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ABSTRACT

Water temperature and ice cover are critical characteristics of the ecological, biogeochemical, and physical
functioning of a lake. Site-specific observations of temperature and ice, however, are not available for most lakes
in the world. Yet this information is crucial to understanding the global role of lakes in the functioning of the bio-
and hydrosphere. Here, we present the LakeTEMP dataset, referring to the ~1.4 million lakes globally of the
HydroLAKES database with a surface area exceeding 0.1 km?, and consisting of two subsets: (1) an observational
dataset that contains lake surface water temperatures (LSWTs), derived from Landsat 8 thermal radiance ob-
servations between 2013 and 2021 extracted at the lake center points; and (2) a dataset with monthly and yearly
LSWT summary statistics and predictions of average yearly ice cover durations, interpolated from the observa-
tional dataset using seasonal trendlines. All observations underwent extensive quality control and filtering, based
on outlier detection, overlapping imagery removal, and the removal of observations taken from dry lake beds.
Validation of the LSWT observations was carried out with in-situ data and yielded an R%, RMSE and median of
differences of 0.93, 1.71 °C and 0.42 °C, respectively. The global average yearly LSWT is 6.3 °C, assuming 0 °C
during times of presumed ice cover, and 12.4 °C when only considering periods of open water. About 8% of all
lakes never freeze, ~6% have short or sporadic freezing periods, and ~86% freeze every year, corresponding to
an estimated proportion of global lake surface area of 23%, 20%, and 57%, respectively. The warmest lakes in the
world (average temperatures of up to 36 °C) are all artificial lakes used in the power plant, mining, salt
extraction, and aquaculture industries. LakeTEMP fills a crucial spatial data gap in large-scale limnological
research, especially for the incorporation of small lakes and understudied geographies of remote regions.
Moreover, easy linkage to other large-scale datasets that use the unique lake identifiers from HydroLAKES, most
notably the LakeATLAS database (56 hydro-environmental variables for each lake including anthropogenic in-
fluences), allows to explore characteristics that may be correlated to or affected by LSWT and ice cover. The data
are in an analysis-ready format and openly available at https://doi.org/10.6084,/m9.figshare.23844660.

1. Introduction

bottom-water anoxia (Jane et al., 2021), and greenhouse gas emissions
(Jansen et al., 2022). Measurements of lake surface water temperature

The surface water temperature of a lake is a crucial factor that affects
physical, ecological, and biogeochemical processes. It reflects the energy
exchanges at the water-atmosphere interface (Edinger et al., 1968) and
drives the distribution of heat throughout a lake’s water column
(Woolway et al., 2014). In addition, water temperature influences the
metabolism, behavior, and the structure and dynamics of trophic net-
works (Woodward et al., 2010), the distribution of species (Sunday
et al., 2012), in-lake chemical transformations (Vachon et al., 2021),

* Corresponding authors.

(LSWT) have long been gathered at individual lakes to inform local or
regional water management practices and research programs. Moni-
toring of broad-scale geographic and temporal patterns of LSWT across
very large numbers of lakes, however, has been much more challenging.
Yet temperature is vital to understanding Earth’s aquatic cycle (Down-
ing, 2009). This includes exploring the role of lakes as sentinels of
climate change (Adrian et al., 2009), as habitats of a global heritage of
biodiversity (Heino et al., 2021), and as providers of diverse services to
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humans (Janssen et al., 2021).

Lake ice, a physical property closely connected to LSWT, affects lake
functioning most notably by creating a seal between the water-
atmosphere interface, reducing the penetration of sunlight (Dom-
brovsky and Kokhanovsky, 2023), blocking turbulent fluxes such as
greenhouse gasses (Striegl et al., 2001), and inducing reversed thermal
stratification (Yang et al., 2021). On a global scale, the interactions of
lake ice and climate are of special interest as the timing of freeze up and
break up events (i.e., lake ice phenology) are sensitive indicators of air
temperature changes (Marszelewski and Skowron, 2006), and the
presence or lack of ice cover also influences regional climate and
weather events by regulating the amount of evaporation (Zhao et al.,
2022), thermal moderation, and lake-effect snow events (Balsamo et al.,
2012; Brown and Duguay, 2010). In addition, freshwater ice provides
cultural services (e.g., transport, recreation, spiritual values) that are
especially important for Northern communities (Knoll et al., 2019).

Assembling a large-scale dataset of in-situ measurements of either
LSWT or lake ice phenology requires extensive networking, collabora-
tion, and data harmonization efforts. Impressive initiatives have
addressed this challenge (e.g., Sharma et al., 2015; Sharma et al., 2022),
but the resulting datasets remain limited with respect to the number of
lakes included, their geographical and temporal coverage, and the
consistency in data format and quality between sources. Remote sensing
offers a solution to the latter two of these issues, as satellites can achieve
nearly full coverage of the globe with consistent acquiring methods.
However, the number of lakes contained in existing large-scale, satellite-
derived datasets of LSWT and ice phenology are at present constrained
to a few thousand lakes. These include datasets that are global but
limited to large-sized lakes (Carrea et al., 2023; MacCallum and Mer-
chant, 2012; Du and Kimball, 2018 for LSWT and Cai et al., 2021; Wang
et al., 2022 for ice phenology), and datasets that are of higher spatial
resolution but limited to the regional scale (e.g., Attiah et al., 2023;
Giroux-Bougard et al., 2023). Studies have also estimated historical
LSWTs with physical and machine learning models for ~90,000 lakes
globally (Tong et al., 2023) and ~180,000 in the United States (Willard
et al., 2022), but observational and comprehensive global LSWT or ice
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phenology data are not available for over 95% of the millions of lakes in
the world that are small or medium-sized (Messager et al., 2016; Pi et al.,
2022). As a result, existing empirical knowledge of global lake thermal
processes (e.g., Maberly et al., 2020; Woolway and Merchant, 2019) are
typically based on large lakes only, yet heat exchanges across the
water-atmosphere interface and the distribution of heat throughout the
water column are size-dependent (Martinsen et al., 2019; Winslow et al.,
2015; Woolway et al., 2017).

To address the described data and knowledge gaps, we assembled
thermal data for all lakes between 84°N and 56°S that are at least 0.1
km? in surface area, as depicted in the HydroLAKES database (Messager
et al., 2016). Observations were acquired from a small buffer around
each lake’s center location to minimize the accidental inclusion of land
surfaces, and to ensure consistent comparisons across the dataset of
~1.4 million lakes. We used the Landsat 8 Earth Observation satellite
(launched in April 2013) which carries a thermal infrared (TIR) sensor
providing data at a resolution of 0.9 arc-seconds (30 m at the equator).
With the dual band TIR sensor on board Landsat 8, surface temperature
can be derived using a split-window (SW) algorithm, which dismisses
the need for local calibration of atmospheric parameters and performs
well over global atmospheric conditions (Jiménez-Munoz et al., 2014).

Here, we present the LakeTEMP dataset, consisting of two separate
subsets termed “Primary” and “Aggregated” (Fig. 1). The Primary
dataset comprises quality controlled LSWT data at the centers of the
1,427,688 lakes contained in the HydroLAKES database. Landsat 8 has a
revisit time of ~16 days, so roughly bi-monthly observations were
available for consideration between 2013 and 2021. The Aggregated
dataset is intended as a ready-to-analyze product and contains summary
statistics, interpolated from the Primary dataset. This includes the
average yearly and average monthly mean, minimum, and maximum
LSWTs (+ 95% confidence intervals), as well as estimations of ice
phenology (average yearly duration of ice cover and the approximate
average ice on and ice off dates, + 95% confidence intervals). We used
thorough quality control methods and provided quality flags with both
datasets, validated the Primary data with in-situ data, and compared the
Aggregated data to other in-situ and satellite-derived LSWT and ice
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Fig. 1. Overview of the LakeTEMP dataset and its two subsets. The Primary dataset comprises weekly to monthly discrete LSWT data for the period 2013-2021. The
Aggregated dataset comprises average yearly and average monthly mean, minimum, and maximum LSWTs (& 95% confidence intervals), and ice phenology pre-
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phenology datasets. Finally, we present an overview of LSWT conditions
between 2013 and 2021 and highlight large-scale spatial variations in
LSWT across lakes globally. All data are available in CSV files to lower
the barrier for data users not versed in handling massive raster-based
spatial datasets (Ramachandran et al., 2021) and the data employ the
unique lake identifiers from HydroLAKES, so that they can be easily
combined with other lake datasets that use the same hydrography (e.g.,
LakeATLAS (Lehner et al., 2022)).

2. Methods
2.1. Primary dataset: lake surface water temperature observations

2.1.1. Data processing

Lake surface water temperature (LSWT) is the temperature of the
upper layer of the water surface, which in the case of satellite obser-
vations corresponds to the thin layer (<0.1 mm thick) from which
thermal radiation is emitted. The Primary dataset was derived from
thermal wavelength bands 10 (10.60-11.19 pm) and 11 (11.50-12.51
pm) of the Landsat 8 top-of-atmosphere reflectance collection 1 (United
States Geological Survey, 2021), calculated for a narrow (50 m) buffer
surrounding the center point location of each lake. This location and
buffer selection was an important step in minimizing the risk of land
surface inclusions in observations from small lakes, while ensuring that
more than one pixel per lake could be used for calculations. Following
the approach by Carrea et al. (2015), we defined the center point of a
lake to be the single location inside the lake that is the furthest away
from any lake shore or island, as detailed in Appendix A.1. Shoreline
polygons were provided by the HydroLAKES database (Messager et al.,
2016), which includes both natural (1,420,891) and artificial (6797)
lakes of at least 0.1 km? in surface area, which are both referred to as
‘lakes’ throughout this work.

