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ABSTRACT
We investigate the quantum dynamics of a spin coupling to a bath of independent spins via the dissipaton equation of motion (DEOM)
approach. The bath, characterized by a continuous spectral density function, is composed of spins that are independent level systems described
by the su(2) Lie algebra, representing an environment with a large magnitude of anharmonicity. Based on the previous work by Suarez and
Silbey [J. Chem. Phys. 95, 9115 (1991)] and by Makri [J. Chem. Phys. 111, 6164 (1999)] that the spin bath can be mapped to a Gaussian
environment under its linear response limit, we use the time-domain Prony fitting decomposition scheme to the bare–bath time correlation
function (TCF) given by the bosonic fluctuation–dissipation theorem to generate the exponential decay basis (or pseudo modes) for DEOM
construction. The accuracy and efficiency of this strategy have been explored by a variety of numerical results. We envision that this work
provides new insights into extending the hierarchical equations of motion and DEOM approach to certain types of anharmonic environments
with arbitrary TCF or spectral density.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0225734

I. INTRODUCTION

The dynamics of a two-level system (TLS) coupling to a dis-
sipative environment have been extensively investigated over the
past decades. The most widely and systematically studied one is the
spin-boson model,1–4 which has various applications in physics and
chemical dynamics in condensed phase.1–6 The environmental part
of the spin-boson model is a set of non-interacting harmonic oscil-
lators. This is reasonable as Caldeira and Leggett7 had justified the
universality of bosonic heat baths consisting of an infinite number
of harmonic oscillators that are linearly coupled to the system.

Apart from the bosonic environment, another typical environ-
ment of interest is a bath consisting of a set of spins,8,9 which can
be regarded as an extreme example of an anharmonic environment.
The spin–spin–bath (SSB) model denotes a TLS coupled with a

dissipative spin bath. It has recently drawn tremendous attention
due to interesting phenomena in physical setups. For example, it is
predicted and justified that at very low temperature, the dynamics of
magnetic nanoclusters, such as Fe8 and Mn12, is strongly influenced
by nuclear spins;10–14 for solid-state quantum computing devices
whose qubits are typically electron spins, such as GaAs quantum
dot15–17 and diamonds with nitrogen-vacancy (NV) centers,18,19 it
is inevitable for the qubits to be coupled to environmental spins.
The spin environment is also concerned in stylized quantum mea-
surement setups,20,21 the studies of quantum phase transition,17,22,23

and more recently, the radical pair spin relaxation as well as its
applications in quantum information processing.24–27 Being anhar-
monic but very simple (in terms of Hamiltonian), the SSB model
provides new insights into quantum dynamics in the condensed
phase.
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The theoretical treatment of the anharmonic spin bath has been
discussed by Suarez and Silbey,28 Makri,29 and later by Yan et al.30

They proved that under the thermodynamics limit (also known
as the linear response limit), the generally anharmonic spin bath
approximately satisfies the Gaussian statistics, despite that Ref. 28
did not prove the harmonic bath mapping except only for the special
case of pure dephasing, which is analytically treatable. As a result,
the spin bath can be effectively characterized by the familiar boson
bath with a modified spectral density function, which is much eas-
ier to treat by using a wide range of quantum dynamics methods.
On this basis, higher-order nonlinear effects can be further stud-
ied by considering a finite number of bath spins. Previous work
on the quantum dynamics of SSB types of models have been car-
ried out extensively by using the iterative path integral approach
based on influence functional,29,31,32 the multilayer multiconfigu-
ration time-dependent Hartree (ML-MCTDH)33 and the closely
related surrogate Hamiltonian34,35 approach, polaron-transformed
master equation,36 Nakajima–Zwanzig type of generalized master
equation,37 and the generalized hierarchical equations of motion
(gHEOM) that is based on the stochastic Liouville equation with
perturbative expansion scheme.38,39

A variety of approximation-based methods are also developed
and applied for the spin bath problems, such as the time-dependent
perturbation approach,40 phase space quasi-classical methods.41 A
number of cluster expansion (CE) approaches,42 including the clus-
ter correlation expansion,43–45 linked cluster expansion,46 and the
associated dynamical mean field theory,47 have been developed to
study the many-body bath time evolution. Nakamura and Tan-
imura48 studied the dynamics of a TLS that interacts with a sub-
environment consisting of a one-dimensional XXZ spin chain using
the hierarchical Schrödinger equations of motion (HSEOM), despite
that the noise generated from the spin-lattice is non-Gaussian and
non-local, and the spin chain environment is entirely different from
the TLS bath. It should be noted that the independent TLS bath
is rather trivial through harmonic mapping, while spin chains are
very challenging.2,49 The series of work done by Fay, Lindoy, and
Manolopoulos24,25,50–53 had provided a systematic theoretical frame-
work for electron spin relaxation in radical pairs that exposed to an
environment of nuclear spins, which includes full quantum mechan-
ical treatment of all spin degrees of freedom using tensor network
propagation strategy and master equation approaches based on the
Schulten–Wolynes semiclassical treatment to the nuclear spins. It
should be noted that for many problems in electron paramagnetic
resonance (EPR)/radical pair spin dynamics, where the spin bath is
large but finite, the spin-to-boson map is not valid because the lin-
ear response is not rigorously reached. As a result, one would need
to use the MCTDH and its multilayer extension, the path integral-
based approaches, or approximated approaches, such as perturbative
master equations and trajectory-based methods, which can deal with
discrete and finite spin modes. On the other hand, if the spin bath
is indeed very large, then one could assume the thermodynam-
ics limit and use a continuous function to fit the spectral density,
so that the spin-to-boson map can still be adopted, being a good
approximation.

Despite the fruitful progress, all these approaches have their
specific limitations. For example, increasing the memory length will
usually lead to less efficient propagation for the direct path integral-
based method. The recently developed SMaPI algorithm54,55 further

facilitated the long-memory calculations by eliminating the tensor
storage of the original path integral algorithm;56–58 the numerically
exact ML-MCTDH approach, which relies on a discretization strat-
egy for the continuous bath spectral density, is computational costly
to reach numerical convergence for models with high bath cutoff
frequency so that Born–Oppenheimer (BO) type of approximation
needs to be made;1,33 MCTDH is more computational demand-
ing under the finite-temperature case due to its dependence on the
Monte Carlo sampling strategy.59 Furthermore, almost all the work
mentioned above only takes care of the spin-1/2 case. In realistic
situations, however, the nuclear spin quantum numbers are usually
much larger than 1/2.

