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ABSTRACT

The motional narrowing effect has been extensively studied for cavity exciton±polariton systems in recent decades both experimentally and
theoretically, which is featured by (1) the subaverage behavior and (2) the asymmetric linewidths for the upper polariton and the lower
polariton. However, a minimal theoretical model that is clear and adequate to address all these effects as well as the linewidth scaling relations
remains missing. In this work, based on the single mode 1D Holstein±Tavis±Cummings (HTC) model, we studied the motional narrowing
effect of the polariton linear absorption spectra via both semi-analytic derivations and numerically exact quantum dynamics simulations
using the hierarchical equations of motion approach. The results reveal that under collective light±matter coupling between a cavity mode

and N molecules, the polariton linewidth scales as 1/√N under the slow limit, while scales as 1/N under the fast limit, due to the polaron
decoupling effect. Furthermore, by varying the detunings, the polariton linewidths exhibit significant motional narrowing, covering both
characters mentioned above. Our analytic linewidth expressions [Eqs. (34) and (35)] agree well with the numerical exact simulations in all the
parameter regimes we explored. These results indicate that the physics of motional narrowing is adequately accounted for by the single-mode
1D HTCmodel. We envision that both the numerical results and the analytic polariton linewidths expression presented in this work will offer
great theoretical value for providing a better understanding of the exciton±polariton motional narrowing based on the HTC model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0225387

I. INTRODUCTION

The termmotional narrowing is first put forward by Bloember-
gen, Purcell, and Pound1±3 in the 1940s, which is a counter-intuitive
phenomenon that spectral lines become sharper and narrower the
more frequently the nuclear spins are disturbed in nuclear mag-
netic resonance (NMR) spectra. Later, this concept is used to explain
the line shapes in all facets of spectroscopy, in all research fields,
and across all frequency bands.4±14 The motional narrowing effect
for cavity exciton±polaritons15 had recently attracted attention due
to the fact that a polariton has a much smaller effective mass and
shorter lifetime compared to an exciton, thus exhibiting more sig-
nificant quantummechanical effects, and causes spatial averaging of
disorder potential. Specifically, the disorder can be suppressed under
strong light±matter coupling, reducing the width of spectral lines
(which correspond to some quantum transitions). The first exper-
imental find of cavity exciton±polariton motional narrowing effect
is achieved by Whittaker et al.,14 where a characteristic subaverage

behavior of the polariton linewidths (which means narrower than
the average of the cavity and exciton linewidths) is observed. More-
over, the upper polariton (UP) and the lower polariton (LP) exhibit
different narrowing behavior that the UP is always broader than the
LP. These universal behaviors observed in experiments cannot be
explained by simply averaging the exciton and photon linewidths,
as would be valid if both were homogeneously broadened.14,16

Other experimental work was quickly and extensively followed up
later.17±23

Shortly after the first experimental findings, Kinsler and Whit-
taker24 provided a phenomenological explanation for the subaverage
behavior. The main idea in that work was recognizing that the
exciton line shape is commonly a Gaussian and the photon line
shape is a Lorentzian. With given widths, the convolution between a
Gaussian and a Lorentzian (i.e., Voigt function) has a linewidth nar-
rower than the convolution of two Lorentzians (i.e., direct average
of the linewidths). However, it does not provide the scaling relation
between the polariton linewidth and the number of moleculesN nor
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does it explain the experimentally observed asymmetry between the
UP and LP linewidths. Savona et al.25 proposed a microscopic model
of disordered quantum wells embedded in a microcavity. By solving
the nonperturbative coupled equations of motion of the exciton and
cavity photon system numerically, they successfully recovered the
experimental results by Whittaker et al.14 in terms of motional nar-
rowing, explaining both the subaverage behavior and why the upper
UP is always broader than the LPÐdue to inter-branch scattering,
in which the multiple scattering to all orders is emphasized.25 Nev-
ertheless, a lot of theoretical controversies are generated and remain
unresolved.11,25±31 For example, it is mentioned in Ref. 25 that the
motional narrowing effects are more pronounced in a 1D system
than in a 2D system, while Ref. 28 made the opposite statement.
In addition, the necessity of including the full dispersion band is
not clear, as well as considering the polariton multiple scatterings.
Therefore, it is of great importance to establish a minimal physical
model and theory to clarify the above-mentioned ambiguities.

Recently, Climent et al.31 have applied the Kubo±Anderson
classical stochastic theory of molecular spectral line shape32±34 to the
case of polaritons formed in the collective strong coupling regime.
By including only one cavity mode that collectively interacts with
manymolecules, they provided simple analytic results in the fast and
slow limits of the disorder dynamics and can be evaluated numeri-
cally for the intermediate case. In particular, the polariton linewidth

scales like 1/√N under the slow limit. Despite the theoretical success
in Ref. 31, we want to emphasize that the Kubo±Anderson theory
is classical and Markovian. It predicts that no apparent narrowing
effect can be exhibited under the fast limit31 and does not explain
the experimentally observed asymmetry between the UP and LP
linewidths. Regarding these limitations, new theoretical and numeri-
cal efforts are urgently needed, in which a fully quantummechanical
description of the phonon environment should be emphasized.

In this work, we adopt the 1D Holstein±Tavis±Cummings
(HTC) model35±37 with a single cavity mode to study the motional
narrowing effect under a variety of different parameter regimes
based on a system±bath formalism of open quantum systems. We
performed numerically exact quantum dynamics simulations using
the hierarchical equations of motion (HEOM) for the linear absorp-
tion (LA) spectra of the single mode 1D HTC model. In particular,
the polaron decoupling effect35,36 has been investigated and applied
to explain the spectral linewidth narrowing phenomena.36,38 Our
theoretical analyses reveal that in the polaron decoupling regime,

the polariton linewidth scales as 1/√N under the slow limit, which
agrees with the Kubo±Anderson theory in Ref. 31, and scales as 1/N
under the fast limit. Both the UP and the LP are subject to motional
narrowing of the spectral response, and this effect for UP is less sig-
nificant than LP due to inter-branch transitions (mainly to the dark
states) that the UP branch exhibits, which is non-Condon effect.
Moreover, we provide modified analytic expressions [Eqs. (34) and
(35)] to describe the subaverage behavior of the polariton linewidths
under general detuned cases. Our analytic expressions are in excel-
lent agreement with the results obtained from numerical exact sim-
ulations. As a consequence, our results show that a single mode 1D
HTC model will be adequate to exhibit a significant motional nar-
rowing effect featured by the subaverage behavior of the polariton
linewidths for both UP and LP, without inclusion of the full disper-
sion band, and to exhibit the experimentally observed asymmetry
between the UP and LP branches.

