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ABSTRACT

We outline two general theoretical techniques to simulate polariton quantum dynamics and optical spectra under the collective coupling
regimes described by a Holstein–Tavis–Cummings (HTC) model Hamiltonian. The first one takes advantage of sparsity of the HTCHamilto-
nian, which allows one to reduce the cost of acting polaritonHamiltonian onto a state vector to the linear order of the number of states, instead
of the quadratic order. The second one is applying the well-known Chebyshev series expansion approach for quantum dynamics propagation
and to simulate the polariton dynamics in the HTC system; this approach allows us to use a much larger time step for propagation and only
requires a few recursive operations of the polariton Hamiltonian acting on state vectors. These two theoretical approaches are general and can
be applied to any trajectory-based non-adiabatic quantum dynamics methods. We apply these two techniques with our previously developed
Lindblad-partially linearized density matrix approach to simulate the linear absorption spectra of the HTCmodel system, with both inhomo-
geneous site energy disorders and dipolar orientational disorders. Our numerical results agree well with the previous analytic and numerical
work.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0243535

I. INTRODUCTION

Coupling molecular excitations to a quantized radiation field
inside an optical cavity produces a set of light–matter hybrid states
known as polaritons. These polariton states, which are a hybridiza-
tion of matter excitation and photonic excitation, have shown
interesting photophysical properties. In particular, the light–matter
interaction has been shown to effectively reduce the coupling
between excitons and phonons, which is commonly referred to
as the polaron decoupling effect.1,2 This polaron decoupling effect
results in an enhanced charge transfer rate constant1 and a reduc-
tion in the homogeneous linewidth of spectra3,4 and causes ballistic

exciton–polariton transport.5–7 In particular, the exciton–polariton
coherence lifetime could be significantly prolonged due to reduced
coupling with the phonon bath.4,8

Linear spectroscopy9,10 and nonlinear spectroscopy4,11–15 are
powerful measurements that provide a fundamental understand-
ing of the photophysics of polariton systems. To capture the
essential features of polariton photophysics, one needs to simulate
N molecules collectively coupled to the cavity mode, typically
using the Holstein–Tavis–Cummings (HTC) model Hamiltonian.
Furthermore, one needs to explicitly incorporate exciton energy
disorders (inhomogeneous disorder) and dipole orientational dis-
orders for the molecule–cavity coupling interactions. In the typical
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experimental setup, one couples N = 103–104 nanoplatelets to the
cavity,8,16–19 or at least N = 106 organic molecules to one cavity
mode. When there is no disorder present in the HTC Hamilto-
nian, one can in principle take advantage of the permutational
symmetry of the problem and solve the problem with a mean field
solution20,21 or the recently proposed CUT-E approach22,23 for the
zero-temperature case and with a single high-frequency vibration
mode per molecule. With the presence of various disorders (and no
apparent symmetry in the system), it is computationally challeng-
ing to directly stimulate the polariton dynamics when there are a
largeN of molecules coupled to the cavity, although there is progress
in effectively describing static disorders as energy bins while tak-
ing advantage of the symmetry in HTC-type Hamiltonian.22,23 The
tensor train decomposition method24 in principle could handle
HTC-type dynamics with disorders but remains computationally
expensive due to the full quantum mechanical treatment for all
degrees of freedom (DOFs).

In our previous work, we have combined the partial linearized
density matrix (PLDM) approach25–28 with stochastic Lindblad
dynamics to simulate polaritonic spectroscopy in lossy cavities. To
include the cavity loss dynamics, we develop stochastic Lindblad
dynamics, which exactly reproduce the Lindblad dynamics when
averaged over an ensemble of trajectories. With simulated linear
and 2D Electronic Spectra (2DES) of the polariton, we systematically
investigated the influence of the light–matter coupling strength and
cavity loss rate on the optical signals. In particular, we demonstrate
that the polariton coherence (interpreted from the off-diagonal peak
of the 2D electronic spectra) can be significantly prolonged by
increasing the light–matter coupling strength, providing a theoret-
ical verification of the polaron decoupling effect.4 We now aim to
generalize our approach to the collective coupling situation, where a
large N of molecules are collectively coupled to a cavity mode, with
the presence of various types of molecular disorders.

In a series of two papers, we aim to develop an efficient
and accurate approach to simulate the nonlinear spectra of the
molecule–cavity hybrid system under the collective coupling regime.
In Paper I (this work), we will focus on introducing two theoretical
techniques that allow one to significantly reduce the computational
cost of simulating the quantum dynamics of the HTC system with
various types of disorders. We will focus on the linear spectra
simulation. In Paper II, we will outline the theoretical details of
stimulating 2DES for the polariton system under the collective cou-
pling regime, with new computational techniques for the focusing
algorithm of the PLDM simulation.

In this paper (Paper I), we outline two general theoretical tech-
niques. The first one is related to the sparsity of the HTC Hamilto-
nian, which allows one to reduce the cost for the action of polariton
Hamiltonian onto a state vector to the linear order in the number
of states, instead of the quadratic order. The second one is applying
the well-known Chebyshev series expansion approach for quantum
dynamics propagation and to simulate the polariton dynamics in the
HTC system. The Chebyshev expansion approach allows us to use a
much larger time step for propagation and only requires a few recur-
sive operations of the polariton Hamiltonian acting on state vectors,
which can further take advantage of the first technique we developed
in this work. These two theoretical approaches are general and can
be applied to any trajectory-based non-adiabatic quantum dynam-
ics methods29–34 or Gaussian wavepacket-based approaches.35,36 We

focus on simulating the linear absorption spectra of the HTC model
system, with both inhomogeneous site-energy disorders and dipo-
lar orientational disorders. With the significant reduction in the
computational costs, we can directly simulate collective polariton
dynamics with up to N = 105. Our numerical results agree well with
the previous analytic37 and numerical work.38

II. POLARITON QUANTUM DYNAMICS

A. Model Hamiltonian

We describe the system of N-molecules coupled to a single
cavity mode by the Holstein–Tavis–Cummings39 Hamiltonian

ĤHTC = Ĥs + Ĥb + Ĥsb, (1)

where Ĥs is the Hamiltonian of the system, Ĥb is the Hamiltonian
for bath DOF, and Ĥsb is the system–bath interaction. The system
Hamiltonian consists of excitonic and photonic DOFs,

Ĥs = (Ĥex + Ĥph)⊗ Ā̂b + Ĥex−ph⊗ Ā̂b, (2)

where Ĥex is the molecular (excitonic) Hamiltonian, Ĥph is the pho-
tonic Hamiltonian, Ĥex−ph is the exciton–photon interaction, and
Ā̂b is the identity operator in the bath subspace. The excitonic Hamil-
tonian consists of N uncoupled molecules, each with an onsite
energy ·n. The excitonic Hamiltonian can be written as

Ĥex =

N

∑
n

·nÃ̂
†
nÃ̂n⊗ Ā̂ph. (3)

Here, Ã̂†
n = ∣enð⟨gn∣ and Ã̂n = ∣gnð⟨en∣ create and annihilate an exci-

tation on the nth molecule, respectively, with ∣gnð and ∣enð as the
ground and excited states for molecule n, and Ā̂ph is the identity
operator for the photonic subspace. The photonic Hamiltonian is
described by a single cavity mode,

Ĥph = Ā̂ex⊗ h̵Éc(â †
â +

1
2
), (4)

where â † and â create and annihilate a photonic excitation (a pho-
ton) associated with the cavity mode, respectively, with energy hÉc,
and Ā̂ex is the identity operator for the excitonic subspace. The
operators obey the commutation relation [â, â †] = Ā̂ph. We fur-
ther assume the rotating wave approximation for the light–matter
coupling term,

Ĥex−ph =∑
n

h̵g
n
c (Ã̂†

nâ + Ã̂nâ
†), (5)

with gnc being the coupling strength for the nth exciton,

g
n
c =

√
h̵Éc

2Vϵc
¾̂n ⋅ ê =

√
h̵Éc

2Vϵc
¾n ⋅ cos ºn. (6)

Here, ¾n is the magnitude of the transition dipole moment of the
nth exciton, ê is the field polarization direction, and ºn is the angle
between ¾̂n and ê. Furthermore, V is the mode volume of the cavity
and ϵc is the permittivity inside the cavity.
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In addition, each molecular exciton is also coupled to a num-
ber of phonon modes that constitute the molecular bath. The bath
Hamiltonian is described by

Ĥb = Ā̂s⊗ [12
N

∑
n=1
∑
¿

(P̂2
n,¿ + É

2
n,¿R̂

2
n,¿)], (7)

where P̂n,¿ and R̂n,¿ are the momentum and position operators
of the ¿th phonon on the nth matter site of frequency Én,¿ and
Ā̂s = Ā̂ex⊗ Ā̂ph is the identity operator of the “system” subspace
that includes the excitonic and photonic DOFs. These bath DOFs
are coupled bi-linearly to the excitonic sites providing diagonal
fluctuations to on-site energies,

Ĥsb =∑
n

(Ã̂†
nÃ̂n⊗ Ā̂ph)⊗(∑

¿

Cn,¿R̂n,¿), (8)

where Cn,¿ is the strength of coupling between the nth exciton and
the ¿th phonon (vibrational mode). For the nth exciton, the phonon
frequencies and coupling strength are sampled from the Debye
spectral density40

Jn(É) = Ã

2
∑
¿

C2
n,¿

Én,¿
¶(É − Én,¿) = 2½bÉbÉ

É2
b + É

2 , (9)

with ½b being the bath reorganization energy and Éb being the char-
acteristic frequency of the bath. To perform linear and non-linear
spectroscopy simulations, we use the matter dipole operator for
computing multi-time correlation functions,41–45

¾̂ =
N

∑
n

¾n(Ã̂†
n + Ã̂n)⊗ Ā̂ph, (10)

where ¾n is the magnitude of the transition dipole of excitation
for the nth molecule. Cavity loss is not explicitly considered in the
Hamiltonian. The loss effect is incorporated through the stochas-
tic Lindblad approach developed in some previous work,46,47 with a
brief summary provided in Appendix A.