Regarding the limitations of current studies on the spin bath
mentioned above, a more general, numerically efficient, and accu-
rate theoretical framework needs to be developed. The dissipaton
equation of motion (DEOM) is a statistical quasi-particle theory for
quantum dissipative dynamics. Featured by the very powerful dissi-
paton algebras, it not only just recovers HEOM formalism60–62 but
also identifies the physical meanings of the dynamical variables.9,63

Equipped with the time-domain Prony fitting decomposition
(t-PFD)64 scheme, by which the environmental time correlation
function (TCF) can be accurately decomposed into exponential
sums, the efficiency and applicability of HEOM/DEOM is sig-
nificantly improved. Notably, the t-PFD scheme is, in principle,
applicable to arbitrary bath TCF or spectral density. Under the lin-
ear response limit, the theory of effective spectral density function
provides a perfect platform for us to play with t-PFD.

In this work, by taking advantage of the linear response
limit, we generalize the theory of effective spectral density func-
tion for spin bath with arbitrary bath spin quantum number S.
Then, we apply DEOM to study the spin relaxation dynamics of a
TLS coupling to the effective bosonic environment. The bath TCF
decomposition is achieved by t-PFD. This paper is organized as
follows: in Sec. II, we briefly review the spin bath model, its lin-
ear response properties, bosonic DEOM, and t-PFD scheme; in
Sec. III, we present various numerical testing results for SSB models,
including zero- and finite-temperature, weak and strong coupling,
unbiased and biased cases with comparisons against ML-MCTDH;
in Sec. IV, we briefly summarized the major advantage of our
method.

II. MODEL AND METHODOLOGY
The total TLS-plus-bath composite Hamiltonian of an open

quantum system reads as

Ĥ = ĤS + ĥB + ĤSB, (1)

where ĤS ≡ ϵσ̂z + Δσ̂x is the system Hamiltonian of a TLS
with energy bias ϵ and off-diagonal coupling Δ. Furthermore,
σ̂ ≡ (σ̂x, σ̂y, σ̂z) denotes the Pauli matrices; ĥB is the bath Hamilto-
nian that usually consists of a macroscopic number of noninteract-
ing particles that can be bosons, fermions, and/or spins. In addition,
ĤSB carries the system–bath interaction. The influence of the bath
entails quantum statistical mechanics description, in which the ther-
modynamics limit is naturally assumed. We set h ≡ 1 throughout this
paper for the sake of convenience.
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A. The spin bath models
The spin bath and its interaction with the system can be

described by the Hamiltonian in the following:29,33,39

ĥB =
N

∑
j=1

ωj ŝ j
z , (2a)

ĤSB = ∑
a

Q̂a ⊗ F̂a. (2b)

The bath Hamiltonian ĥB describes N independent spins, which
are distinguishable. It is diagonal in the {(ŝ j

)
2, ŝ j

z ∣ j = 1, . . . , N}

eigen representation, where ŝ j are the spin operators associated
with the jth bath mode, characterized by energy difference ωj. They
form the ⊗

N
j=1su(2) Lie algebra, [ŝi

α, ŝ j
β] = iδi jϵαβγ ŝi

γ, where α, β, γ
denote the Cartesian components of the spin matrices, ϵαβγ is the
3-D Levi–Cività tensor, and δij is the Kronecker symbol. Finally,
{Q̂a} and {F̂a} denote the system and bath dissipation modes,
respectively.

There are extensive types of spin–spin interaction, such as the
Ising type65 and the Heisenberg type,66 whose general expression
takes the form σ̂α ŝ j

β. Among the various choices, the most common
types can be summarized as39

ĤSB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
√

S
∑

N
j=1 cj ŝ j

xσ̂z ,

1
√

S
∑

N
j=1 cj ŝ j

z σ̂z ,

1
√

S
∑

N
j=1 cj(ŝ j

xσ̂x + ŝ j
y σ̂y),

1
√

S
∑

N
j=1 cj(ŝ j

xσ̂x + ŝ j
y σ̂y + ŝ j

z σ̂z),

(3)

where cj are the coupling coefficients between the system dissipation
operators and the jth bath mode, and S is the spin quantum num-
ber of the bath spins. In this paper, we focus on the first interaction
form in Eq. (3). According to Caldeira and Leggett,7 the bath and
its coupling to the system might be described by the spectral density
function, defined as

Jab(ω) ≡
π
2

N

∑
j=1

c∗a jcbjδ(ω − ωj), (4)

where the coupling coefficients are assumed to obey the general
scaling rule, ca j ∼ 1/

√
N.

It is worth noting that the spin bath is not generally a Gaussian
environment. Suarez and Silbey28 as well as Makri31 have remarkably
shown that under the limit of N → +∞, the SSB model with bath
spin quantum number S = 1/2, can be rigorously mapped onto the
familiar spin-boson model with an effective spectral density,

[Jab]eff(ω; β) = Jab(ω) tanh (βω/2), (5)

with the subscript a = b for the single mode case. More specifically,
only the second-order term remains in the cumulant expansion of
the influence functional under the N → +∞ limit. The higher order
cumulants O(1/

√
N) will disappear under the scaling limit. As a

result, the noise spectra of the bath dissipation operators are Gaus-
sians,28 leading to the linear response limit. The effective boson bath
spectral density is derived based on re-expressing the spin bath TCF
as the boson bath TCF multiplied by the tanh(βω/2) factor.31 There
is a straightforward example with respect to the pure dephasing case,
in which Δ = 0 such that the dephasing dynamics has an analyti-
cal solution, as discussed by Rao and Kurizki67 as well as Hsieh and
Cao.39

B. Linear response of the spin bath and generalized
theory of the effective spectral density function

As is discussed above, the continuous spin bath approximately
satisfies Gaussian statistics. The influence of Gaussian environ-
ments is completely characterized by the linear response functions
of hybrid bath modes in the isolated bare–bath subspace. For the
bosonic environment, it can be defined via the commutator as

χab(t) ≡ i⟨[F̂a(t), F̂b(0)]⟩B. (6)

Here, F̂(t) = eiĥ BtF̂(0)e−iĥ Bt exerts the stochastic force, and ⟨(⋅)⟩B
≡ trB[(⋅)ρeq

B (T)] denotes the ensemble average in the bath subspace,
with ρeq

B (T) ≡ e−βĥ B/trB[e−βĥ B]. For fermionic environments, the
similar concept can also be defined via the anti-commutator,2,9

