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Abstract—Nonlinear time history analyses of structural 
models, widely used in civil engineering, can be time-consuming. 
For an urban scale, modeling a large number of structures and 
carrying out nonlinear time history analyses under different levels 
of hazard intensity is not practical. This can be resolved by the use 
of metamodeling, which can effectively reduce the computational 
cost while maintaining necessary engineering accuracy. Neural 
networks have been proven to be a powerful tool for metamodel 
development. However, training a reliable deep learning model 
requires a large training dataset that contains representative 
input-output relationships, which typically cannot be satisfied in 
practical applications. Practically, a trained deep learning model 
is a “black box”, which has limited (or no) generalizability. In this 
paper, a symbolic-based neural network that does not require an 
immense amount of data is proposed to capture nonlinear 
structural behavior. In symbolic-based neural networks, symbolic 
activation functions are capable of finding mathematical 
expressions to describe the mechanism of input-output 
relationship, and the hidden state can store the sequence 
information of nonlinearity. Case studies are carried out for 
reinforced concrete structures subjected to a series of selected 
pulse-type ground motions. The results show that the symbolic-
based neural network is a promising approach for estimating the 
nonlinear building responses without a large training dataset.  

Keywords—neural network, metamodeling, nonlinear structural 
response, numerical integration, ordinary differential equation. 

I. INTRODUCTION 
Nonlinear time history analysis of structural models can 

provide reliable information regarding building behaviors under 
hazard. It is, therefore, used extensively by civil engineers and 
practitioners for multiple objectives, such as building 
performance estimation and community resilience evaluation. 
For an urban scale, there is a need to carry out reliable nonlinear 
time history analyses under different levels of hazard intensity. 
This requires a large number of repeated analyses, which can be 
time-consuming and impractical. One way to address this issue 
effectively is metamodeling, which can enable computationally 
efficient analysis of complex structures. Recent studies have 
shown that deep learning is a promising approach to 
metamodeling for predicting nonlinear structural responses [1-
5]. However, training a reliable deep learning model requires a 
large amount of data that contains representative input-output 
relationships, which typically cannot be satisfied in most 
engineering practices. A deep learning model is a “black box” 
model, which highly depends on the quality of training data, 

leading to low accuracy and generalizability outside available 
data (e.g., training datasets). Additionally, a trained deep 
learning model is not user-friendly for engineers, who may not 
have background knowledge of deep learning.  

A symbolic-based recurrent neural network (SRNN), which 
can effectively overcome the aforementioned limitations of deep 
learning, is proposed for the metamodeling of nonlinear building 
responses. An SRNN is a recurrent neural network that uses 
symbolic activation functions and is designed by leveraging 
domain-specific knowledge. The symbolic activation functions 
in SRNNs (e.g., sign, absolute value, sine, cosine, square, and 
multiplication) can describe the functional relationships 
between inputs and outputs, and in turn discover underlying 
closed-form formulations, thereby making the SRNN 
generalizable. The hidden state of SRNN, which links two 
adjacent time steps, can store sequence information and be 
useful for learning the nonlinearity of time series data. Domain-
specific knowledge and fundamental principles of existing 
metamodels are embedded in SRNN via variations of input data 
and selections of mathematical operators. These knowledge and 
principles can provide constraints to the parameters of SRNN, 
alleviate overfitting issues, and in turn reduce the need for large 
training datasets (e.g., > 100 sets of building responses in [5]). 
Unlike other deep learning models (e.g., CNN, LSTM, 
transformers), the outcomes of SRNN can be simplified as an 
ordinary differential equation. The application of SRNN can be 
easily achieved by any numerical integration method, which is 
readily accessible for engineers.  

In this paper, SRNNs are used to estimate the nonlinear 
responses of reinforced concrete structures under seismic 
excitation. 

II. SYMBOLIC-BASED RECURRENT NEURAL NETWORKS 
The SRNN for nonlinear building response estimation is 

analogous to finding the closed-form formulation of a governing 
equation of motion. Using a single degree of freedom (SDOF) 
system for illustration, the governing equation of motion at time 
i (ti) can be expressed as 

          (1) 

where ui, u̇i, and üi = displacement, velocity, and acceleration 
relative to ground at ti; h = hidden state that stores the 
information from the previous time step; f = mass-normalized 
internal restoring force; agi = ground motion (GM) acceleration 
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at ti; γ = influence scalar, which is set equal to one here. As 
shown in Fig. 1, the SRNN includes two parts – functions h and 
f – which are both modeled as symbolic neural networks [6-8], 
denoted as SNNH and SNNF.  