B. Polariton states

The diabatic eigenstates of Ĥs are defined as

Ĥs∣³ð = ϵ³∣³ð. (11)

When only considering the single excitation subspace ∣ jð
= {∣gð⊗ ∣1ð, ∣enð⊗ ∣0ð} (where ∣gð ≡⊗ ∣gnð) with degenerate
exciton energy ·n = · and identical light–matter couplings gnc = gc,
Eq. (11) has a well-known analytic solution, with two bright
polariton states10,48–51

∣+ð = cosΘN[ 1√
N

N

∑
n=1
∣enð⊗ ∣0ð] + sinΘN ∣gð⊗ ∣1ð, (12a)

∣−ð = − sinΘN[ 1√
N

N

∑
n=1
∣enð⊗ ∣0ð] + cosΘN ∣gð⊗ ∣1ð, (12b)

where the mixing angle is

ΘN =
1
2
tan−1[2√Nh̵gc

h̵Éc − ·
] ∈ [0, Ã

2
), (13)

and N − 1 dark states for k ∈ {1, . . . ,N − 1},
∣Dkð = 1√

N

N

∑
n=1

exp(−2Ãi nk
N
)∣enð⊗ ∣0ð. (14)

The polariton and dark states have the energy of

·± =
· + h̵Éc

2
±
1
2

√(· − h̵Éc)2 + 4Nh̵
2
g
2
c , (15a)

·Dk
= ·, (15b)

where the eigenenergies of polariton states are split from the origi-
nal exciton energy and the dark states have degenerate energies that
are identical to the exciton energy. As shown in Ref. 49, the ana-
lytic solution10,48,49 is also available for Ĥs. For the zero-detuning
case · = hÉc, the Rabi splitting is h̵¬R = ·+ − ·− = 2

√
Nh̵gc, and the

strong coupling limit39,50 is achieved when ¬R k
1
2(� + ¼), where

� is the cavity loss rate (linewidth of the cavity transmission spectra,
Äc = 1/� is the cavity lifetime) and ¼ is the exciton linewidth.

Note that the polariton states defined in Eq. (12) and the dark
states defined in Eq. (14) are diabatic in nature, because there is no
nuclear configuration dependence. In this case, the exciton–phonon
couplings Ĥsb will couple these polariton states and make transi-
tions among them.8,51,52 Meanwhile, one can also choose to define
Ĥs + Ĥsb as the polariton Hamiltonian, whose eigenvector will be
adiabatic polariton and dark states, and both of their characters will
parametrically depend on the nuclear configuration.53 In this case,
the phonon fluctuation caused by Ĥsb on polariton and dark states
will be counted as the adiabatic polariton energy fluctuations, and
the transitions among these adiabatic polariton and dark states are
caused by the nuclear kinetic energy operators (as the derivative cou-
plings). This is the picture used in the theoretical simulations in
Ref. 53 (see Fig. 4 in that reference), where the “adiabatic dark
state” is no longer purely dark, but can be called the “gray-dark
states” because they have a little photonic contribution. Meanwhile,
once considering static disorder in exciton energy, then one starts
to lose the symmetry of the HTC Hamiltonian, and even the dia-
batic definition of the dark states will become non-dark (as can be
observed in the linear spectra; see Fig. 6(b) for Ã = 0.2 eV static
disorder).

C. Trajectory based quantum dynamics approach

In this work, we consider the trajectory-based quantumdynam-
ics simulations for the HTC model, which treat Ĥs + Ĥsb as the
quantum subsystem,

ĤQ = Ĥs + Ĥsb, (16)

and Ĥb as the classical subsystem.We want to explicitly consider the
static energy disorders in site energy ·n [inhomogeneous disorder,
see Eq. (75)] as well as the dipole orientation disorder in cos ºn for
the light–matter interaction terms.

In particular, we will use the partial linearized density matrix
(PLDM) dynamics method,25–27,47,54,55 but the outlined theoretical
schemes can be applied to any mixed quantum–classical (MQC)
method, including the mean-field Ehrenfest dynamics, the trajec-
tory surface hopping approach,56,57 or trajectory-based semiclassi-
cal methods such as the linearized semiclassical approach58–61 and
symmetrical quasiclassical approach (SQC).62,63
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These trajectory-based quantum dynamics methods typically
require the quantum propagation of the quantum state vector,

ih̵
∂

∂t
∣«(t)ð = ĤQ(R(t))∣«(t)ð. (17)

For a given diabatic basis {∣ jð} [for example, Eqs. (22)–(24)], one
can expand ∣È(t)ð = 3j cj(t)∣ jð, and Eq. (17) becomes

ih̵ċk(t) =∑
k

⟨k∣ĤQ(R(t))∣ jð ⋅ cj(t). (18)

Note that both ĤQ and ∣«(R(t))ð depend parametrically on
the bath configuration, R(t) ≡ {Rn,¿(t)}. The nuclear DOF is
updated through the classical equations of motion, with different
types of forces that depend on ∇R(Ĥsb + Ĥb), such as Ehrenfest
dynamics (and similarly for other mean-field-like approaches) with
F jk = −c

∗

j ck∇R⟨ j∣(Ĥsb + Ĥb)∣kð, and for the HTC Hamiltonian
special case, the nuclear force on the bath modes of the jth exciton is

F j = −∣cj ∣2∇R⟨j∣(Ĥsb + Ĥb)∣ jð, (19)

which is purely diagonal due to the diagonal Ĥsb in the diabatic basis
[Eqs. (22)–(24)]. For the trajectory surface hopping approach, the
nuclear force is F = −∇R⟨J(R)∣(Ĥsb + Ĥb)∣J(R)ð, where ∣J(R)ð is
an active adiabatic surface (an eigenstate of ĤQ) that is determined
stochastically through a given algorithm (such as the most widely
used fewest switches algorithm56,57).

The main challenge of solving Eq. (18) for the HTC Hamil-
tonian under the collective coupling regime is the large number
of N that one has to incorporate. The right-hand side of the dif-
ferential equation, ĤQ∣«ð, requires the operation of ĤQ matrix on
a state vector cj(t). For the HTC Hamiltonian with N molecules
and one cavity mode, there are K = N + 1∝ O(N) states in the
single excitation subspace and K = N(N − 1)/2 +N + 1∝ O(N2)
states in the double excitation subspace. Meanwhile, the force evalu-
ation for a mean-field-like approach of the HTC model [Eq. (19)]
only scales with O(K) due to the purely diagonal structure of
Ĥsb, in the diabatic site basis. The typical experimental condition
requires N = 106–1012, resulting in a very large K, and the compu-
tational work12,24,29,30,38 is often limited by N = 101–102 due to the
computational cost.

The other possibility is to consider the propagator approach
instead of solving the Time Dependent Schrodinger equation
(TDSE) [Eq. (18)] directly. Note that ĤQ contains a static part of
Ĥs (with a very special symmetry) and a purely diagonal part Ĥsb

that depends on R(t). One can consider the following symmetrical
Trotter splitting:

∣«(t + �t)ð ≈ e− i
̵h
Ĥ sb�t/2e

−
i
̵h
Ĥ s�te

−
i
̵h
Ĥ sb�t/2∣«(t)ð, (20)

with the accuracy up to O(�t3) [which can be easily shown by
using the Baker–Campbell–Hausdorff formula in Eq. (11.197) from
Ref. 64]. Using a diabatic basis ∣ jð and the polariton basis ∣³ð [see
Eq. (11)], one can rewrite Eq. (20) as

∣«(t + �t)ð =∑
k

ck(t + �t)∣kð
≈∑

k

∣kð∑
j³

e
−

i
̵h
½k�t/2⟨k∣³ðe− i

̵h
ϵ³�t⟨³∣ jðe− i

̵h
½j�t/2cj(t),

(21)

where ϵ³ is the diabatic polariton energy defined in Eq. (11),
½ j = ⟨j∣Ĥsb(R)∣ jð is the pure diagonal contribution of the
system–bath coupling (that parametrically depends on R), and
cj(t) = ⟨ j∣«(t)ð. In principle, one needs to diagonalize Ĥs to obtain
ϵ³ and {⟨³∣ jð} at a cost of O(K2) [see Refs. 65–67, due to the sym-
metry of Ĥs, instead of the usual cost of O(K3) for diagonalizing
an arbitrary K × Kmatrix]. Nevertheless, because these are diabatic
quantities, one can in principle compute them only once and store
them. Of course, when only single- and double-excitation subspaces
are considered, these results are (almost) analytically available.10,48,49

When only considering the single excitation subspace ∣ jð = {∣gð
⊗ ∣1ð, ∣enð⊗ ∣0ð}, the expression of Sk j(�t) ≡ 3³ ⟨k∣³ðe− i

̵h
ϵ³�t⟨³∣ jð

is analytically available and can be precomputed and stored. One

just needs to multiply the S̃k j ≡ e
−

i
̵h
½k�t/2Sk j(�t)e− i

̵h
½ j�t/2 matrix

onto the cj(t) column matrix to get the result of ck(t + �t), which
in principle still requires a cost of O(N2).

As such, for the quantum dynamics problem of the HTC
system, the main computational bottleneck is the ĤQ∣«ð evalua-
tion. One would also want to avoid directly diagonalizing ĤQ, as
well as increase the time step �t for the dynamics propagation as
much as possible (because each step requires at least one ĤQ∣«ð
evaluation) while keeping the propagation stable. In Sec. III, we
introduce several techniques that can significantly reduce the com-
putational costs of propagating Eq. (17). These techniques can be
broadly applied to any MQC trajectory-based methods for polariton
quantum dynamics simulations.

III. THEORETICAL APPROACHES

We demonstrate strategies to efficiently manipulate
matrix–vector multiplications to reduce the computation cost
of semiclassical simulations. When considering the single excitation
subspace, the size of the Hilbert space scales as K∝ O(N), and
solving the TDSE in principle requires the operation of O(K2)
∝ O(N2). When considering the Hilbert space up to the sec-
ond excitation subspace (for 2DES simulations in Paper II) K

∝ O(N2), the quantum dynamics simulation will in principle
require a cost of O(K2)∝ O(N4). To reduce the scaling of the
cost, we first demonstrate how the action of ĤQ on ∣«(t)ð can be
written as the sum of a simple Hadamard product of vectors that
reduces matrix–vector multiplication from O(N2) to O(N) for
single excitation subspace and O(N4) to O(N2) for up to double
excitation subspace. We demonstrate a similar scaling reduction
for the action of the dipole operator on the wavefunction, which is
relevant for linear and non-linear spectra calculations. We further
apply a Chebyshev series expansion approach to simulate the
polariton dynamics in the HTC system. The Chebyshev expansion
approach allows us to use a much larger time step for propagation
and only requires a few recursive operations of the polariton
Hamiltonian acting on state vectors, which can further take
advantage of the scaling reduction due to the sparsity of the HTC
Hamiltonian.

