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Abstract— Parking lots and autonomous warehouses for
accommodating many vehicles/robots adopt designs in which
the underlying graphs are well-connected to simplify planning
and reduce congestion. In this study, we formulate and delve
into the largest well-connected set (LWCS) problem and explore
its applications in layout design for multi-robot path planning.
Roughly speaking, a well-connected set over a connected graph
is a set of vertices such that there is a path on the graph
connecting any pair of vertices in the set without passing through
any additional vertices of the set. Identifying an LWCS has
many potential high-utility applications, e.g., for determining
parking garage layout and capacity, as prioritized planning can
be shown to be complete when start/goal configurations belong to
an LWCS. In this work, we establish that computing an LWCS
is NP-complete. We further develop optimal and near-optimal
LWCS algorithms, with the near-optimal algorithm targeting
large maps. A complete prioritized planning method is given
for planning paths for multiple robots residing on an LWCS.

I. INTRODUCTION

Designing infrastructures that accommodate many mobile
entities (e.g., vehicles, robots, and so on) without causing
frequent congestion or deadlock is critical for improving
system throughput in real-world applications, e.g., in an
autonomous warehouse where many robots roam around. A
good design generally entails good environment connectivity
in some sense. This paper captures the intuition of “good
connectivity” with the concept of well-connect set (WCS),
presents a comprehensive study on computing largest well-
connected sets (LWCS), and highlights the application of
LWCS in multi-robot path planning (MRPP).

To illustrate what a WCS is, let’s consider a parking
garage. It is essential to design it so vehicles can park
without blocking each other, and retrieving a parked vehicle
doesn’t require moving other vehicles. Roughly speaking,
the parking spots satisfying these requirements form a
WCS, and finding an LWCS is instrumental in determining
maximum parking capacity while minimizing congestion.
Well-formed infrastructures based on WCSs are encountered
in a broad array of real-world scenarios, including fulfillment
warehouses, parking structures, storage systems [1]–[4], and
so on. These infrastructures, designed properly, efficiently
facilitate the movement of the enclosed entities, ensuring
smooth operations and avoiding blockages.

WCS is especially relevant to MRPP, which involves
finding collision-free paths for many mobile robots [5]–[10].
Here, the challenge lies in finding feasible paths connecting
each robot’s start and target positions. The concept of WCS
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Fig. 1: Examples of well-formed infrastructures. (a) Amazon
fulfillment warehouse. (b) A typical parking lot.
becomes crucial, as it ensures that each robot can reach its
destination without traversing other robots’ positions, thereby
guaranteeing a deadlock-free solution for easily realized
prioritized planners.

In this paper, we provide a rigorous formulation for the
LWCS problem and establish its computational intractability.
We then propose two algorithms for tackling this challenging
combinatorial optimization problem. The first algorithm
is an exact optimal approach that guarantees finding a
largest well-connected vertex set, while the second algorithm
offers a suboptimal but highly efficient solution for large-
scale instances. As an application, LWCS readily provides
prioritized MRPP with completeness guarantees.

Related work. The concept of well-connected vertex
sets is inspired by well-formed infrastructures [10]. In well-
formed infrastructures, such as parking lots and fulfillment
warehouses [1], the endpoints are designed to allow multiple
robots (vehicles) to move between them without completely
obstructing each other, where the endpoint can be a parking
slot, a pickup station, or a delivery station. Many real-world
infrastructures are built in this way to benefit pathfinding and
collision avoidance. Planning collision-free paths that move
robots from their start positions to target positions, known as
multi-robot path planning or MRPP, is generally NP-hard to
optimally solve [11], [12]. In real applications, prioritized
planning [13], [14] is one of the most popular methods used
to find collision-free paths for multiple moving robots where
the robots are ordered into a sequence and planned one by one
such that each robot avoids collisions with the higher-priority
robots. The method performs well in uncluttered settings
but is generally incomplete and can fail due to deadlocks
in dense environments. Prior studies [9], [10] show that
prioritized planning with arbitrary ordering is guaranteed to
find deadlock-free paths in well-formed environments. When
a problem is not well-formed, it may be possible to find a
solution using prioritized planning with a specific priority
ordering, as proposed in [9]. However, finding such a priority
order can be time-consuming or even impossible. To our
knowledge, no previous studies investigated how to efficiently



