fig. 3   Probability distributions of maximum temperature, minimum 
temperature, precipitation, relative humidity, solar radiation and 
wind speed for 5 raw GCMs and bias-corrected models (SRDRN and 

SRDRN-QDM) as well as the referenced ERA5. Note that the nor-
malized histogram in the y axis is a log scale so that the differences in 
the distribution can be better seen
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in the Supplementary Information) indicate that most of 
the distributions at grids from Bilinear are very differ-
ent from the ones of the referenced ERA5 and SRDRN-
QDM greatly increased the percentages of grids that match 
the distributions of the referenced ERA5. Compared to 
MBCn and ISIMIP3, SRDRN-QDM has an overall better 
performance.

Figure 4 shows the box plots of the differences of the 
model outputs (Bilinear, MBCn, ISIMIP3 and SRDRN-
QDM) compared to the observational reference data at the 
33rd and 99th percentiles for all six variables from each 
GCM/ESM simulation, respectively. The differences of the 
SRDRN-QDM bias-corrected products compared to the 
referenced data are around 0, with a small spread for each 
variable and GCM/ESM, indicating that the bias-corrected 
results from the SRDRN-QDM model well match the dis-
tribution of the referenced data, much better compared to 
Bilinear. Comparing MBCn and SRDRN-QDM, ISIMIP3 
has relatively larger spread for most of the GCMs particu-
larly at 99th percentile.

3.3 � Climatology

We evaluated the long-term mean (i.e., climatology) dur-
ing the testing period for all six variables with multi-model 
(five GCMs/ESMs) ensemble mean compared with Bilinear. 
Figure 5 shows the climatology mean for each daily variable 
at each grid point over the CONUS, including the differ-
ences between models and reference data (ERA5) during 
the testing period. We can see that the SRDRN-QDM model 
greatly reduced biases for all six variables over the CONUS. 
The effects are more obvious over the regions with com-
plex topographies (Great Plains and Mountains region in the 
West) in which there are large biases from bilinear interpo-
lated GCMs/ESMs, while the ISIMIP3 model has relatively 
large climatology mean differences from ERA5 in those 
areas for all the variables. We further present the root mean 
squared error (RMSE) and Kling-Gupta efficiency (KGE) 
statistics for the climatology mean in Table 3 including 
Bilinear, MBCn, ISIMIP3 and SRDRN-QDM. The results 
indicate that the SRDRN-QDM model reduced RMSE and 

Table 2   RMSE and KGE at 1st, 
33rd, 66th, and 99th percentiles

*RMSE units for relative humidity are unitless, solar radiation is W/m2, maximum and minimum tempera-
tures are °C, wind speed is m/s, and precipitation is mm/day

Variables Model 1st percentile 33rd percentile 66th percen-
tile

99th percentile

RMSE KGE RMSE KGE RMSE KGE RMSE KGE

Relative humidity Bilinear 0.064 0.85 0.099 0.71 0.12 0.36 0.077 -0.026
MBCn 0.036 0.88 0.029 0.90 0.0305 0.85 0.015 0.91
ISIMIP3 0.037 0.91 0.038 0.91 0.0361 0.87 0.0219 0.89
SRDRN-QDM 0.033 0.89 0.031 0.89 0.027 0.89 0.014 0.92

Solar radiation Bilinear 16 0.34 11 0.93 11 0.92 9.6 0.57
MBCn 3.4 0.94 3.4 0.95 3.2 0.95 2.3 0.91
ISIMIP3 4.7 0.91 3.7 0.97 4.1 0.96 2.7 0.92
SRDRN-QDM 3.1 0.97 3.5 0.91 3.1 0.96 2.4 0.93

Maximum temperature Bilinear 2.5 0.41 3.2 0.67 2.6 0.88 2.2 0.81
MBCn 0.84 0.98 0.61 0.95 0.57 0.92 0.75 0.96
ISIMIP3 1.2 0.97 0.79 0.95 0.98 0.93 1.3 0.93
SRDRN-QDM 0.81 0.94 0.59 0.96 0.58 0.93 0.65 0.97