The theoretical approach we outlined here can be widely appli-
cable to anymixed quantum–classical methods to simulate polariton
dynamics (population, coherence, and different types of correlation
functions). The scaling reduction in the single excitation subspace is
the most relevant part of the linear spectra simulation in this paper,
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whereas the scaling reduction in the double excitation subspace will
be relevant for 2DES simulations in Paper II.

A. Efficient evaluation of ĤQ∣Ψð in the double
excitation subspace

The quantum dynamics propagation requires a basic opera-
tor action of ĤQ∣«ð operation [see Eqs. (17) and (18)] using, for
example, the RK4 method, or Ô∣«ð [see Eq. (36)] in the Cheby-
shev expansion scheme [Eq. (35)]. For a K-dimensional system in
ĤQ, this would in principle require K2 operations in matrix mul-
tiplications. However, we notice that the matrix of ĤQ in the HTC
Hamiltonian is extremely sparse in the single and double excitation
subspaces, which are the relevant subspaces for photophysics and
spectroscopy measurements. Here, we take advantage of this spar-
sity to significantly reduce the scaling of the computational costs of
quantum dynamics propagation.

We take the bare excitonic states and the photonic Fock states
to form the diabatic basis. The collective ground state can be written
as

∣G0ð = (⊗
n

∣gnð)⊗ ∣0ð. (22)

Within the single excitation manifold, we can describe two kinds
of diabatic states characterized by either purely matter or purely
photonic excitation character,

∣E0
nð = (⊗

m≠n

∣gmð)⊗ ∣enð⊗ ∣0ð, (23a)

∣G1ð = (⊗
n

∣gnð)⊗ ∣1ð. (23b)

In the second excitation manifold, we get three additional
types of states, with either double matter excitations, double pho-
ton excitation, or a mixed matter–photon excited state, expressed as
follows:

∣E0
nmð = ⎛⎝⊗p≠n,m∣gpð

⎞⎠⊗ ∣enð⊗ ∣emð⊗ ∣0ð, (24a)

∣E1
nð = (⊗

n≠m

∣gmð)⊗ ∣enð⊗ ∣1ð, (24b)

∣G2ð = (⊗
n

∣gnð)⊗ ∣2ð. (24c)

With the above-mentioned basis, a general quantum state can
be expanded in this double-excitation subspace as

∣«ð = cG0 ∣G0ð +∑
n

cE0n ∣E0
nð + cG1 ∣G1ð

+ ∑
n,m>n

cE0nm ∣E0
nmð +∑

n

cE1n ∣E1
nð + cG2 ∣G2ð, (25)

where c j = ⟨j∣«ð. From now on, we will follow the order of the basis
set expansion outlined in Eq. (25) and represent ∣«ð as

∣«ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cG0

cE0n
cG1

cE0nm
cE1n
cG2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

The quantumHamiltonian ĤQ in Eq. (50), when represented in
the double excited diabatic basis, is very sparse in nature. Although
the size of the Hamiltonian increases as O(N4) for N molecules,
the sparsity of the Hamiltonian (defined as the ratio between the
number of nonzero matrix elements and the total number of matrix
elements) scales as 1 − 1/N2 and very quickly converges to 1.

Figure 1 demonstrates the increase in sparsity as N increases,
with the nonzero matrix elements explicitly shown in a darker blue
color, and with the basis order explicitly following Eq. (25). We can
precompute the action of the sparse Hamiltonian, Eq. (50), on a
general system quantum state in Eq. (25),

ĤQ∣«ð =∑
n

(cE0n ⋅ ϵn + h̵gnc cG1)∣E0
nð

+ (h̵Éc ⋅ cG1 +∑
n

g
n
c cE0n)∣G1ð

+ ∑
n,m>n

[(ϵn + ϵm) ⋅ cE0nm + h̵(gnc cE0n + gmc cE0m)]∣E0
nmð

+∑
n

{∑
m>n

h̵g
m
c cE0nm + (ϵn + h̵Éc) ⋅ cE1n +√2h̵gnc cG2}∣E1

nð
+ (2h̵Éc ⋅ cG2 +

√
2h̵∑

n

g
n
c cE1n)∣G2ð, (27)

FIG. 1. HTC Hamiltonian structure for N molecules. The light cyan color represents
the zero matrix elements, whereas the darker blue represents the non-zero matrix
elements. The order of the basis is the same as indicated in Eq. (25): from left to
right for the row and from top to bottom for the column. Panels (a)–(d) represent
the Hamiltonian for N = 3, 4, 5, and 10 molecules, respectively, within the double
excitation subspace.
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where

ϵn = ·n +∑
¿

Cn,¿Rn,¿

is the exciton energy ·n plus the bath fluctuation, with the instan-
taneous value of the bath coordinate Rn,¿ (that is fixed during the
�t propagation). The expansion in Eq. (27) can be expressed as the
following Hadamard product (represented by the symbol »):

ĤQ∣«ð = ∣ϵ«ð» ∣«ð´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
diagonal

+ h̵gc∣¨ð´¹¹¹¹¹¸¹¹¹¹¶
off−diagonal

, (28)

which is the first key result of this work. In Eq. (28), the diagonal
energies are accounted for by the vector

∣ϵ«ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ϵE0n
h̵Éc

ϵE0nm
ϵE1n
2h̵Éc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Here, ϵE0n = [ϵ1, ϵ2, . . . ϵN]T is the vector of exciton energies,

ϵE0n = [ϵ12, ϵ13, . . . ϵ(N−1)N]T is the vector of double exciton energies,

and ϵE1n = [ϵ1 + Éc, ϵ2 + Éc, . . . ϵN + Éc]T is the vector of collective
matter and photon excited state energies.

Furthermore, the off-diagonal action of ĤQ on ∣«ð is accounted
by the vector

∣¨ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

cG1 ⋅ ¾n cos ºn
∑n

cE0n ⋅ ¾n cos ºn
cE1n ⋅ ¾n cos ºn + cE1m ⋅ ¾m cos ºm

∑m>n
cE0nm ⋅ ¾m cos ºm +

√
2cG2 ⋅ ¾n cos ºn√

2∑n
cE1n ⋅ ¾n cos ºn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

and when there is no dipole orientation disorders, simply set
cos ºn = 1 in the above expression.

The operation in Eq. (28) has a linear scaling in the number of
states O(K) and thus ∝ O(N) for a single excitation space and
∝ O(N2) for a double excitation space when having N-molecules
for the polaritonic systems. The action of ĤQ on ∣«ð as outlined in
Eq. (28) can be used to accurately calculate electronic evolution via
a simple RK4 solution of Eq. (17) or through polynomial expansions
of exponential propagators such as the Chebyshev series, which will
be discussed next.

For realistic molecules in the collective coupling regime, inter-
molecular interactions need to be considered. These intermolecular
interactions will make the off-diagonal elements in Fig. 1 non-zero.
Nevertheless, in most of the recent experiments,6 the density of
the chromophores is very low, and the intermolecular distance is
estimated to be at least 40 Å; thus, even the long-range Förster
type of dipole–dipole interaction is negligible. Even when explic-
itly considering these Förster-type dipole–dipole couplings, they can
be effectively described by introducing simple off-diagonal coupling

terms in the HTC Hamiltonian, which only couples a molecule with
a few of its nearest neighbors. As such, the N-molecule HTC Hamil-
tonian is still sparse with only a few band-diagonal coupling and
it can again be recast with some additional simple vector–vector
Hadamard products, so we can utilize this sparsity. This will be
explored in the future.

Furthermore, we want to clarify that for linear spectra calcu-
lations in this paper, the only important states are the states with
energies similar to that of one exciton, and one does not need to
include the excited states in the second excitation manifold. We
develop the general framework that includes the double excitation
subspace for the future non-linear spectra calculation, which is key
to an accurate description of the excited state absorption (ESA)
calculation for 2DES. This will be discussed in our forthcoming
paper.

B. Chebyshev series expansion for quantum dynamics
propagation

To solve TDSE in Eq. (17), one can use many numerical
methods, such as the RK4 solution of Eq. (17) or using the sym-
plectic integrator.68 These approaches can still take advantage of
the sparsity properties of the Hamiltonian outlined in Sec. III A.
The numerical challenges for these propagation-based methods are
the requirement of relatively small �t for stable propagation (see
Appendix B for benchmark). Due to the large N considered in the
HTC Hamiltonian, each propagation step remains computationally
expensive.

To use a relatively large �t, we use the Chebyshev polynomial
expansion69 approach to solve the TDSE. During a time�t where the
nuclear configuration R is fixed, the propagation can be expressed as

∣«(t + �t)ð = Û(�t)∣«(t)ð = exp(− i
h̵
ĤQ�t)∣«(t)ð, (31)

where the Chebyshev expansion of the evolution operator is
expressed69 as

Û(�t)∣«ð = b0(z)∣«(0)ð + ∞∑
n=1

ϕn(z)bn(z)∣«(n)ð, (32)

where ∣«(0)ð = ∣«(t)ð and {bn} are the Bessel-function coefficients
of the first type. The number of coefficients required for the above
expansion is dictated by the (energy-time) uncertainty parameter

z =
¶E ⋅ �t

2h̵
, (33)

where ¶E is the spectral radius (the energy difference between
the highest and the lowest eigenenergies for ĤQ). For z f 1, one
only needs to include the first few terms of the expansion. In the
Chebyshev expansion approach, a large time step �t or a higher
spectral radius ¶E results in a higher z value, which necessitates the
requirement of more number of terms in the expansion, Eq. (32).