design a well-formed layout that fully utilizes the workspace.
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Fig. 2: (a) The green cells form a WCS. Any robot parked at one
of these cells does not block others’ move. (b) An example of a
non-WCS. Retrieving one robot, A, requires moving some other
robots. (c) An example of a SWCS. B has no access to a robot at
C without moving others.Organization. Section II provides detailed problem formu-
lations. In Section III, we investigate the theoretical properties
and establish the proof of NP-hardness. Next, in Section IV,
we present our algorithms for finding WCS while optimizing
the size of the set. Section V explores the application of
WCS in multi-robot navigation. In Section VI, we evaluate
the effectiveness of our algorithms on various maps. Finally,
we conclude the paper in Section VII and discuss future
directions for research.

II. PROBLEM FORMULATION

A. Well-Connected Set
Let G(V,E) be a connected undirected graph representing

the environment with vertex set V and edge set E the edge
set. A well-connected set (WCS) is defined as follows.

Definition (Well-Connected Set (WCS)). On a graph
G(V,E), a vertex set M ⊂ V is well-connected if (i).
∀u, v ∈ M,u ̸= v, there exists a path connecting u, v without
passing through any w ∈ M − {u, v} , (ii) the induced
subgraph of G by the vertex subset V −M is connected.

WCS enforces a stronger connectivity requirement. If a
vertex set M satisfies (i) but violates (ii), we call M a semi-
well-connected set (SWCS). Any WCS is a SWCS set but
the opposite is not true (see, e.g., Fig. 2(c)).

For a given G, there are many WCSs. We are particularly
interested in computing a largest such set. Toward that, We
introduce two related concepts: the maximal well-connected
set and the largest well-connected set.

Definition (Maximal Well-Connected Set (MWCS)). A WCS
M is maximal if for any v ∈ V −M , {v}

⋃︁
M is not a well-

connected set.

Definition (Largest Well-Connected Set (LWCS)). A largest
well-connected set M is a WCS with maximum cardinality.

By definition, a LWCS is also a MWCS; the opposite is not
necessarily true. In this paper, we focus on maximizing the
“capacity" of well-formed infrastructures, or in other words,
maximizing the cardinality of the WCS. Besides capacity, we
also introduce the path efficiency ratio (PER) for evaluating
how good a layout is from the path-length perspective.

Definition (Well-Connected Path (WCP)). Let M be a WCS.
A path p = (p0, ..., pk) is a well-connected path connecting
p0 and pk if its subpath (p1, ..., pk−1) does not pass through
any vertex in M .

If M is a WCS, a WCP connects any two vertices u, v ∈ M .
We denote dw(u, v) as the shortest WCP distance between
u, v and d(u, v) as the shortest path distance.

Definition (Path Efficiency Ratio). Let M be a WCS of G
and u ∈ M as the reference point (i.e. I/O port), the path
efficiency ratio w.r.t vertex u is defined as

∑︁
v∈M d(u,v)∑︁

v∈M dw(u,v) .

III. THEORETIC STUDY

In this section, we investigate the property of WCS and
prove that finding LWCS is NP-hard.

A vertex in an undirected connected graph is an articulation
point (or cut vertex) if removing it (and edges through it)
disconnects the graph or increases the number of connected
components. We observe if a WCS contains a node v, then
v should not be an articulation point so as not to violate
property (ii) in the definition of WCS.

Proposition III.1. If M is a WCS, for any M ′ ⊆ M, v ∈ M ′,
v is not an articulation point of the subgraph induced by
V −M ′ + {v}.

Next, we investigate the property of the node in WCS and
its neighbors.

Proposition III.2. Let M be a WCS. For any v ∈ M , if
|M | > |N(v)|+ 1 where N(v) denotes the set of neighbors
of v, then at least one of its neighbors is not in M .

Proof. Assume N(v) ⊂ M . Because |M | > |N(v)| + 1,
M − (N(v)

⋃︁
{v}) ̸= ∅. Let w ∈ M − (N(v)

⋃︁
{v}), then

every path from w to v has to pass through a neighboring
node of v, which contradicts property (i) of WCS.