Minimum temperature Bilinear 2.6 0.85 1.4 0.70 1.5 0.95 2.3 0.88
MBCn 0.95 0.99 0.53 0.76 0.50 0.94 0.52 0.97
ISIMIP3 1.27 0.99 0.89 0.75 0.83 0.95 0.87 0.97
SRDRN-QDM 0.95 0.96 0.66 0.81 0.50 0.93 0.45 0.99

Wind speed Bilinear 0.12 0.56 0.42 0.47 0.63 0.47 2.2 0.50
MBCn 0.041 0.93 0.070 0.97 0.12 0.96 0.29 0.94
ISIMIP3 0.15 0.93 0.20 0.92 0.31 0.93 0.70 0.91
SRDRN-QDM 0.034 0.95 0.064 0.99 0.14 0.97 0.33 0.98

Precipitation Bilinear 0 – 0.082 – 0.23 0.80 0.28 4.9 0.75
MBCn 0 – 0.015 0.56 0.19 0.79 2.4 0.95
ISIMIP3 0 – 0.0289 – 2.3 0.26 0.85 2.8 0.94
SRDRN-QDM 0 – 0.014 0.60 0.18 0.80 2.2 0.96
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increased KGE values of all six variables. SRDRN-QDM 
reduced RMSE by 71.6% for relative humidity, 77.7% for 
solar radiation, 83.8% for maximum temperature, 64.4% for 
minimum temperature, 82.4% for wind speed, and 70.0% for 
precipitation, respectively. In particular, the increase of KGE 

values from the SRDRN-QDM model is tremendous for the 
variables of relative humidity, wind speed, and precipitation 
since these three variables are difficult to simulate and have 
larger biases compared to the other three variables even at 
the monthly timescale (Xuan et al. 2017).

Fig. 4   Box plots for differences between models (Bilinear, MBCn, 
ISIMIP3 and SRDRN-QDM) and referenced ERA5 at the 33rd per-
centile a and 99th percentile b for maximum temperature, minimum 

temperature, precipitation, relative humidity, solar radiation, and 
wind speed for each GCM
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Besides the climatology mean, we also evaluated the 
standard deviation of all six variables in the testing period. 
Figure 6 indicates that the SRDRN-QDM model greatly 
reduced biases of standard deviations for all six variables, 
while the ISIMIP3 model has relatively large standard devia-
tion differences from ERA5, particularly for the variables 
of maximum temperature, minimum temperature and wind 

speed around the boundary areas between the land and the 
ocean. Table 3 also shows that the SRDRN-QDM model 
has much lower RMSE and higher KGE values for stand-
ard deviation compared to bilinear interpolation over all the 
grid points in the CONUS. Specifically, SRDRN-QDM has 
reduced the standard deviation RMSE by 76.0% for relative 
humidity, 73.3% for solar radiation, 69.8% for maximum 

Fig. 5   Climatology means for maximum temperature (1st row), mini-
mum temperature (2nd row), precipitation (3rd row), relative humid-
ity (4th row), solar radiation (5th row), and wind speed (6th row) at 
each grid point over the CONUS. 1st column is the climatology mean 
for ERA5, 2nd column is the climatology mean difference between 
Bilinear and ERA5, 3rd column is the climatology mean difference 

between the SRDRN-QDM model and ERA5, 4th column is the cli-
matology mean difference between the ISIMIP3 model and ERA5. 
Units for the color bars are °C for maximum and minimum tempera-
ture, mm/day for precipitation, no unit for relative humidity, W/m2 for 
solar radiation, and m/s for wind speed



9662	 F. Wang, D. Tian 

temperature, 56.1% for minimum temperature, 77.2% for 
wind speed, and 58.1% for precipitation, suggesting great 
improvements. Similar to Table 2, Table 3 shows that KGE 
values are close to each other for climatology mean and 
standard deviation for MBCn, ISIMIP3 and SRDRN-QDM, 
while ISIMIP3 has relative higher RMSE than MBCn and 
SRDRN-QDM.

