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Abstract— Path planning for multiple non-holonomic robots
in continuous domains constitutes a difficult robotics challenge
with many applications. Despite significant recent progress on
the topic, computationally efficient and high-quality solutions
are lacking, especially in lifelong settings where robots must
continuously take on new tasks. In this work, we make it
possible to extend key ideas enabling state-of-the-art (SOTA)
methods for multi-robot planning in discrete domains to the
motion planning of multiple Ackerman (car-like) robots in
lifelong settings, yielding high-performance centralized and
decentralized planners. Our planners compute trajectories that
allow the robots to reach precise SE(2) goal poses. The effec-
tiveness of our methods is thoroughly evaluated and confirmed
using both simulation and real-world experiments.

I. INTRODUCTION

The rapid development of robotics technology in recent
years has made possible many revolutionary applications.
One such area is multi-robot systems, where many large-
scale systems have been successfully deployed, including,
e.g., in warehouse automation for general order fulfillment
[1], grocery order fulfillment [2], and parcel sorting [3].
However, upon a closer look at such systems, we readily
observe that the robots in such systems largely live on some
discretized grid structure. In other words, while we can
effectively solve multi-robot coordination problems in grid-
like settings, we do not yet see applications where many non-
holonomic robots traverse smoothly in continuous domains
due to a lack of good computational solutions. Whereas many
factors contribute to this (e.g., state estimation), a major
roadblock is the lack of efficient computational solutions
tackling the lifelong motion planning for non-holonomic
robots in continuous domains.

Toward clearing the above-mentioned roadblock, in this
work, we proposed two algorithms specially designed to
solve static/one-shot and lifelong path/motion planning tasks
for Ackerman car-like robots. The basic idea behind our
methods is straightforward: to enable the adaptation of
discrete search strategies for car-like robots, we use a small
set of fixed but representative motion primitives to transition
the robots’ states. These fixed motion primitives, when
properly put together, yield near-optimal trajectories that
“almost” connect the starts and goals for robots. Some
local adjustments are then used to complete the full tra-
jectory. The first algorithm and our main contribution in
this research, Priority-inherited Backtracking for Car-like
Robots (PBCR) adapts a decentralized strategy that leverages

G. Teng, and J. Yu are with the Department of Computer Science,
Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
Emails: {teng.guo, jingjin.yu}@rutgers.edu. This work
was supported by NSF award IIS-1845888 and an Amazon Research Award.

0 1 3

9
2

75

84

6

Fig. 1. A simulated example on a 60 × 30 map with 10 obstacles and
robots. The collision-free trajectories for the car-like robots are shown.

search-prioritization strategies from Priority Inheritance and
Backtracking (PIBT) [4]. The second algorithm, Enhanced
Conflict-based search for Car-like Robots (ECCR), is a
centralized method building on the principles of Enhanced
Conflict-Based Search (ECBS) [5] and CL-CBS [6], the
car-like robot extension of (basic) conflict-based search [7].
We further boost algorithms’ success rates by introducing
carefully designed, effective heuristics which also reduce
the occurrence of deadlocks. Thorough simulation-based
evaluations confirm that our methods deliver scalable SOTA
performances on many key practical metrics. While our
centralized methods tend to find shorter trajectories due to
their access to global information, our decentralized method
produces better scalability, yielding a higher success rate.

Related Work. Multi-Robot Path Planning (MRPP) has
garnered extensive research interests in robotics and artificial
intelligence in general. The graph-based MRPP variant, also
known as Multi-Agent Path Finding (MAPF) [8], is to find
collision-free paths for a set of robots within a given graph
environment. Each robot possesses a distinct starting point,
and a goal position, and the challenge lies in determining
paths that ensure their traversal from start to goal without
collisions. It has been proven many times over that optimally
solving the graph-based problem to minimize objectives like
makespan or cumulative costs is NP-hard; see, e.g., [9], [10].