This paper is organized as follows. In Sec. II, we briefly review
the HTC model Hamiltonian; in Sec. III, we discuss the polaron
decoupling effect and its influences on the polariton linewidth, as
well as the scaling relations of polariton linewidth with N under the
fast and slow limits; in Sec. IV, we provide analytic linewidth expres-
sions for LP and UP under the fast limit and the general detuned
cases; in Sec. V, we present numerical exact simulations using
HEOM for the polariton LA spectra and compare their linewidths
with the theoretical predictions; and in Sec. VI, we briefly conclude
this paper. In addition, we denote the full width at half maximum
(FWHM) of the peaks in LA spectra as the linewidth throughout this
paper, unless specified otherwise.

II. THE HOLSTEIN±TAVIS±CUMMINGS MODEL

A. Hamiltonian

We first introduce the HTC model Hamiltonian36,37,39,40 with
a single cavity mode. The total Hamiltonian can be written as a
system±bath form as follows:

ĤHTC ≙ ĤS + ĥB + ĤSB. (1)

The system term ĤS consists of the excitonic degrees of freedom
(DOF) of the molecules and the photonic DOF of the cavity and can
be further expressed as41

ĤS ≙ ĤM + Ĥcav + ĤLM, (2)

where ĤM describes the matter contribution due to the exci-
tonic DOF, Ĥcav describes the cavity radiation field, and ĤLM is
the light±matter interaction term. The matter Hamiltonian ĤM

describes N identical and non-interacting molecules; each molecule
is modeled as an effective two-level system that represents the
molecule’s ground state ∣gn⟩ and excited state ∣en⟩ (for the nth
molecule). The matter Hamiltonian is written as

ĤM ≙ h̵(ω0 + λ) N

∑
n=1

σ̂
+

n σ̂
−

n , (3)

where σ̂+n ≙ ∣en⟩⟨gn∣ and σ̂−n ≙ ∣gn⟩⟨en∣ are the creation and annihila-
tion operators of the nth molecule’s exciton and ω0 is the excitation
energy between the molecule’s ground and excited state. The corre-
sponding reorganization energy λ accounts for the energy shift due
to exciton±phonon coupling, which is described in the system±bath
interaction ĤSB [see Eq. (7)]. The cavity Hamiltonian Ĥcav describes
the quantized radiation field,

Ĥcav ≙ h̵ωc(â ²
â +

1

2
), (4)

where ωc is the cavity mode frequency and â ² and â are the
photon creation and annihilation operators of the cavity mode,
respectively. Here, we consider only a single cavity mode interact-
ing collectively with N molecules. For the light±matter interaction
term ĤLM, we assume the long-wavelength approximation, that is,
each molecule is coupled to the quantized radiation field with the
same light±matter coupling strength gc. Under the rotating wave

approximation (RWA), ĤLM is expressed as
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ĤLM ≙ h̵gc
N

∑
n=1

(â ²
σ̂
−

n + âσ̂
+

n ). (5)

Note that the system Hamiltonian ĤS in Eq. (2) is just the
Tavis±Cummings model41,42 (with a constant energy shift λ for the
exciton site energies).

The bath Hamiltonian ĥB in Eq. (1) describes the nuclear DOF,
which we assume is a phonon environment that consists of a set of
identical, non-interacting harmonic oscillators,

ĥB ≙∑
α,n

h̵ωαb̂
²
α,nb̂α,n, (6)

where b̂α,n, b̂
²
α,n are the αth bath phonon annihilation and creation

operators for the nth molecule, which satisfy the bosonic commuta-
tion relations, with ωα being the phonon frequency. The last term
ĤSB in Eq. (1) characterizes the system±bath interaction, which
describes the exciton±phonon interaction, which we assume takes
the linear form as follows:

ĤSB ≙∑
n

σ̂
+

n σ̂
−

n ⊗∑
α

cα(b̂α,n + b̂²
α,n), (7)

where b̂α,n, b̂
²
α,n linearly couple to the nth exciton, with cα being the

coupling strength, which are n-independent, i.e., identical for all the
molecules. To describe the interactions between the system and bath,
we introduce the spectral density function, which is defined as43,44

J(ω) ≙ π

h̵
∑
α

c
2
αδ(ω − ωα) ≙ 2λω f ω

ω2
f + ω

2 , (8)

being identical for all excitons (for n ∈ ∥1,N∥). We use a
Drude±Lorentz form for the spectral density in our investigations,
where ω f is the bath characteristic frequency and λ is the reorgani-
zation energy, which can also be expressed in terms of the coupling
strength and the phonon frequencies as

λ ≙
1

π∫
+∞

0
dω

J(ω)
ω
≙∑

α

c2α
ωα

. (9)

Note that Eq. (1) does not consider the cavity loss effects.
In this work, the cavity loss is modeled through a phenomeno-
logical description45 via the Lindblad dissipators, which is widely
applied in molecular polariton dynamics simulations,46,47 real-
time simulations of linear and nonlinear spectroscopy for exci-
ton polaritons,48,49 photodissociation reactions,50±52 photoinduced
electron transfer reactions,53 etc. We note that cavity loss can
also be addressed by microscopic descriptions based on the
Caldeira±Leggett system±bath model,43,54±57 which is more funda-
mental and accurate and can account for non-Markovian effects.58,59

Specifically, we introduce a set of Lindblad dissipators for the photon
mode time evolution as follows:

LΓÔ ≙ Γc∥1 + n(ωc)∥(âÔâ ²
−
1

2
{â ²

â, Ô})
+ Γcn(ωc)(â ²

Ôâ −
1

2
{ââ ²

, Ô}), (10)

where

n(ω) ≙ 1/(eβω − 1) (11)

is the Bose±Einstein distribution function, β ≙ 1/(kBT) is the
inverse temperature, and kB is the Boltzmann constant. Further-
more, Γc is the photon-loss rate and {Â, B̂} ≙ ÂB̂ + B̂Â denotes
the anti-commutator. The quantum dynamics of Hamiltonian in
Eq. (1) with the Lindblad dissipators are simulated using the mixed
HEOM±Lindblad formalism,60 described in Sec. V A.