Gab(t) ≡ ⟨{F̂a(t), F̂b(0)}⟩B, (7)

which is known as the single-particle Green’s function. The causality
Fourier transform of χab(t) and Gab(t) is defined as

χab(ω) ≡ ∫

∞

0
dt eiωti⟨[F̂a(t), F̂b(0)]⟩B, (8a)

Gab(ω) ≡ ∫

∞

0
dt eiωt

⟨{F̂a(t), F̂b(0)}⟩B. (8b)

One can easily check their symmetry (being even or odd func-
tions for real and imaginary parts). The spectral density functions
can be evaluated using time-reversal symmetry (TRS) as2

Jab(ω) ≡
1
2i

[χab(ω) − χ∗ba(ω)]

=
1
2∫

+∞

−∞
dt eiωt

⟨[F̂a(t), F̂b(0)]⟩B, (9a)

J′ab(ω) ≡
1
2
[Gab(ω) + G∗ba(ω)]

=
1
2∫

+∞

−∞
dt eiωt

⟨{F̂a(t), F̂b(0)}⟩B, (9b)

corresponding to the bosonic and fermionic cases, respectively.
Similarly, one can define the TCF and its spectrum functions as

Cab(t) ≡ ⟨F̂a(t)F̂b(0)⟩B, (10a)

Cab(ω) ≡ ∫

∞

0
dt eiωt

⟨F̂a(t)F̂b(0)⟩B. (10b)

Without loss of generality, we consider the case of linear
system–bath coupling with only one dissipation mode,
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F̂ ≡
1

√
S
∑

j
cj ŝ j

x, (11)

for the spin bath with S = 1/2. Here, we drop all the subscripts for
simplicity. One will finally arrive at its FDT with respect to the auto-
TCF of the bath dissipation operator,

C(t) =
1
π∫

+∞

−∞
dω

e−iωtJ′(ω)

1 + e−βω , (12)

and detailed derivations are provided in Appendix A. On the other
hand, one can independently obtain that

C(t) =
1
π∫

+∞

−∞
dω

e−iωtJeff(ω; β)
1 − e−βω , (13)

where Jeff(ω; β) ≡ J(ω) = J′(ω)tanh(βω/2), recovering Eq. (5),
the well-known result. Very interestingly, the continuous spin
environment is isomorphic to a boson environment with a
temperature-dependent effective spectral density function, whose
zero-temperature limit gives rise to J′(ω) = J(ω). For this reason,
the zero-temperature spin-boson model is also widely known as tak-
ing the spin-bath limit.68 Despite this being a well-known result, the
derivation procedure we outlined here is new.

Due to the generality of the linear response limit, the the-
ory of effective spectral density is widely applicable, so that it is
not restricted to S = 1/2 case, but to arbitrary S, as long as the
system–bath coupling is linear. We also provide discussions upon
arbitrary spin S case in Appendix A, which can be viewed as a gen-
eralization of the effective spectral density function theory. This
result, summarized in Eq. (A22) is a straightforward generalization
for S = 1/2 case. To the best of our knowledge, it is new despite it
being well expected.

C. Bosonic DEOM formalism
Based on the previous discussion, the open quantum system

problem with a continuous spin environment will be exactly mapped
to the familiar spin-boson type of model with an effective spectral
density function, which has the Hamiltonian description as given in
the following:

Ĥ = ĤS +
1
2∑j

ωj(x̂2
j + p̂2

j) +∑
a

Q̂a ⊗∑
j

c′a j x̂aj , (14)

where x̂ j and p̂ j are the conjugated coordinate-momentum pairs
that satisfy the Heisenberg commutation relations, {Q̂a} are the
original system dissipation mode, and {c′a j} are the rescaled cou-
pling coefficients due to the effective spectral density. The problem
is now readily to be solved by HEOM/DEOM.

The DEOM theory is a statistical quasi-particle theory for
quantum dissipative dynamics, describing the influence of bulk
environments using only a few numbers of quasi-particles, the
dissipatons.9,63 They arise strictly from the linear bath coupling
component,

F̂a =
K

∑
k=1

f̂ ak, (15)

with single-damping parameters given by

⟨ f̂ak(t) f̂bj(0)⟩B = δkjηabke−γakt , (16a)

⟨ f̂bj(0) f̂ak(t)⟩B = δkjη
∗
abke−γakt. (16b)

The associated index k in Eq. (16b) is defined as γak = γ∗ak to
preserve TRS. Further denote

⟨ f̂ak f̂bj⟩
>
B ≡ ⟨ f̂ak(0+) f̂ bj(0)⟩B = δkjηabk, (17a)

⟨ f̂bj f̂ak⟩
<
B ≡ ⟨ f̂bj(0) f̂ ak(0+)⟩B = δkjηabk

∗, (17b)

for later use in the dissipaton algebra. It should be noted that they
are different from ⟨ f̂ak f̂b j⟩B. Equations (15) and (16) leads to

⟨F̂a(t)F̂b(0)⟩B =
K

∑
k=1

ηabke−γakt , (18)

and its complex conjugation.
The dynamical variables in DEOM are the dissipaton density

operators (DDOs),

ρ(n)
n (t) ≡ TrB[(∏

ak
f̂ nak

ak )

○
ρT(t)], (19)

where ρT(t) is the time-dependent total density matrix, the
product of dissipatons inside (⋅ ⋅ ⋅)

○ means irreducible. In addition,
(c-number)○ = 0. Bosonic dissipatons are symmetric under the
permutation, ( f̂ ak f̂ b j)

○
= ( f̂ b j f̂ ak)

○. Each DDO in Eq. (19) rep-
resents a specific configuration of n ≡ {⋅ ⋅ ⋅ , nak, ⋅ ⋅ ⋅ ∣a = 1, . . . , M;
k = 1, . . . , K}, with n = ∑aknak dissipatons in total (i.e., the number
of tiers). We also denote that the associated DDO’s index n±ak differs
from n at the specified nak by ±1, which means nak is replaced by
nak ± 1.