We now prove that finding a LWCS is NP-hard.

Theorem III.1 (Intractability). Finding the LWCS is NP-
hard.

Proof. We give the proof by using a reduction from 3SAT [15].
Let (X,C) be an arbitrary instance of 3SAT with |X| = n
variables x1, ..., xn and |C| = m clauses c1, ..., cm, in which
cj = l1j ∨ l2j ∨ l3j . Without loss of generality, we may assume
that the set of all literals, lkj ’s, contain both unnegated and
negated forms of each variable xi.

From the 3SAT instance, a LWCS instance is constructed
as follows. For each variable xi, we create three nodes, one
node is for xi, one node is for its negation x̄i, and yi which
is a gadget node. The three nodes are connected with each
other with edges and form a triangle gadget. For each clause
variable ci = l1j ∨ l2j ∨ l3j , we create a node and connect it to
the three nodes that are associated with l̄

1
j , l̄

2
j , l̄

3
j . Finally, we

create an auxiliary node z and add an edge between z and
each literal node. Fig. 3 gives the complete graph constructed
from the 3CNF formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧
(x̄1 ∨ x3 ∨ x4) ∧ (x1 ∨ x̄2 ∨ x̄4).

To find a LWCS, we observe that for each triangle gadget
formed by (xi, x̄i, yi), the node xi, x̄i should not be selected
at the same time. Otherwise, if node yi is not selected, it
would be completely isolated, which violates Proposition III.1.
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Fig. 3: The graph derived from the 3SAT instance (x1 ∨ x2 ∨ x3)∧
(x2∨ x̄3∨ x̄4)∧ (x̄1∨x3∨x4)∧ (x1∨ x̄2∨ x̄4). The green vertices
form a LWCS of size 12. By setting the literals of green vertices
to true, the 3SAT instance is satisfied.

If yi is also selected, then every path to yi from other nodes
must always pass through either node xi or node x̄i, violating
WCS definition. This implies that for each triangle, at most
two nodes can be selected and added to the set, and one of the
nodes must be yi. A second observation is if the clause node
cj = l1j ∨ l2j ∨ l3j is selected as a vertex of the WCS, the nodes
{l̄1j , l̄

2
j , l̄

3
j} connected to cj cannot be selected simultaneously.

Otherwise, node ci would be blocked by the three nodes.
If the 3SAT instance is satisfiable, let ˜︁X = {˜︁x1, ..., ˜︁xn} be

an assignment of the truth values to the variables. Based on
these observations, the MWCS of size 2n+m is constructed
as ˜︁X⋃︁

C
⋃︁
Y , where Y = {y1, ..., yn}. On the other hand, if

the reduced graph has a WCS of size 2n+m, for each triangle
gadget, we can only choose two, and one of them must be the
gadget node. Thus, all the gadget nodes should be selected
and this contributes 2n nodes. For the remaining m nodes, we
hope that all nodes in C are selected. To not violate the well-
connectedness, for each clause node cj = l1j ∨ l2j ∨ l3j to be
selected, at least one of the node from (l̄

1
j , l̄

2
j , l̄

3
j ) should not

be selected. This is equivalent to ensuring that cj = l1j ∨l2j ∨l3j
is true. Therefore, if the node ˜︁xi is selected for each i, we
set ˜︁xi = true, then the resulting assignment ˜︁X satisfies the
3SAT instance.

Next, we investigate the upper bound for the LWCS
denoted as M∗.

Proposition III.3. Denote ∆ as the maximum degree of the
node of G. We have |M∗| ≤ max(∆−1

∆ |V |,∆+ 1).

Proof. For each v ∈ M∗, at least one of its neighbors u
should be in V −M∗. Charge v to u. A node u ∈ V −M∗ can
be charged at most ∆−1 times. Hence, we have |V −M∗| ≥
|M∗|
∆−1 . Since every node is either in M∗ or V −M∗ we have
|M∗| + |V − M∗| = |V | ≥ (1 + 1

∆−1 )|M
∗|. On the other

hand, it is possible that M∗ = N(v)
⋃︁
{v} for a node v of

degree ∆. Therefore, |M∗| ≤ max(∆−1
∆ |V |,∆+ 1).