B. Polariton states and Rabi splitting

We analyze the eigenspectrum of ĤS, i.e., the Tavis±Cummings
model, in the ground and single excitation subspace, which is
spanned by the zero photon-dressed ground state ∣G, 0⟩where all the
molecules are in the ground state and no photon in the cavity, one
photon-dressed ground state ∣G, 1⟩where all the molecules are in the
ground state and one photon is in the cavity, and the single-molecule
excited state ∣En, 0⟩ where all the molecules are in the ground state
except for the nth molecule. These diabatic states are defined as

∣G, 0⟩ ≙ ∣g1⟩⊗ ⋅ ⋅ ⋅ ∣gn⟩ . . .⊗ ∣gN⟩⊗ ∣0⟩, (12a)

∣G, 1⟩ ≙ ∣g1⟩⊗ ⋅ ⋅ ⋅ ∣gn⟩ . . .⊗ ∣gN⟩⊗ ∣1⟩, (12b)

∣En, 0⟩ ≙ ∣g1⟩⊗ ⋅ ⋅ ⋅ ∣en⟩ . . .⊗ ∣gN⟩⊗ ∣0⟩, (12c)

where ∣gn⟩, ∣en⟩ are the ground and first excited energy eigenstates of
site n ∈ {1, . . . ,N}, with σ̂+m∣gn⟩ ≙ δm,n∣en⟩ and σ̂−m∣gn⟩ ≙ 0. Further-
more, ∣0⟩, ∣1⟩ are the zero and one photon Fock states, which are
eigenstates of the bare-cavity Hamiltonian [Eq. (4)]. In the single
excitation manifold, we also have a collective ªbrightº excitonic state

∣B⟩ ≙ 1√
N

N

∑
n=1

∣En, 0⟩ (13)

that couples to the ∣G, 1⟩ state through ĤLM, generating polariton
states ∣±⟩, which are eigenstates of ĤS. These ∣±⟩ states are expressed
as follows:41

∣+⟩ ≙ cosΘN ∣B⟩ + sinΘN ∣G, 1⟩, (14a)

∣−⟩ ≙ − sinΘN ∣B⟩ + cosΘN ∣G, 1⟩, (14b)

where the mixing angle is

ΘN ≙
1

2
tan
−1[ 2

√
Ngc

ωc − ω0 − λ
] ∈ ∥0, π

2
), (15)

and the corresponding energies ω± of the ∣±⟩ states are
ω± ≙

ω0 + λ + ωc

2
±
1

2

√(ω0 + λ − ωc)2 + 4Ng
2
c . (16)

One can define the collective Rabi splitting as follows:

ΩR ≙ ω+ − ω− ≙

√(ωc − ω0 − λ)2 + 4Ng
2
c . (17)

Under the resonance condition ofωc ≙ ω0 + λ, one hasΩR ≙ 2
√
Ngc.

We further denote the detuning between the cavity and the exciton
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as Δω ≙ ωc − (ω0 + λ). One can alternatively use the Hopfield
coefficients to represent the mixing angles, expressed as16,37

∣C∣2 ≙ sin2ΘN ≙
1

2

⎡⎢⎢⎢⎢⎢⎣
1 +

Δω√(Δω)2 + 4Ng2c

⎤⎥⎥⎥⎥⎥⎦
, (18a)

∣X∣2 ≙ cos2ΘN ≙
1

2

⎡⎢⎢⎢⎢⎢⎣
1 −

Δω√(Δω)2 + 4Ng2c

⎤⎥⎥⎥⎥⎥⎦
. (18b)

According to Eq. (14), the exciton fraction ∣Cex∣2 for the UP and LP
branches is

∣Cex∣2 ≡ ⎧⎪⎪⎨⎪⎪⎩
∣X∣2 for UP,

∣C∣2 for LP,
(19)

respectively, for a general detuning Δω.
When taking into account the finite lifetime of the cavity

photon and the exciton, Eq. (16) is modified as16,37,61

ω± ≙
ω0 + λ + ωc + i(Γex + Γc)

2

±
1

2

√∥ω0 + λ − ωc + i(Γex − Γc)∥2 + 4Ng
2
c , (20)

where Γex is the nonradiative decay rate of an exciton (or the molec-
ular linewidth). Furthermore, Γc is the cavity decay rate due to
imperfect mirrors. As a linear superposition of an exciton and a pho-
ton, it has been believed that the lifetime of the polaritons is directly
determined by Γc and Γex as follows:16

Γ+ ≙ ∣C∣2Γc + ∣X∣2Γex, (21a)

Γ− ≙ ∣X∣2Γc + ∣C∣2Γex. (21b)

Unfortunately, Eq. (21) contradicts the experimentally observed
motional narrowing phenomena, including the subaverage trend
and the asymmetric line widths between the UP and the LP
branches.12,13

In the case of no detuning (Δω ≙ 0), the Hopfield coefficients
to each polariton state are both ∣C∣2 ≙ ∣X∣2 ≙ 1/2. The Rabi splitting
in Eq. (17) is modified as61 (when considering the exciton decay and
cavity loss)

ΩR ≙

√
4Ng

2
c − (Γc − Γex)2. (22)

The Rabi splitting eventually vanishes when Γc ≫
√
Ngc. On the

other hand, the system is in the strong coupling regime if the rate
of exchange of energy between the molecules and the cavity photon
is faster than the dissipation rate of the cavity photon (Γc) and the
molecules (Γex),61 i.e.,

2
√
Ngc > (Γc + Γex)/2. (23)

Under the strong coupling condition, one can see the LA spectra
exhibiting two well-separated peaks that correspond to the upper
and lower polariton states, respectively.

Furthermore, there exist N − 1 dark states ∣Dk⟩ expressed as
follows:37,41,62

∣Dk⟩ ≙ 1√
N

N

∑
n=1

exp(−2πi nk
N
)∣En, 0⟩, (24)

where k ∈ {1, . . . ,N − 1}. The energy of the dark states remains the
same as the exciton site energy. Note that the dark states have no
overlap with the collective ªbrightº state, and they do not partic-
ipate in the interaction with the cavity mode mediated by ĤLM.
They are optically dark (has no transition dipole from the ground
state). Equations (14) and (24) form the polariton basis (or the
Tavis±Cummings basis41). Furthermore, we introduce the following
discrete Fourier transform for the bath operators:62

b̂α,k ≙
1√
N

N

∑
n=1

exp(2πi nk
N
)b̂α,n, (25a)

b̂
²

α,k ≙
1√
N

N

∑
n=1

exp(−2πi nk
N
)b̂²

α,n. (25b)

Under the polariton basis, the HTC Hamiltonian in Eq. (1) becomes

ĤS ≙ ω+∣+⟩⟨+∣ + ω−∣−⟩⟨−∣ + (ω0 + λ)N−1∑
k=1

∣Dk⟩⟨Dk∣, (26a)

ĥB ≙∑
α,k

ωαb̂
²

α,kb̂α,k, (26b)

and

ĤSB ≙ [cos2ΘN ∣+⟩⟨+∣ + sin2ΘN ∣−⟩⟨−∣ − 1

2
sin (2ΘN)

× (∣+⟩⟨−∣ + ∣−⟩⟨+∣)]⊗∑
α

cα√
N
(b̂α,0 + b̂²

α,0)
+ cosΘN[N−1∑

k=1

∣Dk⟩⟨+∣⊗∑
α

cα√
N
(b̂α,k + b̂²

α,−k) + h.c.]
− sinΘN[N−1∑

k=1

∣Dk⟩⟨−∣⊗∑
α

cα√
N
(b̂α,−k + b̂²

α,k) + h.c.]
+

N−1

∑
k=1

N−1

∑
j=1

∣Dk⟩⟨Dj ∣⊗∑
α

cα√
N
(b̂α,−j+k + b̂²

α, j−k), (26c)

where ĤS is now diagonal. Transitions between ∣+⟩, ∣−⟩, and {∣Dk⟩}
are only mediated by phonons in the bath. Note that in Eq. (26c), if
the subscript is outside the range of {1, . . . ,N − 1}, it can be moved
back by adding or subtracting N due to the translational symmetry.

