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approaches. Overall, phytoplankton and zooplankton FD display synchrony with lake
state but each lake is idiosyncratic in the strength of relationship. It is therefore unlikely
that changes in plankton FD are identifiable before changes in more easily collected
abundance metrics. These results highlight the power of empirical dynamic modelling
in disentangling time lagged relationships in complex multivariate ecosystems, but sug-
gest that FD cannot be generically viable as an early indicator. Individual lakes therefore
require consideration of their specific context and any interpretation of FD across sys-
tems requires caution. However, FD still retains value as an alternative state measure or

a trait representation of biodiversity when considered at the system level.
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1 | INTRODUCTION this regard as its disruption can result in the loss of many ecosystem

services upon which human societies are dependent (Rockstrém
Predicting oncoming ecosystem change is a vital first step in the et al., 2009). Since the turn of the millennium, biodiversity has ap-
management of both ecosystems and their associated resources. peared as the principal determinant and indicator of both ecosys-
Ecosystem state or functioning is considered the critical target in tem state (Tilman et al., 2014) and resilience (Oliver et al., 2015)
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across a range of biomes and scales. Biodiversity itself is inherently
multidimensional, consisting of taxonomic (i.e. species), functional
(i.e. trait) and genetic components among others (Lyashevska &
Farnsworth, 2012; Naeem et al., 2016). Despite this multidimen-
sionality, focus has primarily been on the impact of the taxonomic
component with consistent positive associations between species
diversity and ecosystem functioning identified in multiple taxa and
environments (Cardinale et al., 2006; Duffy et al., 2017). However,
there is significant evidence that other biodiversity dimensions are
as impactful on an ecosystem's function as species richness, particu-
larly the diversity in traits (Cadotte et al., 2011; Mouillot et al., 2011).

Trait diversity as a predictor of function stems from the view
that, ecologically, a species (or a community) is a collection of phe-
notypic traits that determines their temporal and spatial impacts
on their surroundings and each other (McGill et al., 2006). Higher
trait diversity consequently allows species to coexist and exploit a
wider range of ecological niches (Fukami et al., 2005) that, in turn,
increases the number of ecological functions/services performed by
the community. Multiple studies support this view and present simi-
larly strong associations between functional diversity and function-
ing measures (de Bello et al., 2010; Mouillot et al., 2011) with some
further suggesting that functional diversity sufficiently outperforms
species diversity measures as a predictor of ecosystem state change
(Abonyi, Horvath, et al., 2018; Gagic et al., 2015). Functional diver-
sity is thus increasingly being considered as an emergent property
of complex systems (Bullock et al., 2022) regardless of the environ-
mental conditions driving that diversity change. This emerging evi-
dence in favour of functional diversity suggests that trait change can
feasibly occur prior to changes in system state, and may represent
a viable early warning of change without necessarily requiring the
identification of driving variables.

Timing is central to managing ecosystems (Hastings, 2016);
the optimal moment for ecological intervention varies depend-
ing on both disturbance severity and the specific system (Walker
et al., 2014). Consequently, any monitoring strategy should include
measures that provide sufficient ‘warning’ to enable appropriate
planning and action. The pre-emptive or anticipatory nature of an
indicator is therefore key for managers when selecting from a suite
of potential indicators (Dale & Beyeler, 2001) with functional diver-
sity potentially fulfilling this consideration. Indeed, inclusion of trait
information improves the robustness of ecological model predic-
tions (Regos et al., 2019; Williams et al., 2021) and other early warn-
ing techniques (Clements & Ozgul, 2016). However, despite these
suggestions and repeated claims that functional diversity changes
following dramatic state changes (e.g. land use change—Edwards
et al., 2014; lake regime shifts—Moi et al., 2021), there remains a
need to confirm that diversity changes also occur prior to ecosystem
state change, as required by indicator selection frameworks (Dale &
Beyeler, 2001).

To date, only one example exists of the lagged association be-
tween functional and species diversity (Baker et al., 2021), although
this work is solely a qualitative description of trends without any
quantitative association and does not consider state/functioning.

oo, MOTE

All other functional diversity research similarly neglects tempo-
ral relationships between measures. However, species diversity is
not necessarily a reliable measure of state/functioning (Cardinale
et al., 2000). It is likely functional diversity is also susceptible to the
same caveats despite suggestions that the functional diversity-state
relationship is shared across systems and scales (Cadotte et al., 2011;
Gagic et al., 2015). It is similarly unclear where on the driver-to-state-
change sequence functional diversity falls to validate functional di-
versity's use as a phenomenological indicator. To address this need,
we must explore the currently lacking lagged relationships between
functional diversity and ecosystem state to identify whether the for-
mer provides sufficient warning for management purposes and, if so,
over what time horizon.