Although preceding Landsat missions (Landsat 4, 5, and 7) provide
TIR measurements since 1982, we chose not to include those data to
avoid inconsistencies in the quality as well as frequency of the data re-
cord. Most importantly, the sensors on board Landsat 4, 5, and 7
collected TIR measurements in one channel, requiring a single-channel
(SC) algorithm to calculate LSWT. A SC algorithm needs local calibra-
tion of atmospheric conditions and is therefore not suitable for global
applications. Furthermore, Landsat 4 suffered sensor failures within a
year of its launch, Landsat 5 data contain a considerable data gap be-
tween the years 2000 and 2003, and Landsat 7 is affected by data gaps
since 2003. Despite these deficiencies, we investigated whether the
addition of Landsat 7 observations to the Landsat 8 record would
strengthen the dataset through an analysis with in-situ LSWT data (see
Appendix A.2 for further detail), but we found that the overall data
quality decreased.

The Google Earth Engine platform was used to download the TIR
imagery and to perform initial processing steps. First, every pixel that
was fully or partially covered by clouds, cloud shadows, or cirrus clouds,
was masked, using the medium and high cloud confidence levels (i.e.,
33-100%) from the Quality Assessment bands provided with the Land-
sat 8 collection. Second, each image was matched with a 2.5-degree and
6-h resolution water vapor raster dataset (NCEP/NCAR Reanalysis
Water Vapor product; Kalnay et al., 1996) by taking the two water vapor
rasters closest in time and interpolating the pixel values. Then, LSWT
was calculated and corrected for water vapor using the SW algorithm of
Jiménez-Munoz et al. (2014):

T=T+c (T,»—Tj) +cz(T,- — T,-)z-‘rco-i-(q +eaw)(1 —€) + (cs + cew)Ae
m

where T is the surface temperature in Kelvin, T;¢9 and T;; are the at-
sensor brightness temperatures at bands 10 and 11, w is the total at-
mospheric water vapor content (in g cm’z), ¢ is the mean of emissivity
values 0.998 (g19) and 0.992 (e13), as tested for both waterbody and
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wetland surface classes by Du et al. (2015), Ae is the emissivity differ-
ence (e10 — €11), and ¢y to cg are constants, defined by Jiménez-Munoz
et al. (2014) as —0.268, 1.378, 0.183, 54.30, —2.238, —129.20, and
16.40, respectively. Even though some studies use the SC algorithm by
Jiménez-Munoz et al. (2009) to calculate surface temperature from
Landsat 8 observations (e.g., Ermida et al., 2020), we found that, based
on an analysis with in-situ data, the SW performed better (see Appendix
A.2 for further detail).

Finally, a weighted average LSWT was calculated from all pixels
within a 50 m x 50 m square buffer around each lake center point,
where pixel weights were determined by the fraction of the pixel
covered by the buffer. The number of pixels (including fractions) con-
tained in each buffer zone ranged from ~2 near the equator to ~6 in the
subarctic and ~14 near the northern extent of this dataset (81°).
Throughout this work, the word ‘observation’ refers to pixel averaged
LSWT data. The temporal resolution of the dataset is generally around
16 days, but it can range from multiple observations a week to only a few
observations per year depending on latitude (increased number of ob-
servations due to shorter Landsat revisit intervals at higher latitudes),
cloud conditions (cloud contaminated observations were removed) and
potential lateral overlap between orbital paths (increasing the number
of observations).

2.1.2. Data filtering and quality control

Observations were flagged or removed based on three criteria: im-
agery overlap, lake intermittency, and statistical outliers. Lateral over-
lap provided additional observations taken several hours (at the poles)
to days (at lower latitudes) apart, but forward overlap provided obser-
vations taken only seconds to minutes apart, which introduced a bias
when calculating statistics for the Aggregated dataset. Therefore, ob-
servations taken within the same hour were consolidated (averaged) or
removed if their values differed by >0.2 °C (3% of overlapping data).
This procedure reduced the number of observations from the original
dataset by 14%. By transferring monthly water occurrence information
from the Global Surface Water dataset (Pekel et al., 2016) at the lake
center locations, all observations were flagged with values 1 to 4 for
‘water’, ‘land’, ‘unknown’, and ‘no information’, respectively, where
frozen water surfaces fall under the ‘unknown’ class and ’land’ surfaces
represent dry lake beds. More details on these extraction procedures are
given in Appendix A.3. Furthermore, we used a lake-specific and
seasonally varying statistical threshold to flag observations as outliers,
which is an approach recommended for LSWT timeseries by Woolway
et al. (2021). Specifically, we calculated a Z-score for each observation
from a seasonal trendline and a rolling standard deviation:

Z = (yi—y,) /O'y 2

where y; is the LSWT of observation i, y; is the LSWT of observation i
predicted from the trendline, and o; is the residual standard deviation
calculated from the number of observations (n;) in a 90-day window
around observation i:

3

The 90-day window was used to ensure a maximum sample size for
the calculation of o;, while only capturing observations sharing similar
meteorological conditions. However, if n; was <30 (i.e., the minimum
sample size required for a normal distribution), o; was calculated from
all observations in the timeseries. We plotted and visually checked Z-
score thresholds ranging from 2.5 to 4, values suggested by Hair et al.
(2010), on ~600 randomized but geographically evenly distributed
timeseries. We chose the more cautious threshold of Z = +4 to avoid the
unwarranted flagging of observations recorded during extreme weather
conditions, which according to Woolway et al. (2021) can occur well



M.C. Korver et al.

above a 90th percentile threshold. Seasonal trendlines were generated
with a Generalized Additive Model (GAM), a technique that uses smooth
functions to predict non-linear regression trends (Wood, 2017). If the
number of LSWT observations in a timeseries was <12 (0.8% of all
timeseries), a trendline could not be applied and outliers were therefore
not detected. More details on the GAM calculations are given in Ap-
pendix A.4. Finally, observations <0 °C were not removed from the
dataset because they were used for the estimation of ice phenology
(section 2.2.2). However, these values should not be interpreted as ice
surface temperatures, which require a different, locally calibrated al-
gorithm for their calculation (Liu et al., 2018).

2.1.3. Validation with in-situ data

The LSWT observations were validated against in-situ LSWT obser-
vations from 48 lakes across 5 continents, of which 13 large lakes pro-
vided data for multiple sites thus representing 63 sites in total (Fig. 2a).

Lake Surface
Water
Temperature

® [n-situ

Lake Surface _,
Water ”de
Temperature ¢

@ CCI lakes R s

o~
£,
%,

Lake Ice

Phenology

® In-situ
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Fig. 2. Locations of lakes used for a) validation of LSWT observations with in-
situ data, b) comparison of mean monthly LSWT with data from the European
Space Agency Climate Change Initiative (CCIL; Carrea et al., 2022, 2023), and c¢)
validation of ice phenology estimations with in-situ (Benson et al., 2020) and
passive microwave radiometer (Cai et al., 2021, 2022) ice phenology
observations.
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In-situ data were acquired from individual as well as public sources,
specified and cited in the Acknowledgements and Table A.1, after
intensive searches for high-quality and accessible data. Continuous data
(measured from a permanent buoy) were required as manual measure-
ments rarely match local satellite overpass times. At most sites, the buoy
was installed within the first meter below the water surface and during
the open water season only, but at a few high-latitude sites they were
installed deeper (up to 2.5 m) to measure under-ice temperature in
winter. These winter measurements were removed based on ice
phenology records, either provided by the data sources, or else esti-
mated from visual inspections of Sentinel-2 satellite imagery. In addi-
tion, we performed automated checks and manual inspections on all
records to flag and remove unrealistic data (e.g., negative readings or
large outliers). Landsat 8 observations were extracted from the locations
of the field buoys and quality controlled as described in section 2.1.2,
whereas outliers and observations <0 °C were removed. The observa-
tions were then matched with the in-situ data by date and hour (n = 52)
or only date (n = 12), depending on the format of the in-situ data
(Table A.1). In addition to the validation of the LSWT observations, the
in-situ data were used to validate the flags indicating dry surfaces
(section 2.1.2), as it is highly unlikely that the in-situ data were recorded
during dry conditions. For this analysis, data from the Global Surface
Water dataset (Pekel et al., 2016) were extracted for the in-situ locations
(Appendix A.3) and matched with the in-situ temperature observations
by month and year.