For example, b̂α,−k → b̂α,N−k.

III. POLARITON LINEWIDTH SCALING WITH N UNDER
THE POLARON DECOUPLING LIMIT

A. Polaron decoupling effect

Herrera and Spano35,36 had shown that strong collective reso-
nant coupling of a cavity field with N exciton transitions can effec-
tively decouple exciton±phonon couplings in a disorderedmolecular
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ensemble. This has also been observed experimentally.38 To be spe-

cific, the coupling strength is re-scaled as cα/√N for both the
diagonal (Holstein coupling) and off-diagonal (Peierls coupling)
terms associated with the polariton states ∣+⟩ and ∣−⟩, as shown in
Eq. (26c). In particular, under the resonance condition, the mix-
ing angle is ΘN ≙ π/4. As a result, the displacement between the∣G, 0⟩ and the ∣±⟩ states is given by36 Rα,0 ≙ Rα,0/(2√N), where
Rα,0 ≙

√
2c2α/ω3

α is the displacement between a given exciton state∣En, 0⟩ and the ground state ∣G, 0⟩. Thus, the effective reorganization
energy λN between the ∣G, 0⟩ state and the ∣±⟩ states is

λN ≙
1

2
∑
α

ω
2
αR

2
α,0 ≙ λ/(4N), (27)

which is 4N times smaller than outside the cavity case. Intu-
itively, this is because when the collective Rabi oscillation period is
shorter than the time scales for vibrational motion, the excitons can
exchange their energy with the cavity mode many times before the
nuclei have time to reorganize their configuration to the excited state
potential. For large N, the reorganization energy will approach to
zero, and the equilibrium positions of the polaritonic state potential
and the ground state potential are aligned.35,36

The width of the optical line shape (such as polariton absorp-
tion) that corresponds to ∣G, 0⟩→ ∣±⟩ optical transition is con-
tributed by both excitons and cavity broadenings. Here, we consider
the linear absorption (LA) spectra. A concise review for the LA spec-
tra line shape theory is provided in Appendix A, in which a simple
two-state model under the Condon approximation is discussed.

Under the high temperature limit of kBT ≫ hω f , we define the
dimensionless parameter as follows:63

κN ≙
⎛⎝

h̵ω2
f

2λNkBT

⎞⎠
1/2

∝

√
N, (28)

where λN is defined in Eq. (27). By simply considering only the
two polariton states (without including the dark states) coupled to
a Drude±Lorentz bath,63 the polariton line shape can be expressed
analytically under two well-known limits based on κN , discussed
below.

B. The slow limit

First, we focus on the slow limit defined as κN ≪ 1, where the
polaritons exhibit Gaussian line shape, expressed as follows:63

A
±

N(ω) ≙ 1√
2πΔ2

N

exp [−(ω − ω±)2
2Δ2

N

], (29a)

where the polariton frequencies ω± can be found Eq. (20), and the
square variance

Δ
2
N ≙ 2λNkBT/h̵∝ 1/N. (29b)

As a result, the scaling of the polariton linewidth is ΔN ∝ 1/√N,
agreeing the Kubo±Anderson theory described in Ref. 31.

C. The fast limit

The other is the fast limit κN ≫ 1, where the polariton spectra
exhibit a Lorentzian line shape, expressed as follows:63

A
±

N(ω) ≙ 1

π

ΓN/2(ω − ω±)2 + Γ2N/4 , (30a)

with linewidth

ΓN ≙ 2λNkBT/(h̵Λ)∝ 1/N. (30b)

As a result, the polariton linewidth scales as 1/N under the fast limit,
which differs from the Kubo±Anderson theory under the fast limit in
Ref. 31. Note that the scaling relations withN in Eqs. (29b) and (30b)
will not be influenced if the high-temperature limit (kBT ≫ hω f ) is
not satisfied.

The scaling relations with N in Eqs. (29b) and (30b) under the
slow and fast limits are the first main theoretical result of this paper.
Note that N explicitly shows up in the dimensionless parameter κN
[Eq. (28)]. As such, one expects that if the system was originally in
the slow limit with a small number of N (or for the outside cavity
case), then further increaseN will cause the scaling of linewidth tran-

sition from 1/N (slow limit) to 1/√N (fast limit). This is indeed the
case for most of themolecular systems.12,38 In this work, we aremore
interested in the fast limit because in typical experimental setups,
N ≫ 1 such that κN ≫ 1. As a consequence, the polariton line shape
is described by Lorentzian [Eq. (30)].We also want to emphasize that
only the two polariton states are included to obtain Eqs. (29) and
(30). The dark states and inter-branch scattering processes (which
are non-Condon effects) have not been considered yet. This will be
further discussed in Sec. IV.

IV. A GENERAL THEORY OF POLARITON LINEWIDTH
UNDER THE FAST LIMIT

A. LP linewidth

Under the strong coupling condition [Eq. (23)], the polaron
decoupling limit is reached around the resonance condition, where
the mixing angle ΘN → π/4. As a result, the polariton linewidth will
becomemuch narrower than systems outside the cavities.36,38 Under
the fast limit, the polariton line shape is described by Lorentzian
[Eq. (30)]. Further consider the cavity loss with Γc as the (homo-
geneous) cavity loss rate so that the bare photon spectral line shape
is also described by a Lorentzian. As a result, the overall LP linewidth
is additive, reading as

Γ̃− ≙ Γc/2 + Γex/(2N), (31)

where a 1/N factor is associated with the exciton contribution Γex

due to the polaron decoupling effect, as is discussed in Sec. III.
Mathematically, the linewidths are additive when two Lorentzian
functions are convoluted, which is indeed the case of the fast limit
focused here, where the line shape is Lorentzian [Eq. (30)]. Conse-
quently, the LP linewidth in Eq. (31) is much narrower compared to
Eq. (21) (under the resonance condition), which primarily explains
the subaverage behavior of the LP linewidth in polariton motional
narrowing.