The inputs of SRNN include ui, u̇i, and the signs of ui and u̇i 
[6, 7]. The sine and cosine functions of ui and u̇i, which can 
increase the model accuracy [7-9], are also included as the inputs 
of SRNN. As observed in parametric studies, including the 
relative time (τi), which varies from 0 to the building’s 
fundamental period at the given time interval, as an input of 
SRNN can also increase the model accuracy. Additionally, 
ui / (|ui|+1) is included to model post-yielding softening behavior 
[10]. In order to learn the potentially complex input-output 
relationship, the proposed SNNH includes two layers of 
commonly used symbolic activation functions, which can 
produce a polynomial function up to the fourth order (see Fig. 2 
(a)). Using the concept of residual neural network [11] and 
analogous to current symbolic neural networks [6-8, 12], SNNH 
allows inputs (and outputs of hidden layers) to pass directly to 
the following layers, which can significantly reduce the number 
of parameters while maintaining required accuracy. The 
proposed SNNF is a fully connected network that includes only 
one layer, which is the linear combination of inputs (see Fig. 2 
(b)).  

 
Fig. 1. The SRNN designed for building response prediction from time step 1 
to n.  

III. TRAINING ALGORITHM 
As shown in Fig. 1, except for the hidden state at the first time 
step (h1, which is initialized as 0), there is no information 
known about the hidden states of the SRNN prior to training. 
More specifically, from the second time step, one input used in 
the SNNF calculation is unknown. This implies that the SRNN 
cannot be simply trained by minimizing the difference between 
recorded and estimated acceleration time series. One way to 
resolve this issue is by embedding SRNN with numerical 
integration. Numerical integration can link building responses 
between two adjacent time steps via a time-integration scheme 
and provide inputs for the hidden state. Using SRNN embedded 
with numerical integration, the time series of displacement, 
velocity, and acceleration can be estimated together; training 
can be conducted by minimizing the differences between these 
time series. The corresponding loss function is 

 

 
Fig. 2. Architectures of two parts of the SRNN (a) SNNH and (b) SNNF (solid 
thick black arrow = identity, solid thin red arrow = fully connected with weights 
and bias, dotted green arrow = mathematical operations). 

       (2) 

where Yij = [α · uij, β · u̇ij, üij], a vector including the recorded 
displacement, velocity, and acceleration of the jth training time 
series at the ith time step; α and β = hyperparameters to increase 
the contributions of displacement and velocity in loss, 
respectively, which can be estimated based on the ratios between 
the magnitudes of displacement and velocity to acceleration; Ŷij 
= vector including the displacement, velocity, and acceleration 
estimated by the SRNN;  n = number of time steps of the jth 
training time series; m = number of training time series.

 
                   

(a) 

(b) 



Fig. 3. Slopes of displacements and velocities used in the RK embedding with SRNN 

A. Fourth Order Runge-Kutta Integration 
For illustrative purposes, the fourth order Runge-Kutta 

integration method (RK4) [13] is used to embed with SRNN. 
Other numerical integration methods can also be used. In RK4, 
with displacement and velocity at ti, the states at ti+1 can be 
estimated as  

       (3) 
 

       (4) 

where k1, k2, k3, and k4 = slopes of displacement (see Fig. 3); l1, 
l2, l3, and l4 = slopes of velocity (see Fig. 3); and Δt = time 
interval between two adjacent time steps. 

B. Parameter Pruning 
As shown in Fig. 2, the SRNN includes several variations of 

displacement and velocity as inputs and candidate symbolic 
activation functions. Even for an SDOF system, the SRNN has 
a large number of parameters (i.e., 357). To improve the 
generalizability of SRNN, the trivial and redundant parameters 
are pruned using the following steps:  

1) For the first 50% of training epochs, train the SRNN 
using the loss function as expressed in (2). 

2) For the 50% to 75% of training epochs, train the 
SRNN using the following loss function, which is 

 
(5) 

where topj = top few positive and negative values of 
displacements, velocities, and accelerations of the 𝑗𝑗th training 
time series (e.g., top 10); δ = user-defined hyperparameter 
larger than 1 that emphasizes the importance of peak building 
responses (e.g., 10).  

3) For the 75% to 85% of training epochs, include the L1 
norm of the SRNN’s parameters in the loss function to shrink 
these parameters towards zero [14]. The loss function is 

 
(6) 

where λ = user-defined hyperparameter to control the 
contribution of L1 norm to loss; ||Θ||1 = L1 norm of SRNN’s 
parameters.  

4)  Set the SRNN’s parameters with absolute values 
smaller than a user-defined threshold as zero [14]. This serves 
to prune out these trivial and redundant parameters.  

5)  For the 85% to 100% of training epochs, train the 
SRNN using the loss function as expressed in (5). This allows 
the remaining parameters to migrate to their appropriate values. 