Computational methods for MRPP can be broadly clas-
sified into two categories: centralized and decentralized.
Centralized solvers operate under the assumption that robot
paths can be computed centrally and subsequently executed
with minimal coordination errors. On the other hand, de-
centralized solvers capitalize on the autonomy of individ-
ual robots, enabling them to calculate paths independently
while requiring coordination for effective decision-making.
Centralized solutions often involve reducing MRPP to well-
established problems [9], [11], [12], employing search al-
gorithms to explore the joint solution space [5], [7], [13]–
[15] or apply human-designed rules for coordination and
collision-avoidance [16], [17]. Decentralized approaches [4],



[18] leverage efficient heuristics to address conflicts locally,
bolstering their success rates. Machine learning and rein-
forcement learning methods for MRPP have also started
to emerge, with researchers putting forward data-driven
strategies to directly learn decentralized policies for MRPP
[19], [20]. Nevertheless, we note that the paths generated by
graph-based MRPP algorithms cannot be directly applied to
physical robots due to their disregard for robot kinematics.

As autonomous driving gains momentum, interest in path
planning for multiple car-like vehicles is also steadily rising
[21], [22]. This has led to the development of new methods,
including adaptations of CBS to car-like robots (CL-CBS)
[6], prioritized trajectory optimization [23], sampling-based
techniques [24], and optimal control strategies [25]. Decen-
tralized approaches have been introduced as well, such as B-
ORCA [26] and ϵCCA [27], both stemming from adaptations
of ORCA [28] designed for car-like robots. These methods
offer faster computation compared to centralized methods.
However, their reliance on local information means they
cannot provide a guarantee that robots will successfully reach
their destinations. Moreover, they are prone to deadlock
issues and tend to achieve much lower success rates, par-
ticularly in densely populated environments.

Organization. The rest of the paper is organized as fol-
lows. Sec. II covers the preliminaries, including the problem
formulation. In Sec. III-IV, we demonstrate our algorithms
in detail. In Sec. V, we conduct evaluations on the proposed
methods in static settings and lifelong settings and discuss
their implications. We conclude in Sec. VI.

II. PROBLEM FORMULATION

A. Multi-Robot Path Planning for Car-Like Robots

A static instance of this problem is specified as (W,S,G),
where W constitutes a map with dimensions W×H , housing
a set of obstacles O = {o1, ..., ono

}. S = {s1, ...sn}
defines the initial configurations of n robots within the
workspace, and G = {g1, ...gn} represents the corresponding
goal configurations.

Each robot’s SE(2) configuration, denoted as vi =
(xi, yi, θi), comprises a 3-tuple of position coordinates and
the yaw orientation θi. The car-like robot is modeled as a
rectangular shape with length ℓ and width w. The subset of
W occupied by a robot’s body at a given state v is denoted
by Γ(v). The motion of the robot adheres to the Ackermann-
steering kinematics (see Fig. 2(a)):

ẋ = u cos θ, ẏ = u sin θ, θ̇ =
u

ℓb
tanϕ, (1)

in which u ∈ [−um, um] is the linear velocity of the robot,
ϕ ∈ [−ϕm, ϕm] is the steering angle. These are the control
inputs. ℓb is the wheelbase length, i.e., the distance between
the front and back wheels.

To make planning more tractable, we discretize into
intervals ∆t. The goal is to ascertain a feasible path
for each robot i, expressed as a state sequence Pi =
{pi(0), ...pi(t), ...pi(T )} that adheres to the following con-
straints: (i) pi(0) = si and pi(T ) = gi; (ii) ∀t ∈

[0, T ],∀i ̸= j,Γ(pi(t))
⋂︁
Γ(pj(t)) = ∅; (iii) The path follows

the Ackermann-steering kinematic model. The time interval
is kept small during the discretization process. This choice
ensures that the distance moved within each step remains
smaller than the size of the robot. Consequently, the need to
account for swap conflicts [8] is eliminated.

Trajectory quality is evaluated using the following crite-
ria: (i) Makespan: max1≤i≤n len(Pi)/umax; (ii) Flowtime:∑︁

1≤i≤n len(Pi)/umax, where len(Pi) denotes the length of
trajectory Pi.

B. The Lifelong Setting

In a lifelong setting, we assume an infinite stream of tasks
for each robot. Upon completing the current task, a robot
immediately receives a new target. In this scenario, evaluat-
ing the system’s efficiency often relies on throughput—the
number of tasks accomplished (or goal states arrived) within
a specified number of timesteps.

III. PRIORITY-INHERITED BACKTRACKING FOR
CAR-LIKE ROBOTS (PBCR)

In this section, we propose a decentralized method called
PBCR for car-like robots, adapting the prioritization mech-
anism of the decentralized MRPP algorithm PIBT [4]. In
conjunction with the introduction of PBCR, we also describe
the general methodology we adopt to plan continuous trajec-
tories for non-holonomic robots that is generally applicable,
provided that the optimal trajectories connecting the robot
can be compactly represented using a few motion primitives.