IV. ALGORITHMS FOR FINDING WELL-CONNECTED SETS

A. Algorithm for Finding a MWCS

We first present an algorithm to find a MWCS in a graph,
which begins by initializing two sets: M and P . Set M
contains vertices currently included in the WCS, while P
contains those available for adding to the set. Initially, M is
empty, and P contains all the vertices of G. The algorithm

selects a vertex from P and adds it to M while maintaining
it as a WCS. At each step, we use Tarjan’s algorithm [16]
to compute the set of articulation vertices for the subgraph
induced by V −M and remove all the articulation vertices
from P . Assume v ∈ M and u ∈ N(v), u is called an orphan
neighbor of v if u ̸∈ M and N(v) − u ⊂ M . We iterate
over all the neighboring vertices of M to remove all orphan
neighbors from P , according to Proposition III.2. If |P | = 0,
the algorithm cannot add another vertex to M while keeping
it well-connected. To ensure that M is indeed maximal, we
check if a v ∈ M exists, such as M ⊂ N(v)

⋃︁
{v}. If so, we

add the remaining neighbor of v to M so that M is maximal.
Finding the set of articulation vertices using Tarjan’s algorithm
takes O(|V |+ |E|). As a result, the algorithm for finding a
MWCS takes O(|M |(|V |+ |E|)) = O(|V |(|V |+ |E|)).

Algorithm 1: Maximal Well-Connected Set
1 Function MAXIMALWVS(G):
2 M ← {}, P ← V
3 while |P |! = 0 do
4 AP ← Tarjan(G′(V −M))
5 NB ← FindOrphanNeighbors(M)
6 P ← P − (AP

⋃︁
NB)

7 u← ChooseOne(P )
8 M.add(u) and P.pop(u)

9 M ← AdditionalCheck(M)
10 return M

Next, we establish lower bounds for the MWCS algorithm.

Proposition IV.1. Denote W as the set of terminal nodes
that contains nodes of degree one. Then W ⊆ M .

Proof. Every terminal node u is neither an orphan neighbor
nor an articulation point of the induced subgraph G′(V −
M + {u}). Thus W ⊆ M .

Proposition IV.2. Denote L as the length of the longest
induced path of G. Then |M | ≥ |V |

L .

Proof. Let u ∈ V −M . Then u is either an orphan neighbor
or an articulation point of G′(V −M). For every v ∈ M , there
exists a WCP pv connecting u and v. Every vertex in V −M
should be passed through by at least one of those WCPs.
Otherwise, let w be the vertex that is not passed through
by any of the WCPs. Clearly, w cannot be an articulation
point or an orphan neighbor. Then w can be added to M ,
which contradicts that M is maximal. Let p′v = pv − v. Then⋃︁

v∈M p′v = V −M . Meanwhile, |pv| ≤ diam(G(V −M)) ≤
L, where diam(G(V −M)) is the diameter of the induced
subgraph by V − M . We have |V − M | ≤

∑︁
v∈M |p′v| ≤

|M |(L−1). On the other hand |V −M |+ |M | = |V |. Hence
|M | ≥ |V |/L.

B. Exact Search-Based Algorithm

We now establish a complete search algorithm to find a
LWCS. The algorithm employs a depth-first search (DFS)
approach to exhaustively explore all possible vertex sets and
select the one with the maximum size and the highest path
efficiency ratio (PER). The algorithm starts by defining three



empty sets, M , M∗, and visited, where M represents the
current set of vertices being explored, M∗ represents the set
with the maximum size and highest PER found so far, and
visited stores all previously explored vertex sets to avoid
repeated explorations. Then, the DFS search is initiated by
calling the DFS function with the current set M , the set
with the maximum size and highest PER found so far M∗,
and the set of visited vertex sets visited as parameters. The
DFS function starts by checking if the current set M has
already been explored before. If it has, the function returns
immediately. Otherwise, M is added to the visited set. The
function then checks if the current set M is larger than the
set with the maximum size and highest PER found so far
M∗. If it is, then we update M as the current best M∗. If M
has the same size as M∗, then the function compares their
PER values, and the set with the higher PER becomes M∗.