Furthermore, ϕn(z) in Eq. (32) is a phase factor that contains
information on the shift in the energy axis due to the normalization
of the Hamiltonian, given by

ϕn(z) = 2in exp( i
h̵
[¶E
2
+ ϵmin]�t). (34)
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Here, ¶E corresponds to the approximate spectral radius of ĤQ and
ϵmin is an estimate of the lowest eigenvalue of ĤQ. For the Cheby-
shev method, one only needs a rough estimate for ¶E and ϵmin, which
requires a rough estimation of the lowest and highest eigenvalues of
ĤQ.

The nth order term of the Chebyshev expansion in Eq. (32) is
calculated by the recursion relation,69

∣«(n)ð = ⎧⎪⎪⎨⎪⎪⎩
Ô∣«ð, n = 1,

2Ô∣«(n−1)ð − ∣«(n−2)ð, n g 2,
(35)

where Ô is the modified (normalized) Hamiltonian,

Ô = 2
ĤQ − ϵminĀ̂s

¶E
− Ā̂s. (36)

The action of Ô on ∣«ð is the same as ĤQ on ∣«ð as described in
Eq. (28), with the coefficients now scaled according to Eq. (36).

Figure 2 presents the magnitude of the Chebyshev coefficients
as a function of the expansion term index for various z-values. With
an increase in z, more terms are needed for the expansion to con-
verge. For z j 1, only the first three or four terms in the expansion
are required. For comparison, a typical propagation scheme such
as RK4 or a symplectic integrator (velocity Verlet) typically needs a
much smaller substep, ¶t ≈ �t/10 − �t/100, for a stable integration
of the dynamics. The Chebyshev expansion approach thus provides
a significant speedup of the dynamics propagation compared to solv-
ing Eq. (31) using RK4 because one can use a much larger �t (up to
100 times), with only a slight increase in the prefactor of the com-
putational cost associated with how many terms are needed to form
a converged Chebyshev expansion (each associated with the Ô∣«ð
operations). In all simulations, we are in the regime of z j 1 and
we found that only n = 4 terms of the Chebyshev polynomial are
required to converge the results.

C. Decomposing single and double excitation
subspaces

The inclusion of a double excitation subspace can make our
¶E very large, forcing us to choose a very small �t. Note that the

FIG. 2. Chebyshev coefficients as a function of expansion index for various uncer-
tainty parameters, z. The colored curves represent the Bessel function for a
continuous “m” coordinate, and the dots are the Bessel functions evaluated at
integer “m” values.

double-excitation subspace has a diagonal energy that is about twice
that of the single-excitation subspace (when it has zero light–matter
detuning). Furthermore, the Hamiltonian has a block-diagonal
structure of ĤQ, illustrated in Fig. 1, where the single and double
excitationmanifolds are not coupled to each other throughHamilto-
nian operators (they are connected through the dipole operator and
will have transitions upon laser excitation). This observation leads
us to separate the first and second excitation subspaces with their
individual spectral radius. The operation Ô∣«ð, via Eq. (28), is thus
performed separately for the different subspaces. We separate the
system Hilbert space into different excitation manifolds,

ĤQ =⊕
À

Ĥ
(À), (37a)

∣«ð =⊕
À

∣«(À)ð, (37b)

where À = 0 indicates the ground state [Eq. (22)], and À = 1 and
À = 2 indicate the single [Eq. (23)] and double excitation mani-
folds [Eq. (24)], respectively. The quantum propagation can now be
separated into the propagation of different subspaces,

Û(�t)∣«ð =⊕
À

exp(−iĤ (À)�t
h̵

)∣«(À)ð. (38)

We can now independently apply the Chebyshev expansion in
different subspaces. For the first excitation subspace, the approx-
imate spectral radius and lower-bound of the eigenvalue are
given by

¶
(1)
E = 2gc

√
N + 2½b (39a)

ϵ
(1)
min = ·̄ − gc

√
N − ½b, (39b)

where ·̄ = 3n ·n/N and ½b is the bath reorganization energy that
accounts for the bath fluctuations. For the second excitation
manifold, these quantities are10,48,49

¶
(2)
E = 2gc

√
2(N − 1) + 4½b, (40a)

ϵ
(2)
min = 2·̄ − gc

√
2(N − 1) − 2½b, (40b)

where we used the analytic results10,48,49 to estimate the lower bound
of the polariton eigenstate as 2·̄ − gc

√
2(N − 1) in Eq. (40b).

The Chebyshev expansion allows efficient dynamics propaga-
tion by accurately calculating the action of the unitary propagator
on an arbitrary vector. However, there is still a numerical challenge
in simulating quantum dynamics with the HTC model. In Eq. (34),
the phase factor in the Chebyshev expansion, Eq. (32), depends on
the approximate absolute magnitude of the lower eigenvalue ϵmin.
Thus, if the eigenvalue has a large absolute magnitude, the accuracy
of this method is reduced due to the noise that builds up from the
highly oscillating term coming from the high absolute magnitude
of ϵmin, especially if we are simulating both ground state and single
excitations (or further including the double excitation) where these
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values are on the order of eV, and the difference between ϵ(1)min and

ϵ
(2)
min is also on the order of eV. The same challenge also exists in other
propagation methods, such as using RK4 to solve Eq. (17), because
when a large energy difference exists in a Hamiltonian, one would
need a much smaller �t to fully capture the phase oscillations when
propagating the coefficients.

This numerical challenge can be easily resolved by decompos-
ing the Hamiltonian as Ĥ = ·̄Ā̂ + �Ĥ, where ·̄ is a constant reference
energy level and �Ĥ is the fluctuation around ·̄. Because ·̄Ā̂ com-

mutes with �Ĥ, the quantum evolution becomes e−
i
̵h
Ĥ �t
= e−

i
̵h
·̄�t
⋅

e−
i
̵h
�Ĥ ⋅�t , where the highly oscillatory part of the phase e−

i
̵h
·̄�t will

be evaluated analytically, and the rest of the propagation e−
i
̵h
�Ĥ ⋅�t

will be numerically updated using the Chebyshev expansion. Fur-
thermore, in the HTC Hamiltonian, these subspaces are not directly
connected by Hamiltonian terms. Following this logic, we rewrite
the Hamiltonian in Eq. (37a) as

ĤQ = Ĥ
(0)⊕ (·̄Ā̂(1)s + �Ĥ

(1))⊕ (2·̄Ā̂(2)s + �Ĥ
(2)), (41)

where Ā̂(À)s is the identity operator of the Àth excitation subspace and

�Ĥ (À) = Ĥ (À) − (À·̄) ⋅ Ā̂(À)s , in which À·̄ is the reference energy for
the Àth excitation subspace (i.e., ·̄ for single excitation and 2·̄ for
double excitation subspace). Since the identity operator commutes
with any other operators in its respective subspace, using Eq. (41),
the propagator now becomes

Û(�t)∣«ð =⊕¸ exp(−iÀ·̄�th̵
) exp(−i�Ĥ (À) ⋅ �t

h̵
)∣«(À)ð, (42)

where the exp (− i
h̵
�Ĥ (À)�t)∣«(À)ð update will be performed using

the Chebyshev expansion and is then multiplied with a phase
exp (− i

h̵
À·̄�t). With this separation, the accuracy of the Cheby-

shev propagator is independent of the absolute value of electronic
excitation energies. For the Chebyshev expansion with the shifted
eigenvalues, the approximate lower eigenvalues used in Eq. (36) are
now

ϵ
(1)
min = −gc

√
N − ½b, (43)

ϵ
(2)
min = −gc

√
2(N − 1) − 2½b, (44)

whereas ¶
(À)
E [as expressed in Eqs. (39a) and (40a)] remains

unchanged. Because different subspaces are not directly coupled by
ĤQ, when propagating the quantum dynamics governed by ĤQ,
the above Chebyshev scheme will be used independently for each
subspace. Meanwhile, different subspaces are connected through
the cavity loss process (such as ∣G1ð→ ∣G0ð in the single excitation
subspace and ∣G2ð→ ∣G1ð and ∣E1

nð→ ∣E0
nð in the double excitation

space), and when computing the response function, the instanta-
neous action of the dipole operator will connect them. For those two
types of operations, one will apply the stochastic Lindblad algorithm
(Appendix A) and the rule of dipole on state vectors directly, with-
out shifting the reference energies. This simple technique outlined in
Eq. (42) significantly reduces the noise of the numerical propagation

and increases the accuracy of the Chebyshev expansion method, as
shown in Appendix B.

D. Spectroscopy simulations and efficient evaluation
of the ¾̂∣Ψð operation

Within the linear response limit, the absorption spectra of
a system can be expressed as the dipole–dipole auto-correlation
function25,41,44,47

R
(1)(t1) = iTr [¾̂(t1)[¾̂(0), Ä̂0]], (45)

where the laser excitation is applied at time t = 0, and one detects the
system response at time t1. The trace is performed for all DOFs. In
addition, Ä̂0 represents the initial density matrix of the entire system
in equilibrium ground state at t = −∞, (Ä̂0 = Ä̂(−∞)). Furthermore,
Ä̂0 is assumed to be a separable state between the polariton and the
phonon bath DOFs as follows:

Ä̂0 = Ä̂g⊗ Ä̂b = ∣G0ð⟨G0∣⊗ Ä̂b = ∣G0ð⟨G0∣⊗ e−´Ĥ b

Z
, (46)

with ∣G0ð defined in Eq. (22).
The frequency domain spectra can be computed by

R
(1)(É) = + T

0
dte

iÉt
R
(1)(t) cos( Ãt

2T
), (47)

where T is the maximum time of the recorded time-domain spectra
and cos(Ãt/2T) is a smoothing function.25,47

As can be seen, to compute R(1)(t1) and R(1)(É), one needs to
act the dipole operator, ¾̂, on the density matrix, which in principle
also scales as O(K4). However, ¾̂ also takes the form of a very sparse
matrix in the single and double excitation subspaces, as illustrated
in Fig. 3. The sparsity of the dipole operator scales as 1 − 1/N2 with
Nmolecules coupled to a cavitymode. The action of ¾̂ on a ket vector
[following the same arrangement of the basis as in Eq. (25)] can be
written as

¾̂∣«ð =∑
n

¾ncE0n ∣G0ð +∑
n

(¾ncG0 +∑
m>n

¾mcE0nm)∣E0
nð

+ (∑
n

¾ncE1n)∣G1ð + cG1∑
n

¾n∣E1
nð. (48)

The above becomes a very simplified modification of ∣«ð,

¾̂∣«ð =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
¾ncE0n

¾ncG0 +∑m>n
¾mcE0nm

∑n
¾ncE1n

∑m>n
¾ncE0nm

¾ncG1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

This helps us significantly reduce the cost of acting dipole operator
on state vectors in spectroscopy calculations.
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FIG. 3. Matrix representation of the dipole operator ¾̂ [see Eq. (48)] for N
molecules. The light cyan color represents the zero matrix elements, whereas
the dark blue represents the non-zero matrix elements. Panels (a)–(d) show the
Hamiltonian for 3, 4, 5, and 10 molecules, respectively, under the double excitation
basis.