A. Motion Primitives

To render planning for the continuous system feasible,
we constrain the robot’s possible state transitions within
the discretized time interval ∆t, forming a set of motion
primitives. Our motion primitives M are defined similarly
as done in [6], [23], which contain a total of seven actions:
forward max-left (FL), forward straight (FS), forward max-
right (FR), backward max-left (BL), backward straight (BS),
backward max-right (BR), and wait, as shown in Fig. 2(b).
For the first six motion primitives, we assume that the robot
maintains a constant velocity of um throughout a single time
interval ∆t. When the robot turns, we assume it is pivoting
using the maximum steering angle ϕm and then tracing an
arc with a turning radius rm. This arc has a um∆t length.

To ensure a robot can reach its goal state for PBCR,
one additional greedy motion primitive (GM) is added to
M. This greedy motion primitive is derived by truncating
the first segment of length um∆t from the shortest path
connecting the current state to the goal state for a single
robot. In the absence of obstacles on the map, this shortest
path corresponds to the (optimal) Reeds-Shepp [29] path
while if obstacles are present, the path can be determined
using the vanilla (non-spatio-temporal) hybrid A* algorithm.
It’s important to recognize that this greedy motion primitive
could be identical to other motion primitives, resulting in the



same subsequent state as those alternatives. In such cases, we
opt to retain solely the greedy one.
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Fig. 2. (a) Ackermann steering kinematic model. (b) The predefined motion
primitives. We have at most 8 motion primitives, which are forward max-
left (FL), forward straight (FS), forward max- right (FR), backward max-left
(BL), backward straight (BS), backward max-right (BR), wait, and greedy
motion primitive (GM)

B. Algorithm Skeleton

PBCR is outlined in Alg. 1-2, at the core of which
lies the PIBTLoop, which orchestrates the decision-making
process for the robots at each time step t. PIBTLoop’s
primary objective is to determine each robot’s next motion
and succeeding state without encountering collisions.
PIBTLoop initializes two essential sets: UNDECIDED

and OCCUPIED. The UNDECIDED set keeps track of
robots that have yet to finalize their next actions, while the
OCCUPIED set stores the information about occupied states,
preventing multiple robots from attempting to occupy the
same space simultaneously. At the outset of each iteration,
the algorithm updates the priorities of all robots based on
relevant factors. The priorities are crucial in determining
which robot takes precedence in decision-making. This step
ensures that the higher-priority robots have their actions
determined earlier, facilitating swift and efficient navigation.
PBCR’s decision-making process revolves around an iter-
ative approach. The algorithm enters a loop that continues
until all robots in the UNDECIDED set have their actions
determined. The robot with the highest priority within the
loop is selected from the UNDECIDED set. This robot is
designated as robot i for the current iteration.

Algorithm 1: Priority selection at time step t

1 Function PIBTLOOP():
2 UNDECIDED←R(t)
3 OCCUPIED← ∅
4 update all priorities
5 while UNDECIDED! = ∅ do
6 i← the robot with the highest priority in

UNDECIDED
7 PIBT(i,NONE,NONE)
8 end

The PIBT function is invoked for the selected robot
i, along with placeholders for two parameters: the parent
robot j which robot i is inherited from, and the potential
succeeding state vj of the parent robot. This function serves
as the primary interface for the robot’s decision-making. It
evaluates potential actions considering the robot’s current
state, goals, obstacles, and the presence of other robots.
Based on these evaluations, the robot’s next action is deter-
mined to ensure collision-free and goal-oriented navigation.

Algorithm 2: PIBT function
1 Function PIBT(i, j, vj):
2 UNDECIDED← R(t)− i
3 NbrUndecided←

the neighboring robots of i that remain undecided
4 NbrOcc←

the occupied states of the neighboring decided robots
5 C ← {ValidSuccState(pi(t),mi)|mi ∈Mi}
6 while C ̸= ∅ do
7 vi ← argmaxv∈CQi(v) and remove vi from C
8 if FindCollision(vi,NbrOcc