2.2. Aggregated dataset: annual and monthly average lake surface water
temperature and ice cover

2.2.1. Surface water temperature

Annual and monthly LSWTs were calculated from a seasonal trend-
line fitted through each LSWT timeseries in the Primary data, by taking
the mean, maximum, and minimum of the 365 or 28 to 31 daily
trendline values, respectively (Fig. 1). The trendline approach was
chosen because data gaps often concentrate around seasons experi-
encing cloud-cover and calculating statistics from LSWT observations
directly would introduce bias. Trendlines were generated with a GAM,
which has the ability to predict the continuation of a trend throughout
timeseries gaps and to track seasonal LSWT patterns that are not strictly
harmonic (more details on the GAM calculations are given in Appendix
A.4). Outliers or observations that were flagged as dry surfaces (section
2.1.2) were not used in the GAM calculation. Furthermore, if the number
of filtered LSWT observations in a timeseries was <12, a trendline could
not be applied and only the yearly mean, maximum, and minimum
LSWTs were calculated from the observations directly. Trendlines can
get skewed when anomalously high or low LSWT observations — that
divert from the mean but are not necessarily invalid (i.e., recorded
during extreme weather conditions) — are available for periods that are
otherwise data sparse. To correct for this, trendlines were plotted twice:
first to flag extreme LSWT values using a Z-score threshold (Egs. 2 and 3),
and second using the resulting filtered observation timeseries. As it was
especially important to flag extreme values during data sparse periods
and it is recommended to use lower Z-score values for smaller sample
sizes (Hair et al., 2010) we chose a threshold of Z = 42, which was
visually checked on ~600 randomized but geographically evenly
distributed timeseries plots. Negative LSWT observations were retained
for trendline plotting as these were assumed to occur when lake ice was
present, even though exact values cannot be interpreted as ice surface
temperatures. Trendline values <0 °C were then set to 0 °C, which was
the assumed temperature of the water layer directly under the ice.

2.2.1.1. Uncertainty calculations and quality flags. For regression models
like GAMs, confidence intervals (CIs) can be calculated to account for
uncertainty in the estimation of the mean (i.e., the uncertainty of the
LSWT trendline fit), or to predict measurement ranges (i.e., the
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likelihood that a LSWT observation falls within certain bounds) (von
Storch and Zwiers, 1999). Both cases were calculated for every obser-
vation i of a lake’s timeseries at a 95% confidence level:

C)

Clmean; = y; £ty 9750, *

2
Cipred; = y; & ty.975*0,* R T— ®)

where CImean is the upper or lower bound of the trendline prediction y,
Clpred is the upper or lower bound of the predicted measurement range,
to.o75 is the 97.5% quantile of the t-distribution, o is the 90-day rolling
standard deviation (Eq. 3), n, is the number of observations in a 90-day
window around observation i, x is the Julian day, and x; is the mean
Julian day of all observations in a 90-day window around observation i.
The 90-day window was used to ensure a maximum sample size, while
only capturing observations sharing similar meteorological conditions.
However, if n; <30, all timeseries observations were used to calculate n,
os, and X;. These calculations did not include LSWTs <0 °C, observa-
tions that were flagged as dry surfaces, or outliers (section 2.1.2), but did
include observations that were flagged as outliers during trendline
fitting. Both CIs were linearly interpolated between Julian days to obtain
365 daily confidence bounds, which were averaged to obtain the un-
certainties around the yearly and monthly means and the monthly
predictions of measurement ranges. Finally, as with the trendlines,
confidence bound values <0 °C were set to 0 °C.

Three variables with data quality information were provided: the
number of observations used for calculations, the method used (i.e.,
from trendline or direct), and the likelihood that a lake experienced
intermittency. Although observations taken during dry periods were
removed from the timeseries prior to calculating statistics, the resulting
data gaps can still have influenced the calculations. For example, the
interpolation of a trendline through an intermittent lake’s dry season
can skew the resulting yearly mean, maximum, or minimum LSWT to-
wards these predictions. The likelihood and the level of lake intermit-
tency was flagged using six categories. Descriptions and interpretations
of the method and intermittency categories, as well as the potential
consequences for the quality of the data, are provided in Table 1.

2.2.1.2. Comparisons with in-situ and other satellite data. The adequacy
of the trendline to predict mean LSWT was tested by comparing monthly
mean LSWTs to the monthly mean LSWTs calculated from in-situ data
(Table A.1) and a satellite derived data product. Monthly mean LSWTs
were calculated from the in-situ data directly, for months with >27 or
>670 data points for daily and hourly timeseries, respectively
(providing 405 monthly data points from 54 sites). The satellite derived
LSWT product was released in 2022 by the European Space Agency
Climate Change Initiative (Carrea et al., 2022, 2023; hereon referred to
as ‘CCI data’). Precursors to the CCI data have been widely used for
studies investigating the effects of climate change on global lakes (e.g.,
Woolway et al., 2022; Woolway and Merchant, 2019), and we chose this
dataset due to its high-temporal resolution and global coverage. The
current version of the CCI data provides daily average LSWT observa-
tions (1995 - 2021) from ATSR2 (ERS-2), AATSR (Envisat), MODIS
(Terra), AVHRR (MetOpA and MetOpB), and SLSTR (Sentinel3A and
Sentinel3B) sensors in a 1/120° grid format (~1 km resolution at the
equator) for 2024 lakes across the world. All data are accompanied by
quality level flags that were established from a reflectance-based water
detection and distance from shore. We extracted daily LSWT observa-
tions from the CCI data between 2013 and 2021 from the pixel over-
lapping the locations that were used for extracting Landsat 8 data. Only
observations with the highest quality levels (4 and 5) were kept and
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Table 1

Quality level flagging scheme of the Aggregated dataset, with flag definitions
based on the underpinning Primary dataset, interpretations of the lake types
associated to each flag, consequences for the data, and the % of lakes affected
(out of 1,427,688). The definitions of the ‘intermittency’ flags are given by the %
of timeseries observations that were acquired from ‘water’, ‘land’ (representing
dry lake beds), ‘unknown’ (including snow or ice surfaces), or ‘no information’
surfaces, as derived from Pekel et al. (2016) (see Appendix A.3 for more details).
Interpretations are descriptions of the likely condition of a lake during data

acquisition, however other interpretations are possible.

Flag Definition Interpretation Consequences % of
lakes
Calculation
method
0 From All regions/lake Full set of 98.8
trendline; >12  types statistics
observations calculated from
trendline
1 Direct; <12 Lake in high Only yearly 0.8
observations cloud-cover area mean, min, max
or intermittent/ calculated
ephemeral lake directly
NA No No observations No statistics 0.4
observations due to permanent calculated
cloud cover or
intermittency flag
4
Intermittency
0 <20% ‘land’ Perennial lake, or ‘Land’ 87.2
over ‘water’ dry for periods observations
observations that are not long removed before
enough to affect calculation
calculations
considerably
1 >20% and Intermittent lake ‘Land’ 6.2
<80% ‘land’ observations
over ‘water’ removed before
observations calculation
2 >80% ‘land’ Ephemeral lake or ~ ‘Land’ 2.7
over ‘water’ intermittent lake observations
observations with long dry removed before
season calculation
3 100% ‘land’ + Permanently dry Statistics 3.4
‘unknown’ lake with seasonal  calculated from
observations SNOW Or ice cover ‘unknown’
readings only
4 100% ‘land’ Permanently dry No statistics 0.3
observations lake; or wetland calculated
with dense
vegetation
5 100% ‘no Lake near north Statistics 0.2
information’ pole; or lake in calculated from

area with high
cloud cover; or
other unknown
issues

all observations

matched to their corresponding Landsat 8 observations by lake and day.
Monthly mean LSWTs were then calculated from the CCI data directly,
but only if there were >90 observations (per month) available over the
full record period. This selection procedure generated a dataset of 4095
data points for a comparative analysis on 1231 lakes (Fig. 2b).

2.2.2. Ice cover

The average yearly duration of lake ice cover was estimated by the
count of all days on which the LSWT trendline (section 2.2.1) was equal
to 0 °C and the average ice on and ice off dates (Julian day) were
approximated as the start and end occurrences, respectively, of 0 °C. If
no trendline was plotted due to a lack of observations (i.e., <12), no ice
phenology data were calculated. When multiple freezing periods were
modelled per year (0.05% of lakes), the first ice on and the last ice off
days were recorded whereas intermediate start or end occurrences were
not specified in the dataset. However, the smaller number of ice cover
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duration days compared to the period between ice on and ice off dates
can be used to identify this phenomenon.

2.2.2.1. Uncertainty calculations and quality flags. Upper and lower es-
timates of average yearly ice cover duration, ice on, and ice off dates,
were calculated from the 95% measurement prediction ranges (Clpred;
Eq. 5) around the LSWT trendlines. The ice phenology calculations
described above were repeated on the daily upper and lower bounds of
Clpred, whereas the lower ice phenology estimates were derived from
the upper bounds and the upper ice phenology estimates were derived
from the lower bounds. No quality flags specific to the ice phenology
estimations were added, however the number of observations, calcula-
tion method, and lake intermittency flags (section 2.2.1.1 and Table 1)
apply to the overall quality of the Aggregated dataset, including the ice
cover estimations.