IV. COMPUTATIONAL METHOD

A. PLDM approach for dynamics propagation

We briefly outline the PLDM approach for quantum dynamics
simulations.26,27,55,70 The diabatic Hamiltonian of a system coupled
to a bath (nuclear DOF) can be expressed as

Ĥ =
P̂ 2

2M
+V0(R̂) + K

∑
a

Vaa(R̂)∣að⟨a∣ + 1
2

K

∑
b≠a

Vab(R̂)∣að⟨b∣
= Ĥb + ĤQ, (50)

where R̂ and P̂ are the position and momenta, respectively, of the
bath particles of massM and V0(R̂) is the state-independent part of
the Hamiltonian. In the context of this work,

Ĥb =
P̂ 2

2M
+V0(R̂),

ĤQ =

K

∑
a

Vaa(R̂)∣að⟨a∣ + 1
2

K

∑
b≠a

Vab(R̂)∣að⟨b∣, (51)

where ĤQ is the quantum part of the Hamiltonian, which includes
Ĥs and Ĥsb [Eq. (16)].

Using the Meyer–Miller–Stock–Thoss (MMST) mapping
procedure,58,71,72 we get the classicalmapping Hamiltonian,26

H(R, x,p) = P2

2M
+V0(R) + 1

2
∑
a

Vaa(R)(x2a + p2a)
+
1
2
∑
b≠a

Vab(R)(xaxb + papb). (52)

This Hamiltonian, in principle, will give exact quantum dynam-
ics when decoupled from the nuclear DOF and can be rigorously
derived using the MMST mapping procedure.71,72 When applying
the semiclassical approximation in PLDM,26 a pre-factor of the

propagator exactly cancels the zero-point energy correction factor
in the MMSTmapping Hamiltonian, leading to Eq. (52) as the effec-
tive Hamiltonian in PLDM. PLDM has been shown to accurately
capture non-adiabatic quantum dynamics in model systems26,27,55

and ab initio systems,73 providing accurate charge transfer rate con-
stant54 and excitation energy transfer dynamics70 and computing
linear and non-linear spectroscopy.25

For a given set of system operators Â and B̂, and Ä̂b being the
initial bath density operator, the time evolution of the PLDM is

CAB(t) = Tr [Ä̂b⊗ Âe
i
̵h
Ĥ t
B̂e
−

i
̵h
Ĥ t]

≈∑
jk,ab
+ dÄ[Ä̂b]w ⋅ [Â]jk ⋅ Tka(t) ⋅ [B̂]ab ⋅ T̃bj(t), (53)

where

dÄ ≡ dR ⋅ dP ⋅ dx ⋅ dp ⋅ dx̃ ⋅ dp̃ ⋅G ⋅ G̃, (54)

in which x ≡ {xa} and p ≡ {pa} are the mapping variables associ-
ated with the forward propagator and x̃ and p̃ are the mapping
variables associated with the backward propagator, of which both
evolve according to the classical mapping Hamiltonian H(R, x,p)
in Eq. (52). Furthermore, G = exp [− 1

23a (pa2 + xa2)] is the Gaus-
sian distribution for the initial forward mapping variables, with
an analogous expression G̃ for backward mapping variables. In
addition,

T b,j(t) = 1
2
(xb(t) + ipb(t))(xj(0) − ipj(0)), (55a)

T̃ k,a(t) = 1
2
(x̃k(t) − ip̃k(t))(x̃a(0) + ip̃a(0)) (55b)

are the transition amplitudes associated with the forward and
backward propagators, respectively. The initial bath distribution is
obtained by sampling from the Wigner density,

[Ä̂b]w = + d�e
−

i
̵h
RP⟨R − �

2
∣Ä̂b∣R + �

2
⟩. (56)

Here,R and P denote themean positions of the bath and themomen-
tum, respectively. The system mapping variables (for both forward
and backward variables) evolve according to Hamilton’s equation of
motion (EOM),

∂xa

∂t
=
∂H

∂pa
=
1
h̵
∑
b

Vab(R)pb, (57a)

∂pa

∂t
= −

∂H

∂xa
= −

1
h̵
∑
b

Vab(R)xb. (57b)

The bath DOF evolves classically

∂R

∂t
= P,

∂P

∂t
= F , (58a)

F(R) = −1
2
∇R{H(R, x,p) + H(R, x̃, p̃)}, (58b)

and experiences a mean force from both forward and backward
mapping variables.

Note that the EOM for the mapping variables is completely
equivalent to the TDSE.68 By establishing a transformation relation,

xa(t) =√2 ⋅Re[ca(t)], pa(t) =√2 ⋅ Im[ca(t)]. (59)
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Equation (58) is equivalent to the following TDSE:

ih̵ċa(t) =∑
b

Vab(R(t)) ⋅ cb(t). (60)

This was discussed by Gray and Manopolous as the symplectic inte-
grator of TDSE.68 For the mapping approaches with an explicit zero
point energy factor (such as SQC62,63 and spin-LSC59,60), a similar
argument can also be carried out [for example, Eqs. (94) and (95)
in Refs. 59 and 60]. Historically, the PLDM and related mapping
dynamics approaches are often solved with a simple velocity Ver-
let algorithm74 or complete symplectic algorithm75,76 (that requires
diagonalizing V̂), which are expensive to perform when having a
large N in HTC Hamiltonian.

In this work, we use the relation betweenmapping variables and
coefficients,

ca =
1√
2
(xa + ipa), c̃a =

1√
2
(x̃a − ip̃a), (61)

and the mapping EOMs in Eq. (57) become

ih̵ċa(t) =∑
b

Vab(R(t)) ⋅ cb(t), (62a)

− ih̵˙̃ca(t) =∑
b

Vab(R(t)) ⋅ c̃b(t). (62b)

Here, we take advantage of the Chebyshev series in Eq. (32) and
the action of ĤQ on the state vector outlined in Eq. (28), as well as
the subspace decomposition and energy shift techniques outlined in
Eq. (41). The nuclear force of the PLDM approach [in Eq. (58b)] for
the HTC Hamiltonian is expressed as

F(t) = −∑
a

1
2
(∣ca(t)∣2 + ∣c̃a(t)∣2) ⋅ ∇R⟨a∣Ĥsb∣að −∇RĤb, (63)

which is computed directly using the updated coefficients{ca(t), c̃a(t)} and scales linearly with K. Furthermore, the
transition amplitudes are also directly expressed as

T b,j(t) = cb(t) ⋅ c∗j (0), (64a)

T̃ k,a(t) = c̃k(t) ⋅ c̃∗a (0), (64b)

which are directly computed with the forward and backward coef-
ficients and then used to compute CAB(t) based on Eq. (52). For
an arbitrary correlation function, CAB(t) still has a full sum over
the indices {j, k, a, b}, which can, in principle, be further reduced if
Â and B̂ exhibit the same type of sparsity. This is indeed the
case for the linear response function (dipole–dipole autocorrelation
function) with Â = ¾̂Ä̂0 and B̂ = ¾̂, as we showed in Eq. (49).

B. PLDM simulation of the linear spectra

For the linear response function expressed in Eq. (53), one can
rewrite it as the sum of two correlation functions,

R
(1)(t1) = iTr [¾̂(0)Ä̂0¾̂(t1)] − iTr [Ä̂0¾̂(0)¾̂(t1)], (65)

where Ä̂0 = Ä̂g⊗ Ä̂b [see Eq. (46)]. This can then be calculated
using the expression of the PLDM correlation function [Eq. (53)]

by choosing Â = ¾̂(0)Ä̂g , B̂ = ¾̂(t1) = e i
̵h
Ĥ t1 ¾̂e−

i
̵h
Ĥ t1 and Â = Ä̂g ¾̂(0),

B̂ = ¾̂(t1) = e i
̵h
Ĥ t1 ¾̂e−

i
̵h
Ĥ t1 . Alternatively, the response function can

be expressed as25,47

R
(1)(t1) = iTr [¾̂(t1)¾̂Ä̂g] − iTr [¾̂(t1)Ä̂g ¾̂]

= iTr [¾̂e i
̵h
Ĥ t1(¾̂Ä̂0)e− i

̵h
Ĥ t1] − iTr [¾̂e i

̵h
Ĥ t1(Ä̂0¾̂)e− i

̵h
Ĥ t1],
(66)

which can be approximated by using the PLDM approach as
follows:25

R
(1)(t1) ≈ i∑

n1

∑
n0 ,ñ0
+ dÄ0[¾̂Ä̃ (1)]n1 ,n1[¾̂Ä̂g]n0 ,ñ0 ⋅ [Ä̂b]w

− i∑
n1

∑
n0 ,ñ0
+ dÄ0[¾̂Ä̃ (1)]n1 ,n1[Ä̂g ¾̂]n0 ,ñ0 ⋅ [Ä̂b]w, (67)

where Ä̃ (1) accounts for the transition amplitude from both for-
ward and backward mapping trajectories, with the matrix elements
expressed as follows:

[Ä̃ (1)]n1ñ1(t1,n0, ñ0)
=
1
2
[xn1(t1) + ipn1(t1)] ⋅ [xn0(0) − ipn0(0)]
×
1
2
[x̃ñ1(t1) − ip̃ñ1(t1)] ⋅ [x̃ñ0(0) + ip̃ñ0(0)]. (68)

The linear response at time t1 is obtained by performing a trace over
¾̂Ä̃ (1). Using Eqs. (49) and (68), this becomes

N

∑
n1

[¾̂Ä̃ (1)]n1n1(t1,n0, ñ0)
=

N

∑
n1

¾n1 ⋅
1
2
[xn1(t1) + ipn1(t1)] ⋅ [xn0(0) − ipn0(0)]