Lake environments have provided a peerless model for global
change ecology as high-resolution data are available from long-
term monitoring programmes for multiple sites around the world
(Meinson et al., 2015). The plankton abundance data from these
programmes are increasingly being supplemented with appropri-
ate trait information, allowing lake communities to be classified
and organized into discrete functional groupings within and across
trophic levels (Kruk et al., 2011; Reynolds et al., 2002). However,
more recently, there has been a shift towards continuous trait mea-
sures such as functional diversity (Abonyi, Acs, et al., 2018; Moody
& Wilkinson, 2019; Ye et al., 2019) facilitated by the emergence of
extensive trait databases (Hébert et al., 2016; Rimet & Druart, 2018)
and guidance for trait-based plankton research (Martini et al., 2021).
Functional diversity metrics based on both literature-average and
study-collected values have resultingly supported the predictions
of biodiversity-ecosystem functioning theory (Tilman et al., 2014)
by associating strongly with ecosystem functioning. For example,
there is a positive correlation between functional diversity and phy-
toplankton biomass (Vogt et al., 2010) as well as a causal relationship
with resource use efficiency (Ye et al., 2019), Similarly, zooplankton
functional diversity correlates with trophic state (Moi et al., 2021;
Moody & Wilkinson, 2019). However, each of these associations
were only considered instantaneously when, in fact, lagged/lead-
ing associations may have been stronger. Explicit lagged effects
are beginning to be considered more widely in system ecology
(Gellner et al., 2020; Rastetter et al., 2021) and biodiversity research
(Essl et al., 2015), but have not been considered during empirical
biodiversity-functioning relationship assessments. Consequently,
there are clear knowledge gaps regarding first, whether strong func-
tional diversity-state associations are found consistently over time
and among systems, and second, if functional diversity consistently
changes prior to changes in commonly used state metrics such as
density and community composition, allowing it to be a viable and
generic leading indicator of ecosystem change. Using such phenom-
enological signals or forecasting techniques can act as a robust tool
to test current scientific knowledge and improve ecological theory
(Lewis et al., 2022). This is an underappreciated tool in ecology with
functional ecology research a prime field to exploit these techniques
due to the wealth of data and ecological theory underpinning it. For
example, we expect functional diversity to satisfy the assumptions
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of a leading ecosystem indicator, but in the absence of any work (ex-
perimental or otherwise) on the topic, it is vital to challenge them
prior to universally accepting functional diversity as an indicator of
lake state change.

In this study, we use extensive plankton community datasets from
five lakes around the world to assess whether phytoplankton and zoo-
plankton functional diversity changes before, during or after changes
in the state of the lake ecosystems. We quantify the usefulness of
functional diversity as a monitoring tool for managers via cross cor-
relation and novel empirical dynamic modelling at varying time lags,
relative to state. A major hurdle to achieving this goal is that in com-
plex, multivariate natural systems, co-linearity and spurious correla-
tions can inflate the strength of relationships while seasonality and
measurement error can mask them. This uncertainty is compounded
when considering lags which limits the ability for ecosystem manag-
ers to identify important relationships. We therefore exploit cutting
edge empirical dynamic modelling techniques (Sugihara et al., 2012)
specifically designed for analysing nonlinear dynamical systems using
time-series data, but introduce time lagged relationships following the
approach of Ye et al. (2015). We demonstrate that functional diver-
sity is weakly cross-correlated with state, with associations often lake
specific and synchronous, limiting functional diversity's usefulness as
a management indicator. Causation assessment via convergent cross
mapping (CCM; a.k.a. empirical dynamic modelling) yield a similar lack
of consistency with bi-directional causal relationships found, imply-
ing synchronicity between functional diversity and ecosystem state
resulting from stronger extrinsic factors. However, unique dynamics
present within the functional diversity time series highlight that due
to the multidimensional nature of biodiversity, functional diversity still
has value as an alternative measure of state even if it is not necessarily

appropriate as a management indicator alone.

2 | MATERIALS AND METHODS
2.1 | Lake community data

Lake plankton density (individuals/ml) was compiled from five long-term
freshwater lake datasets curated by a range of government, university
and not-for-profit sources: Lake Kasumigaura (Takamura et al., 2017;
Takamura & Nakagawa, 2012), Lake Kinneret (Zohary, 2004), Lake
Mendota (Carpenter et al., 2017a, 2017b), Windermere (Thackeray
et al.,, 2015) and Lake Zurich (Pomati et al., 2020). This combination
of lakes encompasses a range of longitudes, sizes and trophic regimes
to provide a sufficiently broad representation of exploited freshwater
lakes to test the constancy of plankton functional diversity and lake
state associations (Table 1; Figure S1).

As the plankton datasets spanned multiple organizations, coun-
tries and sampling methodologies, we performed a standardization
and quality control workflow. Unidentified and/or unnamed species
were removed and if a species was not recorded on a sampling date,
that species' density was assumed to be zero. The data were then av-
eraged to mean density per month. To maintain the presence of rare

species and better inform functional diversity/community estimates,
we only further dropped species if their monthly time series con-
sisted of more than 99% zeroes. A greater presence of zeroes than
this prevented the completion of many downstream analyses. Any
change in state of these five systems was then quantified from these
standardized plankton density data using five metrics, each captur-
ing a different dimension of state change (Table 2). Greater detail on

each these metrics can be found in the Supplementary Information.

2.2 | Functional diversity

To underpin the functional diversity estimation, mean species-level
trait data were extracted from multiple published databases and ar-
ticles (Arcifa et al., 2020; Borics et al., 2020; Hébert et al., 2016;
Rimet & Druart, 2018). Here we consider traits as a measurable char-
acteristic of an individual following Dawson et al. (2021). Traits were
selected to encompass the three primary ecological axes relevant to
phytoplankton (Litchman et al., 2013; Litchman & Klausmeier, 2008),
namely resource acquisition, reproduction and predator avoidance
(Table 3). Conversely, zooplankton traits are less available and so we
followed the suggestions of Barnett et al. (2007) and Obertegger
et al. (2011) to target the same ecological axes (Table 4).