2.2.2.2. Comparisons with in-situ and other satellite data. The estima-
tions of average yearly ice cover duration were compared to the in-situ
ice phenology records from the Global Lake and River Ice Phenology
Database (Benson et al., 2020), and the records of 56 lakes across the
northern hemisphere that were derived from Passive Microwave Radi-
ometer (PMR) imagery by Cai et al. (2021, 2022) (Fig. 2¢). The in-situ
database consists of freeze up and break up dates for 409 lakes and
rivers in North America and Eurasia, as observed visually on site. From
these lakes, 318 did not have sufficient records (at least 2 years of ob-
servations) after the year 2013, four were too small to occur in the
HydroLAKES dataset (<0.1 kmz), and three were a subbasin of a larger,
overarching lake in HydroLAKES. For the remaining 84 lakes, the
available records (n = 189) were averaged to obtain yearly ice cover
durations. The PMR database provides ice phenology as the duration
between start of freeze up and the first day of complete break up, and as
the duration between whole lake freeze up and the start of break up,
which were both assessed. No records were available after the year 2013
for the Large Aral Sea, and no Landsat 8 observations or ice cover pre-
dictions were available for the Caspian Sea, but for the 54 other lakes,
the observations taken between 2013 and 2019 (n = 316) were averaged
to calculate yearly ice cover durations.

No. of observations
e 1-11 (insufficient)

12 - 45 (uncertain)
® 46 - 85 (acceptable)
© 86 - 1587 (reliable)
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3. Results
3.1. Primary dataset: lake surface water temperature observations

Considering Landsat’s repeat cycle of 16 days, around (but no more
than) 180 observations per timeseries (2013 — 2021) would be expected.
However, excluding the observations masked by clouds, the observa-
tions acquired from dry surfaces, and outliers, and including observa-
tions from overlapping imageries (taken >1 h apart), the number of
timeseries observations ranged from 0 to 1587, with a median of exactly
100 (Fig. 3). Overall, the number of observations increased with latitude
due to the increase in lateral imagery overlap. In addition, smaller-scale
variations were driven by cloud cover (e.g., few observations below the
intertropical convergence zone and rainward sides of major mountain
ranges) and degree of intermittency (Table 1). No imagery was available
for the center point location of the Caspian Sea, and no valid observa-
tions were available for 66 lakes with consistent cloud cover and for
4309 lakes that were consistently dry at their center points.

3.1.1. Validation with in-situ data

To assess data quality, the root mean square error (RMSE) was used
to evaluate data precision, and the median of differences (MOD; calcu-
lated from in-situ LSWT minus Landsat 8 LSWT values) was used for
accuracy, in addition to the overall goodness-of-fit (R?). Across the full
set of LSWT validation data (63 sites with a total of 2074 observations
matching Landsat 8 overpass times; Fig. 2a), the R? was 0.93, the RMSE
was 1.71 °C and the MOD was 0.42 °C, with the positive MOD value
indicating an overall slight bias towards underestimating LSWT with
Landsat 8. A trendline plotted through the distribution of LSWT differ-
ences (Fig. 4) indicates that this bias decreases from ~1.8 °C at near-zero
temperatures to ~0.4 °C at temperatures above 28 °C. Table A.2 lists all
validation results by lake.

Seven percent of the Landsat 8 vs. in-situ observation pairs in the
validation dataset were >3 °C different from each other, and in most
cases (88%) Landsat 8 observations were cooler than the in-situ data.
These cooler observations at in-situ locations were often acquired from
imageries that were affected by cloud cover (Fig. 5), more specifically
from locations around the cloud edges, which were not covered by the
cloud mask provided by Landsat 8. This could presumably point to the
rapid cooling of the skin water surface located below a cloud shadow
(and thus a valid observation), or to a sensor reading anomaly likely
caused by localized high atmospheric water vapor. The Landsat 8

Fig. 3. Number of surface water temperature observations taken at the center of each lake in the Primary dataset. Classes indicate how the Aggregated data,
calculated from the Primary data, can be considered reliable, acceptable, uncertain, or insufficient, based on the number of observations per lake timeseries (see
section 4.1 for more detail). These numbers exclude observations masked by clouds, taken from dry surfaces, and outliers, and include observations from overlapping

imageries (taken >1 h apart) and observations <0 °C.
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Fig. 4. Differences in LSWTs between Landsat 8 and in-situ measurements (n =
2074). Landsat 8 LSWTs were acquired at in-situ buoy locations. The trendline
(solid line) with 95% measurement prediction intervals (shaded area) was
generated with a Generalized Additive Model (GAM) and shows the central bias
across the range of Landsat observations acquired for the in-situ validation
(0-32.7 °C). The dotted line emphasizes zero-difference for reference.
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Fig. 5. Surface temperature imagery (2014-07-21 04:33, LC08_023027) of Lake
Superior (Canada/USA) from Landsat 8. Transparent (white) areas are the
pixels that have been masked out due to clouds. The insets show two examples
of the ‘cloud edge’ problem: around the edges of the masked areas, tempera-
tures are cooler than the surrounding surface temperature. This could either
point to a sensor anomaly, or to rapid skin water surface cooling when a cloud
shadow passes.

observations that were warmer than the in-situ data were generally
taken during days in early summer after ice break-up and when air
temperatures were especially hot compared to the preceding and suc-
ceeding days. In addition, about half of these measurements were from
three Arctic lakes that had buoys installed at 2.5 m depth. Therefore, we
presume that warmer Landsat 8 observations do not point to sensor
anomalies, but rather display how daytime warming can develop steep
temperature gradients between the warm upper water surface and
cooler in-situ sensor depths (Wilson et al., 2013).
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Matching the in-situ observations with the ‘water’, ‘land’, or ‘un-
known’ classes derived from the Global Surface Water dataset (Pekel
etal., 2016), and assuming that all in-situ data must have been collected
during ‘water’ conditions, revealed that 68.0% of all Landsat 8 obser-
vations of the validation dataset were correctly classified as ‘water’,
31.7% were classified as ‘unknown’, and 0.3% were wrongfully classi-
fied as ‘land’.

3.2. Aggregated dataset: annual and monthly average lake surface water
temperature and ice cover

3.2.1. Surface water temperature

The global average surface water temperature was found to be 6.3 °C
(assuming 0 °C during times of presumed ice cover) and 12.4 °C when
only considering periods of open water (i.e., when trendline LSWT >0
°C). This was calculated from the 365 daily trendline values derived for
each lake, except the 179,524 lakes (12.6% of dataset) that were flagged
for potential intermittency (levels 1 to 4, Table 1) and the 11,437 lakes
with <12 LSWT observations (0.8% of dataset). Ninety percent of all
lakes recorded average temperatures below 10.0 °C (assuming 0 °C
under-ice temperatures) and 15.5 °C (open water only) (Fig. A.2). These
low average temperatures are driven by the high concentration of lakes
at mid to high latitudes in the northern hemisphere (i.e., 92% of lakes
are above 45°N). The global average surface water temperature that is
more representative of all climatic regions, calculated by first averaging
all lake temperatures (including under-ice estimations) within one-
degree latitude bins (56°S - 84°N), was 15.9 °C, with the highest
average LSWTs of around 30 °C recorded between 20°S and 20°N
(Fig. 6). Mean LSWT also showed a correlation with elevation, as tem-
peratures were below the latitudinal average in the mountain ranges of
the Rockies, Pacific Coast, Andes, Tibetan Plateau, Turkistan, Altai,
Alps, and Scandes. Global monthly average surface water temperatures
(including under-ice estimations) ranged from 1.3 °C in December,
January, and February, to 17.6 °C in July (Table 2). Yearly mean LSWT
confidence intervals (95%) were generally (i.e., for 95% of lakes) within
+1.2 °C, with monthly confidence intervals ranging between +1.6 °C in
July and £2.9 °C in January. The yearly range in LSWT (i.e., maximum
minus minimum daily average LSWT) was highest for lakes in the mid-
latitudes, with ranges of up to 46 °C recorded in small and shallow lakes
in the Ryn desert of western Kazakhstan. Other extremely high, but rare,
temperature ranges (between ~35 and ~46 °C) and mean temperatures
(between ~33 and ~36 °C) were generally recorded in small and
shallow artificial lakes, used for power generation, mining, salt extrac-
tion, and aquaculture.

3.2.1.1. Comparisons with in-situ and other satellite data. We compared
the Landsat 8 monthly mean LSWTs derived from each lake’s trendline
with the monthly mean LSWTs derived from the in-situ measurements
(54 sites, 405 monthly data points) and the CCI data (1231 sites, 4095
monthly data points) directly. This revealed an R? of 0.97, an RMSE of
1.23 °C and a MOD of 0.80 °C (in-situ minus Landsat 8) and an R? of
0.99, an RMSE of 0.81 °C and a MOD of 0.42 °C (CCI minus Landsat 8),
respectively, indicating a better agreement with the CCI data and an
overall slight bias towards cooler Landsat 8 observations. Trendlines
plotted through the distributions of mean LSWT differences (Fig. 7)
indicate that this bias is higher (differences with a central tendency
between 1 and 3 °C) in the near-freezing range. Accordingly, lakes with
mean monthly LSWTs >2 °C cooler than the CCI data (4% of CCI lakes)
were mostly located in cold, northern high-latitude environments. We
also compared the direct LSWT observations of the Landsat 8 and CCI
datasets to test for instrument bias and found an R? of 0.97, an RMSE of
1.17 °C and a MOD of 0.33 °C. This, together with the in-situ validation
results described in section 3.1.1 (R? of 0.94, RMSE of 1.71 °C and MOD
of 0.42 °C), indicates that the trendline calculations improved the R? by
~0.02, added a minor additional bias (MOD) of 0.38 and 0.09 °C, and
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Fig. 6. The yearly mean LSWT (a), the yearly range in LSWT (b), and the yearly duration of ice cover (c) for the center points of ~1.4 million lakes, based on Julian
day averages over 2013-2021 (left) and averaged by one-degree latitude bins (right). Lakes with <12 LSWT observations are not shown in panels a, b, and ¢, and
lakes that were flagged for potential intermittency (levels 1 to 4, Table 1) are not shown in panels a and b. Ice cover classes are based on statistical likelihoods:
‘annual ice cover’ is assumed when the predicted ice cover duration, including lower and upper estimates, was >0 days; ‘sporadic (frequent) ice cover’ when
predicted ice cover was >0 days, but with a lower estimate of 0 days; ‘sporadic (infrequent) ice cover’ when the predicted ice cover was 0 days, but with a higher
estimate of >0 days; and ‘no ice cover’ when the predicted ice cover, including lower and upper estimates, was 0 days.
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Table 2

Summary statistics of lake surface water temperature (LSWT) and ice cover, by
month and by ice class (explained in section 3.2.2). Mean and median average
(2013-2021) LSWTs are calculated including / excluding under-ice estimations
of 0 °C, from lakes that had >12 LSWT observations and were not flagged for
potential intermittency (86.6% of dataset). Average ice cover statistics were
calculated from all lakes with >12 observations. A lake was assumed to be ice
covered if for the entire duration of a month LSWT measured 0 °C.