The DEOM formalism can be constructed according to the dis-
sipaton algebra, which includes the generalized diffusion equation
and generalized Wick’s theorem. The generalized diffusion equation
arises from the single-damping character in Eq. (16), that

TrB[(
∂ f̂ ak

∂t
)

B
ρT(t)] = −γakTrB[ f̂ akρT(t)]. (20)

The generalized diffusion equation is applicable for the ĥB-action,

ρ(n)
n (t; h×B) ≡ TrB{(∏

ak
f̂ nak

ak )

○
[ĥB, ρT(t)]}

= TrB{[(∏
ak

f̂ nak
ak )

○
, ĥB] ρT(t)}

= −i(∑
ak

nakγak)ρ(n)
n (t), (21)

where h×B ⋅ ≡ [ĥB, ⋅], the second line of Eq. (21) arises from
the equivalence between the Schrödinger and Heisenberg pre-
scription, and the last line goes with Heisenberg equations of
motion, (∂ f̂ ak/∂t)B = −i[ f̂ ak, ĥB]. Equation (21) summarizes the
contribution by the bath Hamiltonian to the DDOs dynamics.9,63
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Generalized Wick’s theorem deals with the system–
hybrid–bath interaction, reading as

TrB[(∏
ak

f̂ nak
ak )

○
f̂ bjρT(t)] = ρ(n+1)

n+b j
(t) +∑

ak
nak⟨ f̂ ak f̂ bj⟩

>
Bρ(n−1)

n−ak
(t),

(22a)

TrB[(∏
ak

f̂ nak
ak )

○
ρT(t) f̂ bj] = ρ(n+1)

n+b j
(t) +∑

ak
nak⟨ f̂ ak f̂ bj⟩

<
Bρ(n−1)

n−ak
(t).

(22b)

They will be used in evaluating the commutator action of linear
system–bath coupling terms. The bosonic DEOM formalism is now
readily to be constructed, reading as9,63

ρ̇(n)
n (t) = −(iLS +∑

ak
nakγak)ρ(n)

n (t) − i∑
ak

Q×
a ρ(n+1)

n+ak
(t)

− i∑
abk

nak(η′abk Q
×
b + iη′′abk Q

○
b)ρ(n−1)

n−ak
(t). (23)

The involved superoperators and coefficients are defined in the
following:

LSÔ ≡ [ĤS, Ô], Q×
a Ô ≡ [Q̂a, Ô], Q○a Ô ≡ {Q̂a, Ô},

η′abk ≡
ηabk + η∗

abk
2

, η′′abk ≡
ηabk − η∗

abk
2i

.

The RK-4/RK-45 algorithm69 is usually adopted as the numerical
propagation scheme of Eq. (23). There are also on-the-fly filtering
algorithms available for acceleration.70

D. Time-domain Prony fitting decomposition
In this context, the central problem in DEOM is to decompose

the bare–bath TCF into a sum of exponential series. Based on FDT,
this can be realized by expanding-over-pole strategies, such as Mat-
subara spectral decomposition (MSD)2 and Padé spectral decompo-
sition (PSD),71–73 or various least-square fitting schemes.74–77 The
traditional expanding-over-poles strategies are usually restricted to
certain forms of bath spectral density. Here, we choose the t-PFD
strategy. The resulting numerical efficiency of HEOM/DEOM is
optimized to a great extent, especially in low-temperature regimes
that are usually inaccessible for other spectral decomposition
methods, such as the MSD and PSD approaches.

The t-PFD scheme is intrinsically based on a least-squares fit-
ting algorithm, in which the real and imaginary parts of TCF are
fitted separately. It is easy to extract from the bosonic FDT [cf.
Eq. (13)] that

Re[C(t)] =
1
π∫

+∞

0
dω Jeff(ω; β) coth(

βω
2

) cos (ωt)

=
1
π∫

+∞

0
dω J(ω) cos (ωt), (24a)

Im[C(t)] = −
1
π∫

+∞

0
dω Jeff(ω; β) sin (ωt)

= −
1
π∫

+∞

0
dω J(ω) tanh (βω/2) sin (ωt), (24b)

where the second line in Eqs. (24a) and (24b) are the explicit results
for S = 1/2 case. Intriguingly, temperature dependence is only car-
ried by the imaginary part of TCF, in line with the fermion bath but
the reverse of the boson bath.

Next, we target at optimizing K = Kr + K i in

Re[C(t)] =
Kr

∑
k=1

ζke−λkt , Im[C(t)] =
Ki

∑
k=1

ζ′ke−λ′kt , (25)

where Kr and K i are the number of terms in real and imaginary part
fitting, respectively. We accordingly denote the t-PFD strategy as
Kr + K i. See Ref. 64 and the reference therein for detailed procedures
of t-PFD, as well as the numerical benchmarks for several commonly
used spectral density functions. We also provide more illustrations
and examples on the performances of TCF fitting using t-PFD in
Appendix B, with respect to the most challenging SSB models we
tested.

E. Computational details
In this section, we present the numerical benchmark results of

the bosonic DEOM equipped with t-PFD for various SSB models.
The total Hamiltonian is in the following:

ĤS = ϵσ̂z + Δσ̂x, (26a)

ĥB =
N

∑
j=1

ωj ŝ j
z , (26b)

ĤSB = σ̂z ⊗∑
j

√
2cj ŝ j

x. (26c)

We use the Ohmic form8 with exponential cutoff for the
description of the continuous bath and its interaction with the
system,

J(ω) =
π
2

αωe−ω/ωc. (27)

In this expression, α is the Kondo parameter that characterizes the
system–bath coupling strength, and ωc is the bath cutoff frequency.
Since Eq. (27) is defined via Eq. (4), it is proved to be in line with
Eq. (9b), according to the discussions conducted in Sec. II B and
Appendix A.

The DEOM propagation uses the fourth-order Runge–Kutta
(RK-4) integrator with a time step of 0.0025/Δ, together with
the on-the-fly filtering algorithm70 with given error tolerance for
acceleration.

III. RESULTS AND DISCUSSIONS
A. Zero-temperature spin relaxation dynamics
and localization

Figure 1 shows the population dynamics P(t) ≡ ⟨σ̂z(t)⟩ for
zero-temperature unbiased SSB models (with ϵ = 0, to keep in
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FIG. 1. Population dynamics of the zero-temperature SSB models. The spin baths are parameterized as (a) α = 0.5 and ωc/Δ = 1. (b) α = 0.1 and ωc/Δ = 6. (c) α = 0.2
and ωc/Δ = 10. (d) α = 0.5 and ωc/Δ = 10. (e) α = 0.75 and ωc/Δ = 10. (f) α = 0.5 and ωc/Δ = 40. The ML-MCTDH results are digitized from Ref. 33.

consistence with the previous work). Even though they are equal to
the spin-boson models, they provide us with the first glimpse of the
power of t-PFD. Here, we uniformly set the error tolerance of the
on-the-fly filtering algorithm as 5 × 10−7. We have also confirmed
that the “empirical standard” error tolerance of 1 × 10−5 remains
accurate enough in the present cases when α ≤ 0.5. For the model of
Fig. 1(e) with coupling strength α = 0.75, the convergence test sug-
gests that the error tolerance should be set no larger than 1 × 10−6.
All the numerically converged results are obtained with the t-PFD
strategy 5 + 5 [Figs. 1(a)–1(d), and 1(f)] or 6 + 5 [Fig. 1(e)] to ensure
the accuracy in TCF fitting and large enough number of tiers in the
hierarchic expansion (here, 20 will be satisfying). The population
dynamics obtained by DEOM (black solid lines) are compared to
ML-MCTDH (red dots). In all the models presented, DEOM with t-
PFD perfectly matches the ML-MCTDH results, including the Rabi
oscillations and the incoherent relaxations.