Trait classifications followed the original datasets but due to many
lake monitoring programmes identifying plankton to the genus or fam-
ily level, it was necessary to integrate multiple species' trait values into
a single taxon value if functional diversity estimation was to be viable.
This was achieved via a ‘fuzzy coding’ approach (Chevene et al., 1994)
which involves the assignment of trait values representing the taxon's
‘affinity’ to a trait category based upon the variability of species values
within it (i.e. the plasticity of the genus). A fuzzily coded trait matrix
was therefore uniquely constructed for each lake and plankton guild
(phytoplankton vs zooplankton) and from which we calculated a dis-
similarity matrix (de Bello et al., 2021 see Supplementary Information)
following the suggestions of Martini et al. (2021) for plankton com-
munities. This dissimilarity matrix then underpinned three primary
measures of functional diversity (reviewed by Mammola et al. (2021)):
functional richness (FRic), functional dispersion (FDis) and functional
evenness (FEve)—see Supplementary Information and Figure S2 for
further details. All three measures were computed for each time point
using the ‘mFD’ package (Magneville et al., 2022) with a reduced di-
mension space of 10 to escape generic errors caused during convex
hull estimation at higher dimensions. This method therefore results in
three functional diversity time series for each lake's phytoplankton

and zooplankton guilds separately.

2.3 | Associating system state and
functional diversity

Prior to all analyses, system state and functional diversity metrics
were scaled to zero mean and unit variance to ensure each shared the

same level of magnitude and allow comparison between metrics and
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TABLE 1 Physical and limnological characteristics of the five lake communities assessed

T e

Lower
Parameter Lake Kasumigaura® Lake Kinneret™® Zurich®® Lake Mendota®®  Windermere"
Lake area (km?) 168.0 168.7 65.0 39.6 250
Maximal depth (m) 7.0 45.0 136.0 25.3 42.0
Watershed area (km?) 1429.0 2730.0 1829.0 604.0 200.0
Mean retention time (days) 208.1 1533.0-3978.5 440.0 1642.5 100.0
(increasing through
time)
Median annual surface water 16.6+0.37 23.1+0.12 74+0.11 10.8+0.39 9.9+0.29
temperature (°C+SE)
Median annual nitrate (ugL ' +SE)  46.0+9.48 103.6+42.36 697.9+4.00 252.3+17.12 460.3+10.44
Median annual total phosphorus 88.5+1.57 16.7 +4.39 32.0+0.99 102.0+765.07 22.6+0.37
(ngl™ £ SE)
Trophic status Hyper eutrophic Meso-eutrophic Mesotrophic Eutrophic Mesotrophic
Mixing regime Polymictic (easily mixed Monomictic Dimictic Monomictic Monomictic

due to its shallowness)

@Havens et al. (2001).

PSukenik et al. (2014).

“Zohary et al. (2014).
dFernandez Castro et al. (2021).
®Fiskal et al. (2019).

Duffy et al. (2018).

8Gillon et al. (2015
"Moorhouse et al.

)
(2018).

TABLE 2 A description of five system state metrics and an exemplary use in the literature

State metric Calculation

Community composition (Community)

A dimension reduction of the plankton community comprising the first component of a principal

component analysis across all species (Andersen et al., 2009; Hare & Mantua, 2000).

Total planktonic density (Density)
linearize.

Fisher information (FI)

Summed densities of all plankton species (Kraemer et al., 2017). The sum is log transformed to

A measure of information content that can be adapted to assess the stability/order of a system (Fisher

& Russell, 1922; Karunanithi et al., 2008). Decreasing Fl implies decreasing system stability.

Multivariate index of variability (MVI)

The square root of the dominant eigenvalue of the covariance matrix of the plankton species

timeseries (Brock & Carpenter, 2006) as a measure of system variance. Increasing MVI indicates
increasing variability. The MVl is log transformed to linearize.

Trophic ratio (Z_P.ratio)

The ratio of zooplankton density to phytoplankton density, that is, the predator-prey relationship

(Jeppesen et al., 2011; Warren & Gaston, 1992). The Z_P.ratio is log transformed to linearize.

lakes. To capture the association between system state and functional
diversity, and quantify whether functional diversity leads to changes
in state, we performed cross-correlations supplemented by permuted
confidence intervals. Each functional diversity measure was cross
correlated with each system state metric across a range of lags (from
0 to 60months), and the observed Pearson correlation coefficient
compared to a distribution of pseudorandom correlation coefficients.
These coefficients were generated via permutation, where 10,000
surrogate functional diversity time series were constructed from a

red/autocorrelated noise process informed by the observed data:
Xq =Wy

1/2
)

Xepr = X+ (1402) g, t > 1

where r is the estimated autocorrelation coefficient of the observed
time series as estimated by an ARIMA model (lves et al., 2010) and w
is a white noise process whose mean and variance equalled that of the
observed time series. This red noise process consequently generates
a surrogate series related to the observed time series but without the
sudden changes in trend.

To limit the likelihood of spurious correlation, both the raw time
series and permutations were made stationary prior to cross cor-
relation by linear detrending. We then accounted for seasonality
by additively decomposing the seasonal component of the original
time series (i.e. the mean value for each month, across the length
of the time series, standardized to sum to zero) and subtracting this
estimate from the model residuals (Fortin et al., 2011; Zarnowitz &
Ozyildirim, 2006).
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TABLE 3 Functional traits of Guild
phytoplankton spanning the three
primary ecological axes of interest

O'BRIEN ET AL.
Ecological axis Trait Trait values
Phytoplankton Resource Reproduction Predator Cell <10*
acquisition defence length pm +10-25*
>25-100*
>100*
Surface <0.5*
are.a:voltime , >0.5-1.0*
ratio pm*“/pm
>1.0-5.0*
>5.0-10.0*
>10.0*
Organic Numeric
carbon ratio
Trophy Autotrophic/
mixotrophic
Nitrogen fixing Yes/no
Predator Filamentous Yes/no
Reproduction defence Mobility None/
flagellated/
rapheated
Colonial Colonial
Not colonial
Siliceous Yes/no

Note: Quantitative, qualitative and fuzzily coded values are possible, with fuzzy subcategories

indicated by an *.