⋃︁
{pj(t), vj})

then
9 continue

10 end
11 OCCUPIED.add(vi)
12 if ∃k ∈ NbrUndecided such that

FindCollision(pk(t), vi)= true then
13 if PIBT(k, i, vi) is valid then
14 pi(t+ 1)← vi
15 return valid
16 end
17 else
18 OCCUPIED.remove(vi)
19 end
20 end
21 end
22 UNDECIDED.add(i)
23 return invalid

The PIBT function plays a pivotal role within PBCR,
encapsulating the decision-making process for an individual
robot. This function is called iteratively for each robot
to compute its next action, considering its current state,
goals, and interactions with neighboring robots. The func-
tion identifies the set UNDECIDED, which comprises all
robots yet to finalize their actions, and marks robot i as
decided temporarily. Additionally, NbrUndecided contains
neighboring robots of i that remain undecided, and NbrOcc
holds the occupied states of the neighboring robots that have
already determined their actions. These sets provide cru-
cial contextual information to facilitate informed decision-
making. The function computes a set C of potential future
states vi for the current robot i. These states are generated
based on all feasible actions mi available to robot i at its
current state pi(t). The goal is to explore various potential
actions to lead to a successful next state for ri. The function
selects the potential state vi within a loop that maximizes
the robot’s utility function Qi(v) from the set C. This action
selection aims to optimize the robot’s decision by choosing
the most promising action according to the utility criterion.
However, before finalizing the action, the function checks for
collisions between the selected vi and the occupied states of
neighboring robots, as well as the state of the parent robot
j (if it is not NONE) and its potential succeeding state vj .
If a collision is detected, the function continues to the next
iteration of the loop, considering alternative potential actions.

If no collisions are found for the chosen vi, vi is added to
the OCCUPIED set, indicating the robot intends to occupy
this state. The function then checks if an undecided neighbor-
ing robot k will collide with vi. If such a robot k is found, the
function recursively calls PIBT for robot k with the parent



robot i and the tentative state vi as the parameters. If the
resulting action is valid, robot i updates its next state pi(t+1)
to vi, and the function returns “valid.” If PIBT for robot k
fails, the state vi is removed from OCCUPIED. After evalu-
ating all potential actions and considering interactions with
neighboring robots, robot i remains in the UNDECIDED
set. The function returns “invalid” if a valid action cannot
be determined. Otherwise, it returns “valid” along with the
updated next state pi(t+ 1) for robot i.

We note that PBCR’s one-step planning and execution
nature makes it applicable to static and lifelong scenarios.

C. Performance-Boosting Heuristics

Multiple heuristics are introduced to boost the perfor-
mance of PBCR, while some are basic, others are involved.

Distance heuristic. We use the max of the holonomic
cost with obstacles, the length of the shortest Reeds-Shepp
path between two states, and 2D Euclidean distance as our
distance heuristic function (DistH) similar to [6], [30]. This
distance heuristic is admissible.

Priority heuristic. PBCR constitutes a single-step,
priority-driven planning approach that necessitates the on-
going adjustment of each robot’s priority at each time step.
Initially, the priority assigned to each robot is determined
based on the number of time steps that have transpired
since its preceding task was updated. The robot with more
time since its previous goal update receives a higher priority
ranking. In static scenarios, the elapsed time is reset to zero
whenever a robot reaches its designated goal state. This reset
mechanism prevents robots that have achieved their goal state
from obstructing the progress of other robots. When multiple
robots share the same elapsed time, prioritization is resolved
by favoring those robots with a larger heuristic distance value
to their respective goal states. This heuristic principle finds
widespread application in the realm of prioritized planning
[31] to improve the success rate.

The Q-function. The Q-function is a critical tool for
assessing the optimal choice of a motion primitive in guiding
the robot from its current state toward its goal state. PIBT
algorithm employs the single-agent shortest path length from
the current vertex to its goal vertex, neglecting inter-agent
collisions, as the basis for its evaluation function. This
approach is feasible for discrete 2D graphs since these
shortest path lengths can be pre-calculated and stored in
a table. Nevertheless, this approach is impractical for the
state space we’re addressing with car-like robots. Firstly, the
state space is infinite. Secondly, determining a single-robot
shortest trajectory from a state to a goal state using hybrid A*
for evaluating all the motion primitives is both time-intensive
and incomplete. For these reasons, we consider employing
the distance heuristic function discussed earlier as well as
the action cost, denoted as