Average LSWT Average ice cover

Mean  Median % of Lake area Lake area
(GO lakes (km?) (%)*
Month

Jan 1.3/ 0.0 /19.3 89.6 1,680,274 65.9
17.1

Feb 1.3/ 0.0 /14.3 88.2 1,650,787 64.7
15.3

Mar 1.6/ 0.0/9.7 83.3 1,596,238 62.6
12.7

Apr 23/6.1 0.0/1.8 56.6 948,644 37.2

May 58/7.2 31/51 16.0 336,572 13.2

June 12.5/ 12.7 / 0.8 61,942 2.4
12.6 12.8

Jul 17.6 / 18.3/ 0.9 48,281 1.9
17.7 18.3

Aug 16.8 / 16.9 / 0.8 45,831 1.8
16.9 16.9

Sep 9.8/9.9 8.7 /8.8 0.9 47,799 1.9

Oct 3.3/53 04/21 32.6 314,407 12.3

Nov 1.7 /9.0 0.0/3.7 77.1 1,061,791 41.6

Dec 1.3/ 0.0/12.2 87.4 1,503,287 59.0
141

Ice class

Annual ice 51/ 4.9/12.0 86.1 1,446,187 57.0
11.7

Sporadic 11.7 / 119/ 6.0 492,550 19.5

ice 13.8 14.0

No ice 244/ 25.8/ 7.9 595,361 23.5
24.4 25.8

“ Total lake area (2,534,279 km?) calculated without the areas of lakes with
<12 observations, which includes the Caspian Sea (377,002 km?).

improved precision (RMSE) by 0.48 and 0.36 °C, regarding the in-situ
and CCI data, respectively.

3.2.2. Ice cover

Of all lakes with 12 or more LSWT observations, 7.9% never froze
between 2013 and 2021 at their center point (Fig. 6). This was deter-
mined by identifying the lakes with a predicted yearly ice cover of O
days, including upper and lower estimates of ice cover duration. These
lakes were located between 52°S (southern Chile) and 57°N (Scotland,
Loch Ness). Another 6.0% of lakes were predicted to freeze sporadically
between years. Of these lakes, 4.1% had a higher likelihood to freeze,
and thus freeze more frequently (predicted ice cover of >0 days, but
with a lower estimate of 0 days), than the other 1.9% (predicted ice
cover of 0 days, but with a higher estimate of >0 days). This leaves
86.1% of lakes that, based on our statistical analysis, froze annually.
Within the annual ice cover class, average ice cover durations ranged
from 48 days to year-round, with a mean duration of 213 days. This
means that if an average duration of ice cover <48 days was predicted,
the lake is unlikely to experience recurring, annual freezing periods.
Additional ice cover statistics aggregated by month and by freezing class
(i.e., annual, sporadic, and no ice cover), including estimated global
areas of frozen lake surfaces, are given in Table 2.

3.2.2.1. Comparisons with in-situ and other satellite data. We found a
clear relationship between the average ice phenology from in-situ ob-
servations of 84 lakes, and the average ice phenology predicted from
Landsat 8 (R? = 0.73; Fig. 8a). In terms of absolute differences, the
average yearly durations of ice cover predicted with Landsat 8 obser-
vations were about six days longer than in-situ observations (MOD = —6

Remote Sensing of Environment 308 (2024) 114164

Mean LSWT difference (°C)
(in situ/CcCl - Landsat 8)

0 5 1l0 115 20 25 30
Mean monthly LSWT from Landsat 8 (°C)

Fig. 7. Mean monthly lake surface water temperatures (LSWTs) from Landsat
8, calculated from each lake’s trendline, compared to mean monthly LSWTs
calculated directly from a) in-situ data (n = 405), and b) data from the Euro-
pean Space Agency Climate Change Initiative (n = 4095) (‘CCI’; Carrea et al.,
2022; Carrea et al., 2023). Trendlines (solid lines) with 95% measurement
prediction intervals (shaded areas) were generated with a Generalized Additive
Model (GAM) and show the central bias across the range of Landsat mean
monthly LSWTs (0-32.7 °C). The dotted line emphasizes zero-difference
for reference.

350F
300 —r
250t

200f x e
150F L .m‘ R?=0.73
100f L4y MMSE = 1

b4
50F  o.--T®

350F
300F [ Pre .

250} o 2

200f e

150} .

100 2%
501 o

Ice cover duration (dy™")
prediction

R%=0.85
MOD = - 3
RMSE =23

» [ I 1 L L L L
0 50 100 150 200 250 300 350
Ice cover duration (dy ")
observation

Fig. 8. Comparison of the average yearly ice cover durations (2013-2021, in
days per year) as predicted with Landsat 8 observations and a) as observed in-
situ for 84 lakes in North America and Eurasia (Benson et al., 2020), and b) as
observed from Passive Microwave Radiometer measurements for 54 lakes in
North America and Eurasia (Cai et al., 2021, 2022). The dotted line indicates a
1:1 relationship, the MOD is the median of differences in days (observation
minus Landsat 8 prediction) and the RMSE is the root mean square error in
days. Error bars are the upper and lower estimates of ice cover duration based
on 95% measurement prediction ranges around the LSWT trendlines. A point is
marked by a cross if an observation does not fall within these estimates.
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days), the RMSE was 18 days and differences in durations (in-situ minus
Landsat 8) ranged between —98 and +66 days. However, including the
upper and lower estimation bounds of ice cover duration, all predictions
but two matched the in-situ observations. One non-match can be
explained by the short in-situ record (3 years), of which one year had an
anomalously short ice season. The other non-match, Lake Baikal in
Russia, can be explained by its large water volume and depth which
causes high thermal inertia. Ice cover predictions were better for lakes
with long ice seasons (in-situ duration >100 days; R?= 0.72) than those
with short ice seasons (in-situ duration <100 days; R? = 0.52). The
comparative analysis of average yearly ice cover durations between
Landsat 8 predictions and observations from Passive Microwave Radi-
ometer (PMR) imagery for 54 lakes (n = 316) delivered similar results
(Fig. 8b). In general, Landsat 8 overestimated the ice cover durations by
about three days and the precision of the predictions increased with
longer ice cover durations. The Landsat 8 predictions corresponded
better to the ice cover durations that were determined from the first day
of freeze up to the last day of break up (R?> = 0.85, MOD = —3 days,
RMSE = 23 days) than to the ice cover durations that were determined
from the last day of freeze up to the first day of break up (R = 0.84,
MOD = —20.5 days, RMSE = 28 days).

4. Discussion

We developed the first global-scale LSWT dataset (LakeTEMP) that
provides site-specific, quality-controlled observational data for >1.4
million lakes, representing all lakes >0.1 km?. In addition to curating
these data, we standardized the observations into key metrics repre-
senting each lake’s temperature history for 2013-2021, including the
first global-scale compilation of lake-specific ice phenology estimates for
every lake >0.1 km?. This new dataset indicates that across ~1.4 million
lakes, the global mean LSWT is 6.3 °C (assuming 0 °C during times of
presumed ice cover), and that ~8% of the lakes of the world never
freeze, ~6% freeze sporadically, and ~86% freeze every year, corre-
sponding to an estimated proportion of global lake surface area of
23.5%, 19.5%, and 57.0%, respectively. These numbers were not pre-
viously available but only speculated about, e.g., by indicating that ‘at
least 50%’ of all lakes are seasonally ice covered (Sharma et al., 2019;
Yang et al., 2021). Finally, although only verified for a small number of
samples, this work corroborates that artificial lakes, specifically those
used for power generation, mining, salt extraction, and aquaculture, are
responsible for some of the world’s highest LSWTs. This is especially a
concern because more natural lakes will be affected by thermal pollu-
tion, which has long-lasting effects on lake ecology (Kirillin et al., 2013;
Réman Vinna et al., 2017), as new thermal power plants are being built
to meet increased global energy demands (IEA, 2022).