Another important phenomenon about the unbiased SSB/spin-
boson model at zero temperature is localization,8 which the popula-
tion dynamics quickly reaches a biased stationary value. It is a typical
phenomenon when the time scale of the bath is comparable with or
longer than that of the subsystem.78–81 Within the adiabatic or inter-
mediate between the adiabatic and nonadiabatic regimes (that with
a modest ωc/Δ value), a large coupling strength (α > 1) will bring
about a large barrier height along the adiabatic double-well poten-
tial energy surface, such that localization of the population can be
induced.33

Figure 2 shows the convergence test of the localization
model (with ωc/Δ = 1, α = 10) using different t-PFD strategies.
This computation is rather challenging, as it generally requires a
lot of memory and central processing unit (CPU) time to reach

FIG. 2. Convergence test of the localization model (ωc/Δ = 1, α = 10) using
t-PFD strategies 2 + 2, 3 + 3, and 4 + 4. Comparisons are made against
ML-MCTDH (digitized from Ref. 33).
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convergence. To ensure numerical accuracy and efficiency, we turn
off the on-the-fly filtering module and set the number of tiers as
45 to stay accurate enough. The calculation is accelerated using the
deom_mpi package.82 It is observed that the t-PFD strategy 2 + 2
is already able to capture the localization phenomenon, but is not
accurate enough for population dynamics. At the expense of greater
computational cost, the result generated with the t-PFD strategy
3 + 3 and 4 + 4 exhibits better accuracy. It takes more than 110 h of
CPU time (Intel Xeon Gold 6330 CPU @2.00 GHz with 36 cores)
with a memory requirement of no less than 300 GB to produce
the 4 + 4 curve. The convergence is in good agreement with ML-
MCTDH. See Appendix B also for details about the accuracy of TCF
fitting under different t-PFD strategies.

B. Finite-temperature spin relaxation dynamics
and the localization–delocalization phase transition

Next, we turn to the finite-temperature cases. Figure 3 shows
the temperature dependence of spin relaxation dynamics for several
representative yet challenging SSB models.

In Fig. 3(a), P(t) under different temperatures, with bath para-
meters ωc/Δ = 6, α = 0.5 are shown [corresponding to Fig. 5(a) of
Ref. 33]. All the curves are computed after reaching a good con-
vergence using the t-PFD strategy 5 + 5. Figure 3(b) is similar to
Fig. 3(a), but computationally more challenging, with ωc/Δ = 10,
α = 0.75 [corresponding to Fig. 6(c) of Ref. 33]. We take the t-PFD
strategy 6 + 5 to reach the numerical convergence, even though 5 + 5
will already be accurate enough. The comparisons are also made
against ML-MCTDH. One can observe that at zero-temperature,
the population dynamics clearly exhibits an incoherent decay to the
equilibrium value P = 0. Increasing temperature by a little bit might
greatly change the paradigm of decay; further increasing tempera-
ture will induce stronger coherent motion in a short time period.
The temperature susceptibility is also closely related to the cou-
pling strength α.33 It is well-known that at zero-temperature, the
coherent–incoherent boundary is at α = 0.5 in the scaling limit.8
For the SSB model, high temperature can significantly raise up
this boundary value, as is also reported by Shao and Hänggi83

as well as Forsythe and Makri.84 It is very counter-intuitive yet
interesting that higher temperature will slightly enhance the coher-
ence for the central TLS in the nonadiabatic regime (ωc/Δ ≫ 1).
Physical interpretation of this abnormal phenomenon can be made
from the analysis of the mapping spin-boson model with effective
spectral density: Jeff(ω) has a smaller magnitude when temperature
increases, which renders weaker coupling to the central spin and
win over the thermal excitation quenching effect, resulting in more
coherent dynamics for the system TLS.33 Our results are in good
agreement with the previous work.

Figure 3(c) shows the temperature-dependence of the local-
ization model (ωc = 1, α = 10). All the curves are computed using
the t-PFD strategy 4 + 4 with good convergence. As is observed
when temperature increases, the population distribution gets a faster
decay and the bias gradually disappears, which is actually a kind
of phase transition.8,85 This is because the increasing temperature
will decrease the relaxation time of the bath so that the system TLS
becomes delocalized.

Although our results show that DEOM with t-PFD are overall
in excellent agreement with the ML-MCTDH results, we shall point
out that for a certain number of finite-temperature models presented

FIG. 3. Temperature-dependence in the coherent-incoherent transition of popula-
tion dynamics. The spin bath models are parametrized as (a) ωc/Δ = 6, α = 0.5.
(b) ωc/Δ = 10, α = 0.75. (c) ωc/Δ = 1, α = 10. The DEOM results (solid lines)
are compared to the ML-MCTDH results (solid dots, digitized from Ref. 33).
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here, especially for the one with kBT/Δ = 0.1 and 0.167 shown in
Fig. 3(b), there still exist minor discrepancies between DEOM and
ML-MCTDH results even by eye inspection. This should be rea-
sonable because ML-MCTDH adopts discretized bath modes and
B–O type of approximation for high-frequency bath modes;33 it is
also susceptible to the tensor network propagation scheme, while
HEOM/DEOM is able to use rigorously continuous bath modes.
The major resource of error for HEOM/DEOM comes from the
accuracy of bath TCF fitting after reaching convergence. Another
possible reason lies in the finite-temperature strategy. ML-MCTDH
adopts Monte Carlo importance sampling techniques86 to evalu-
ate the thermal Boltzmann operator, which is usually hard to reach
numerical convergence, while HEOM/DEOM resorts to FDT being
a deterministic pathway.