×
1
2
[x̃n1(t1) − ip̃n1(t1)] ⋅ [x̃ñ0(0) + ip̃ñ0(0)]

=

N

∑
n1

(¾n1 ⋅ cn1(t1) ⋅ c∗n0(0)) ⋅ (c̃n1(t1) ⋅ c̃∗ñ0(0)), (69)

where in the last line we used the expression from Eq. (61).
The cavity loss dynamics is simulated using the stochastic Lind-

blad approach with PLDM, as detailed in Ref. 47. For a cavity mode
with loss rate �, the Lindblad loss dynamics is equivalent to updating
the forward and backward coefficients outlined in Eqs. (A3), (A5),
and (A6). For any t ∈ [0, t1 − �t], the overall propagation of the
reduced density matrix for the quantum subsystem during a time
step �t can thus be summarized as

Ä̂(t + �t) = [eL L̂ �t/2 ⋅ e
L Ĥ �t
⋅ e

L L̂ �t/2]Ä̂(t), (70)

where eL L̂ is the decay dynamics propagation according to the
stochastic Lindblad approach and eL Ĥ is the PLDM propagation in
Eq. (62), coupled to the nuclear update with the force described in
Eq. (63). In the current work, the PLDM update eL Ĥ �t is performed
using the Chebyshev series expansion outlined in Sec. III B, and the
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nuclear update is performed using the velocity Verlet. The stochas-
tic Lindblad update eL L̂ is performed using as outlined in Eqs. (A3),
(A5), and (A6) for �t/2 before and after the PLDM propagation. We
refer to Eq. (70) as the Lindblad-Partially Linearized Density Matrix
(L−PLDM) approach.47 Note that although we formally express the
propagation as the reduced density matrix in Liouville space, all of
the dynamical propagation has been performed in Hilbert space for
the forward and backward coefficients.

To evaluate the matrix element [¾̂Ä̂g]n0 ,ñ0 , the action of the
dipole operator on the ground state can be expressed as

¾̂Ä̂g =∑
n

¾n∣G0ð⟨E0
n∣, (71)

which is only non-zero for N off-diagonal elements. However, the
final expression of R(1) requires a sum of 3n0 ,ñ0 . To further reduce
the cost, we use the focusing algorithm and the stochastic impor-
tance sampling25 to obtain the initial mapping variables, which,
upon trajectory average, results in the same answer as if explicitly
performing the sum 3n0 ,ñ0 . For each trajectory, we use the focused
initial condition for the mapping variables, with cG0 = 1, cE0i = 0(∀ i ∈ [1,N]), c̃G0 = 0, c̃E0i = 0 (∀ i ∈ [1,N] and i ≠ n), and c̃E0n = 1,
and the focusing label n is stochastically chosen with the probability
P(n) = ¾n/(3N

m=1 ¾m) and initialize cG0 = c̃E0n = 1.
The first term in Eq. (67) can be computed using the following

steps:

1. Sample the nuclear configuration based on [Ä̂b]w. The state∣G0ð⟨E0
n∣ is randomly chosen for the focused initial condition,

based on the algorithm outlined in the previous paragraph. Set
the initial electronic condition cG0 = 1 and c̃E0n = 1, based on

the focused initial condition, with n0 = G
0 and ñ0 = E

0
n, and

the rest of the coefficients being zero.
2. Propagate the dynamics based on Eq. (70). In particular, for

the eL Ĥ �t part, use Eq. (62) to propagate the forward and
backward electronic coefficients and Eq. (63) to compute the

nuclear force to update nuclear DOFs; for the eL L̂ �tk/2 part,
use Eq. (A3) to update the coefficients to describe the Lindblad
loss dynamics.

3. Compute the first term of the response function based on the
estimator i3n1

[¾̂Ä̃ (1)]n1 ,n1 ⋅ [¾̂Ä̂g]n0 ,ñ0 , where the initial labels
of the states are n0 = G

0 and ñ0 = E
0
n, and explicitly compute

the trace 3n1
by summing all terms expressed in Eq. (69).

Average the correlation function from an ensemble of tra-
jectories (for the ∫ dÄ0 integral) to get the linear response
signal.

For the second term, one can simply take the complex conjugate
of the first term to reduce some computational costs. However, we
directly compute both terms in this work (as well as in our previ-
ous work47) and add them together. This generates R(1)(t1), with
examples provided in Fig. 4. Furthermore, performing the Fourier
transform [see Eq. (47)] of R(1)(t1) generates R(1)(É).
C. Model systems and computational details

In all simulations, we use the HTC Hamiltonian for
N molecules coupled to the cavity. Each molecule is coupled to an
independent phonon bath, discretized by N¿ = 20 independent bath
modes from the Debye spectral density [see Eq. (9)]. The bath para-
meters are sampled using the procedure outlined in Ref. 27 (or more
generally, Ref. 40),

C¿ = 2

√
½

ÃN¿É¿
tan−1(Émax

Éb
), (72a)

É¿ = Éb tan [ ¿
N¿

tan−1(Émax

Éb
)], (72b)

where Émax k Éb is the maximum frequency when discretizing
the bath frequencies. To sample within the classical regime, we
choose Émax = 5Éb. The bath parameters are Éb = 18 cm−1 (which

FIG. 4. Linear response function R(1)(t)
as well as the spectra R(1)(É) of the
HTC model, with different numbers of
molecule N obtained from PLDM. Here,
the collective Rabi splitting is fixed at
h¬R = 0.2 eV and there is no cav-
ity loss. Panels (a), (c), and (e) rep-
resent the time-dependent polaritonic
linear response for N = 5, 10, and 25
molecules coupled to the cavity, respec-
tively. Panels (b), (d), and (f) repre-
sent the normalized (by area) linear
absorption spectra for N = 5, 10, and
25 molecules coupled to the cavity,
respectively.
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is 2.2 meV) and ½b = 50 cm−1 (which is 6.2 meV). The charac-
teristic phonon frequency Éb leads to a bath correlation function
decay timescale of 300 fs. These parameters are in the range of
CdSe nanoplatelets,53 which have been coupled inside the optical
cavity.16–19 The initial bath condition Ä̂b [see Eq. (56)] is described
by its Wigner transform with the following analytic expression:

[Ä̂b]w =/
n,¿

2 tanh(´h̵Én,¿

2
)

× exp [− tanh(´h̵Én,¿

2
)(É2

n,¿R
2
n,¿

h̵2
+

P2
n,¿

h̵2É2
n,¿
)]. (73)

The temperature is taken to be 300 K for all simulations with
´ = 1052.58 a.u.

To perform linear spectra calculations, we remain within the
single excited subspace described in Eqs. (22) and (23). For a demon-
stration of linear response signals at different N coupled to the
cavity (Fig. 4), we fix the magnitude of the collective Rabi-splitting,
h̵¬R = 2

√
Nh̵gc = 0.2 eV. For the molecules, we used the average

excitation energy of ·n = ·̄ = 2.0 eV, but to facilitate the convergence
of the simulation, we shift ·̄ to a lower value of ·̄ = 0.5 eV. This is
because of a large gap between the ground state and the excited state

FIG. 5. Convergence of the lower polariton spectra with an increasing number of

molecules from N = 1 to N = 105, while fixing h¬R = 2
√

N and hgc = 0.2 eV
a constant (by decreasing gc accordingly). Here, we do not consider any type of
static disorder, and the cavity loss rate is set to be � = 20 meV. The phonon bath
fluctuations are included.

manifolds; the quantum transition frequency will be large, resulting
in high beating frequencies in the response function. This requires a
much smaller �t in order to resolve the response function beating
patterns, so the line shape (Fourier transform of response func-
tion) gives the correct absolute value of the frequencies. Meanwhile,
the level-shifting trick (which is widely used in the spectra calcula-
tion literature77) gives a much smaller energy gap from the ground
state to the excited state manifold, and the quantum transitions will
occur at a lower frequency, allowing us to use a much larger �t. In
Appendix C, we discuss the details of this approximation. The cavity
frequency is also kept at hÉc = 0.5 eV (zero light–matter detuning).
The cavity is lossless with � = 0 meV. This trick is applied in Figs. 4
and 5 and not in Figs. 6 and 7.

To simulate disorder effects in linear spectra (Figs. 6 and 7), we
fix the collective coupling strength 2

√
Nh̵gc at 0.2 eV for N = 500

molecules. For the molecules, we used the average excitation energy
of ·̄ = 2.0 eV. Throughout this work, we consider the resonance
condition where

·̄ = h̵Éc, (74)

where we have ignored the solvent reorganization energy ½b [see
Eq. (9)] in the above condition due to its small value. For Fig. 6,
·n is sampled based on a Gaussian distribution [Eq. (75)], while
·̄ = 2.0 eV. For results presented in Fig. 7, there is no site energy
disorder and ·n = ·̄ = 2.0 eV. The cavity frequency is thus kept at
hÉc = 2.0 eV (zero light–matter detuning). The cavity loss rate was
set at � = 10 meV. The nuclear time step for Verlet propagation was
taken to be �t = 10 a.u. (≈0.25 fs), and the forward and backward
coefficients are evolved between nuclear propagation using Eq. (32).

For all results presented here, we always consider dynamical
disorders due to the exciton–phonon couplings. For results pre-
sented in Figs. 6 and 7, we further consider the influence of static
disorders. For energy static disorder simulations (Fig. 6), the exci-
tation energy for the nth molecule is sampled from the Gaussian
distribution,

P(·n) = 1√
2ÃÃ2·

e
−(·n−·̄ )

2/2Ã2· , (75)

where Ã· is the width of the Gaussian centered at ·̄. This introduces a
static inhomogeneity within the molecular excitation energies. The
sampling is performed independently for each trajectory.