LakeTEMP is intended to enable novel investigations of large-scale
thermal lake processes, which to date have focused on the larger lakes
of the world. For example, the nine global lake thermal regions proposed
by Maberly et al. (2020) were derived from 732 large lakes and could be
re-examined with LakeTEMP data that are inclusive of small lakes.
Beyond fundamental research applications, this dataset has the potential
to serve as baseline calibration or training data for lake models that can
simulate historical thermal structures or project future scenarios (e.g.,
Golub et al., 2022), and can be used to plan lake monitoring programs or
to make informed management decisions on lakes with no available data
in-situ. Furthermore, the dataset can be easily combined with other
large-scale datasets that use the unique lake identifiers from Hydro-
LAKES, most notably the LakeATLAS dataset (Lehner et al., 2022),
which provides 56 hydro-environmental characteristics for the same
~1.4 million lakes and their lake watersheds. For example, by
combining the Aggregated dataset from LakeTEMP and population data
from LakeATLAS, we found that of the 965 million people living within
3 km of a lake, the majority lives near an ice-free lake (576 million) or
near a lake with sporadic freeze periods (237 million). Another 67
million people live near a lake for which no ice cover duration could be
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calculated, but available LSWT data suggest that these might be ice-free
as well (i.e., for nearly all lakes the minimum LSWT was >0 °C). The
important ecosystem services from lake ice (Knoll et al., 2019) that are
provided for the remaining 85 million people living near an annually
ice-covered lake, may be increasingly at risk as Sharma et al. (2019)
predicted that ~60,000 annually ice-covered lakes will experience ice-
free winters given current climate change mitigation trajectories
(+3.2°0).

4.1. Accuracy and uncertainty of data

The validation of LSWT observations with in-situ data produced good
results within and some even below the expected range of 1-2 °C RMSE
(Lamaro et al., 2013; Simon, 2014; Wloczyk et al., 2006) and trendline
estimations of (yearly) mean LSWT were generally accurate within 1.2
°C (based on 95% CIs). However, the validation as well as the compar-
isons of the mean monthly LSWTs with both the in-situ and the CCI data
consistently showed slightly lower measured LSWTs by Landsat 8
(MODs between 0.33 and 0.80 °C). This does not necessarily point to a
discrepancy in the dataset but can be explained by the ‘cool skin effect’
(Hondzo et al., 2022; Wilson et al., 2013), which causes the very thin
surface layer from which radiation is measured (<0.1 mm) to be up to
0.8 °C cooler than the layer from which in-situ surface measurements are
commonly taken (0.01-1 m). In addition, surfaces that were cooled by
passing cloud shadows might have contributed to overall cooler tem-
peratures as measurements taken through cloud edges were retained,
whereas the CCI data underwent more extensive cloud removal pro-
cedures. This may also explain why differences between Landsat 8 and
CCI data were larger in cloudy, northern high-latitude environments.

Although trendlines added a small overall additional bias (MOD) of
0.1 to 0.4 °C to the calculation of mean LSWTs, the observation
smoothing improved the overall goodness-of-fit (R%) by ~0.03 and
precision (RMSE) by 0.4 to 0.5 °C. Especially for lakes experiencing
recurrent, seasonal high cloud cover, the interpolation of a trendline
through those long data gaps inherently corrected for the potential bias
in calculating yearly or monthly means from incomplete data. However,
when trendlines were fitted through time series of intermittent or
ephemeral lakes, faulty predictions were likely made for the seasons
when the lake was dry during typically warmer seasons, thus in most
cases systematically driving yearly and monthly mean LSWTs higher. As
it was not feasible to correct these values directly, a flagging scheme was
added to the Aggregated data to indicate the potential level of inter-
mittency for each lake. Another indication of uncertainty provided in
the Aggregated data is the number of observations used in the calcula-
tion of the summary statistics. By investigating the CIs of all lakes, we
found that calculations performed on >85 observations (66.6% of lakes)
can be considered reliable (99% of yearly mean LSWT CIs < 1 °C), be-
tween 46 and 85 (26.0% of lakes) acceptable (99% of CIs < 2 °C), be-
tween 12 and 45 (6.2% of lakes) uncertain (99% of CIs < 7 °C), and
between 1 and 11 (0.8% of lakes) insufficient (statistics calculated from
observations directly, not from trendline) (Fig. 3).

Traditional lake ice satellite detection methods use either optical or
microwave remote sensing techniques (Duguay et al., 2015; Murfitt and
Duguay, 2021) and few studies have explored the utility as well as un-
certainty of indirect LSWT-based estimations. Zhang et al. (2021) and
Nonaka et al. (2007) used Moderate-Resolution Imaging Spectroradi-
ometer (MODIS) daily LSWT data to estimate lake ice phenology and
found that the freezing temperature threshold was robust when set be-
tween —0.75 °C and 0.5 °C, while the melting temperature should be
between 0.5 and 4 °C. As these thresholds are lake-specific and were
only tested on 18 lakes, we retained a simple threshold of 0 °C for both
freezing and melting processes, hereby potentially introducing a bias
towards modelling both ‘ice on’ and ‘ice off” dates too early in the year. A
second potential small bias was recognized for the average yearly du-
rations of ice cover, which were, compared to both in-situ and passive
microwave radiometer measurements, in general overestimated by
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about three to six days. However, these inaccuracies are defined based
on either in-situ observations, or on visible wavelengths observed from
space, which both have their own limitations and uncertainties. Most
notably, the definitions for the ‘ice on’ moment can vary from using the
onset of ice formation, a percentage of ice cover, to whole lake freeze up;
and the definitions for the ‘ice off’ moment can vary from using the first
sign of break up, the start of boats being able to navigate, to complete ice
free waters. This can introduce differences in total ice cover duration in
the order of weeks (Cai et al., 2022; Sharma et al., 2022). In addition, the
discussed bias of Landsat 8 derived LSWT observations towards under-
estimating real temperatures may exacerbate the overestimation of ice
cover duration by introducing faulty <0 °C data points. Finally, short ice
cover durations (<100 days) have a larger uncertainty than long dura-
tions, which could point to higher interannual variability when forcing
variables (e.g., air temperature, wind) are near the thresholds for
freezing conditions.

4.2. Limitations in data usage

The LakeTEMP dataset is intended for use within large-scale
(regional to global) analyses, rather than lake-specific or local-scale
studies. The presented global maps and performed statistical tests
confirm an accurate representation of LSWTs of lake regions and larger
geographies; however, the automated quality control methods used in
this work do not warrant correct results for all individual lakes. Spe-
cifically, noisy data can have passed Z-score filtering, or observations
taken from dry lake beds might not have been detected (i.e., the land
cover classification was not accurate) and therefore not removed. In
addition to spatial constraints, the presented dataset shows some limi-
tations due to its temporal resolution and covered timespan. We there-
fore believe that the data are best used for studies seeking to understand
current thermal functioning of global lakes, or the roles that lakes
currently play in other large-scale processes (e.g., ecological, biogeo-
chemical, climatological), but are less adequate for studies focusing on
temporal changes and thermal shifts associated with anthropogenic
stressors or climate change. We also want to emphasize that this work
describes average LSWT conditions and that investigations into extreme
events using the observational data might not be suitable as statistically
important high or low temperatures may not have been recorded. We
encourage data users to complement the LakeTEMP dataset with other
available global LSWT and ice cover datasets (e.g., Cai et al., 2021,
2022; Carrea et al., 2022, 2023) that can provide higher-frequency data
for large-sized lakes.

We caution data users that the observations provided by LakeTEMP
refer to the thermal conditions of lakes at their center point, whereas
lake thermal processes are known to be affected by intralake heteroge-
neity (Mason et al., 2016; Woolway and Merchant, 2018), especially
between shallower and deeper sections of medium to large sized lakes.
Furthermore, negative LSWT observations taken from saline lakes could
reflect unfrozen conditions and trendline predictions might therefore
have overestimated the ice cover durations for those specific lakes.
Finally, we did not provide LSWT observations for lakes smaller than
0.1 km?, which is the size limit set by the underpinning lake delineations
offered in the HydroLAKES database. Although the GLAKES database
includes lakes as small as 0.03 km?> (Pietal., 2022), we did not make use
of these polygons because of the increased risk of central Landsat 8
pixels representing mixed water-land surfaces, and because of the
increased risk that a polygon belongs to a non-lake feature, such as a
river section, which is indicated as a limitation in the GLAKES docu-
mentation. Therefore, we urge data users to consider the potential biases
introduced by the lack of representation of very small lakes and ponds
(<0.1 kmz), for example the accelerated rates of heat exchanges in small
lakes (Woolway et al., 2017).
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4.3. Continuation of dataset

Upon its launch in 2013, Landsat 8 had a design life of five years but
was expected to last over ten years. Anno 2024 it is still in orbit and in
2021, Landsat 9 was launched. This satellite has a similar design to
Landsat 8 and we expect that the same workflows can be used to extend
the LakeTEMP dataset into the future, enabling the analysis of long-term
trends in global LSWT. The USGS released Landsat Collection 2 after the
data used for this study (i.e., from Collection 1) were downloaded, post-
processed and analyzed. Although data quality of Collection 1 is still
warranted, the improved data processing and access capabilities of
Collection 2 have the potential to further advance the workflow and
quality of the datasets presented in this study.