TABLE 4 Functional traits of
zooplankton spanning the three primary
ecological axes of interest

Guild

Zooplankton Resource

Ecological axis

Reproduction Predator

acquisition

Reproduction

defence

Trait

Body length
mm

Trophic group

Feeding mode

Reproductive
mechanism

Trait values
<0.3*
>0.3-0.9*
>0.9-1.5*
>1.5*
Herbivore
Omnivore
Carnivore
Omnicarnivore
Omniherbivore

Bosmina-filtration/
Chydorus filtration/
Daphnia-filtration/
microfagous/
raptorial/
Sida-filtration/
suspension

Sexual/asexual/cyclic
parthenogenesis

Note: Qualitative and fuzzily coded values are possible, with fuzzy subcategories indicated by an *.

The observed correlation coefficient at LagO and the strongest
correlation (positive or negative) across lags were then compared
to the permuted 2.5% and 97.5% quartiles to discriminate a stron-
ger cross correlation than expected by serial dependence, and at
which lags that may occur. If lags are negative and transgress these

‘confidence intervals’, functional diversity change occurs prior to

changes in system state, whereas if lags are positive then functional

diversity lags state change. Conversely, if the observed correlation

resides within the 2.5% and 97.5% quartiles, then we consider func-

tional diversity to not correlate significantly with system state.

d ‘€ ‘€20T “98YTSIEL

:sdny woy papeoy;

QSUAIIT suowwo)) danear)) djqeorjdde oy £q pausoroS aie sajonIE YO asn Jo so[ni 10y A1eiqiy auljuQ) KJ[IA UO (SUONIPUOD-PUB-SULIAY/ WO Ko[1m’ ATeIqrjouluo//:sdyy) SUONIpUO)) pue SWLId I, 3y 39S *[$707/20/4¢] uo Kreiqi autjuQ) Kd[IA\ ‘UOSIPRJA - UISUOISIA JO ANSIOAIUN) Aq §8%91°qIS/] [ [ 10 [/10p/wod K[ Im 4.



O'BRIEN ET AL.

2.4 | Causality and CCM

To supplement this cross-correlation approach and provide in-
sight into the information content that functional diversity con-
tains on system state, CCM was performed on the detrended
time series (Sugihara et al., 2012). CCM allows the causal influ-
ence of one time series on another to be assessed by exploit-
ing a hypothesized shared latent system (Chang et al., 2017—see
Supplementary Information for details). The presence of forward
and reverse causality—functional diversity causing system state
and vice versa—for each lake and the optimal time delay (up to
Lag60) of causation (Ye et al.,, 2015) was computed using the
same permutation method as the cross-correlation approach; if
the observed cross map skill (analogous to correlation coefficient)
between functional diversity and system state was greater than
the 95th quartile of the distribution of cross map skills generated
from 10,000 surrogate time series, then it was considered signifi-
cant. Both forward and reverse causality require comparison as,
unlike correlation, the strength of relationship depends on the
direction of assessment, where strong cross map skills in both
directions implies bi-directional causality (Chang et al., 2017).
All CCM analysis was performed using the ‘rEDM’ package (Park
et al., 2021).

3 | RESULTS
3.1 | Distinctlake trends through time

We estimated three functional diversity metrics across two plank-
ton trophic guilds in each of five lake monitoring datasets (Figure 1).
Lake time series length varied in duration from 24 to 46years, with
a median length of 33years. The final number of species that con-
tributed to functional diversity estimates varied between lakes due
to trait data limitations and longitudinal differences. Consequently,
phytoplankton taxa record number ranged from 17 to 130 with a
median of 79 taxa, whereas zooplankton records ranged from 4 to
31 taxa with a median of 22.

All lakes displayed turning points in their system state and func-
tional diversity metrics, implying that over the course of monitoring
these systems experienced some form of change in their commu-
nities (Figure 1). Most ecosystem state metrics changed simulta-
neously although Fisher information (FI) changed prior to changes
in Community, Density and trophic ratio (Z_P.ratio), while the mul-
tivariate index of variability (MVI) displayed additional higher fre-
quency fluctuations not identifiable in the other metrics. Functional
diversity metrics also displayed unique trends depending on both
the system and guild (phytoplankton or zooplankton), for example
phytoplankton functional evenness (phyFEve) in Lake Kasumigaura
displayed abrupt changes compared to other lakes, despite phyto-
plankton functional dispersion (phyFDis) being similar across lakes

(Figure 1).