FIG. 6. Linear spectra of N = 500
molecules in the presence of various
static energy disorders. (a) Polariton
absorption spectra with each curve nor-
malized with the corresponding area
and (b) absorption curves with the peak
height kept fixed. The plots are centered
around the molecular excitation energy
·̄ = 2.0 eV. The black dotted lines are
the analytical lower and upper polariton
peaks for a system of N molecules cou-
pled to a single cavity mode without any
energy disorder.39
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FIG. 7. Linear spectra of N = 500
molecules coupled to the cavity, in the
presence of dipole orientation disorders.
(a) Polariton absorption spectra with
each curve normalized by area and (b)
the same absorption spectra normalized
by peak height. The plots are centered
around the molecular excitation energy
·n = ·̄ = 2.0 eV. The black dashed lines
are the analytic result using Eq. (81). The
vertical dotted lines indicate the effective
Rabi splitting estimated from Eq. (82).

Following the previous work,38 we also study the effect of orien-
tation disorder by sampling the molecular orientation (with respect
to the cavity mode) from the Gaussian distribution,

P(ºn) = 1√
2ÃÃ2º

e
−(ºn−º̄ )

2/2Ã2º . (76)

The disorders in {ºn} will influence the molecule–cavity coupling
in Eq. (6). In the limit of Ãº →∞, it corresponds to an isotropic
distribution of º0 ∈ [0,Ã] relative to the polarization direction of
the cavity field. The expectation value of cos2 º for the Gaussian
distribution is

⟨cos2 ºð = + ∞

−∞

dºP(º) ⋅ cos2 º = 1
2
+
1
2
e
−2Ã2º . (77)

Following the previous work,38 we further assume that the
external laser field E(t) in the linear spectra simulation has the same
direction as the cavity polarization direction ê such that

¾̂ ⋅ E(t) = N

∑
n

¾n cos ºn ⋅ E(t). (78)

This means that the ¾̂ expression inR(1)(t1)when considering dipole
orientational disorders will be expressed as

¾̂ =
N

∑
n

¾n cos ºn. (79)

In this work, we assume that the dipole will remain in a
two-dimensional plane and deviate from the field polarization
direction ê.

To ensure the tight convergence of R(1)(t), we used a total of
106 trajectories, although typically a total of 103 − 5 × 103 trajectories
will provide visually converged results. The propagation time step
for the Chebyshev propagation was chosen as �t = 20 a.u. (≈0.5 fs).
Once having a converged R(1)(t), we perform the numerical Fourier
transform,

R
(1)(É) = T/�t

∑
j=0

�t ⋅ e
iÉj�t

R
(1)( j�t) cos(Ã ⋅ j�t

2T
),

where T is chosen such that R(1)(t) is sufficiently decay to zero. For
Fig. 4, for all N, the response signal was simulated up to T = 2.5 ps,

where R(1)(t)→ 0. In Fig. 5, all response signals were simulated
till T = 800 fs. In Fig. 6, the response signal for each energy disor-
der [Eq. (75)] decays to 0 with different T. For no disorder case,
Ã· = 0.0 eV, we chose T = 1.5 ps. For Ã· = 0.03, 0.04, 0.05, 0.1, and
0.2 eV, we chose T = 1 ps, T = 500 fs, T = 300 fs, T = 80 fs, and
T = 50 fs, respectively. To simulate the dipole disorder [Eq. (76)],
we set T = 1.5 ps for all Ãº cases in Fig. 7.

V. RESULTS AND DISCUSSIONS

A. Linear response signal

Figure 4 presents the time-dependent linear response signal,
R(1)(t), and the linear absorption spectra, R(1)(É), simulated using
the PLDM approach. In this figure, we do not account for any
type of disorder, and we keep

√
Nh̵gc a constant as we change N.

Figures 4(a) and 4(b) present the linear response signal and the lin-
ear absorption spectra for N = 5 molecules coupled to the cavity,
respectively. For the R(1)(É) data, we shift the axis with respect to
h̵É0 = ·̄, so the spectra are centered around zero instead of ·̄. A clear
observation of the linear response signal indicates the presence of
two types of oscillations that arise due to the two polaritonic tran-
sitions, ∣G0ð→ ∣−ð and ∣G0ð→ ∣+ð, as observed in the two peaks in
linear spectra at h̵É − ·̄ ≈ −100 meV and h̵É − ·̄ ≈ 100 meV, respec-
tively. Due to symmetry, there is no optical transition from ∣G0ð to
the dark state manifold {∣Dkð}.

Figures 4(c) and 4(d) correspond to the case for N = 10
molecules. Since the linear response signal is a direct measurement
of the coherent oscillations between the upper and lower polariton
states, compared to panel (a), we can observe an increase in the
coherence lifetime in R(1)(t) for the case of N = 10, which mani-
fests itself as a further linewidth reduction and an increase in peak
height for linear spectra R(1)(É), as shown in panel (d). This is due
to the well-known polaron decoupling effect,1,2,78 which effectively
reduces the phonon reorganization energy by O(1/N) under the
collective coupling regime [see Eq. (27) in Ref. 50 and the discussions
there]. Figures 4(e) and 4(f) present the results of coupling N = 25
molecules to the cavity mode, and we observe a further enhance-
ment in the response signal lifetime and a further reduction in the
polariton linewidths.

In Fig. 5, we present the convergence of absorption line shape
with an increasing number of molecules from N = 1 to N = 105,
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while fixing the collective Rabi splitting, h̵¬R = 2
√
Nh̵gc = 0.2 eV.

We use a cavity loss rate of � = 20 meV and the same molec-
ular parameters as used in Fig. 4. Figure 5 presents the lower
polariton line shape for a different number of molecules. The LP
spectra with N = 102 molecules (green curve) are visually close to
the converged line shape of N = 105 molecules (thin dark blue
curve). From these curves, the line shape features of linear spec-
troscopy due to collective effects appear to reach a convergence
at N ≈ O(102), which is very much closer to the line shape fea-
tures of N = 105. The theoretical approaches of this work allow
us to directly perform the quantum dynamics and linear spectra
simulations with N = 105 molecules and explore various trends of
convergences.

B. Energy disorder

Figure 6 presents the linear absorption spectra of N = 500
molecules collectively coupled to the cavity, where each molecule
is experiencing static energy disorder (inhomogeneous disorder),
described in Eq. (75). Figure 6(a) presents the absorption normal-
ized with respect to the area, and Fig. 6(b) presents the absorption
normalized with respect to the intensity of the peak, with the verti-
cal black dashed lines indicating the Rabi splitting without any static
site energy disorders.

As the disorder in energy Ã· approaches the same size of
Rabi-splitting h̵¬R = 2

√
Nh̵gc, one can observe that the effective

Rabi-splitting slightly increases. This has been understood from per-
turbation theory,38,79 where the effective Rabi splitting is expressed
as h̵¬R ≈ 2

√
Nh̵gc + ⟨¶·ð2/(√Nh̵gc) when Ã·/(√Nh̵gc)j 1

(see Appendix C of Ref. 38), as well as the approximate analytical
solution of Rabi splitting when having Gaussian-type energy
disorders.79

As the linewidth increases with an increase in inhomogeneous
disorder, the peak intensity decreases. This is because the effective
number of molecules with zero detuning decreases. When further
increasing Ã· to 0.2 eV [dark blue curve in Fig. 6(a)], the UP and LP
peaks start to merge and the Rabi-splitting fades away. This pattern
is clearer when we normalize the curves with the highest peak inten-
sity, as shown in Fig. 6(b). These observations also agree with the
recent theoretical studies.38,79,80

C. Dipole orientation disorder

Figure 7 presents the linear spectra of N = 500 molecules
coupled to a single cavity mode under various dipole orientation
disorders based on Eq. (76), without any static energy disorders,
·n = ·̄ = ·. We further center the spectra by setting hÉ0 = · = 0. As
one gradually increases the dipole orientation disorder Ãº, Rabi
splitting decreases. Meanwhile, the linewidth of the polariton peaks
remains almost unchanged, since there are no additional broadening
mechanisms when including dipole disorders, as opposed to the pre-
vious case when considering an inhomogeneous energetic disorder
in the system.

For the resonance condition, h̵Éc = ·̄, when considering the
dipole orientation disorder, the polariton eigenspectrum is still ana-
lytically available.37 By setting É0 = Éc, one can use the well-known
analytic results of the line shape81 to the expression of absorption
spectra as follows:

R
(1)(É) = �¼Ng2c ⟨cos2 ºð∣(É − Éc + i

�

2h̵)(É − É0 + i
¼
2h̵) −Ng2c ⟨cos2 ºð∣2 , (80)

where ¼ is the molecular linewidth47 and ⟨cos2 ºð [see Eq. (77)] is
the effective modification of polariton frequencies depending on
orientation disorder.37,38

In Fig. 7(b), we present the numerical results obtained from our
simulations (solid colors) when normalized to the peak height, as
well as the analytic answer from Eq. (80) (black dashed lines). Over-
all, the analytic answer gives a reasonable estimate of the line shape
behavior across different angle disorders but slightly overestimates
the linewidth. The narrower linewidth from the numerical results is
likely due to the subaverage behavior50,82,83 [linewidth smaller than
�/2 + ¼/2 for the resonant case, see Eq. (34) in Ref. 50], which can-
not be captured by the simple expression of the line shape in Eq. (80)
that predicts the linewidth to be �/2 + ¼/2 under the resonance
case.

In Fig. 7(b), we see that with an increase in dipole orientation
disorder Ãº, the effective Rabi-splitting decreases until it converges
to a specific ¬R. The convergence is reached around a disorder
of Ãº = 90

○. This can be interpreted as follows. For a HTC model
Hamiltonian under the condition h̵Éc = ·̄ = ·, the polariton energies
can be expressed as37,39

·± = · ±
1
2

√
4Nh̵

2
g
2
c ⟨cos2 ºð + (−i[12¼ − 1

2
�])2, (81)

where ⟨cos2 ºð is expressed in Eq. (77) and ½b is the molecular
reorganization energy [cf. Eq. (9)], which accounts for the addi-
tional light–matter detuning when the cavity frequency is equal
to the bare molecular excitation. For the model system consid-
ered here, which is in the slow bath limit (inhomogeneous limit),84

¼/2 =√ln 2 ⋅
√

½bkBT
h̵

, and
√
ln 2 is the half of full-width half maxi-

mum (FWHM) conversion factor for a Gaussian line shape. The real
part of Eq. (82) gives the location of the polariton peaks, and the
imaginary part gives the linewidth of the respective polaritons.39,47

For the resonance case, the Rabi splitting is expressed as

h̵¬R = Re[·+ − ·−], (82)

where ·± can be evaluated from Eq. (81). One can estimate the
Rabi splitting and compare with the numerically simulated spectra.
Indeed, the Rabi splitting decreases as one increases the dipole disor-
der from the fully aligned case (when Ãº → 0 and thus ⟨cos2 ºð = 1)
to the fully isotropic case in the 2D plane (when Ãº →∞ and thus⟨cos2 ºð = 1/2). The vertical dashed line in each panel of Fig. 7(b)
indicates the Rabi splitting based on the corresponding value of⟨cos2 ºð [cf. Eq. (77)], and the numerical simulations agree well with
the analytic result. The same behavior has also been discussed in
Appendix D of Ref. 38.