3.4 � Intervariable dependence

SRDRN-QDM took multiple variables at once as input–out-
put channels (six input variables and six output variables 
in this study; see Fig. 2), making the model learn very 
complex relationships beyond our prior knowledge, so that 
the intervariable dependences can be captured during the 
training process. In particular, the intervariable correlation 
between temperature and precipitation has been extensively 
explored in previous studies (e.g., Guo et al. 2020, 2019; Li 
et al. 2014), since the biases at intervariable dependences 

greatly affect GCM/ESM simulated processes such as snow-
melt, evapotranspiration, and runoff generation (Buishand 
and Brandsma 2001; Immerzeel et al. 2014; Maurer et al. 
2010; Mueller and Seneviratne 2014) and further affect cli-
mate change on crop yields (Lobell and Field 2007). Fig-
ure 7 shows the Spearman correlation coefficients between 
anomalies of precipitation and maximum temperature at 
daily time scale in winter months (December to February, 
DJF) and summer months (June to August, JJA) for the 
ERA5 observational reference, and differences between 
model bias-corrected results from the multi-model ensem-
ble mean for Bilinear, MBCn, ISIMIP3 and SRDRN-QDM. 
We can see that the observed Spearman correlations from 
the referenced data vary regionally and seasonally. In the 
winter months, the relationship is positive in the moun-
tain areas in the west and eastern CONUS, while negative 
around the west coast and middle to high altitudes areas. In 
the summer months, negative relationship is dominant at 
southern coastal area, while positive relationship is located 
at the Southwestern arid area (i.e., South California, Ari-
zona and New Mexico states) and Northeast area around 
the Great Lakes. The Bilinear product from the 5-model 
ensemble mostly overestimated the correlations in winter 
months (RMSE of 0.139) and underestimated the correla-
tion in south central and the arid areas in the west (RMSE of 
0.109). MBCn appears reducing more biases for the winter 
months with lower RMSE of 0.115, while MBCn slightly 
increased the correlation biases in the summer months with a 
RMSE of 0.120 particularly at the arid area around Arizona 
state. ISIMIP3 performs worse than MBCn with a RMSE 
of 0.151 in winter months and 0.124 in summer months. 
In contrast, SRDRN-QDM reduces biases in the simulated 
precipitation-temperature correlation fields in both winter 
and summer months with a RMSE of 0.107 in winter months 
and 0.113 in summer months. We also aggregated daily time 
scale to monthly (see Figure S1 in the Supplementary Infor-
mation). Most noticeably in the monthly time scale, the posi-
tive high correlations (i.e., hot spots) in the middle-to-high 
altitudes in the winter months and in the Southwestern arid 
area in the summer months are well enhanced. However, 
we noticed that SRDRN-QDM still overestimated the cor-
relation in the west coastal areas in both winter and summer 
months and overestimated the correlation around Florida 
state in the summer months at both daily and monthly time 
scale, highlighting the challenges for capturing intervariable 
relationships at once across various climate regions over the 
CONUS.

3.5 � Spatial dependence

To evaluate the performance of SRDRN-QDM on cor-
recting spatial biases, we calculated map correlation (also 
called spatial correlation) of day of the year average between 

Table 3   RMSE and KGE for climatology mean and standard devia-
tion

*RMSE units for relative humidity are unitless, solar radiation is W/
m2, maximum and minimum temperatures are °C, wind speed is m/s, 
and precipitation is mm/day

Variables Model Climatology 
mean

standard 
deviation

RMSE KGE RMSE KGE

Relative humidity Bilinear 0.096 0.59 0.036 0.75
MBCn 0.027 0.89 0.0071 0.98
ISIMIP3 0.034 0.90 0.0091 0.96
SRDRN-QDM 0.027 0.90 0.0087 0.96

Solar radiation Bilinear 8.9 0.91 6.8 0.62
MBCn 2.2 0.95 1.7 0.96
ISIMIP3 3.2 0.96 2.0 0.95
SRDRN-QDM 2.0 0.94 1.8 0.98

Maximum tempera-
ture

Bilinear 2.5 0.85 0.81 0.80
MBCn 0.40 0.96 0.25 0.98
ISIMIP3 0.78 0.98 0.37 0.92
SRDRN-QDM 0.41 0.96 0.24 0.97