oo, RORES

3.2 | Synchronicity in both instantaneous and
lagged cross-correlation

We consider correlations between functional diversity and system
state in the form of both instantaneous/Lag0 correlations (i.e. be-
tween unlagged time series) and cross-correlations (i.e. when one
time series is lagged relative to the other). A strong instantaneous
correlation would imply the functional dimension of biodiversity is
related to state/functioning, whereas a strong cross-correlation at a
negative lag would suggests that functional diversity leads changes
in state. However, we found correlations were inconsistent across
all five of our lake systems (Figure 2, Figure S3), with each combina-
tion of functional diversity:system state varying in their proportion
of significant correlations (Table S1). The phyFDis:Density rela-
tionship expressed the strongest average correlation at LagO (me-
dian+SE: -0.40+0.06) across all lakes and was significant in four
of the five. The only other relationships of a similar magnitude were
phyFDis:Z_P.ratio (0.29 +0.06) and phyFEve:Density (-0.22+0.06)
each of which was also significant in four of the five lakes.
Conversely, zero significant correlations were observed between
phyFRic:Z_P.ratio, zooFDis:MVI, zooFEve:MVI, zooFRic:Density,
zooFRic:MVI and zooFRic:Z_P.ratio. When considered in isolation,
Lake Kinneret (which showed the fastest and most distinct change
in system state) displayed significant relationships for all but two
combinations of indicators and phytoplankton functional diversity
(phyFRic:Community and phyFRic:Z_P.ratio), whereas Windermere
(whose state is most stationary) displayed no significant zooplank-
ton relationships. Our results suggest that functional diversity is not
universally correlated with system state in lake systems, but rather
it is the unique dynamics/context that dictate(s) the strength of the
relationship. One possible exception to this is phyFDis, which often
strongly correlates with Density and Z_P.ratio.

When we considered lagged cross-correlations (LagX), most
relationships increased in average absolute correlation coefficient
(Table S2), but only 13 of these relationships increased their pro-
portion of significant correlations (14 others remained unchanged
and three decreased). The phyFDis:Density relationship noted
above emerged as universally shared (Figure 2, Figure S4), with
phytoplankton functional diversity overall displaying stronger and
more consistent relationships with system state than zooplankton
functional diversity (with 35 significant relationships compared to
zooplankton's 26; Figure 2, Figure S4). The optimal lag differed
between the different functional diversity:system state relation-
ships; for example, the phyFDis:Density relationship remaining
strongest at lag0 (median correlation+SE: -0.40+0.08, median
lag months+SE: 0+0.72), while phyFDis:Z_P.ratio (0.29+0.08,
0+0.78), phyFRic:FI (-0.28+0.06, -2+3.98) and phyFEve:MVI
(-0.25+0.05, 11+6.86) combinations did appear equivalently
strong but cluster within +12 months of LagO (Figure 2d, Figure S5).
These results indicate general synchrony between functional di-
versity and system state if the system expresses any relationship

at all. Ultimately, cross-correlations do not reveal clearly general
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FIGURE 1 Smoothed time series of the five system state metrics, functional diversity of the two plankton trophic guilds and representation
of environmental stressor in each of the five lakes. Smoothed trends are estimated by a generalized additive model of the metric through time
and the vertical, dashed line represents literature reported regime shifts. Metric values are scaled to mean zero and unit variance.

leading nor lagging changes in functional diversity relative to sys-
tem state but phyFDis is a good covariate of total planktonic den-

sity and trophic ratio at LagO.

3.3 | CCM reveals specific
relationships of importance

When causal relationships were estimated using CCM, many of
the observed weak cross-correlations at LagO display causal forc-
ing, although the more nuanced approach indicates that many of

the previously identified correlations (Figure 2) may be spurious
(Figure 3). For example, phyFDis:Density and phyFDis:Z_P.ratio
mappings remain significant in all lakes but we found most mappings
were within the permuted null distribution (Figure Sé), suggesting
no causal relationship between functional diversity and system
state. The strongest average cross map skills were estimated for
phyFRic:MVI (median+SE: 0.37 +0.04), zooFDis:MVI (0.26 +0.02),
phyFEve:MVI (0.24+0.02) and phyFDis:Density (0.23+0.05), al-
though the variation was high between lakes (Figure S6; Table S4).
Causality was also often found for the reverse relationship, where
functional diversity maps system state, with the majority of the
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FIGURE 2 (a) Boxplots of cross correlations between each system state and functional diversity metric combination, estimated when
functional diversity was unlagged relative to system state (Lag0) versus when it was lagged (LagX). These comparisons have then been
stratified by functional diversity metric (FDis, FEve, FRic), state metric (Community, Density, Fisher information, Multivariate variance index,
and Trophic ratio) and trophic level (phytoplankton vs. zooplankton). A filled point indicates that the mapping was in the strongest 5% of
permuted mappings and is considered significant. LagX values represent the strongest cross map skill estimated separately for each lake and
across all lags (-60 to +60months). Consequently, lakes often displayed different strongest lags. (b) The spread of those lags across lakes for
each functional diversity and system state metric combination. The dark band in panel b represents a +1year lag/lead, which, if a significant
(filled) point is found, is considered a synchronous change between the functional diversity and state metric.

significant relationships expressing bidirectional causality (Figure S7;
Tables S4 and S5)—that is, both functional diversity and system state
influence one another, rather than one being a product of change in
the other. This does not support strong causal relationships between
functional diversity and system state, and suggests that the previ-
ously identified synchronous LagO correlations result from not the
influence of diversity but from other extrinsic factors.

Interestingly, introducing lags improved the strength of causality
by an average of 0.18 skill (implying that stronger causal relationships
could be estimated from lagged data), yet did not increase the pro-
portion of causal cross mappings (Figure 3, Figure S8). With lags, no
relationship was significant in all lakes with only one significant in four
of the five: zooFEve:Density (Figure S8, median skill + SE: 0.28 +0.00;
median lag months+SE: -51+8.29). Only the phyFRic:Density, phy-
FRic:MVI and zooFRic:MVI mappings remained universally non-causal

however. The optimal lag also differed between mappings with CCM
displaying greater variation than that of the cross-correlations and less
prevalence within +12months (Figure 3d, Table Sé). In fact, an almost
tri-modal distribution of significant lags are identifiable (Figure S9). It
is also worth noting that counter to the cross-correlation assessment,
zooplankton functional diversity had a larger proportion of significant
mappings than phytoplankton (37% vs. 27%).