Otherwise, the function generates a list of candidate vertices
P that can be added to the current set M without violating the
WCS condition. The function then loops over the candidate
vertices and recursively calls the DFS function with the
current set M unioned with the current candidate vertex
and the same M∗ and visited sets.

The algorithm continues until all possible vertex sets have
been explored, or the condition for returning early is met.
Similar to the algorithm for the MWCS, we also perform
additional checks. For each v ∈ M , we check if N(v)

⋃︁
{v}

can be larger than the current solution found to ensure that
the final vertex set is the maximum one. The algorithm’s
time complexity is dependent on the size and density of
the graph G, as well as the number of candidate vertices
generated at each recursive call. In the worst-case scenario,
the algorithm has a time complexity of O(2|V |(|V |+ |E|)),
where V is the number of vertices in the graph G. However,
the early termination condition in the DFS function helps
avoid exploring unnecessary vertex sets and can significantly
reduce the algorithm’s execution time.

Algorithm 2: Largest Well-Connected Set
1 Function DFSSEARCH(G):
2 M,M∗, visited← ∅, ∅, ∅
3 DFS(G,M,M∗, visited)

4 M∗ ← AdditionalCheck(M∗)

5 return M∗

6 Function DFS(G,M,M∗, visited):
7 if M ∈ visited then return
8 visited.add(M)

9 if |M | > |M∗| or (|M | = |M∗| and
PER(M) < PER(M∗)) then M∗ ←M

10 AP ← Tarjan(G′(V −M))

11 NB ← FindOrphanNeighbor(M)

12 P ← P − (AP
⋃︁

NB)

13 if |P |+ |M | < |M∗| then return
14 foreach v in P do DFS(G,M

⋃︁
{v},M∗, visited)

V. APPLICATIONS IN MULTI-ROBOT NAVIGATION

We demonstrate how WCS benefits prioritized multi-robot
path planning (MRPP) on graphs. In a legal move, a robot
may cross an edge if the edge is not used by another robot
during the same move and the target vertex is not occupied
by another robot at the end of the move. The task is to plan
paths with legal moves for all robots to reach their respective
goals. The makespan (the time for all robots to reach their
goals) and the total arrival time are two common criteria
to evaluate the solution quality. Previous studies [9], [10]
have established the completeness of prioritized planning in
well-formed infrastructures. Building on the foundation, we
provide algorithms with completeness guarantees for non-
well-formed environments.

Definition (Well-Formed MRPP). An MRPP instance is
well-formed if, for any robot i, a path connects its start and
goal without traversing any other robots’ start or goal vertex.

Theorem V.1. Well-formed MRPP is solvable using priori-
tized planning with any total priority ordering [9], [10].

When addressing non-well-formed MRPP, we adopt a sim-
ple, effective strategy similar to [5] to convert start and goal
configurations to intermediate well-connected configurations
so that the resulting problems are guaranteed to be solvable
by prioritized planning with any total priority ordering. We
call the algorithm UNPP- unlabeled prioritized planning.

We compute a MWCS/LWCS M offline. The first step in
the algorithm is to assign the 2n vertices, S ′′,G′′ in M as
the intermediate start vertices and goal vertices. This is done
by solving a min-cost matching problem using the Hungarian
algorithm [17]. Collision-free paths are easy to plan in the
unlabeled setting with optimality guarantees on makespan
and total distance [18], [19]. The output of this function is
a set of collision-free paths for the robots that route them
to a well-formed configuration and the intermediate labeled
starting and goal positions S ′,G′. The PrioritizedPlanning
function is then called on the resulting intermediate starting
and goal positions to generate a deadlock-free path for each
robot. Finally, the paths generated by the Unlabeled Multi-
Robot Path Planning and Prioritized Planning functions are
concatenated to produce a final solution.
Algorithm 3: UNPP

Input: Starts S, goals G, LWCS/MWCS M
1 Function UNPP(S,G):
2 S ′′,G′′ ← Assignment(S,G,M)
3 Ps,S ′ ← UnlabeledMRPP(S,S ′′)
4 Pg,G′ ← UnlabeledMRPP(G,G′′)
5 Pm ← PrioritizedPlanning(S ′,G′)
6 solution← Concat(Ps, Pg, Pm)
7 return solution

Theorem V.2. Denote nc as the size of the LWCS of graph
G, for any MRPP instance with number of robots less than
nc/2, regardless of the distribution of starts and goals, UNPP
is complete with respect to any priority ordering.