C. More results on the finite-temperature
biased models

As we know in realistic situations, the system is not always
unbiased. For example, when a Zeeman field is applied to the
central spin, the energy degeneracy will be broken, which is a com-
mon experimental setup to study the radical pair spin relaxation
dynamics.24 To this reason, we further study the spin relaxation
dynamics for biased models under finite temperature and compare
them to the corresponding spin-boson model with the same bath
parameters.

Figure 4 shows the converged population dynamics and von
Neumann entropy for several biased TLS (with ϵ = Δ) interacting
with a spin bath (SSB) or a boson bath (spin-boson). The von
Neumann entropy reads as

SvN(t) ≡ − Tr [ρ̂S(t) ln ρ̂S(t)], (28)

where ρ̂S(t) is the density matrix of the system TLS at time t.
Three different models from high temperature (β = 0.25) to low
temperature (β = 5) are presented here. As is observed for the
high-temperature model shown in Fig. 4(a), the SSB model keeps

much better quantum coherence than the corresponding spin-
boson model. The von Neumann entropy growth is also slower.
As expected, when temperature decreases, the behavior of the
SSB model gradually agrees with the spin-boson model. This can
be understood straightforwardly from the temperature-dependent
effective spectral density in Eq. (5) under different temperatures. As
β→∞, tanh(βω/2) → 1 in a wider span of bath mode frequencies.
It should be noted that the asymmetric TLS results presented here
have not been reported previously.

D. xy–xy type of couplings
In this section, we provide numerical results for the more gen-

eral SSB models, where the numerically exact DEOM results are
compared to the approximated TCL-2 results. In particular, we focus
on the xy–xy type of system–bath coupling, with

ĤSB =
1

√
S

N

∑
j=1

cj(ŝ j
xσ̂x + ŝ j

y σ̂y). (29)

Under this case, the bath TCFs have cross terms [as shown in
Eqs. (S42)–(S46) of the supplementary material], which are all
temperature-dependent. Here, the system parameters are ϵ = 0 and
Δ = 1.

Figure 5 shows the population dynamics of the SSB model with
xy–xy type of system–bath coupling, where we still assume an Ohmic
spectral density for the spin bath. The DEOM results (red solid lines)
are compared to the TCL-2 approach (dark blue dashed lines), with
details provided in the supplementary material. One can see that in
the short time regime, and for small α cases, the TCL-2 results agree
well with DEOM. While in the long-term regime, the TCL-2 results
deviate from DEOM.

The above-mentioned examples have demonstrated the gen-
erality of the theoretical framework, as well as the accuracy and
efficiency of the numerical implementations. In the supplementary
material, we further provide numerical results for the z–x type of

FIG. 4. Population dynamics and von Neumann entropy of the biased SSB and spin-boson models. The boson/spin baths are parameterized as (a) α = 0.4, ωc/Δ = 1, and
βΔ = 0.25. (b) α = 0.4, ωc/Δ = 2, and βΔ = 1.0. (c) α = 0.4, ωc/Δ = 2, and βΔ = 5.0.
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FIG. 5. Population dynamics of the SSB models with xy–xy type coupling, where the numerically exact DEOM results (red solid lines) are compared to the TCL-2 results
(dark blue dashed lines). Here, we still assume an Ohmic spectral density for the spin environment with ωc = 1.0, and (a) α = 0.1. (b) α = 0.2. (c) α = 0.4. The temperature
is zero.

coupling ĤSB =
1√

S∑
N
j=1 c j ŝ j

xσ̂z , as well as for the z–z type of cou-

pling ĤSB =
1√

S∑
N
j=1 c j ŝ j

z σ̂z . Models with xyz–xyz type of coupling
can also be easily simulated based on the DEOM formalism and the
spin-to-boson mapping relation.

IV. CONCLUDING REMARKS
We present the numerical benchmark results of the spin relax-

ation dynamics of various spin–spin–bath (SSB) models with con-
tinuous spectral density function by using DEOM with t-PFD. The
idea of mapping boson bath with temperature-dependent effective
spectral density is validated from a microscopic perspective and gen-
eralized to arbitrary bath spin quantum number S. The highlight of
this strategy is that one can approximate a class of non-Gaussian
bath to the Gaussian one under the linear response limit. By apply-
ing t-PFD to the bath TCF, one obtains the exponential decay basis
to construct DEOM and propagate. The accuracy and numerical effi-
ciency of this strategy are illustrated by various examples. DEOM
with t-PFD provides an excellent agreement with the ML-MCTDH
results reported in the literature, despite the rather challenging
model parameters. Moreover, compared to a previous work on the
SSB model based on ML-MCTDH, DEOM equipped with t-PFD has
the advantage that the bath spectral density is rigorously continu-
ous, and the finite-temperature strategy is based on FDT rather than
stochastic sampling, thus allowing an efficient long-time propaga-
tion. In summary, the strategy demonstrated in the current work
serves as a novel and more efficient benchmark scheme for quantum
dynamics with a spin bath. In addition, we would like to com-
ment on DEOM for spin 1/2 bath derived in Refs. 9 and 87, where
the DEOM is derived based on a set of assumed dissipaton alge-
bra, which includes certain mean-field approximations that have
yet to be thoroughly examined. While it is equivalent to the cur-
rent treatment in terms of the bare bath time-correlation function,
there are some differences in the equations of motion. We anticipate
that it may not necessarily yield results that are equivalent to those
obtained with the current approach.

The presented theoretical work provides new insights into
extending HEOM/DEOM to certain types of non-Gaussian

environments with arbitrary bath TCFs or spectral density func-
tions. Future research work on methods development shall be
carried out on more complicated types of interacting system–bath
models that are listed in Eq. (3), with the incorporation of quadratic
or higher order system–bath couplings, as well as the nonlinear
response effects; we would also like to seek for applications in the
simulation of radical pair spin relaxation dynamics that are exposed
to an environment of nuclear spins.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional informa-
tion on the spin-to-boson mapping relation with a more gen-
eral system–bath coupling and the numerical results for vari-
ous types of SSB models, where the DEOM and second-order
time-convolutionless (TCL-2) master equation are presented.
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APPENDIX A: FDT FOR THE SPIN BATH
AND THE EFFECTIVE BOSONIC ENVIRONMENT
1. S = 1/2 case

For spin-1/2 particles, we adopt the well-known Jordan–
Wigner correspondence88 for the spin operators,

d̂†
j ≡ ŝ j

x + iŝ j
y , (A1a)

d̂j ≡ ŝ j
x − iŝ j

y , (A1b)