Q′
i(v) = −DistH(v, gi)− λCost(pi(t), v) (2)

where λ is a weight and Cost(pi(t), v) returns the action
cost from state pi(t) to v. We use the action cost similar

to [6] where backward motions, turning, and changes of
directions will receive additional penalty cost. However,
it’s important to note that the distance heuristic is not a
“reachable” heuristic in the context of PBCR. A heuristic
is labeled as “reachable” for PIBT-like algorithms if, while
ignoring inter-robot collisions, a solitary robot is guaranteed
reach its goal state by consistently choosing the “best” action
with the maximum Q value at each timestep. In discrete
MRPP, the single-agent shortest path length qualifies as
a “reachable” heuristic. We mention that while Manhattan
distance is a reliable “reachable” heuristic when the map
is obstacle-free, this is not guaranteed when obstacles are
present. In scenarios with obstacles, a robot directed by
the Manhattan distance heuristic might become entrapped
in local minima, obstructing its path to the goal state. Our
case showed DistH is not a “reachable” heuristic either.
Despite being admissible, it lacks the required precision.
Notably, the assertion that a greedy motion primitive should
yield the highest Q value among the possibilities isn’t con-
sistently upheld when using Qi(v) = −DistH(v, gi). This
discrepancy easily leads the robot into a state of stagnation.
Furthermore, we found that this greedy heuristic could also
lead to deadlocks. An example can be seen in Fig. 3.
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Fig. 3. An illustrative case highlighting the potential occurrence of
deadlocks due to the exclusion of the count-based heuristic is as follows:
In this scenario, two robots, labeled as robot 1 and robot 2, travel in
opposite directions along a linear path. When robot 2 yields to robot 1
in PBCR, a predicament arises. In this situation, the motion primitives FS,
FR, and FL lead to collisions, compelling robot 2 to consistently opt for
the motion primitive BS. This choice is driven by BL and BR, involving
additional turning penalties. A dynamic shift occurs in priorities upon robot
1’s successful arrival at its designated goal state. Robot 1 is assigned a
lower priority than robot 2 and consequently yields to the latter. Similarly,
robot 1 consistently selects BS using the greedy strategy. Consequently, an
unending cycle emerges, entangling robot 1 and robot 2 in an indefinite
sequence of movements

We present a novel count-based exploration heuristic to
address the challenge, inspired by [32]. This heuristic is
specifically designed to surmount the issue of local minima
arising from inaccuracies in distance heuristics and deadlocks
and to foster exploration of uncharted territories. To achieve
this, we incorporate supplementary penalties for states that
have been visited, aiming to encourage robots to break free
from local minima and venture into unexplored regions. Each
state v = (x, y, θ) is mapped to its nearest discrete state˜︁v = (⌊ x

δx⌋, ⌊
y
δy ⌋, ⌊ θ

δθ ⌋). This mapping facilitates the tallying
of occurrences using a hash table Hi for each robot, where
δx, δy, and δθ delineate the state-space resolution.

When a robot i traverses state v at a given timestep t,
the count Hi(˜︁v) is incremented by one. In addition, we
introduce bonus rewards to incentivize the selection of the
greedy motion primitive. The resultant Q-function is:

Qi(v) = Q′
i(v) + αGr(v)− βHi(˜︁v) (3)

Here, α and β represent positive weight parameters. If the
state v results from a greedy motion primitive, Gr(v) = 1;



otherwise, Gr(v) = 0. To accommodate the requirement that
robots should remain at their goal states upon arrival, we
refrain from applying penalties to states near the goal states.
As a result, when v = gi (the goal state of robot i), we
set β to zero. We mention that such a Q function could
be “reachable” if we properly choose the weight parameters.
Moreover, by implementing the count-based heuristic, which
compels robots to explore distinct motion patterns for colli-
sion avoidance, the deadlock issues can be nicely achieved.

IV. CENTRALIZED ECCR

We enhance the CL-CBS algorithm by substituting the
conventional low-level spatiotemporal hybrid state A* plan-
ner with focal hybrid state A* search [5]. This refined
approach is named ECCR. In comparison to CL-CBS, the
ECCR method guides the low-level planner to discover
trajectories within a bounded suboptimality ratio while en-
countering fewer potential conflicts with other robots. This
reduction in conflicts subsequently results in a significantly
lower number of high-level expansions.