Proof. When the number of robots n ≤ nc/2, it is always
possible to select such S ′,G′ where S ′ ⋂︁G′ = ∅. Since



S ′ ⋃︁G′ ⊆ M , by the definition of WCS, S ′ ⋃︁G′ is also a
WCS. Therefore, the resulting MRPP problem which requires
routing robots from S ′ to G′ is well-formed. By Theorem. V.1,
prioritized planning is guaranteed to solve the subproblem
using any priority ordering.

UNPP runs in polynomial time for MRPP instances with
n ≤ nc/2. We can use the max-flow-based algorithm [18]
to solve the unlabeled MRPP, which takes O(n|E|D(G))
where D(G) is the diameter of the graph G, if we use [20]
(faster max-flow algorithm can also be used here) to solve the
max-flow problem. In the worst case, an unlabeled MRPP
requires n+|V |−1 makespan to solve [19]. For the prioritized
planning applied on well-formed instances, the makespan is
upper bounded by nD(G). As we use spatiotemporal A* to
plan the individual paths while avoiding collisions with higher-
priority robots on a time-expanded graph with edges no more
than n|E|D(G) and such a solution is guaranteed to exist, the
worst time complexity is O(n2|E|D(G)). In summary, UNPP
yields worst case time complexity of O(n2|E|D(G)) and its
makespan is upper bounded by 2(n+ |V | − 1) + nD(G).

For nc

2 < n < nc, arbitrary priority ordering does not
guarantee a solution. For some robots, its intermediate start
vertex in S ′ has to be the intermediate goal vertex in G′

of another robot when assigned from the WCS M . The
resulting subproblem is not well-formed. However, it is
possible to solve such an instance by breaking it into several
sub-problems and using specific priority ordering to solve
it. To do this, we can first establish a dependency graph to
determine the priority ordering of robots. The dependency
graph consists n nodes representing the robots. If s′i = g′j ,
we add a directed edge from node i to node j, meaning that j
should have higher priority than i. If the resulting dependency
graph is a DAG, topological sort can be performed on it to get
the priority ordering. When encountering a cycle, as n < nc,
we can break the cycle by moving one of the robots in this
cycle to a buffer vertex in C − {S ′ ⋃︁G′} and perform the
topological sort on the remaining robots.

Finally, we briefly illustrate the application of WCS in
multi-robot pickup and delivery (MAPD) [8]. In well-formed
MAPD, each robot can rest in a non-task endpoint forever
without preventing other robots from going to their task
endpoints, i.e. pickup stations. The layout of the endpoints
forms a WCS of the graph of the environment. While it is
desirable to increase the number of robots and the endpoints
as many as possible to maximize space utilization, it is also
important to keep a well-connected layout so that the robots
will not block each other for better pathfinding. Thus, the
maximum number of endpoints is equal to nc, and at most
nc − 1 robots can be used in the MAPD.

VI. EXPERIMENTS

In our evaluation, we first test algorithms that compute
WCS for grids and a set of benchmark maps and then perform
evaluations on MRPP problems. Since the grids and maps
used in our experiments are either 4-connected or 8-connected,
the solution we find without additional checks will always be

larger than the number of neighbors of a vertex v plus one
(i.e., |N(v)|+1). Therefore, we can safely omit the additional
checks in our solution. All experiments are performed on an
Intel® CoreTM i7-6900K CPU at 3.2GHz with 32GB RAM
in Ubuntu 18.4 LTS and implemented in C++.

A. Grid Experiments

We test the algorithms on m×m 4/8-connected grids with
varying side lengths m. The result is shown in Table I. In
“Random" and “Greedy", we run the MWCS algorithm 50
times and return the set with the maximum size. Random
randomly chooses a node from the candidates P and adds it
to the set. In Greedy, to select the next candidate to add to
the current WCS, we sort the candidate nodes in ascending
order based on their total shortest distance from any node
in the current WCS. We then select the candidate with the
smallest total shortest distance as the next node to add to the
WCS. To evaluate the running time of Random and Greedy,
we take the average of the total execution time over the 50
runs of the algorithm. To evaluate the path efficiency of the
maximum(maximal) WCS found by each algorithm, we treat
each node in V as the reference point and compute the PER
for each node. We then take the average of the PER values
to obtain a measure of the overall path efficiency of the
algorithms. In DFS, we set a time limit of 600 seconds to
search for a solution. If the time limit is reached before a
solution is found, we report the best solution found so far.