On the other hand, when the cavity frequency is far detuned

from the exciton energy such that ∣Δω∣≫√Ngc, the mixing angle
ΘN → 0 (blue-detuning limit, ωc ≫ ωx + λ) or ΘN → π/2 (red-
detuning limit, ωc ≪ ωx + λ). Under this circumstance, the time
scale of Rabi oscillation is much longer than the phonon bath, which
means the polaron decoupling arguments no longer hold. As a result,
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the system behaves like a decoupled one where the polariton states
are akin to pure exciton/photon states, i.e.,

Γ̃− ≙

⎧⎪⎪⎨⎪⎪⎩
Γc for ΘN → π/2,
Γex for ΘN → 0.

(32)

In other words, the light and matter components can be easily
distinguished.

For general detuned cases with a mixing angle ΘN , to the best
of our knowledge, there is no simple closed-form theory to quantita-
tively estimate the polariton line widths. What has been widely used
is an empirical linewidth expression,12±14,29,30

Γ̃− ≙ ∣X∣2Γc + ∣C∣4∣X∣2 ⋅ (ΓexN ), (33)

which highlights the nonlinearity of the LP linewidth. Note that
Eq. (33) recovers Eq. (32) for ΘN → π/2 and Eq. (31) for ΘN → π/4.
Remarkably, it well captures the behavior of LP linewidth for π/4
< ΘN < π/2, as shown by Rury and co-workers.12,13 However,
Eq. (33) does not recover Eq. (32) for the limit of ΘN → 0 (with∣C∣2 → 1 and ∣X∣2 → 0) and is unbounded, which leads to a severe
overestimation of the LP linewidth for 0 < ΘN < π/4. To solve this
problem, we propose the following modification to Eq. (33):

Γ̃− ≙ ∣X∣2Γc + ∣C∣4
∣X∣2 + ∣C∣4

N

⋅ (Γex
N
), (34)

which preserves the boundedness and recovers Eq. (32) for ΘN → 0.

B. Inter-branch transitions and UP linewidth

It is pointed out that inter-branch scattering (between UP and
dark states) is crucial to explain the difference between the UP and
LP linewidths.14,25,28,64 To be specific, the UP linewidth is usually
much broader than the linewidth of the LP state, mainly due to the
UP → LP and UP → dark states (DS) decay channels, which are
non-Condon effects and cause additional broadening to UP com-
pared to LP. By assuming that the additional broadening effect is
additive, one can express the UP linewidth by further incorporating
inter-branch transitions, i.e.,

Γ̃+ ≙ Γ̃
(0)
+
+ Γ+→{Dk} + Γ+→−, (35)

where the first term

Γ̃
(0)
+
≙ ∣C∣2Γc + ∣X∣4

∣C∣2 + ∣X∣4
N

⋅ (Γex
N
) (36)

is symmetric with Eq. (34), and the last two additional broadening
terms are estimated via Fermi’s golden rule (FGR) as follows:65

Γ+→− ≙
1

2N
⋅ sin

2(2ΘN) ⋅ J(ΩR) ⋅ ∥n(ΩR) + 1∥, (37a)

Γ+→{Dk} ≙
2(N − 1)

N
⋅ cos

2
ΘN ⋅ J(ω+ − ωx − λ)

⋅ ∥n(ω+ − ωx − λ) + 1∥, (37b)

where J(ω) is defined in Eq. (8) and n(ω) is defined in Eq. (11).
The detailed derivations are provided in Sec. II of the supplementary
material. On the other hand, due to the energy differences, the
scattering rate constants for LP → UP (Γ−→+) and LP → DS(Γ−→{Dk}) are much smaller in magnitude than Γ+→− and Γ+→{Dk},
respectively. As a result, the LP linewidth is barely influenced by
inter-branch scatterings.

The polariton linewidth expressions in Eq. (34) (for LP) and
Eq. (35) (for UP) are the secondmain theoretical result of this paper.
In Sec. V, we will see that they successfully describe the polari-
ton motional narrowing phenomena and quantitatively agree well
with the numerically exact simulations in all parameter regimes we
explored.

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Model and numerical details

In this section, we use the mixed HEOM±Lindblad formalism60

(see Sec. I of the supplementary material) to simulate the LA spec-
tra of the single mode 1D HTC model. The reduced system part
is restricted in the ground and first excited manifolds under the

diabatic basis [see Eq. (12)], and ĥB is treated as bath DOF. We
briefly summarize the main model parameters used in numerical
simulations in Table I, which lead to a dimensionless parameter of
κN ≈ 1.26

√
N [see Eq. (28)] so that the bath is in the fast limit as

N increases. The bath parameters lead to a bare exciton linewidth
of about Γex ≈ 76.5 meV. Note that under the room temperature of
T ≙ 300 K, the thermal energy is about kBT ≈ 26 meV.

The LA spectra can be directly computed from the Fourier
transform of the dipole±dipole correlation function according to44,63

A(ω)∝ ∫ ∞

−∞

dt ⟨μ̂(t)μ̂(0)⟩eiωt , (38)

where the dipole±dipole correlation function is defined as

⟨μ̂(t)μ̂(0)⟩ ≙ Tr ∥μ̂(t)μ̂(0)ρ̂SS∥, (39)

where ρ̂SS is the steady-state reduced density matrix (RDM) obtained
using the HEOM steady-state solver,66,67 which has significant
advantages over the Krylov subspace solver or long-time prop-
agation using the RK-4 integrator. Details on the procedures of
the HEOM steady-state solver can be found in Ref. 67. For all
the numerical simulations, the dipole operator is expressed as
μ̂ ≙ (1/√N)∑N

j=1 (σ̂ j + σ̂
²

j), where a 1/√N prefactor is applied for

spectra intensity normalization. In addition, we set the static error
tolerance for self-consistent iteration (SCI) processes as 1 × 10−5 and
the hierarchy levels are all truncated automatically, which converges
within just a few steps. Note that with the filtering algorithm, the
numerical cost of the SCI is very low.

TABLE I. Parameters of the single mode 1D HTC model.