For the purpose of adapting ECCR to lifelong scenarios,
characterized by the necessity for frequent online replanning,
we incorporate the windowed version of focal search in the
low-level planning process [33], [34]. Specifically, during
path planning, we only address conflicts that arise within a
window of ω steps. This adjustment effectively decreases the
runtime of the ECCR algorithm during the planning phase.
Replanning occurs at intervals of every ω steps and also when
robots reach their current goals and receive new tasks.

V. EVALUATION

In this section, we evaluate the proposed algorithms in
static scenarios and lifelong scenarios. All methods are
implemented in C++. The source code can be found in
https://github.com/GreatenAnoymous/CarLikePlanning. All
experiments are performed on an Intel® CoreTM i7-6900K
CPU at 3.0GHz in Ubuntu 18.04LTS. In the simulation, the
following parameters are used: w = 2, l = 3, lb = 2,
δx = δy = 2, δθ = 40.1◦, um = 2, ϕm = 40.1◦, rm = 3,
∆t = rmδθ/um.

A. Static Scenarios

In this section, we assess the performance of the algo-
rithms on a grid of dimensions 100 × 100, both with and
without obstacles. For the scenarios involving obstacles, we
create 50 circular obstacles with a radius of 1 unit length
and place them randomly on the map. For each value of n,
we generate 50 distinct instances, ensuring that the states
of the robot do not overlap with each other and with the
obstacles in start and goal configurations. A time limit
of 60 seconds is imposed on each instance. The success
rate is determined by tallying the instances each algorithm
successfully solves within the time limit. Additionally, we
evaluate the average runtime (in seconds), makespan, and
flowtime across the solved instances. Our evaluation includes
a comparison with two reference algorithms: firstly, the

prior centralized algorithm known as CL-CBS, and secondly,
the decentralized SHA* algorithm as described in [6]. We
emphasize that all algorithms use identical predefined motion
primitives, except that GM is exclusively used for PBCR.

A suboptimality ratio of 1.5 is selected for ECCR. Three
variants of PBCR are evaluated. The first, PBCR (v0),
employs the Q-function described in (3) without incorpo-
rating the count-based exploration heuristic. Both PBCR
(v1) and PBCR (v2) leverage the count-based exploration
heuristic to resolve local minima and deadlocks. In the case
of PBCR (v1), we opt to clear the hash table Hi and
reset the associated counts to zero whenever robot i reaches
its designated goal state. Conversely, for PBCR (v2), the
visiting history is not cleared. For all variants of PIBT,
the maximum time step is constrained to 500. And we set
λ = 0.3, α = β = λCost(pi(t), v).

Detailed evaluation results are presented in Fig.4 through
Fig.6. Compared to CL-CBS, ECCR showcases significantly
enhanced scalability and success rates due to its capability
to expand a notably smaller number of high-level nodes.
Notably, the solution quality of ECCR closely approaches
that of CL-CBS. On the flip side, the PBCR variants
excel in terms of runtime efficiency, resulting from their
decentralized nature and one-step planning strategy. They
can resolve instances involving 60 robots in as little as 4
seconds. Among these variants, PBCR featuring the count-
based exploration heuristic achieves an elevated success rate.
Conversely, without the count-based exploration heuristic,
PBCR (v0) falters in instances with obstacles, revealing its
limitations. However, PBCR (v2) successfully tackles 93%
of cases involving 60 robots within 4 seconds, excelling in
challenging scenarios—a substantial improvement over other
variants and the previous decentralized SHA* approach.
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Fig. 4. Evaluation results on a 100×100 empty map for a varying number
of robots.

It’s crucial to emphasize that all PBCR variants do not
fail due to time constraints but rather due to surpassing the
maximum timestep. For those failed instances, PBCR with
count-based heuristic still can guide more than 90% of the
robots to their goal states as shown in Fig. 6. The contrast in
success rates between PBCR (v2) and PBCR (v1) implies
that retaining the visiting history until completion, instead
of resetting it upon each robot’s arrival at its goal state, is
more effective. This arises from the fact that in the context
of PBCR, when a robot reaches its designated goal, it often

https://github.com/GreatenAnoymous/CarLikePlanning
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Fig. 5. Evaluation data on a 100 × 100 map with 50 randomly placed
obstacles for a varying number of robots.
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Fig. 6. The average percentage of robots arrived at their goal state for
each PBCR variant on the 100× 100 maps for varying numbers of robots.
(a) without obstacles (b) with obstacles.

has to temporarily vacate its goal position to accommodate
other robots that must traverse it. This frequent shifting in
and out of the goal state can potentially lead to repetitive
cycles and hinder progress. Maintaining the visiting history
mitigates this issue by preventing the robot from becoming
trapped in an endless loop of entering and leaving the goal,
consequently boosting the overall success rate. One draw-
back of PBCR lies in its trajectory quality. This stems from
the absence of global information and the inherent nature
of one-step planning, leading to longer planned trajectories
compared to centralized algorithms such as ECCR and CL-
CBS. This effect is particularly pronounced when dealing
with a large number of robots.