Note that the boundaries of training epochs (e.g., 50%, 75%, 
85%) are user-defined. The aforementioned boundaries are the 
ones used in Section IV. Applications, Part C. Nonlinear 
Response Estimation for Single Degree of Freedom System. 

IV. APPLICATIONS 
The nonlinear time history analysis results of simplified and 

detailed models of a 3-story reinforced concrete building under 
series of selected pulse-type GMs are used to evaluate the 
proposed SRNNs. 

A. Building and Structural Models  
A 3-story representative reinforced concrete building located 

in Financial District, San Francisco, California, is designed as a 
reinforced concrete special moment frame structure, according 
to ASCE 7 [15] Risk Category II at design hazard level. The 
typical floor plan of the designed building is shown in Fig. 4. 
The story heights are 4.27 m and 3.66 m for the first story and 
all other stories, respectively. The fundamental period of the 
designed building is about 0.6s. 

 



 
Fig. 4.  Plan view of the designed 3-story representative reinforced concrete 
building. 

A detailed 3D nonlinear model of the designed building is 
developed using OpenSees [16]. The distributed plasticity is 
included using nonlinear beam-column elements with sections 
discretized into concrete core, concrete cover, and steel fibers. 
The modified Kent and Park model is used to account for the 
confinement effects in the concrete core [17]. Buckling and bar-
slip effects of reinforcing bars are included [18-21]. Additional 
information about the building design and the development of 
its detailed 3D nonlinear model is available [22]. The responses 
at the center node of each story are used to assemble a multiple 
degrees of freedom (MDOF) system for SRNN evaluation. A 
simplified 2D nonlinear model of the designed building is also 
developed based on [23], using a truss element with uniaxial 
hysteretic material in OpenSees [16]. The model’s responses are 
used to assemble an SDOF system for SRNN evaluation.  

B. Building Response Data  
The nonlinear time history analyses of the simplified and 

detailed structural models of the designed building are 
conducted under a series of pulse-type GMs using OpenSees 
[16]. Note that only pulse-type GMs are selected because they 
typically have larger damage potential than ordinary GMs [28]. 
Using spectral acceleration as the GM intensity measure, the 
pulse-type GMs are selected by matching the median and 
median +/– logarithmic standard deviation of the conditional 
spectrum at the building’s fundamental period [29-31]. 
Additional information about the GM selection is available [22]. 
The nonlinear responses of structural models obtained from 
these selected pulse-type GMs are randomly separated into two 
datasets – training and test (see Table 1). The training dataset is 
used to train SRNN to learn the governing equation(s) of motion. 
The test dataset is used to evaluate the generalizability of learned 
SRNN, more specifically, to test the performance of learned 
SRNN for unseen GMs. Note that for the detailed structural 
model, which is much more complex than the simplified one, 
the nonlinear time history analysis is performed at a small time 
interval (0.01s) to alleviate the convergence issue of finite 
element approximation in OpenSees [16].  

TABLE I.   DATASETS FOR SRNN EVALUATION 

Structural 
model type 

Number of GM Time (s) 
Degree(s) 
of freedom 

Training 
GMs 

Test 
GMs Interval Duration 

Simplified 1 20 4 0.1 15 

Detailed 3 6 1 0.01 12 

C. Nonlinear Response Estimation for Single Degree of 
Freedom System 
Since the simplified structural model is an SDOF system, the 

SRNN shown in Fig. 1 and Fig. 2 can be used without 
modification. The SRNN is trained using the Adam optimizer 
[32] for 1000 epochs with a batch size of 150. Note that the total 
number of time steps of one GM is 150, which indicates one 
GM’s responses is used as a batch. The initial learning rate is 
0.005 and decays 10% whenever the training loss stops 
decreasing for 4 epochs. The hyperparameter for the 𝑙𝑙1 norm is 
set as 0.001. A threshold as 0.001 is used to prune the parameters 
of SRNN. Note that the aforementioned hyperparameters are 
obtained by a parametric study as multi-objective optimization 
for minimizing training time while maintaining reasonable 
prediction accuracy.  

The number of parameters after pruning is 337, which is 

about 94% of the original 357  parameters. It is worth noting 
that, for SNNH, |p2| is pruned out in the second layer. It means 
that the absolute value of linear combination of inputs is not 
needed. For SNNF, cosine function of ui is pruned out. The 
pruned out parameters can provide some guidance to the users 
when applying SRNN to similar engineering problems.   