5. Conclusions

Global-scale LSWT data are needed to understand the Earth’s aquatic
cycle, including the role of lakes as climate sentinels, biodiversity hab-
itats, and providers of diverse services to humans. Here, we presented
surface water temperature observations for all lakes in the world that
have a surface area of at least 0.1 km? (~1.4 million lakes) and summary
statistics interpolated from these observations, including ice phenology
estimations. This is the first LSWT dataset that provides site specific and
quality-controlled data at such a large scope, thereby filling a crucial
spatial gap for the incorporation of small lakes and understudied ge-
ographies of remote regions. The LakeTEMP dataset is freely available
and offered in a ready-to-analyze format, to foster smooth applications
to further research.
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center point, in which case one of the points was randomly selected. All calculations were performed in the Geographic Information System ArcGIS

version 10.7.1.

Distance from
shore (m)

o

Eo-30
[ 30 - 50
B 50-70
I 70 - 90

I 90 -110

I 110 - 130
I 130 - 150
I 150 - 170

O lake centerpoints

Fig. A.1. Example of the calculation of a lake center point, using the furthest distance from any lake shore or island.

A.2. In-situ validation of Landsat 8 lake surface water temperature

LSWT observations were validated against in-situ observations from 48 lakes across 5 continents, of which 13 large lakes provided data for multiple
sites thus representing 63 sites in total. Table A.1 provides the metadata and Table A.2 provides the validation results for each lake. In addition, we
analyzed the effects of using 1) a Single Channel (SC) instead of a Split-Window (SW) algorithm and 2) Landsat 7 in addition to Landsat 8 observations,

by repeating the in-situ validation on these respective datasets (Table A.2).

12



M.C. Korver et al.

Table A.1
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Metadata of the in-situ locations used for validation of Landsat 8 LSWT observations, including lake name, country, lake area, and ‘Hylak_id’ (unique identifier
corresponding to the HydroLAKES dataset (Messager et al., 2016)), the observation frequency and depth below the surface of the in-situ temperature sensors, and
where available, the citation of the in-situ source data.

Lake name Country Hylak id Lake area (km?) Observation frequency ~ Sensor depth  Citation

Wivenhoe Australia 1660 103 Hourly <1

Carioca Brazil 1,098,524 0.1 Hourly 0.5 Barbosa et al. (2004)

892 Canada 921,275 0.1 Hourly 1.0 Desmarais et al. (2020)
Bates Canada 4678 20 Hourly 2.0

Kathleen Canada 4545 34 Hourly 1.5

Mush Canada 4645 18 Hourly 2.0

Erie Canada 9 25,768 Hourly 1.0

Erie Canada 9 25,768 Hourly 1.0

Nipissing Canada 745 878 Hourly na

Nipissing Canada 745 878 Hourly 1.0

Ontario Canada 7 19,347 Hourly 0.6

Ontario Canada 7 19,347 Hourly 0.6

Saint Clair Canada 66 1161 Hourly na

Simcoe Canada 759 767 Hourly na

Winnipeg Canada 4 23,923 Hourly na

Winnipeg Canada 4 23,923 Hourly na

Woods Canada 57 3473 Hourly na

Huron Canada USA 8 59,399 Hourly 1.0

Huron Canada USA 8 59,399 Hourly 1.0

Great Slave Canada 3 26,734 Hourly na

Great Slave Canada 3 26,734 Hourly na

Gullchuk Canada 906,851 0.5 Hourly 1.0

Namu Canada 94,103 3.2 Hourly 1.0

Lhiraan Man’ Brooks ~ Canada 363 398 Hourly 2.5 McKnight (2022)

Lhtraan Man’ Deep Canada 363 398 Hourly 2.5 McKnight (2022)

Lhiraan Man’ South Canada 363 398 Hourly 2.5 McKnight (2022)

Lhiraan Man’ Talbot Canada 363 398 Hourly 2.5 McKnight (2022)

Superior Canada USA 5 81,844 Hourly 1.0

Superior Canada USA 5 81,844 Hourly 1.0

Vorstjarv Estonia 1164 260 Hourly 0.5

Vorstjarv Estonia 1164 260 1.0

Kulovesi Finland 12,545 86 1.0

Lestijarvi Finland 12,141 64 1.0

Pyhajarvi Finland 1137 122 1.0

Yli-Kitka Finland 1067 289 1.0

Lough Feeagh Ireland 163,604 3.8 0.9 de Eyto et al. (2020)
Garda Italy 1282 355 0.5

Iseo Italy 14,185 59 1.0

Maggiore Italy 1275 208 0.5

Qaraoun Q6 Lebanon 174,944 5.5 0.2

Qaraoun Q9 Lebanon 174,944 5.5 0.2

Kivu Rwanda 163 2700 0.5 Descy and Guillard (2014)
Malaren Sweden 102 1083 0.5 Miljodata (2023)

Erken Sweden 12,809 23 1.0

Windermere UK 13,387 13 1.0 Jones et al. (2017)
Mendota USA 9086 41 0 Magnuson et al. (2023)
Barco USA na na 0.1 National Ecological Observatory Network (NEON) (2021)
Little Rock USA 1,032,416 0.1 0.1 National Ecological Observatory Network (NEON) (2021)
Suggs USA 1,066,600 0.3 0.1 National Ecological Observatory Network (NEON) (2021)
Crampton USA 1,029,915 0.2 0.1 National Ecological Observatory Network (NEON) (2021)
Champlain USA 64 1141 1.0

Champlain USA 64 1141 1.0

Douglas USA 8817 15 1.0

George USA 767 113 0.8-1.2 Kolar et al. (2021); Lucius et al. (2022a, 2022b)
Lillinonah USA na na 0.6 Klug et al. (2021)
Sunapee USA 9068 16 1.5 LSPA, Weathers, K.C., and Steele, B.G (2021)
Trout USA 8736 15 0 Lead et al. (2020)

Mead USA 809 581 0.5

Mead USA 809 581 0.5

Mohave USA 9360 99 0.5

St. John River USA na na na

Michigan USA 6 57,727 1.0

Michigan USA 6 57,727 0.6

" = Daily average.

" = Daily instantaneous.
R Synchronous with Landsat overpass.
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Table A.2

Validation of LSWT observations with in-situ data. Results are shown for Landsat 8 observations of the Primary dataset that are processed with a split-window (SW)
algorithm (Jiménez-Munoz et al., 2014), for Landsat 8 data processed with a single-channel (SC) algorithm (Jiménez-Munoz et al., 2009), and for a combination of
Landsat 7 (SC with atmospheric corrections from TIGR61 database) and Landsat 8 (SW) observations. Lake metadata can be found in Table A.1. Validation results
include the R? of a linear regression between Landsat and in-situ observations, the root mean square error (RMSE) and median of differences (MOD) of the observation
differences (in-situ LSWT minus Landsat LSWT), and the number of observations (n) used in each validation.