VI. CONCLUSION

In this paper, we presented two general theoretical techniques
for an efficient simulation of polariton quantum dynamics under the
collective light–matter coupling regime. The first one is related to
the sparsity of the HTC Hamiltonian, which allows one to reduce
the cost of acting polariton Hamiltonian onto a state vector to the
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linear order of the number of states, instead of the quadratic order.
In principle, a direct density-matrix-based simulation requires a
computational cost (in both time propagation and memory require-
ments) proportional to O(N6), whereN is the number of molecules
and O(N2) is the number of states in the double excitation sub-
space. The sparse nature of the HTC systemHamiltonian and dipole
matrix allow for a compact expression of ĤQ∣«sð and ¾̂∣«sð as
simple Hadamard products between vectors of O(N2) instead of
matrix–matrix or matrix–vector operations.

The theoretical technique applies the well-known Chebyshev
series expansion approach for quantum dynamics propagation and
to simulate the polariton dynamics in the HTC system. The Cheby-
shev expansion approach allows us to use a much larger time step
for propagation and only requires a few recursive operations of
the polariton Hamiltonian acting on state vectors, which we can
further take advantage of the first technique we developed in this
work. Due to the block diagonal structure of the HTC-type Hamil-
tonian, one can decompose Chebyshev expansions for single and
double excitation subspaces separately, and a shift in the energy
axis of the subspace significantly reduces the oscillation magnitude
of the coefficients in time and allows a much larger propagation
time step. These two theoretical approaches are general and can be
applied to any trajectory-based non-adiabatic quantum dynamics
methods.

Applying these two theoretical techniques, we extended the
L-PLDM method85 to the collective coupling regime. Using this
approach, we simulate the linear spectra of the N-molecule polari-
tonic system described by the HTC Hamiltonian. The approach
we present here will significantly reduce the computational costs.
To demonstrate the developed methods, we simulate the polari-
tonic absorption spectra of N = 500 molecules coupled to a cavity
under either static energy disorder or dipole orientation disorder,
under which the permutation symmetry of the HTC Hamilto-
nian is broken and a simple mean-field approach is not directly
applicable. We observe similar trends of these linear spectra as
observed in the previous work.79,80,86 As the disorder in energy Ã·
increases, the linewidth increases, and the Rabi splitting also grad-
ually increases due to the disorders in energies. When gradually
increasing the orientation disorder, the Rabi splitting decreases,
without a further change in the linewidth. In future work, we
will outline the theoretical details of stimulating 2DES spectra for
the polariton system under the collective coupling regime (Paper
II), with new computational techniques for focusing the algorithm
of the PLDM simulation. Going beyond the single cavity mode
approximation, the theoretical development presented here can
be applied to investigate many molecules collectively coupled to
many cavity modes inside a Fabry–Pérot cavity, such as the trans-
port quantum dynamics87 or angle-resolved photoluminescence
spectra.16,17
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APPENDIX A: CAVITY LOSS THROUGH LINDBLAD

The loss channel from state ∣G1ð to state ∣G0ð can be described
by the loss operator

L̂ = ∣G0ð⟨G1∣. (A1)

The dissipator LL̂ accounts for the cavity loss channel causing the
system to relax,

LL̂[Ä̂Q] = �(L̂Ä̂QL̂ †
−
1
2
{L̂ †

L̂, Ä̂Q}), (A2)

where � is the rate of relaxation of the jump operator, which quan-
tifies the coupling strength of the system to the environment, {Â, B̂}
= ÂB̂ + B̂Â is the anti-commutator, and Ä̂Q = Trb[Ä̂] is the reduced
density matrix operator for the quantum subsystem by tracing out
all bath DOF. In this study, � is the cavity loss rate, and the cavity
quality factor is defined as Q = h̵Éc/�.

The Lindblad evolution for the forward and backward wave-
functions is computed by multiplying the forward and backward
coefficients with a phase factor for these two states as

ca(t + dt) = ¹a(t)ca(t), (A3)

c̃a(t + dt) = ¹̃a(t)c̃a(t), (A4)
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where the phase factors are

¹G1 = ¹̃G1 = e
−�dt/2, (A5)

¹G0 = ¹̃∗G0 = 1 + (2r − 1)
¿ÁÁÀ3(1 − e−�dt) cG1(t)c̃∗G1(t)

cG0(t)c̃∗G0(t) , (A6)

and r ∈ [0, 1] is a uniform random number. The phase factor, when
averaged over the ensemble of trajectories, ensures the exponential
population decay of the state ∣G1ð⟨G1∣ and a gain in the population
of the state ∣G0ð⟨G0∣ as required by Lindblad dynamics, as ana-
lytically proved in our previous work.47,88 The rest of the forward
and backward coefficients, for a ≠ G1 and a ≠ G0, are not affected
by the Lindblad decay, and the corresponding ¹a = ¹̃a = 1. When
averaging among a reasonable amount of trajectories (typically >102

trajectories, see Appendix B in Ref. 47), Eqs. (A5) and (A6) exactly
reproduce the Lindblad EOM for the reduced density matrix, as
demonstrated numerically in our previous work.47

APPENDIX B: ERROR ANALYSIS FOR VARIOUS
PROPAGATORS

We estimate the error accumulated during a propagation step
�t in the quantum subspace for various propagation schemes in
Fig. 8. We first compute the eigenstates of the HTC Hamiltonian
and compute the exact propagator by

exp(− iĤQ�t

h̵
) = Û †exp(− i�t

h̵
Λ̂)Û, (B1)

where Λ̂ is the eigenvalue matrix (the diagonal form of ĤQ) and
Û is the eigenvector matrix, satisfying ĤQÛ = Λ̂Û. The evolution of
any vector can now be obtained by operating Eq. (B1) on the vec-
tor. To test the accuracy of the different propagators, we generated
N = 106 samples of random state vectors by randomly selecting the
coefficients in Eq. (26) (in the complex plane) while keeping it prop-
erly normalized. For each configuration, the bath fluctuation term
3¿ Cn,¿Rn,¿ in ĤQ [see Eq. (27)] is also randomly sampled, based on

FIG. 8. Accuracy of different types of propagators as a function of z-value [see
Eq. (33)]. The red, yellow, cyan, and dark blue curves correspond to the symplectic
integrator (velocity Verlet), RK4, Chebyshev, and shifted Chebyshev propagators.
The z-value scales linearly with �t according to z = 13.6 ⋅ �t, and �t is taken in
fs. So, z = 0.1 corresponds to �t = 1.36 fs.

the Wigner distribution [Eq. (73)]. For each value of the uncertainty
parameter z, we compute the error of the propagator by comparing
it against the exact evolution by

error =
1
N

N

∑
Å=1

max{∣cÅi − cexi ∣} ∀i ∈ [1, K], (B2)

where cexi are the components of the exactly propagated vector
through Eq. (B1) for the Åth trial and cÅi are the components of the
vector propagated by the other numerical integrators.

APPENDIX C: SHIFTING THE CENTRAL FREQUENCY
OF DIFFERENT EXCITATION MANIFOLDS

Note that the HTC Hamiltonian in Eq. (5) assumes the
rotating wave approximation and ignores the counter-rotating
wave terms 3n h̵g

n
c (Ã̂†

nâ
†
+ Ã̂nâ) and dipole self-energy terms. See

Refs. 39 and 89 for details. For the physical model we consid-
ered here, hÉc = 2.0 eV, and the largest

√
Ngc = 100 meV such that√

Ngc/h̵Éc = 0.05 < 0.1, and the system does not enter into the ultra-
strong coupling regime (defined as 0.1 <

√
Ngc/h̵Éc < 1.0), and we

expect that the counter-rotating wave terms and dipole self-energy
terms do not significantly impact89 the polariton eigenenergy and
spectra.

On top of this, we have introduced a computational trick in
Sec. IV C, which provides a constant shift for a given manifold of
the energy. This allows a much larger �t in the simulation and thus
reduces the computational costs. We emphasize that the choice to

FIG. 9. Effect of shifting the central excitation frequency of the system, on the
linear spectra of polaritons. Panels (a) and (b) describe the time-dependent lin-
ear response for the original (·̄ = 2.0 eV) and shifted (·̄ = 0.5 eV), respectively.
Panel (c) compares the resulting absorption spectra from both systems.
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shift down the exciton energy to 0.5 eV is for the purpose of reduc-
ing computational cost and will generate the same spectra (in terms
of the relative peak positions and shape of the peaks) as for our orig-
inal system with É0 = 2.0 eV, of course, with a shifted absolute value
of peak frequency.

Figure 9 shows the results to demonstrate the shifting idea,
where we use N = 100 molecules, a cavity loss rate of � = 20 meV,
and effective Rabi splitting of ¬R = 200 meV. There are no static
disorders considered in these results. We have kept all the other
parameters the same, except shifting ·̄ = 2.0 eV [Fig. 9(a)] to ·̄ = 0.5
eV [Fig. 9(b)]. As one can see, there is more frequent beating in the
response function in Fig. 9(a), due to the 2 eV optical frequency. In
Fig. 9(b), the response function beats with amuch smaller frequency,
due to the reduced optical gap of only 0.5 eV. As such, a smaller
�t is needed for Fig. 9(a) due to the high-frequency beating.

Figure 9(c) presents the line shape obtained from the Fourier
transform of the response functions. One can see that the line shapes
are identical for both cases, including the splitting magnitude and
the width and shape for each peak. The only difference is that for
·̄ = 2.0 eV, the spectra are centered at 2 eV, and for ·̄ = 0.5 eV, the
spectra are centered at 0.5 eV.
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