Minimum tempera-
ture

Bilinear 1.4 0.91 0.62 0.94
MBCn 0.48 0.92 0.28 0.99
ISIMIP3 0.82 0.92 0.30 0.94
SRDRN-QDM 0.50 0.96 0.27 0.98

Wind speed Bilinear 0.58 0.47 0.42 0.51
MBCn 0.10 0.97 0.09 0.92
ISIMIP3 0.27 0.92 0.15 0.92
SRDRN-QDM 0.10 0.97 0.09 0.93

Precipitation Bilinear 0.66 0.61 1.0 0.71
MBCn 0.24 0.91 0.46 0.94
ISIMIP3 0.26 0.94 0.54 0.96
SRDRN-QDM 0.20 0.93 0.42 0.95
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models (Bilinear, MBCn, ISIMIP3 or SRDRN-QDM) and 
referenced data for each GCM/ESM and each variable 
(Fig. 8). Figure 8 shows that correlation coefficients for all 
the six variables are mostly higher than 0.9, while SRDRN-
QDM model further increased map correlations for all of 
the six variables with relatively narrower spread and much 
better than either MBCn or ISIMIP3. The map correlations 

from MBCn are mostly lower than Bilinear, indicating grid-
based bias correction process may increases spatial biases. 
ISIMIP3 performs much worst for precipitation variable, 
which potentially caused by assuming precipitation distri-
bution follows gamma distribution (Lange 2019). This result 
suggests that SRDRN-QDM mostly reduced biases on spa-
tial dependence, showing better performance than other two 

Fig. 6   The standard deviation for maximum temperature (1st row), 
minimum temperature (2nd row), precipitation (3rd row), relative 
humidity (4th row), solar radiation (5th row), and wind speed (6th 
row) at each grid point over the CONUS. 1st column is the standard 
deviation for ERA5, 2nd column is the standard deviation differ-
ence between Bilinear and ERA5, 3rd column is the standard devia-

tion difference between the SRDRN-QDM model and ERA5, and 
4th column is the standard deviation difference between the ISIMIP3 
model and ERA5. Units for the color bars are °C for maximum and 
minimum temperature, mm/day for precipitation, no unit for relative 
humidity, W/m2 for solar radiation, and m/s for wind speed



9664	 F. Wang, D. Tian 

Fig. 7   Spatial distribution of Spearman correlation coefficient 
between precipitation and maximum temperature for referenced 
ERA5 (1st row), and difference between bilinear interpolation (2nd 

row), bias-corrected by MBCn (3rd row), ISIMIP3 (4th row) and 
SRDRN-QDM (5rd row) with ERA5 in winter days (DJF, 1st col-
umn) and summer days (JJA, 2nd column)
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bias correction methods. This is likely because both MBCn 
and ISIMIP3 were executed on the grid basis (due to its 
limitations in handling high dimensional data), which did 
not account for spatial dependences when performing bias 
corrections, while SRDRN-QDM includes convolutional 
layers accounting for spatial patterns between inputs and 
outputs when learning their relationships.

3.6 � Assessing drought

We defined a drought event as a negative SPEI 
(SPEI <  = − 1) lasting for at least one consecutive month. 
Based on this definition, the duration of most drought events 
is one month based on the reference data (ERA5) during the 
testing period. Figure 9 shows the average drought inten-
sity for all the drought events for ERA5 and model outputs 
(Bilinear, MBCn, ISIMIP3 and SRDRN-QDM) for each 
GCM/ESM. As shown in the figure, drought intensity var-
ies across the CONUS, and high intensity presents in the 
southwestern region, the central south, and part of the north-
east region. For the same GCM/ESM, the spatial patterns of 
drought intensity from MBCn and ISIMIP3 models appear 
to be similar to Bilinear, but very different from ERA5, 
indicating grid-based bias correction methods are not able 
to bias correct spatial patterns of drought intensity. Among 
different GCMs/ESMs, there are dramatic spatial pattern 
differences of drought intensity for the Bilinear, MBCn and 
ISIMIP3 models, causing the multi-model ensemble mean 