Figure 4 presents the relative direction of causality between func-
tional diversity and system state using the strongest lag as a method
to disentangle forward causality from bidirectional. Using the zooF-
Dis:Density relationship as an example (Figure 4a, second column),
one forward causality assessment (zooFDis ‘causing’ Density) was
significantly stronger than the permuted distribution (Kinneret) ver-
sus two reverse assessments (Density ‘causing’ zooFDis: Kasumigaura
and Lower Zurich), but Kasumigaura's reverse assessment occurred at
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FIGURE 3 (a) Boxplots of cross mapping skills between each system state and functional diversity metric combination, estimated when
functional diversity was unlagged relative to system state (Lag0) versus when it was lagged (LagX). These comparisons have then been
stratified by functional diversity metric (FDis, FEve, FRic), state metric (Community, Density, Fisher information, Multivariate variance index
and Trophic ratio) and trophic level (phytoplankton vs. zooplankton). A filled point indicates that the mapping was in the strongest 5% of
permuted mappings and is considered significant. LagX values represent the strongest cross map skill estimated separately for each lake and
across all lags (-60 to +60months). Consequently, lakes often displayed different strongest lags. (b) The spread of those lags across lakes for
each functional diversity and system state metric combination. The dark band in panel b represents a +1year lag/lead, which, if a significant
(filled) point is found, is considered a synchronous change between the functional diversity and state metric.

positive lags, whereas the forward assessment occurred at negative
lags. This crossing of the central Omonth line of the dashed pairing line
indicates that zooFDis' information leads Density's and that the influ-
ence of zooFDis synchronizes the two measurements. The opposite is
true for Lower Zurich, whereas the flat line in Kinneret and Mendota
suggest equal influence. If all lakes are considered together, then mul-
tiple crossing of pairing lines suggests no consistent causal relation-
ship. Therefore, overall, considering the relative direction of causality
between functional diversity and system state irrespective of signif-
icance, strong overlaps were identifiable between forward and re-
verse mappings for the majority of associations (Figure 4, Figure S10;
Tables S7 and S8). The exceptions to this trend included FI leading
phyFDis (Figure 4-top row) and both phytoplankton and zooplankton
FEve (Figure 4-middle row). The reverse was true with Z_P.ratio being
led by all but zooFDis and zooFRic, and Density being led by both

phytoplankton and zooplankton FRic (Figure 4-bottom row). These
results imply functional diversity and system state are not strongly
causally related, but both contain equivalent information on each
other, with no consistent leading or lagging causality (Tables S5 and
Sé). Thus, most relationships are synchronous and support the over-
all cross-correlation assessment. The FDis and Density relationship is
identified as the most robust correlation and cross mapping however,
and therefore represents the one strong functional diversity:system
state association across lakes and trophic levels.

4 | DISCUSSION

Here, we provide the first insights into how planktonic functional diver-
sity estimated from literature average trait values temporally change
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FIGURE 4 Boxplots of the paired lags between forward and reverse causal estimates for each functional diversity:system state
combination. These comparisons have then been stratified by functional diversity metric (FDis, FEve, FRic), state metric (Community,
Density, Fisher information, Multivariate variance index and Trophic ratio) and trophic level (phytoplankton vs. zooplankton). Filled points
represent a significant causal relationship and the reported value is the number of significant mappings (out of five). Dashed lines link the
two paired estimates (forward and reverse mappings within a lake). If one of these pairing lines crosses the grey, central lag line, then one of
the metrics has a delayed impact and exerts sufficient causation on the other that synchronicity may occur. Variable directions in line/a flat
line across all lakes can be interpreted that both metrics have equivalent causal delays upon each other.

relative to abundance-based metrics of system state. Previous work has
shown that functional diversity is related to system functioning, but we
go beyond this by highlighting how considering the sequence of phe-
nomenological signals is critical to understanding which dimensions of
biodiversity are most sensitive to change. We find that simple correlative
techniques described no or very weak synchronous relationships be-
tween functional diversity and state, an unexpected finding which is not
substantially improved when lags between time series are considered.
However, phytoplankton functional dispersion (phyFDis) was univer-
sally related with total planktonic density (Density) albeit synchronously.
Conversely, bi-directional causality was relatively prevalent between
functional diversity and state when the complex lagged relationship
is disentangled using CCM, although Fisher Information (FI) often led
functional diversity. In both approaches, individual lakes expressed
unique association strengths which limits our ability to make general
conclusions on the use of functional diversity as a warning of ecosystem
change. Functional diversity appears not to change consistently prior to
abundance-based system state metrics overall and so is impractical for
use by managers as a pre-emptive indicator of state change. It does how-
ever display unique dynamics distinct from state that may indicate their

use as an alternative measure rather than a leading indicator.
4.1 | Functional diversity relationships and
time lags

The lack of state change pre-emption by functional diversity con-
flicts with the assumption that trait information changes prior

to changes in abundance (Clements & Ozgul, 2016; Williams
et al.,, 2021). While some lagged relationships are identified by
CCM for certain zooplankton functional diversity metrics, most
relationships are strongest within +12 months. Little information
is available on the required time for managers to intervene to suc-
cessfully mitigate state change, although restoration ecology in-
dicates that most successful interventions require year to decade
scales (Walker et al., 2014). There consequently appears insuffi-
cient time for action by ecosystem managers to revert oncoming
state changes. This minimizes the usefulness of functional diver-
sity as an early management tool.