Parameter ω0 T λ ω f

Value 2.0 eV 300 K 30 meV 24.8 meV
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B. Polariton linewidth scaling with N

We first examine the effect of collective coupling to polariton
linewidths due to the polaron decoupling effect. By doing so, we set
the overall Rabi splitting to be much larger than the bath character-
istic frequency ω f , and for simplicity, we do not include the cavity
loss (Γc ≙ 0). The cavity frequency is set to be in resonance with the
exciton energy (ωc ≙ ω0 + λ). On the other hand, we keep the over-
all Rabi splitting ΩR < 400 meV so that η ≡ ΩR/(2ωc) < 0.1, which
does not enter into the ultrastrong coupling regime,37,68 ensuring
that the RWA is valid and the dipole self-energy (DSE) term is neg-
ligible.69 There are two schemes to explore the polaron decoupling
effect to polariton linewidths: one is fixing the single molecule cou-
pling strength gc and the other is fixing the overall Rabi splitting
ΩR, which does not influence the scaling relation of the polariton
linewidth with N.

Figure 1 represents the collective coupling effect of polariton
spectra by varying the number of molecules N under both the fast
and the slow limits for the zero detuning case. Panels (a)±(c) are
the results under the fast limit with ω f ≙ 24.8 meV. Figure 1(a)
represents the polariton spectra by fixing single molecule coupling
strength gc ≙ 68.1 meV and varying N. The total Rabi splitting is

ΩR ≙ 2
√
Ngc. One can see that as N increases, the total Rabi split-

ting increases. The polariton line shapes are Lorentzian-like, and the
linewidth becomes narrower due to the polaron decoupling effect.

Figure 1(a) represents the polariton spectra by fixing the total Rabi
splitting ΩR ≙ 385.2 meV and varying N. The single molecule cou-

pling strength is gc ≙ ΩR/(2√N). AsN increases, a similar linewidth
narrowing phenomenon is observed, being gc-independent. More-
over, the polariton peaks become asymmetric, showing an upper
polariton peak broader and less pronounced than the lower one. This
is attributed to the influence of the dark states (UP to the dark tran-
sition). The bare-molecule spectra are also provided in both panels
for comparison.

Figure 1(c) further shows the polariton linewidths plotted
against 1/N, which exhibit a linear trend. The blue and red open
circles are the FWHM of the LP and the UP obtained from the
LA spectra computed from our HEOM simulations, respectively.
The blue and red dashed lines are the corresponding linear fit-
ting results, with the coefficient of determination R2

≈ 0.999 for
both LP and UP. Moreover, the slope of the fitting curve for the
UP is smaller than the LP, meaning that the UP is less suscepti-
ble to the polaron decoupling effect than the LP. These results are
in perfect accordance with the 1/N scaling relation predicted in
Eq. (30b) under the fast limit. As a corollary, under the large N
limit and with the total Rabi splitting ΩR ≫ Γex, the exciton broad-
ening gradually vanishes at the polariton frequencies and only the
cavity broadening Γc/2 remains (if non-zero). As we can see from
Fig. 1(c), the blue dashed line extends roughly through the origin.
This is different compared to the previous work by Houdré et al.,26

FIG. 1. Effect of collective coupling. Here, ωc = ω0 + λ, the number of molecules vary from N = 1 to 8, and there is no cavity loss (Γc = 0). (a) Fixing the single molecule

coupling strength gc = 68.1 meV and varying N, the total Rabi splitting is ΩR = 2
√

Ngc. (b) Fixing the total Rabi splitting ΩR = 385.2 meV and varying N, the single molecule

coupling strength is gc = ΩR/(2
√

N). The bare-molecule spectra (blue) are also provided in both panels for comparison. (c) Polariton linewidths plotted against 1/N, where
the blue and red open circles are the FWHM of the LP and the UP measured from the LA spectra simulated by HEOM, respectively, and the blue and red dashed lines are
the corresponding linear fitting results (with R2 being the coefficient of determination). (d)±(f) The same as (a)±(c), but with ω f = 2.48 meV (slow limit), and the polariton

linewidth scales as 1/
√

N, as is shown in (f).
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which suggests that the linewidth is determined by the homogeneous
linewidth of the exciton and the finite lifetime of the cavity photon.
Note that in that work,26 a non-Hermitian effective Hamiltonian
is used to account for the homogeneous linewidth of the excitons,
whereas the inhomogeneous broadening of the exciton is added via
static energetical disorder among the excitons sampled from a Gaus-
sian distribution. This is in accordance with the slow limit of the
Kubo±Anderson theory,31 and the final linewidth is also constrained
by the non-Hermitian term in the effective Hamiltonian (i.e., the
exciton homogeneous linewidth). In our treatment, we use a micro-
scopic system±bath model (specifically, the HTC model) to describe
the exciton±phonon coupling, emphasizing the quantum nature of
the phonon environment. The crucial quantity in our treatment is
the phonon bath reorganization energy, which is directly related to
the discussions of polaron decoupling.

Figures 1(d)±1(f) further explore the collective coupling effect
under the slow limit. The parameters are kept the same as panels
(a)±(c) but with ω f ≙ 2.48 meV, which results in a dimensionless

parameter of κN ≈ 0.126
√
N ≪ 1 under a relatively small N [see

Eq. (28)]. One can see that the polariton line shapes are Gaussian-
like. As N increases, a similar linewidth narrowing phenomenon

is observed. Moreover, the linewidth scales as 1/√N as is exhib-
ited in (f), which is expected according to Eq. (29b) as well as the
Kubo±Anderson theory.31 Furthermore, the line shape is almost
symmetric for the UP and the LP branches due to much weaker
inter-branch scatterings.

C. Polariton line shape under various detunings

Next, we explore the effect of detuning on the polariton line
shape. Near the resonance condition (ωc ≙ ω0 + λ), the system
enters the polaron decoupling regime, which leads to linewidth nar-
rowing, and the polariton line shape is described by Eq. (30) under
the fast limit [or Eq. (29) under the slow limit]. On the other hand, in
the large detuning limit (ΘN → 0 or π/2), the system behaves like an
uncoupled system where the light and matter components are well-

FIG. 2. Spectral line shapes under different detunings near the resonance con-
dition (ωc ≈ ω0 + λ = 2.03 meV). Here, the system contains N = 4, the single
molecule coupling strength is gc = 68.1 meV, and the cavity loss rate is Γc = 44.15
meV.

separated. The polariton linewidths remain Γex for the matter end
and Γc for the photon end.