L8 - SW L8 - SC Combined L7 and L8
Lake name R? RMSE (°C) MOD (°C) n R? RMSE (°C) MOD (°C) n* R? RMSE (°C) MOD (°C) n
Wivenhoe 0.96 0.72 0.3 21 0.85 1.61 0.2 24 0.91 1.22 —0.4 47
Carioca 0.92 1.07 2.2 21 0.61 2.22 1.1 21 0.71 1.75 1.1 44
892 0.82 2.84 1.9 29 0.75 3.02 0.6 29 0.88 2.11 0.8 49
Bates 0.67 1.64 0.1 28 0.3 2.35 0.3 29 0.45 1.82 -0.1 51
Kathleen 0.66 1.23 0.3 31 0.47 1.39 0.2 32 0.62 1.18 0.0 53
Mush 0.71 1.22 0.0 27 0.48 1.41 —0.4 26 0.42 1.65 -0.4 46
Erie 0.81 1.75 0.6 61 0.65 2.26 0.9 59 0.77 1.75 0.4 116
Erie 0.87 1.31 1.0 27 0.57 2.31 1.1 27 0.74 1.67 0.8 49
Nipissing 0.89 1.34 0.7 46 0.6 2.32 0.5 42 0.78 1.92 0.2 73
Nipissing 0.8 1.67 0.9 46 0.77 1.81 0.5 46 0.66 2.28 0.3 89
Ontario 0.98 1.04 0.6 88 0.87 2.4 1.1 89 0.92 1.85 0.3 148
Ontario 0.83 2.30 1.0 78 0.66 3.22 0.7 79 0.8 2.40 0.3 135
Saint Clair 0.94 1.15 0.5 45 0.81 213 0.8 43 0.83 2.13 0.2 79
Simcoe 0.81 1.51 1.0 30 0.33 2.64 1.5 28 0.68 2.14 0.6 55
Winnipeg 0.93 1.17 0.3 43 0.82 1.95 1.0 37 0.78 2.02 0.2 69
Winnipeg 0.76 1.79 -0.1 19 0.55 2.67 0.3 17 0.69 1.95 0.0 30
Woods 0.72 1.86 0.2 35 0.6 2.46 0.5 33 0.59 2.58 -0.2 58
Huron 0.95 1.21 0.8 67 0.84 2.25 0.6 68 0.85 2.13 0.6 119
Huron 0.93 1.69 0.6 39 0.78 2.87 0.8 39 0.84 2.28 0.4 70
Great Slave 0.95 0.80 0.1 25 0.73 1.74 0.7 24 0.81 1.48 0.5 51
Great Slave 0.93 0.85 0.3 22 0.79 1.42 0.6 19 0.76 1.53 0.4 35
Gullchuk 0.94 1.44 0.9 40 0.81 2.43 -0.5 52 0.82 2.46 -0.2 92
Namu 0.89 2.09 0.3 27 0.76 2.82 2.3 19 0.88 1.97 1.5 46
Lhi'aan Man' Brooks 0.75 2.33 1.2 32 0.71 2.50 0.5 32 0.77 2.19 0.7 58
Lhir'aan Man' Deep 0.96 0.72 0.8 22 0.91 1.10 0.1 22 0.84 1.48 0.1 39
Lhiraan Man’ South 0.77 1.61 0.6 19 0.7 1.82 0.3 19 0.69 1.61 0.6 35
Lhiraan Man’ Talbot 0.9 1.55 1.1 12 0.77 2.34 0.6 13 0.91 1.38 0.6 25
Superior 0.91 1.48 0.6 58 0.81 2.14 0.5 59 0.91 1.47 0.3 103
Superior 0.92 1.19 0.2 67 0.83 1.84 0.3 67 0.84 1.79 0.0 112
Vorstjarv 0.94 1.69 0.7 58 0.92 1.99 0.5 58 0.93 1.68 0.2 105
Vorstjarv 0.91 1.81 0.4 52 0.86 2.23 0.7 53 0.89 1.83 0.1 85
Kulovesi 0.99 0.81 1.2 6 0.99 0.93 0.6 6 0.99 0.81 1.0 7
Lestijarvi 0.94 2.13 -1.1 3 0.99 0.73 1.4 3 0.94 1.92 -0.1 4
Pyhajarvi 0.82 2.61 1.4 5 0.59 3.89 3.0 5 0.84 1.92 1.1 8
Yli-Kitka 0.19 1.72 -0.5 3 0.03 1.88 2.1 3 0.88 1.22 0.4 4
Lough Feeagh 0.84 1.83 0.8 43 0.75 2.24 1.1 43 0.81 1.81 1.0 62
Garda 0.93 1.57 0.6 5 0.93 1.64 0.3 5 0.90 2.09 0.2 12
Iseo 0.97 1.05 0.6 32 0.96 1.23 -0.1 32 0.97 1.05 0.6 32
Maggiore 0.96 1.09 -0.7 7 0.94 1.27 0.0 7 0.96 1.08 0.6 10
Qaraoun Q6 0.99 0.84 -0.8 9 0.98 0.90 -25 9 0.95 1.35 -1.3 18
Qaraoun Q9 0.95 1.69 -0.9 11 0.95 1.65 -2.9 11 0.93 1.57 -1.9 18
Kivu 0.11 0.55 0.4 8 0.06 0.56 6.3 8 0.19 0.58 0.7 14
Malaren 1 0.62 0.5 4 0.94 2.62 2.4 4 1.00 0.62 0.4 5
Erken 0.95 1.49 0.7 146 0.9 2.12 0.6 144 0.93 1.69 0.3 232
Windermere 0.98 0.82 —0.4 14 0.94 1.39 0.7 14 0.92 1.52 -0.5 24
Mendota 0.89 2.23 0.4 37 0.84 2.53 0.4 38 0.88 2.02 0.1 68
Barco 0.83 2.07 0.5 37 0.55 3.38 0.6 32 0.50 3.60 0.4 60
Little Rock 0.97 1.31 0.3 7 0.93 1.70 0.1 8 0.77 2.16 0.4 22
Suggs 0.89 1.81 0.6 33 0.59 3.19 0.7 33 0.70 2.80 0.1 66
Crampton 0.94 1.48 -0.6 19 0.91 1.74 0.1 19 0.87 2.07 0.0 39
Champlain 0.94 1.10 0.9 16 0.83 1.61 1.1 15 0.91 1.13 0.2 26
Champlain 0.89 1.21 0.5 21 0.73 1.94 0.6 21 0.75 1.74 0.3 40
Douglas 0.92 1.25 0.6 64 0.71 2.43 1.5 63 0.70 2.32 0.9 111
George 0.95 1.14 0.7 14 0.81 2.63 0.9 15 0.80 2.52 0.8 25
Lillinonah 0.84 1.05 1.9 11 0.34 1.87 1.2 11 0.38 2.03 1.0 23
Sunapee 0.44 2.02 0.5 10 0.03 2.70 0.8 10 0.52 2.44 0.0 22
Trout 0.99 0.67 1.0 10 0.93 1.59 0.2 10 0.75 2.25 0.0 33
Mead 0.98 0.71 0.9 42 0.96 1.04 0.1 42 0.94 1.41 0.8 81
Mead 0.98 0.81 0.9 43 0.96 1.15 -0.2 43 0.95 1.37 0.5 83
Mohave 0.95 1.49 0.6 41 0.94 1.56 -0.6 41 0.96 1.33 0.4 87
St. John River 0.89 1.50 0.9 43 0.65 2.66 1.6 42 0.86 1.68 0.4 68
Michigan 0.93 1.47 0.4 64 0.86 2.07 0.3 68 0.88 1.99 0.1 125
Michigan 0.95 1.24 0.2 66 0.83 2.24 0.3 67 0.92 1.62 0.0 123
All 0.94 1.71 0.4 2074 0.86 2.50 0.6 2077 0.89 2.15 0.3 3718

" Differences in the number of observations in L8 — SW results are explained by slight differences in data filtering (i.e., outlier detection and removal of LSWT <0 °C).
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A.3. Extraction of water occurrence data at lake center locations

The Global Surface Water (GSW) dataset of the European Commission’s Joint research Centre (Pekel et al., 2016) provides the global occurrence of
inland water surfaces between 1984 and 2021 in multiple raster-based mapping products. The GSW Monthly Water History (v1.3) product contains
monthly raster files with a ‘water’, ‘no water’ (hereon referred to as ‘land’), ‘unknown’, or ‘not available’ (NA) class for every 0.9 arc-second pixel
(~30 m at the equator) of the global land surface, where frozen water surfaces fall under the ‘unknown’ class. For every month between 2013 and
2021 and every lake, all class values were extracted that occurred within the same 50 m x 50 m square buffer around the lake center point as used for
LSWT calculations. From the set of extracted pixels a single flag was defined as follows: 1) ‘water’ if the number of water pixels exceeded the number of
land pixels; and ‘land’ if the number of land pixels was equal to or exceeded the number of water pixels, both irrespective of the number of unknown
values; 2) ‘unknown’ if only unknown class values were represented; 3) ‘land’ if only unknown class values were represented, but LSWT exceeded 40
°C indicating a high likelihood of representing a land value; and 4) ‘no information’ if all pixels were NA. Table A.3 shows the percent occurrence of
each flag in the Primary dataset, specified by the different combinations of pixel classes from which the flags were derived. In total, 6.8% of LSWT
observations were flagged based on a mixture of land, water, and in some cases unknown pixels. For about two-thirds of these observations, the flags
were assigned based on a clear majority of either land or water pixels (i.e., more than twice in number).

Table A.3
The fraction of LSWT observations flagged as ‘water’, ‘land’, ‘unknown’, or ‘no information’,
specified by the different combinations of pixel values from which the flags were derived.

Flag and pixel value conditions Fraction of observations in Primary dataset (%)

No information

not available 1.0
Unknown

unknown 46.9
Land

unknown and > 40 °C <0.1

land 5.2

land; unknown 0.5

land > water 1.4

land > water; unknown 0.2
Water

water 40.1

water; unknown 0.0

water > land 2.4

water > land; unknown 2.3

A.4. Seasonal trendlines

Seasonal trendlines were generated in R, using a Generalized Additive Model (GAM) (‘mgcv’ package version 1.8-42, https://CRAN.R-project.org/
package=mgcv), an additive modelling technique that uses smooth functions to predict non-linear regression trends (Wood, 2017). Trendlines were
calculated for each Julian day, while leap years were ignored by matching observations taken on February 29 to Julian day 59 (February 28). To
ensure that the seasonal trend was cyclic (i.e., the trendline at Julian day 365 transitions smoothly into Julian day 1), each GAM was plotted through
the original and a duplicate timeseries (creating a 720-day timeseries). Then, the first 152 days and the last 204 days were removed to obtain a 365-day
model. This approach was preferred to using a ‘cyclic cubic spline’, as the latter introduced extrapolation issues when data gaps were present towards
the start or the end of year. The number of knots, which is a setting affecting the smoothness of the trendline, is usually selected by visual inspection of
the plot. However, due to the large number of GAM models to plot (i.e., >1.4 million), one constant value was chosen (k = 12) based on visual
inspections of trendlines applied to the timeseries of lakes that were part of the in-situ validation and comparison analyses. As a result, GAM models
could not be calculated for timeseries with <12 observations.

A.5. Distribution of yearly average LSWTs
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Fig. A.2. Histogram of yearly average lake surface water temperatures (°C) for all lakes excluding the 179,524 lakes that were flagged for potential intermittency
(levels 1 to 4, Table 1) and the 11,437 lakes with <12 LSWT observations. Averages were calculated from the 365 daily trendline values, assuming 0 °C during times
of presumed ice cover (upper panel, ‘Year-round’), and from trendline values >0 °C only (lower panel, ‘Open water season’).
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