This finding consequently highlights the general need to explic-
itly consider continuous time lags when considering functional traits.
There are arguments that lags have been explored in functional ecol-
ogy, but the majority focus on sub-setting a time series in to pre-/
post-/during-disturbance periods (e.g. Boucek & Rehage, 2014;
Uezu & Metzger, 2016) rather than in a continuous fashion as we
have here. Our approach exploits the maximal information content
of available across the time series while controlling for possible
spurious associations to clarify conceptual assumptions. Having an
inclination of ‘when’ system changes occur in addition to ‘whether’
they change is vital for intervention or preparation for functioning
changes, and therefore is a necessary consideration for time-series
analyses.

Similarly, the absence of strong functional diversity-state relation-
ships was unexpected considering the bulk of literature reconciling
ecosystem state with the taxonomic and functional dimensions of
biodiversity, both in planktonic (Abonyi, Horvath, et al., 2018; Moody
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& Wilkinson, 2019; Ye et al., 2019) and non-planktonic communi-
ties (Cadotte et al., 2011; Diaz & Cabido, 2001; Gagic et al., 2015).
However, it is not a universally identified relationship, with multivari-
ate functional diversity measures failing to predict alpine biomass pro-
duction (Zhu et al., 2016), the strength of relationship varying with
disturbance in stream plant communities (Biswas & Mallik, 2011), and
tree carbon stocks responding uniquely to individual forests' func-
tional diversity (Ruiz-Jaen & Potvin, 2010). Crucially, it is in controlled
experiments that strong, consistent relationships are found, whereas
observational studies are more variable. This is due to abiotic and bi-
otic interactions filtering the taxa present at any moment in time to
a ‘realized’ level of biodiversity that differs to the ‘true’/initial diver-
sity examined in experiments (Hagan et al., 2021). We identify similar
ambiguity here, with distinct relationships for individual lakes, each of
which is known to be experiencing different levels of external stress.
For example, Lake Kasumigaura and Lake Kinneret are considered
to have undergone a regime shift in the late 1990s (Fukushima &
Arai, 2015) and mid-1990s (Roelke et al., 2007) respectively, whereas
Windermere is relatively stable. Our system state metrics identify
those two rapid regime changes and exhibit the strongest associations
with functional diversity. Lake Kinneret in particular displays a sudden
but relatively brief change in all its state metrics which is mirrored in
its phytoplanktonic functional dispersion (phyFDis).

It is likely the rapid change in state is the driver of the observed
strong correlations between functional diversity and system state in
Kinneret compared to the others, where the magnitude of change
enforces an instantaneous shift in all the metrics we explored. This
is supported by our paired CCMs where the lagging variable displays
positive lags and the leading variable displays negative lags. When
strong forcing is applied to a coupled system, the phenomenon of
generalized synchrony can occur (Rulkov et al., 1995) as one system
component exerts sufficiently strong causation on another that it
brings them in to alignment/synchrony. Therefore, while synchronic-
ity may be visible at short timescales, the leading variable is in fact
exerting strong causality to synchronize the two (Ye et al., 2015). In
ecology, the Moran effect (Moran, 1953) describes the phenomenon
at macrospatial scales, with regime shifts acting as temporal ana-
logues (Wernberg et al., 2013). The ubiquitous association in Lake
Kinneret matches these examples as the synchrony strengthens for
the short periods during the regime transition to improve the overall
correlation. This implies that, while functional diversity's relation-
ship is system specific, during regime transitions strong changes can
be identified alongside typical system state measures, but does not

pre-empt them at management relevant timescales.

4.2 | CCM, time lags and complex time series

The differences between CCM and cross-correlation in character-
izing the overall relationship between system state and functional
diversity support the work of Sugihara et al. (2012) who show that
traditional regression methods are unable to accurately identify
complex associations between related ecological time series. Chang

etal.(2022) also identified chained feedback effects in environmental
driver-phytoplankton networks using the technique. Indeed, while
non-linear mappings revealed fewer stronger-than-null relationships
than the correlative approach, CCM highlights the insightful and
non-spurious relationships of causal value. We find agreement that
FDis is linked with total plankton density and that—when causation
is present—typically both system state and functional diversity exert
equal effects upon each other. In this regard, we consider the two
measures as changing together, possibly in response to an unmeas-
ured environmental variable, despite the strongest cross mappings
occurring at negative lags. However, time delay effects are evident
for certain metrics, particularly those involving Fl. Fl has previously
been suggested to pre-empt regime shifts in long time series (Ahmad
et al., 2016; Cabezas et al., 2010; Spanbauer et al., 2014), where de-
creasing Fl indicates decreasing stability of the system. There has
been no extensive assessment of Fl's capability in natural environ-
ments but, qualitatively, FI appears to change trajectory prior to
each major turn point in the lakes explored in this study and can
cross map/‘cause’ change in functional diversity.

This work highlights the practicality of CCM using the tools de-
veloped by Sugihara et al. (2012) and Ye et al. (2015). By reporting
time lagged relationships and identifying broad stroke synchronicity,
we hope that managers can exploit and interpret CCM outputs as
part of their management toolbox. Indeed, there is growing encour-
agement for the consideration of time lags across functional (Lenoir
et al., 2022) and conservation (Watts et al., 2020) ecology and we
advocate CCM as one appropriate method of circumnavigating the

complicated considerations this encouragement requires.