B. Lifelong Scenarios

In this section, we subject both ECCR and PBCR to
testing within lifelong settings. We adopt a 50 × 50 map
configuration, both with and without obstacles. For scenarios
involving obstacles, a set of 10 obstacles is distributed ran-
domly. For each value of n, we randomly generate 20 unique
instances. In each instance, both the initial configurations and
4000 goal states, randomly generated, are allocated to each
robot. Throughout the simulation, we assume a lack of a
priori knowledge on the part of the robots regarding their
subsequent tasks. In each instance, we define a maximum
of 5000 simulated steps and set a runtime limit of 600
seconds. Each robot has many tasks that cannot be feasibly
completed within the designated maximum steps. Regarding
ECCR, a suboptimality ratio of 1.5 is established, while a
window size ω of 5 is employed. Given that new goals are
allocated to robots upon completing current tasks, the visiting
history is consistently cleared. This decision is driven by the
fact that the visiting experience only relates to the robot’s

preceding task. PBCR (v0) is excluded from consideration
owing to its poor performance in addressing issues related
to deadlocks and stagnation. The outcome of our evaluations
is depicted in Fig. 7. PBCR achieves significantly lower ex-
ecution times than ECCR, rendering it suitable for handling
large-scale scenarios and real-time planning. Nonetheless, it
accomplishes a smaller number of tasks.
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Fig. 7. Runtime and the average number of tasks finished within given
timesteps in lifelong scenarios for varying number of robots. The term “obs”
is an abbreviation for scenarios with obstacles.

C. Real-Robot Experiments

We employed the portable multi-robot platform, mi-
croMVP [35], for conducting real-world experiments involv-
ing car-like robots to validate the execution of our algo-
rithmic solutions on real hardware. Whereas the microMVP
robots are differential drive robots, a software layer can be
imposed to simulate car-like robots, which is what we did 1.
Fig. 8 gives a visual representation of the setup. As evident
from the attached video, paths generated by our planners can
be successfully executed on the robots’ controllers.

Fig. 8. Snapshot of a real robot experiment with 4 obstacles and 5 robots.

VI. CONCLUSION AND DISCUSSIONS

In this study, we investigate path planning for multiple
car-like robots. We present two distinct algorithms tailored
to the specific demands of car-like robot navigation scenar-
ios. The first and our main contribution, PBCR, employs
an effective count-based exploration heuristic. Focusing on
decentralized decision-making, PBCR demonstrates a no-
table advancement over previous decentralized approaches.
The improvement is evident through significantly heightened
success rates with some manageable optimality trade-offs
of yielding longer trajectories. Opportunities for improv-
ing trajectory quality within PBCR remain; in particular,
our approach employs a manually designed Q-function for

1While achieving the same goal, the simulation makes the experiment
more challenging than running directly on car-like robots.



action selection, which may be replaced with data-driven
approaches for reaching optimal performance.
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inheritance with backtracking for iterative multi-agent path finding,”
in International Joint Conference on Artificial Intelligence, 2019.

[5] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Seventh Annual Symposium on Combinatorial Search,
2014.

[6] L. Wen, Y. Liu, and H. Li, “Cl-mapf: Multi-agent path finding for car-
like robots with kinematic and spatiotemporal constraints,” Robotics
and Autonomous Systems, vol. 150, p. 103997, 2022.

[7] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[8] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar, et al., “Multi-agent pathfinding: Def-
initions, variants, and benchmarks,” arXiv preprint arXiv:1906.08291,
2019.

[9] P. Surynek, “An optimization variant of multi-robot path planning
is intractable,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 24, no. 1, 2010.

[10] J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-
robot path planning on graphs,” in Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[11] ——, “Optimal multirobot path planning on graphs: Complete al-
gorithms and effective heuristics,” IEEE Transactions on Robotics,
vol. 32, no. 5, pp. 1163–1177, 2016.
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