Though DFS only finds guaranteed optimal solutions on
small grids, the final vertex size it returned is usually larger
than the other two methods and has better PER. Greedy finds
larger WCS on 4-connected grids than Random. Interestingly,
on 8-connected grids, the MWCS found by Greedy is smaller.
PER of Greedy is generally better than Random.

Through linear regression, we found that on grids, the
size of the maximum(maximal) WCS |M | founded by these
algorithms is linearly related to the number of vertices |V |.
Specifically, on 4-connected grids, |M | ∼ 0.63|V |, and on
8-connected grids, |M | ∼ 0.72|V |. This means that in a
square parking lot (or other well-formed infrastructures), if it
is considered a 4-connected grid, at most about 63% of the
space can be used for parking.

B. Benchmark Maps

We select several maps from 2D Pathfinding Bench-
marks [21]. Here, we use Greedy to compute the suboptimal
LWCS as most of the maps are too large to perform DFS
search. For maps that are not connected, the largest connected
component is used. The result is presented in Table. II. And
some examples are shown in Fig. 4. Our algorithm is efficient
on large and complex maps with tens of thousands of vertices.
The computed vertex set size is roughly 50%-60% of |V | for
4-connected graphs, and 60%-70% for 8-connected graphs.

C. Evaluations of MRPP

Lastly, we examine the effectiveness of our proposed
MRPP method on selected benchmarks. We compare our
proposed method with two other prioritized planners, HCA*

https://movingai.com/benchmarks/grids.html
https://movingai.com/benchmarks/grids.html


Side Len Random4 Greedy4 DFS4 Random8 Greedy8 DFS8

|M | PER Time |M | PER Time |M | PER Time |M | PER Time |M | PER Time |M | PER Time
5 14 0.89 0 11 0.89 0 14 0.89 17.79 20 0.97 0 20 0.93 0 20 0.97 336.2

10 55 0.60 0 52 0.69 0 60 0.67 600 72 0.52 0 73 0.96 0 74 0.85 600
20 220 0.73 0.07 238 0.74 0.2 242 0.67 600 283 0.46 0.1 280 0.82 0.3 285 0.85 600
30 487 0.53 0.4 561 0.62 2.0 561 0.68 600 645 0.47 0.7 622 0.84 2.3 642 0.54 600
40 872 0.47 1.4 992 0.72 9.8 992 0.70 600 1137 0.56 2.4 1097 0.79 11.0 1139 0.49 600
50 1360 0.33 3.9 1588 0.64 35.9 1588 0.66 600 1778 0.51 6.5 1705 0.82 39.8 1785 0.50 600

TABLE I: Grid Experiment on 4/8-connected square grids. The numbers in red color are optimal solutions found by DFS.

Map Name Map grid size #Vertices |V| #Edges |E4| Time4(s) |M4| PER4 #Edges |E8| Time8(s) |M8| PER8

arena 49 × 49 2,054 3,955 2.33 1,113 0.68 7813 3.76 1455 0.52
brc202d 481 × 530 43,151 81,512 1,685 22,659 0.61 160,277 2,668 29,973 0.63
den001d 80 × 211 8,895 16,980 20.1 4859 0.77 33392 92.55 6233 0.51
den020d 118 × 89 3102 0.12 4.48 1599 0.89 10869 9.04 2104 0.699
den312d 81 × 65 2,445 4,391 3.18 1,247 0.701 8,464 5.11 1,663 0.708
hrt002d 50 × 49 754 1300 0.24 377 0.87 2489 0.38 510 0.68
ht_chantry 141 × 162 7,461 13,963 38.87 3,889 0.45 27222 60.95 5183 0.37
lak103d 49 × 49 859 1509 0.32 438 0.84 2869 0.51 584 0.58
lak503d 194 × 194 17,953 33,781 258.89 9484 0.58 66,734 415.60 12,482 0.48
lt_warehouse 130 × 194 5,534 10,397 18.67 2,895 0.87 20306 31.72 3858 0.63
NewYork_0_256 256 × 256 48299 94068 2000 26025 0.40 186935 3469 34054 0.35
orz201d 45 × 47 745 1342 0.23 389 0.73 2604 0.39 513 0.61
ost003d 194 × 194 13,214 24,999 131.82 7,004 0.88 49,437 206.30 9,221 0.59
random-32-32-20 32 × 32 819 1270 0.26 375 0.66 2,487 0.44 533 0.55
Shanghai_0_256 256 × 256 48,708 95,649 2,119 26,453 0.32 190,581 3,542 34,501 0.29