results greatly underestimated the drought intensity over 
the regions where the observed absolute drought intensity 
is relatively high while overestimated the drought intensity 
at locations where the observed absolute drought intensity is 
relatively low (Figure S4 in the Supplementary Information). 
The SRDRN-QDM model, however, corrected the spatial 
patterns of drought intensity from original GCMs, while not 
exactly matching the ones from the referenced ERA5, but 
appear close to it, causing the multi-model ensemble mean 
from the SRDRN-QDM model roughly captured the hot spot 
areas with high absolute drought intensity (Figure S4 in the 
Supplementary Information). Nevertheless, we must admit 
that SRDRN-QDM still experiences difficulties to capture 
exact spatial patterns and exact locations of high drought 
intensity from ERA5.

We further classified droughts into three categories 
based on different thresholds (McKee et al. 1993), and 
calculated their frequencies for each category. SPEI 
index of − 1 to − 1.49, − 1.5 to − 1.99, and less than − 2 
corresponds to moderate, severe, and extreme drought, 
respectively. Figure 10 shows the spatial distribution of 
frequency for the three classified drought conditions from 
the ERA5 observational reference and model products 
from a GCM/ESM (EC-Earth3). We find large frequen-
cies of moderate drought over the northern regions (states 
of Montana, North Dakota, and Minnesota), west coastal 
states (California and Arizona), western Appalachians, and 
southeastern regions. The frequencies of severe drought 

Fig. 8   Box plots for day of the year average map correlation between 
models (Bilinear and bias-corrected products by SRDRN-QDM and 
MBCn for each GCM/ESM) and referenced ERA5 for maximum tem-

perature, minimum temperature, precipitation, relative humidity, solar 
radiation, and wind speed
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appear to be different from the moderate drought condi-
tions, with high frequencies in the central CONUS and 
around the Appalachians. The high frequencies of extreme 
drought are scattered around the western and central south 
regions. The simulations from Bilinear greatly underes-
timated observed frequencies over the north regions for 
moderate drought and overestimated observed frequencies 
over these regions for severe drought. The scattered high 
frequency spatial pattern for extreme drought from Bilin-
ear appears very different from the observed one. The per-
formance of drought frequencies from the SRDRN-QDM 
shows improvements over the north regions and western 
coastal area for the moderate drought, central south region 
for severe drought, and spatial patterns for the extreme 
drought appear roughly match with the observations. By 

contrast, the spatial patterns of drought frequencies from 
either MBCn or ISIMIP3 appears to be very close to Bilin-
ear for all three drought categories, suggesting little effects 
from bias corrections.

Figure 11 shows the distribution of frequency difference 
between modeled products from the five GCMs/ESMs and 
ERA5 for moderate and severe drought (the one for the 
extreme drought category was not plotted due to limited 
nonzero frequencies). As shown in the figure, frequency dif-
ferences between modeled products and ERA5 are around 
zero, indicating simulations and bias-corrected products 
all captured observed mean frequencies for all five GCMs. 
Overall, the frequency differences of the SRDRN-QDM 
have relatively narrower spread around zero compared to 
MBCn and ISIMIP3 for most GCMs/ESMs for moderate 

Fig.9   Spatial distribution of average drought intensity for drought 
events (SPEI index < -1) for referenced ERA5 (top plot), bilinear 
interpolation (Bilinear, 1st column), bias-corrected by MBCn (2nd 
column), ISIMIP3 (3rd column), and SRDRN-QDM (4th column) 

from each GCM/ESM, including EC-Earth3 (1st row), GFDL-ESM4 
(2nd row), IPSL-CM6A-LR (3rd row), MPI-ESM1-2-HR (4th row) 
and MRI-ESM2-0 (5th row)
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drought and for all five GCMs for severe drought, suggesting 
that SRDRN-QDM reduced more biases of all six variables, 
resulting in lower biases in drought characteristics. Notably, 
ISIMIP3 shows greater spread for the severe drought fre-
quency differences.