Figure 2 represents the spectral line shapes under different
detunings near the resonance condition (ωc ≙ ω0 + λ ≙ 2.03 eV). In
the numerical simulations, we control the parameters to always stay
in the strong coupling regime [see Eq. (23) as well as Appendix B]
to make the polariton peaks distinguishable from each other. Here,
we fix N ≙ 4 and gc ≙ 68.1 meV. The cavity frequency varies from
ωc ≙ 1.83 eV to ωc ≙ 2.23 eV. Figure 2(a) shows the results with a
cavity loss rate Γc ≙ 44.15 meV and Γex ≙ 76.5 meV. One can see
that for the red-detuned cases (ωc < ω0 + λ), the LP is dominated by
the photon component, with a width Γ̃− ∼ Γc, while the UP is dom-
inated by the exciton component so that Γ̃+ ∼ Γex. Moving toward
the resonance condition (ωc ≙ ω0 + λ ≙ 2.03 meV), the polariton
linewidths are narrower due to the polaron decoupling effect. Fur-
thermore, for the blue-detuned cases (ωc > ω0 + λ), Γ̃− ∼ Γex and
Γ̃+ ∼ Γc. The FWHM of all the polariton peaks is directly obtained
from the numerically simulated A

±

N(ω).
D. Characters of motional narrowing

Based on Sec. V C, one can extract the polariton linewidths with
respect to different detunings. Experimentally, there are two charac-
teristic phenomena associated with motional narrowing:14,18 (1) the
subaverage behavior for both the UP and the LP and (2) the asym-
metric linewidths between the UP and the LP. In this section, we
explore these effects via both the numerical exact simulations and
the analytic linewidth expressions in Eq. (34) (for LP) and Eq. (35)
(for UP).

Figure 3 exhibits the cavity frequency (or exciton fraction)
dependence of the polariton linewidths. Here, we fix the single
molecule coupling strength gc ≙ 68.1 meV and change the number
of molecules N. The cavity loss rate is Γc ≙ 44.15 meV, correspond-
ing to a quality factor of Q ≙ ωc/Γc ≙ 45.3 (with ωc ≙ 2.0 eV). For
panels (a)±(h), the HEOM results are in open circles, the analytic
linewidths in Eq. (34) (for LP) and Eq. (35) (for UP) are in solid lines,
and Eq. (21) are in silver dashed lines. Figures 3(a) and 3(b) repre-
sent the polariton linewidths (blue for the LP and red for the UP)
whenN ≙ 1, in which panel (a) is plotted against the cavity frequency
ωc, while panel (b) is plotted against the exciton fraction ∣Cex∣2 [see
Eq. (19)].

Figures 3(c)±3(h) are similar to panels (a) and (b), but with
N ≙ 2, 4, 8. One can see that for all panels, the analytic expressions
agree well with the numerical exact simulations for the linewidth of
both UP and LP states. In addition, the subaverage behavior is well
captured as both linewidths are lower than the silver dashed line
in our simulations, but more impressively, for the analytic answer
to semi-quantitatively describe them. As N increases, the subav-
erage behavior for the UP and the LP linewidth becomes more
pronounced. This is because, with a larger N, λN is smaller [see
Eq. (27)] so that the exciton contribution to the linewidth becomes
smaller (which scales as 1/N in the fast limit considered in the model
here) in the polaron decoupling regime. Furthermore, the differ-
ence between the UP and the LP linewidth becomes larger because
a larger number of dark states are presented, thus more channels
for inter-branch transitions. Here, the LP is generally narrower than
the UP except for the N ≙ 1 case (when there is no dark state). It is
pointed out by Savona et al.25 that in the collective strong coupling
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FIG. 3. Cavity frequency dependence of the polariton linewidths. Here, we fix gc = 68.1 meV and Γc = 44.15 meV. The HEOM results (open circles) and analytic theory in
Eqs. (34) and (35) (solid lines) are presented, where the blue and red symbols represent the linewidth of the LP and the UP states, respectively. The number of molecules
are (a) and (b) N = 1; (c) and (d) N = 2; (e) and (f) N = 4; and (g) and (h) N = 8. The top panels are plotted against the cavity frequency ωc, while the bottom panels are
plotted against the exciton fraction ∣Cex∣2 [see Eq. (19)]. The silver dashed line denotes the result of Eq. (21), which does not exhibit motional narrowing.

regime, the motional narrowing occurs mainly for the lower polari-
ton. The upper polariton, on the other hand, is affected by multiple
scatterings, which cause additional broadening. Our results are in
good agreement with the experimentally observed trends.14,18 On
the other hand, the linewidth expression in Eq. (21) does not change
with N so that the silver dashed line remains unchanged by varying
N, which means no motional narrowing. Equations (34) and (35),
on the other hand, do change with N due to the polaron decoupling
effect explicitly considered in these expressions. We also have results
under a smaller cavity loss rate (Γc ≙ 8.83 meV); see Sec. III of the
supplementary material.

Looking into the details, one can observe from the bottom pan-
els of Fig. 3 that both the UP and the LP linewidth exhibit a convex
distribution against the exciton fraction, which is more pronounced
asN increases. The analytic expression in Eq. (34) agrees nearly per-
fectly with the numerical exact results when ∣Cex∣→ 0, but becomes
less accurate as ∣Cex∣→ 1 and as N increases, which overestimates
the LP linewidth. Similarly, Eq. (35) describes the UP linewidth bet-
ter for ∣Cex∣→ 1 than ∣Cex∣→ 0. Both analytic and numerical results
in Fig. 3(h) capture the essential features of the recent experimental
observation by Rury et al.12,13 Furthermore, regarding the linewidth
differences between the UP and the LP, this effect is well captured by

FGR, which includes only UP to dark states (as well as to LP) scatter-
ing processes. We expect that polariton multiple scatterings (which
correspond to higher order processes that are beyond FGR) play a
less important role for the model parameters we considered, agree-
ing with the conclusion byWhittaker.28 Going beyond, we anticipate
that under larger electron±phonon coupling strengths where the
FGR theory starts to fail and it becomes necessary to perform non-
perturbative treatments to get the correct linewidths, then polariton
multiple scatterings shall become important. It is also worth men-
tioning that the FGR expressions in Eq. (37) work better for the
negative detuned cases than the positive detuned cases.65

VI. CONCLUDING REMARKS

Based on the single mode 1D HTC model, we have theoreti-
cally studied the motional narrowing effect using both the analytic
linewidth expressions [Eqs. (34) and (35)] and the numerical exact
simulations via HEOM. In the polaron decoupling regime, we have
demonstrated that the polariton linewidth scales as 1/N under the

fast limit, while scales as 1/√N under the slow limit, consistent
with the recent work based on Kubo±Anderson theory.31 The scaling

J. Chem. Phys. 161, 064105 (2024); doi: 10.1063/5.0225387 161, 064105-9

Published under an exclusive license by AIP Publishing

 0
9
 A

u
g
u
s
t 2

0
2
4
 1

4
:4

3
:0

3



The Journal

of Chemical Physics
ARTICLE pubs.aip.org/aip/jcp

relations are verified by numerical exact simulations. Furthermore,
both the UP and the LP exhibit a subaverage behavior, and UP is
usually broader than LP mainly due to inter-branch scatterings (or
non-Condon effect), which are the two major characteristics of the
motional narrowing effect. Our results agree well with the experi-
mental trends.12,13 Moreover, the analytic linewidth expressions in
Eqs. (34) and (35) agree well with the numerical exact results in all
the parameter regimes we explored. In brief, our results reveal that
motional narrowing effect can be adequately described using the sin-
gle mode 1DHTCmodel, which is also closely related to the polaron
decoupling effect.35,36

Despite the fruitful progresses, our analytic expressions and
numerical simulations have certain limitations. First, the analytic
expressions are empirical and with ad hoc corrections. The UP
linewidth expression works only when FGR is valid, which might
break down in certain parameter regimes.With regard to the numer-
ical exact simulations, the computational cost increases drastically
with N, which limits us to exploring only a small number of
molecules. Moreover, the HEOMmethod is usually restricted to cer-
tain forms of spectral density functions.70 Future theoretical efforts
are needed to address these problems.