4.3 | Lake-specific considerations

One key difference between studies that may limit our identifica-
tion of the expected strong associations between functional diver-
sity and state is the length of time series. We find more significant
relationships in the longer time series (Lake Kasumigaura, Kinneret
and Zurich) than the short (Lake Mendota and Windermere). While
this provides more data points for both correlation and CCM, our
conservative approach of detrending and referencing an autocorre-
lated, permuted null distribution mitigates the likelihood of spurious
correlations resulting from the shared system and larger datasets. As
a result, we believe our results are valid.

The ability of functional diversity to pre-empt system change
may also be hampered by the quality of estimates from literature
average values. Hutchinson's paradox (Hutchinson, 1961) highlights
the high niche overlap of many planktonic species and resulting sim-
ilarity in many routinely measured traits. This results in a community
consisting of many functionally similar species when quantified from
traits such as cell length or nitrogen-fixing ability. It was this ratio-
nale that led to the development of Reynolds' phytoplankton func-
tional groupings (Reynolds et al., 2002) to circumvent this apparent
niche overlap and may indicate a weakness of the continuous func-
tional diversity approach we applied here. While this complication
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is magnified by the lack of system specific trait information, it is our
belief we were able to identify sufficiently distinct diversity trends
and relationships using the proposed average-trait framework of
Martini et al. (2021) to validate the approach.

The use of average trait values is further validated by our un-
derstanding that the complex, multi-trophic interactions occurring
in these diverse lake communities minimize competitive exclusion
and facilitate species with overlapping niches (Albert et al., 2021;
Brose & Hillebrand, 2016). We see differences in the two plankton
trophic levels' diversity but none sufficiently consistent to describe
a universal pattern of top-down/bottom-up control. Strength of
phytoplankton-zooplankton trophic coupling does vary with the
degree of lake oligotrophication (Bernat et al., 2020; Carney &
Elser, 1990; Dong et al., 2021) and presumably the lack of consis-
tency results from the variable importance of phytoplankton versus
zooplankton guilds in structuring the lake community. Zooplankton
is particularly important in Lake Mendota for example, where the ap-
pearance of the invasive spiny water flea (Bythotrephes longimanus)
(Walsh et al., 2017) decimated the zooplankton assemblage and ini-
tiated a trophic cascade towards a turbid, phytoplankton-dominated
community. This importance is identified in both our correlative and
causality assessments, with minimal phytoplankton functional di-
versity associations with Mendota's system state compared to the
improved pre-emptive performance of certain zooplankton metrics.

A benefit of using lake systems is that due to their socio-
economic importance and long-term monitoring, the influence of
many environmental drivers is well reported and understood. We
have not considered them explicitly here as we are solely focussing
on the relationship between phenomenological measures rather
than attempting to identify mechanistic drivers. However, typology
and nutrient status may also be influencing the variable association
strength between functional diversity and system state across lakes.
For example, Lake Kasumigaura dynamics are specifically driven by
nitrate concentrations (Matsuzaki et al., 2018), whereas tempera-
ture and phosphorus are more impactful in the Lower Zurich (Pomati
etal.,, 2012) and the relative importance of nutrients in Lake Kinneret
has shifted from phosphorus to nitrate during the time period as-
sessed here (Gophen et al., 1999). There is therefore no unifying
driver of the dynamics and associations we report and the associa-
tions identified are solely phenomenological signals. Consequently,
when performing functional diversity assessments in or across lake
ecosystems, it appears necessary to consider each system inde-
pendently within its own context rather than attempt generaliza-
tions. This supports the suggestions of others that lakes consistently
display unique dynamics and conditions (Adrian et al., 2009). We do
stress that environmental variables are the drivers of trends we see
in both functional diversity and state through time, and thus are key
targets for any management intervention, but trait-based indicators
are best suited for local level representations of biodiversity.

The use of lakes for functional diversity research may also
avoid previous concerns that our understanding of the mechanis-
tic relationship between biodiversity and ecosystem functioning
stems from field experiments where biodiversity effects can only

oo, MUK

be considered as ‘local’ (Hagan et al., 2021; Thompson et al., 2021).
Island habitats have previously been considered as key study sys-
tems to assess the impacts of biodiversity due to their defined taxa
pools matching the assumptions of much biodiversity-ecosystem
functioning conceptual research (Kardol et al., 2018). Lakes may
be considered biogeographically insular (MacDonald et al., 2018)
with dispersal between neighbours restricted compared to the ter-
restrial environments underpinning much of our understanding of
biodiversity-functioning relationships. Thus, the context surround-
ing lake plankton functional diversity may better represent the the-
oretical local level effects of biodiversity.

5 | CONCLUSION

To conclude, the synchronous association between functional di-
versity and system state conflicts with the conceptual mechanis-
tic relationship between biodiversity and ecosystem functioning.
Most likely, any delayed impacts of functional diversity on our se-
lected state measures are insufficiently long to warrant the use of
functional diversity as an early indicator of ecosystem change, al-
though the system-specific dynamics of the functional metrics do
sometimes yield unique dynamics not seen in the state measures.
The relationship between functional diversity and ecosystem state
will ultimately depend on the combination of environmental stress-
ors, traits present and taxa interactions, which together potentially
mask the overall relationship or highlight how each system is unique.
The interpretation of functional diversity measures across systems
therefore requires caution. Trait information is still vital to support
our understanding of total biodiversity change, but dimensionally
reduced trait measures like functional diversity are less informative
than other abundance-based phenomenological measures (such as

Fl) to ecosystem managers.
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