4 � Discussion and conclusions

The study provides a trend-preserving deep learning frame-
work for downscaling and bias correcting multiple variables 
from GCMs/ESMs at once, accounting for complex spatial 
and intervariable relations and climate non-stationarity. We 
presented and evaluated the SRDRN-QDM trend-preserving 
deep learning for multivariate bias correcting and downs-
caling daily precipitation, maximum temperature, minimum 
temperature, solar radiation, relative humidity, and wind 

Fig. 10   Frequency spatial distribution of moderate drought (1st 
column), severe drought (2nd column), and extreme drought (3rd 
column) for ERA5 (1st row), bilinear interpolation (2nd row), bias-

corrected by MBCn (3rd row), ISIMIP3 (4th row) and SRDRN-QDM 
(5rd row) from a single GCM/ESM (EC-Earth3) with the unit of 
month for the color bars
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speed from five GCMs/ESMs at once over the CONUS. This 
approach applied the trend preservation approach, quantile 
delta mapping (QDM) to the SRDRN to adjust distributions 
at extremes and preserve climate trends. The performance 
of the six SRDRN-QDM bias-corrected and downscaled 
variables were comprehensively evaluated for assessing 
climatology, extremes, spatial dependences, intervariable 
dependences, and droughts, in comparison with state-of-
the-art methods.

The SRDRN-QDM model greatly reduced discrepan-
cies between the model and observations compared to 
SRDRN only, particularly at the extremes (Fig. 3), and spa-
tial distributions of statistics at the1st, 33rd, 66th, and 99th 

percentiles also match well with the observations (Fig. 4 
and Table 2). The model greatly reduced biases in terms of 
climatology statistics (mean and standard deviation, Figs. 5 
and 6, and Table 3). It is worth noting that Quesada‐Chacón 
et al. (2023) explored downscaling and bias correcting seven 
variables both individually and multivariately using a deep 
learning model in a small region in Germany, while the eval-
uations only focused on individual variables. They noted that 
multivariately trained models tend to focus more on certain 
variables resulting in better performance on these variables, 
while performing poorly in the others. However, multivari-
ate bias correction and downscaling is needed, since bias 
correcting and downscaling individual variables may lose 

Fig. 11   Box plots of frequency difference (unit: month) between models (Bilinear, MBCn, ISIMIP3, and SRDRN-QDM) and ERA5 for moder-
ate and severe drought categories



9669Multivariate bias correction and downscaling of climate models with trend‑preserving deep…

the physically coherent or intervariable dependences, which 
is critical for most of the impact studies that need multiple 
variables at the same time (Cannon 2018; Guo et al. 2020; 
Zscheischler et al. 2019) or assessing compound events 
(Zscheischler et al. 2018). To further improve multivariate 
bias correction and downscaling approach for addressing 
biases in individual variables and interdependencies, one 
potential avenue is to bring physical constraints among vari-
ables through mass and energy balance into the loss function 
or customized layers as discussed by Harder et al. (2022).

The SRDRN-QDM model also reduces biases on inter-
variable dependencies (e.g., the relationship between pre-
cipitation and temperature in Fig. 7) and spatial dependen-
cies for most of the variables (e.g., increased correlation 
coefficients of map correlation in Fig. 8). The intervariable 
dependencies are learned during model training process 
without defining any pre-established functional relation-
ships. The SRDRN-QDM model includes 37 CNN layers 
and has the potential to capture more complex spatial rela-
tionships and correct fine spatial feature differences between 
model simulations and observations. The SRDRN-QDM 
model has difficulties to fully handle the complex intervari-
able dependencies over the Florida peninsular in the summer 
months at both daily and monthly time scale. This is likely 
because climate conditions in the Florida peninsular are very 
different with other CONUS regions. These limitations may 
be improved by performing the SRDRN-QDM locally in 
individual climate regions with relatively homogeneous 
conditions.