ŝ j
z = d̂†

j d̂j −
1
2

, (A1c)

where d̂ j and d̂†
j are the mapping fermionic annihilation/creation

operators with anti-commutation relation on the same site. On dif-
ferent sites, we have bosonic commutation relations, which mean
spins on different sites commute, unlike fermions that are anti-
commute. For this reason, spins are also referred to as hard-core
bosons or spinless fermions,89 whose commutation relations can be
summarized as

{d̂j , d̂j} = {d̂†
j , d̂†

j} = 0, {d̂j , d̂†
j} = 1, (A2a)

{d̂j , d̂k} = 2d̂j d̂k, {d̂†
j , d̂†

k} = 2d̂†
j d̂†

k ,

{d̂j , d̂†
k} = 2d̂j d̂†

k , k ≠ j, (A2b)

[d̂j , d̂j] = [d̂†
j , d̂†

j] = 0, [d̂j , d̂†
j] = 1 − 2d̂†

j d̂j , (A2c)

[d̂j , d̂k] = [d̂†
j , d̂†

k] = [d̂j , d̂†
k] = 0, k ≠ j. (A2d)

As is shown that the hard-core bosons possess characters
of both bosons and fermions, one can either define the lin-
ear response functions using a commutator or the single-particle
Green’s function using an anti-commutator. Here, we will show both

possibilities. For convenience, let us first write down the time
evolution of single bath operators,

d̂†
j(t) = eiĥ Bt d̂†

j(0)e−iĥ Bt
= d̂†

j(0)eiωj t ,

d̂j(t) = eiĥ Bt d̂j(0)e−iĥ Bt
= d̂j(0)e−iωj t ,

(A3)

where we have used the well-known Baker–Campbell–Hausdorff
identity.90

We will start with the anti-commutator version. For each pair
of mapping spinless fermionic creation/annihilation operators d̂†

j

and d̂ j that satisfy the commutation relations defined in Eq. (A2),
the single-particle Green’s functions can be defined and evaluated as

⟨{d̂j(t), d̂†
k(0)}⟩B = δjke−iωj t ,

⟨{d̂†
j(t), d̂k(0)}⟩B = δjkeiωj t ,

⟨{d̂j(t), d̂k(0)}⟩B = ⟨{d̂†
j(t), d̂†

k(0)}⟩B = 0.

(A4)

So, we have

⟨{F̂(t), F̂(0)}⟩B = ∑
j

c2
j cos (ωjt). (A5)

As a result, the spectral density function is evaluated as [cf. Eq.(9b)]

J′(ω) =
1
2∫

+∞

−∞
dt eiωt

⟨{F̂(t), F̂(0)}⟩B

=
π
2∑j

c2
j[δ(ω − ωj) + δ(ω + ωj)], (A6)

which is an extension of the result given by Caldeira and Leggett7

[also see Eq. (4)] to negative frequencies ω < 0, while ensuring it to
be an even function.

The derivation via the commutator version is very similar to the
anti-commutator one. Following the same procedure, one can easily
obtain the bare–bath linear response function as

i⟨[F̂(t), F̂(0)]⟩B = ∑
j

c2
j⟨(1 − 2d̂†

j d̂j)⟩B sin (ωjt). (A7)

For independent spin S = 1/2 particles, we have

ZB ≡ TrB[e−βĥ B] = ∏
j

2 cosh(
βωj

2
), (A8)

one immediately obtains

i⟨[F̂(t), F̂(0)]⟩B = ∑
j

c2
j tanh(

βωj

2
) sin (ωjt). (A9)

In addition, the corresponding spectral density function reads as
[cf. Eq. (9a)]
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J(ω) ≡
1
2∫

+∞

−∞
dt eiωt

⟨[F̂(t), F̂(0)]⟩B

=
π
2∑j

c2
j tanh(

βωj

2
)[δ(ω − ωj) − δ(ω + ωj)], (A10)

which is an odd function. On the other hand, we can rewrite
Eq. (A10) as

J(ω) =
π
2∑j

c2
j tanh(

βω
2

)[δ(ω − ωj) + δ(ω + ωj)]

= J′(ω) tanh(
βω
2

), (A11)

where J′(ω) is defined in Eq. (A6), giving rise to the temperature-
dependent effective spectral density.

Combining Eqs. (A5) and (A9), one obtains

C(t) ≡ ⟨F̂(t)F̂(0)⟩B =
1
2∑j

c2
j[

e−iωj t

1 + e−βωj
+

eiωj t

1 + eβωj
]

=
1
2∑j

c2
j[δ(ω − ωj) + δ(ω + ωj)]

e−iωt

1 + e−βω

=
1
π∫

+∞

−∞
dω

e−iωtJ′(ω)

1 + e−βω , (A12)

which is just Eq. (12) in the main text, the FDT for spin bath. It
has an equivalent bosonic FDT formalism if one takes Jeff(ω; β)
≡ J(ω) = J′(ω) tanh(βω/2), giving rise to Eq. (13). Thus, the spin-
boson problem with an effective spectral density function arises
naturally.

An alternative but similar argument can be made by using
the coupled-fermion representation for spin operators (S = 1/2),
discussed by Mattis et al.,39,91,92 reading as

ŝ j
+ = ĉ†j(d̂j + d̂†

j), (A13a)

ŝ j
− = (d̂j + d̂†

j)ĉj , (A13b)

ŝ j
z = ĉ†j ĉj −

1
2

, (A13c)

where ĉ, ĉ † and d̂, d̂ † are two sets of fermion operators that anti-
commute with each other. On the other hand, since the mapping
fermionic bath operators still commute with the system operators
rather than anti-commute, it should also lead to the same bosonic
DEOM formalism, as is studied by Jin et al.93 based on the influence
functional.