TABLE II: Computed suboptimal LWCS size in selected 4/8-connected maps.

(a) (b) (c) (d)

Fig. 4: Examples of the computed MWCS (colored in green) in
different 4-connected grid maps. (a) den312d. (b) ht_chantry. (c)
Shanghai_0_256. (d) lak503d.Zoom in on the digital version to see
more details.

[14] and PIBT [22]. For each map, a maximal vertex set
is precomputed using the Greedy method. To conduct the
experiments, we randomly generate 50 instances for each map
and the number of robots n. The results are shown in Fig. 5-
6. The experimental results demonstrate that our proposed
method significantly improves the success rate compared to
HCA* and PIBT. Furthermore, although the solution quality
is not optimal, it is still reasonably good.
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Fig. 5: Experimental results for map orz201d, including computation
time, success rate, makespan optimality, and soc optimality, for HCA,
PIBT, and the proposed method.
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Fig. 6: Experimental results for map hrt002d, including computation
time, success rate, makespan optimality, and soc optimality, for
HCA, PIBT, and the proposed method.

VII. CONCLUSIONS

In this paper, we have presented a comprehensive study
of the LWCS problem and its applications in multi-robot
path planning. We provided a rigorous problem formulation
and developed two algorithms, an exact optimal algorithm
and a suboptimal algorithm, to solve the problem efficiently.
We have shown that the problem has various real-world
applications, such as parking and storage systems, multi-robot
coordination, and path planning. Our algorithms have been
evaluated on various maps to demonstrate their effectiveness
in finding solutions. Moreover, we have integrated the LWCS
problem with prioritized planning to plan paths for multi-robot
systems without encountering deadlocks. Our study enhances
comprehension of the relationship between multi-robot path
planning complexity, the number of robots, and graph
topology, laying a robust groundwork for future research
in this domain. In future work, we plan to investigate the
performance of our algorithms in more complex environments



and explore their scalability in solving larger instances of
the problem. Additionally, we aim to explore the potential of
our algorithms in real-world applications and examine their
robustness against uncertainties and disruptions.

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI magazine,
vol. 29, no. 1, pp. 9–9, 2008.

[2] T. Guo and J. Yu, “Toward efficient physical and algorithmic design
of automated garages,” arXiv preprint arXiv:2302.01305, 2023.

[3] K. Azadeh, R. De Koster, and D. Roy, “Robotized and automated
warehouse systems: Review and recent developments,” Transportation
Science, vol. 53, no. 4, pp. 917–945, 2019.

[4] F. Caron, G. Marchet, and A. Perego, “Optimal layout in low-level
picker-to-part systems,” International Journal of Production Research,
vol. 38, no. 1, pp. 101–117, 2000.

[5] T. Guo and J. Yu, “Sub-1.5 Time-Optimal Multi-Robot Path Planning
on Grids in Polynomial Time,” in Proceedings of Robotics: Science
and Systems, New York City, NY, USA, June 2022.

[6] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” International Journal of Advanced Robotic
Systems, vol. 10, no. 12, p. 399, 2013.

[7] W. Sheng, Q. Yang, J. Tan, and N. Xi, “Distributed multi-robot
coordination in area exploration,” Robotics and autonomous systems,
vol. 54, no. 12, pp. 945–955, 2006.

[8] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent
path finding for online pickup and delivery tasks,” in AAMAS, 2017.

[9] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching with
consistent prioritization for multi-agent path finding,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 7643–7650.
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