Taking drought assessment as an example, the SRDRN-
QDM model to some extent reduced biases of the SPEI 
drought index in terms of both intensities (Fig. 9) and 
frequencies under moderate, severe, and extreme drought 
categories (Figs. 10 and 11). In a previous study, the added 
value of multivariate bias correction methods for the SPEI 
index was explored by Ansari et al. (2023). The authors 
found comparable performance for different multivari-
ate bias correction methods, including MBCn, in terms 
of reduced biases for the SPEI index. In this study, we 
showed the improved performance of SRDRN-QDM com-
pared to the MBCn and ISIMIP3 multivariate bias cor-
rection methods. The spatial patterns of drought intensity 
and frequency from the SRDRN-QDM model (Figs. 9, 
10 and S4 in the Supplementary Information) generally 
match with the observations (ERA5), while still not pre-
cisely capturing the exact hot spot locations. This is poten-
tially due to the challenges for the model to learn across 
high spatial heterogeneity of climate conditions over the 
CONUS, and the model has difficulties in reducing biases 
for all the regions at one time. Training the SRDRN-QDM 
locally at each climate region has the potential to improve 
performance on the SPEI index while at the expense of 
increasing computing cost.

Combining SRDRN with QDM particularly improved 
the model performance at extremes by considering climate 
trends simulated by physics based GCMs/ESMs models. 
SRDRN-QDM model greatly reduced biases at extreme 
percentiles (less than 1st percentile and greater than 99th 
percentile) for each variable compared with the SRDRN 
model output (Fig. 3). While recent studies found that com-
bining GAN-based model with quantile mapping (QM) led 
to overall improvement (Fulton et al. 2023; Hess et al. 2023), 
they did not account for climate trends or non-stationarity in 
these approaches. The importance of GCM trend preserva-
tion becomes more significant for GCM projections under a 
strong anthropogenic signature on the climate (IPCC 2023, 
Lee et al. 2023). Previous studies have found that impact 
studies are sensitive to non-stationary biases, and bias cor-
rection approaches performed worse in the testing period 
due to model stationary assumptions (e.g., Chen et al. 2021; 
Guo et al. 2020). SRDRN-QDM tackles this issue and can 
be used to bias correct and downscale climate projec-
tions from GCMs/ESMs accounting for climate trends or 
non-stationarity.

As mentioned in the methodology section, we synchro-
nized the referenced ERA5 and model simulations in time, 
which means daily maps from the 5 GCMs are forced to 
match with those observed and used MAE as loss function 
without considering the atmospheric state of the different 
climate models. As a result, while the results from this work 
showed notably improved performance for correcting spatial 
and intervariable dependences, the representation of climate 
model dynamics at the daily timescale may be affected dur-
ing the correction procedure, which may restrict the use-
fulness of the output data for assessing compound extreme 
events at the daily timescale. This issue may be potentially 
addressed in the future by modifying loss function to match 
distributions of climate models with observed distributions 
instead of day-to-day matches (Tao et al. 2016).

The SRDRN-QDM model treated daily spatial data 
independently and did not explicitly account for temporal 
dependence during bias correction. The SRDRN-QDM 
model is capable of capturing seasonality for all the six vari-
ables (Figure S2 in the Supplementary Information), but the 
SRDRN-QDM slightly underestimated the lag-1 autocorre-
lations for most of the variables (see Figure S3 in the Sup-
plementary Information). Incorporating time dependence 
between sequence images by replacing 2-dimention convo-
lutional layers with 3-dimention ones has the potentials to 
further improve model performance on temporal depend-
ence, which can be explored in the future study.

This study evaluated the SRDRN-QDM model perfor-
mance on the joint effects of the six variables in terms of 
drought index SPEI at monthly time scale. However, even 
at the monthly time scale, notable biases still exist after 
bias corrections (see Figs. 9 and 10). We also evaluated the 
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SPEI at the daily scale. However, the results indicate that 
the SRDRN-QDM greatly overestimated drought intensity 
in the eastern CONUS and drought duration in the western 
CONUS, much worse compared to the monthly scale (not 
shown), which is likely due to larger noises/biases for the 
joint variability of the six variables at daily time scale. 
Thus, further work is still needed to improve multivariate 
aspects of the model performance at the daily time scale.
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tary material available at https://​doi.​org/​10.​1007/​s00382-​024-​07406-9.
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