Looking forward, the findings as well as the methods presented
in this work should be very useful for providing a better understand-
ing of the exciton±polariton motional narrowing effect.13 A direct
generalization of the current model could be extending it to 2D
with many cavity modes from the full dispersion curve,37,71 which
is then referred to as the generalized Holstein±Tavis±Cummings
(GHTC) model37 and would be the closest to experimental reality.72

A detailed study on the effect of the full cavity dispersion band and
dimensionality will be extremely valuable. On the other hand, real-
istic system±bath interactions are usually described by complicated
spectral density functions. For example, the super-Ohmic spectral
density is usually adopted for the CdSe nanoplatelet systems.40,73,74

To overcome the computational difficulties, the mixed-quantum-
classical (MQC) dynamics methods49,75,76 could be potentially very
useful in order to simulate the line shape of many nanoplatelet par-
ticles coupled to many cavity modes with a full dispersion.73,74 Last
but not least, the polariton linewidth at general detuned cases needs
to be derived based on the first principle, for instance, using the
Green’s function method,14,25,28,77 in which polariton multiple scat-
terings shall be carefully evaluated to obtain their contributions to
the polariton linewidth. These remain to be the future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional information on
the hierarchical equations of motion (HEOM) as well as the mixed
HEOM±Lindblad formalism; derivation for the inter-branch transi-
tion rate constants using Fermi’s golden rule (FGR), where numeri-
cal illustrations are also attached; and the polariton line shapes under
a smaller cavity loss rate (Γc ≙ 8.83 meV), as well as the resulting
motional narrowing characters.
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APPENDIX A: THEORY OF LINEAR ABSORPTION
SPECTRAL LINE SHAPE

Consider a two level system (with energy gap ω0) coupled to a
Drude±Lorentz bath, with spectral density

J(ω) ≙ 2λΛω

ω2
+Λ

2 , (A1)

where λ is the reorganization energy and Λ is the bath characteris-
tic frequency. The LA spectra under the Condon approximation are
expressed as follows:63

A(ω) ≙ 1

π
Re∫

∞

0
dt exp ∥i(ω − ω0)t∥ exp ∥−g(t)∥, (A2)

where g(t) ≙ g′(t) + ig′′(t), with
g
′′(t) ≙ −(λ/Λ)∥exp (−Λt) +Λt − 1∥, (A3a)

g
′(t) ≙ (λ/Λ) coth (h̵βΛ/2)∥exp (−Λt) +Λt − 1∥

+
4λΛ

h̵β

∞

∑
n=1

∥exp (−νnt) + νnt − 1∥
νn(ν2n −Λ2) , (A3b)
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where νn ≙ 2πn/(hβ) are known as the Matsubara frequen-
cies, which provide low-temperature correction. Under the high-
temperature limit of kBT ≫ hΛ, g(t) can be approximated as
follows:

g(t) ≈ 2λkBT

h̵Λ2 ∥exp (−Λt) +Λt − 1∥
− i(λ/Λ)∥exp (−Λt) +Λt − 1∥. (A4)

Define the following dimensionless parameter:

κ ≙

¿ÁÁÀ h̵Λ2

2λkBT
. (A5)

Equation (A2) has two well-known limits: one is the slow limit with
κ≪ 1. As a result, g(t) ≈ λkBTt2/h, which leads to a Gaussian line
shape,

A(ω) ≙ 1√
2πΔ2

exp [−(ω − ω0)2
2Δ2 ], (A6)

withΔ2
≙ 2λkBT/h. The other is the fast limit with κ≫ 1. As a result,

g(t) ≈ Γt − iλt, which leads to a Lorentzian line shape,

A(ω) ≙ 1

π

Γ/2(ω − ω0)2 + Γ2/4 , (A7)

with Γ ≙ 2λkBT/(hΛ). The above argument is directly applicable
to the ∣G, 0⟩→ ∣±⟩ optical transition for the HTC Hamiltonian
in Eq. (26c), when considering the system±bath coupling term
1
2
∥∣+⟩⟨+∣ + ∣−⟩⟨−∣∥⊗∑α

cα√
N
(b̂α,0 + b̂²

α,0) under the resonance case.
APPENDIX B: THE EFFECT OF CAVITY LOSS RATE

In this section, we explore the effect of cavity loss rate Γc on
polariton linewidths, which is a crucial component for the motional
narrowing. Here, the cavity loss is modeled by the Lindbladian
[Eq. (10)]. It is straightforward to see from Eqs. (21) and (34) that
under the resonance condition (ωc ≙ ω0 + λ), cavity loss contributes
to the polariton linewidths by an amount of Γc/2. Under the lossless
limit of Γc → 0, the polariton linewidths are dominated by exciton

FIG. 4. Effect of cavity loss to polariton line shapes. Here, we fix N = 4, gc

= 68.1 meV, and ωc = ω0 + λ (resonance condition). The cavity loss rate varies
from Γc = 0 (lossless) to Γc = 441.5 meV.

broadening, while under the lossy limit of Γc ≫ Γex, the polariton
linewidths are dominated by cavity broadening.

Figure 4 represents the effect of cavity loss on polariton line
shapes. Here, we fix N ≙ 4, the single molecule coupling strength
gc ≙ 68.1 meV, and the cavity frequencyωc ≙ ω0 + λ (resonance con-
dition). The cavity loss rate varies from Γc ≙ 0 (lossless) to Γc ≙ 441.5
meV. One can see that as Γc increases, the polariton linewidths
gradually increase, while the intensity decreases, and the total Rabi
splitting decreases, consistent with Eq. (22). At a very high loss

rate (Γc >√Ngc), one starts to see that two polariton peaks grad-
ually merge into one, indicating that the strong-coupling condition
[Eq. (23)] is no longer fulfilled. Our numerical results are in line with
the previous literature results.49,78,79
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