2. Generalization to arbitrary spin S
Adopting the same angular momentum raising/lowering oper-

ators that are defined as

ŝ j
+ ≡ ŝ j

x + iŝ j
y , ŝ j

− ≡ ŝ j
x − iŝ j

y , (A14)

so that the original ⊗
N
j=1su(2) Lie algebra becomes

[ŝi
+, ŝ j

−] = 2ŝi
zδij , [ŝi

z , ŝ j
±] = ±ŝi

±δij. (A15)

Their time dependence can be evaluated as

ŝ j
±(t) = eiĥ Bt ŝ j

±(0)e−iĥ Bt
= ŝ j

±(0)e±iωj t. (A16)

The bare–bath partition function can be evaluated as

ZB =∏
j

⎛

⎝
2
[S]
∑
k=0

cosh ((k + {S})βωj) − Δ(S)
⎞

⎠
, (A17)

where [S] and {S} are the integer and fractional part of S,
respectively, with S = [S] + {S}; Δ(S) = 1 for S being integers; and
Δ(S) = 0 for S being half integers. As a result,

⟨ŝ j
z⟩B = −

∂ ln ZB

∂(βωj)
, ⟨(ŝ j

z)
2
⟩B =

∂2 ln ZB

∂(βωj)
2 . (A18)

It is also easy to obtain the bare–bath single particle Green’s function
and linear response function as

⟨{F̂(t), F̂(0)}⟩B =
1
S∑j

c2
j[S(S + 1) − ⟨(ŝ j

z)
2
⟩B] cos (ωjt), (A19a)

i⟨[F̂(t), F̂(0)]⟩B = −
1
S∑j

c2
j⟨ŝ j

z⟩B sin (ωjt). (A19b)

In addition, the corresponding spectral density functions can
be evaluated by Eqs. (9a) and (9b) as

J′(ω) =
π
2S∑j

c2
j[S(S + 1) − ⟨(ŝ j

z)
2
⟩B][δ(ω − ωj) + δ(ω + ωj)],

(A20a)

J(ω) = −
π
2S∑j

c2
j⟨ŝ j

z⟩B[δ(ω − ωj) − δ(ω + ωj)]. (A20b)

They are derived from a microscopic perspective, satisfying the
correct symmetry; however, neither of them gives rise to the orig-
inal definition of bath spectral density function given by Caldeira
and Leggett.7 One might choose to still use Eq. (4) and directly get
J(ω) in Eq. (A20b) as the effective spectral density or perform mod-
ifications to make it in accordance with Eq. (A20a) or (A20b). For
example, if we use [cf. Eq. (A20a)]

J′(ω) ≡
π
2S∑j

c2
j [S(S + 1) − ⟨(ŝ j

z)
2
⟩B]∣ωj=ω[δ(ω − ωj) + δ(ω + ωj)],

(A21)

where the footnote ωj = ω means replacing all the ωj in the prefactors
by ω. Then, the theory of effective spectral density function can arise
as

C(t) ≡ ⟨F̂(t)F̂(0)⟩B =
1
π∫

+∞

−∞
dωe−iωt Jeff(ω; β, S)

1 − e−βω ,

Jeff(ω; β, S) ≡ J(ω) = J′(ω)ζ(ω; β, S),
(A22)

with
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ζ(ω; β, S) ≡
1 − e−βω

2
×

S(S + 1) − ⟨(ŝ j
z)

2
⟩B − ⟨ŝ j

z⟩B

S(S + 1) − ⟨(ŝ j
z)

2
⟩B

∣

ωj=ω
. (A23)

One can check that ζ(ω; β, S = 1/2) = tanh(βω/2).
On the other hand, under the high spin limit of S ≫ 1,

Eq. (A20b) will reduce to the conventional form,

J(ω) =
π
2∑j

c2
j[δ(ω − ωj) − δ(ω + ωj)], (A24)

which is in line with the original definition in Eq. (4) but with odd
analytical continuation. As a result, the spin bath under the high spin
limit is isomorphic to the boson bath. This can be understood via the
Holstein–Primakoff transformation,94

ŝi
+ =

√
2S

√

1 −
b̂†

i b̂i

2S
b̂i ≈

√
2S b̂i,

ŝi
− =

√
2S b̂†

i

√

1 −
b̂†

i b̂i

2S
≈

√
2S b̂†

i ,

ŝi
z = S − b̂†

i b̂i,

(A25)

where b̂†
i and b̂i are bosonic creation/annihilation operators that

satisfy the Heisenberg commutation relations. Consequently,

F̂ =
1

√
S
∑

j
cj ŝ j

x ≈ ∑
j

cj
√

2
(b̂j + b̂†

j) ≡ ∑
j

cj x̂j , (A26)

where x̂ j ≡ (b̂ j + b̂†
j)/

√
2. Equation (A26) recovers the bath dissipa-

tion operator of the conventional spin-boson model.
One should find it straightforward to generalize the discussions

above to more complicated interacting system–bath models, which
might contain multiple dissipation modes, as listed in Eq. (3), by car-
rying out very similar arguments. The spectral density functions will
be anisotropic in such cases. Even more general, the linear response
limit can be easily applied to general finite baths,28,95 with multiple
dissipation modes, i.e., the individual bath particles are general level
systems with SU(N) symmetry. In these situations, the generators of
su(N) Lie algebra96,97 can be applied. Another pathway to establish
the theory of effective spectral density function could be achieved by
using the generalized Schwinger’s theory of angular momentum,98

which remains to be further explored.

APPENDIX B: THE NUMERICAL ACCURACY
OF t -PFD STRATEGIES

In this section, we will provide examples of different t-PFD
strategies to illustrate their numerical accuracy on TCF fitting.

Figure 6 shows the t-PFD results for the real and imaginary
parts of bare-bath TCFs. We take the most challenging model
with bath parameters ωc/Δ = 1, α = 10, and the bare-bath TCF
plateau time is taken as 40Δ with resolution dt = 0.01Δ uniformly.64

Figures 6(a) and 6(b) show the accuracy of fitting for the zero-
temperature model using different numbers of terms.99 As shown,
using four or five terms will be accurate enough to fit the real
and imaginary parts of the TCF, respectively. Figures 6(c) and 6(d)
show the fitting results of finite-temperature models using the 4 + 4
scheme. It is observed straightforwardly that the real part of TCF is

FIG. 6. t-PFD fitting results for the spin bath with ωc/Δ = 1, α = 10. Panels (a) and
(b): real and imaginary part fitting results for the zero-temperature model using 2,
3, 4, and 5 terms, respectively. Panels (c) and (d): real and imaginary part fitting
results for different finite-temperature models using four terms; the dashed lines
represent the exact TCF, and the solid lines represent the fitting results, which are
almost overlapped.

temperature-independent, and only the imaginary part varies with
temperature, in accordance with Eq. (24). The finite-temperature
models are expected to be more difficult to be accurately fitted than
the zero-temperature model. Here, all curves are accurately fitted
using the 4 + 4 scheme by eye inspection.

In summary, to reach better accuracy, one will need to use more
terms, but the expense is that the computational cost grows drasti-
cally. For practical use, one will need to explore the proper t-PFD
strategy to balance accuracy and computational cost with regard to
the specific bath types and parameters.
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