The generalizability of learned SRNN is evaluated as the 
prediction accuracy of nonlinear response estimation of 
simplified structural model under 4 unseen (test) GMs. The 
comparisons between the recorded nonlinear responses and the 
ones estimated by SRNN near the main pulse of one 
representative test GM are shown in Fig. 5. The Pearson 
correlation coefficient (ρ) between these two sets of building 
responses is used as a numerical measurement of prediction 
accuracy. Using displacement for illustration,  ρ is calculated as  

 
(7) 

where ū and   are the mean values of recorded and estimated 
displacements. The closer the ρ to 1, the higher the accuracy is. 
As shown in Fig. 5, all ρ’s are larger than 0.95, which means a 
very high prediction accuracy (generalizability). Both the 
graphical (Fig. 5) and numerical (ρ) results indicate that the 
SRNN can accurately capture the nonlinear responses of 
simplified structural model. Also, the structural analysis time 
can be reduced from a few minutes (using OpenSees [16]) to a 
few seconds (using SRNN). 



only the second story is adjacent. Three SRNNs are trained as a 
system of second order ordinary differential equations 
embedded with RK4. The training setups are similar to the ones 
for the simplified structural model. It is worth noting that the 
small time interval (0.01s) leads to a large number of time steps 
for one GM (1200). Based on the parametric studies, using the 
building responses of one GM as a training batch can be time-
consuming  and/or cause numerical instability. To resolve the 
aforementioned issues, a batch size of 120 is used, which 
corresponds to 1.2s – equal to two fundamental periods of the 
designed building. The hidden state is initialized as zero for each 
batch. It implies that the hidden state can only store the sequence 
information of nonlinearity for a portion of GM. This is a trade-
off between training efficiency and model accuracy. As a result 
of this trade-off, the detailed structural model’s SRNNs cannot 
reach the same level of accuracy as the simplified structural 
model’s SRNN does, which uses one GM’s responses as a batch. 
Consequently, the parameter pruning, which may further reduce 
prediction accuracy, is not performed for this MDOF case study. 

The comparisons between the recorded and estimated 
nonlinear responses near the main pulse of the test GM are 
shown in Fig. 6. The SRNNs can finish the nonlinear response 
prediction in a few seconds, which is significantly faster than the 
24 hours structural analysis using OpenSees [16]. However, near 
the peak displacements, the ρ for displacement varies from 0.83 
to 0.88 (see Fig. 6 (c)), which is not as high as the one for 
simplified structural model (i.e., 0.96). It means that the 
generalizability of detailed structural model’s SRNNs is lower 
than the one of simplified structural model, which may be due 
to the following reasons:  

1) The error between the closed-form formulations 
estimated by SRNNs and the governing equations of motion is 
drastically accumulated throughout integrations, especially for 
this test GM with a large number of time steps (1200). 

2) The hidden state initialization for each batch leads to 
that the hidden state can only store a portion of (not all) the 
sequence information of nonlinearity.  

3) The training dataset is comparably small (6 pulse-type 
GMs compared with 20 pulse-type GMs for SDOF system). 
The limited training data may not provide sufficient 
information for the detailed structural model’s SRNNs to 
comprehensively learn the complex nonlinear behaviors. 

If the user requires the model accuracy to be further 
improved, it can be achieved by 1) including a layer of symbolic 
activation functions in SNNF to produce a polynomial function 
and 2) increasing batch size and using a different numerical 
integration method (e.g., Euler’s method). 

V. CONCLUSIONS 
SRNN designed by leveraging domain-specific knowledge 

and fundamental principles of existing metamodels can 
approximately capture nonlinear building responses with low 
computational cost while maintaining necessary engineering 
accuracy. Training SRNN does not require a large dataset, and 
the learned SRNN can have high generalizability (i.e., the 
prediction accuracy of structural nonlinear response under an 
unseen GM). The results of SRNN are two sets of equations 
obtained from SNNH and SNNF, which can construct an ordinary 

 

 

 
Fig. 6.  Comparison between the nonlinear responses of the detailed structural 
model under the test GM estimated by the SRNNs and recorded by nonlinear 
time history analysis at each story for (a) accelerations, (b) velocities, and (c) 
displacements. 

differential equation. It means that, when applying SRNN, only 
a numerical integration is needed, no deep learning knowledge 
is required. This makes SRNN to be a user-friendly approach 
that can be easily implemented by engineers. The following 
conclusions are drawn based on the applications:  

(a) 

(b) 

(c) 



• Including the variations of displacement, velocity, time 
as inputs, and commonly used symbolic activation 
functions in SRNNs can improve prediction accuracy. 

• For an SDOF system, SRNN has high generalizability 
and is presented as accurately predicting nonlinear 
responses with a small training dataset (e.g., 20 pulse-
type GMs). 

• For an MDOF system, by leveraging the concept of 
shear-beam [23-27], SRNNs can capture an 
approximation of nonlinear responses. Due to the 
comparatively small training dataset (e.g., 6 pulse-type 
GMs) and hidden state initialization for each batch, the 
prediction accuracy is not as high as the one for the 
SDOF system. 

• When the training time series has a large number of time 
steps (e.g., > 1000), hidden state initialization for each 
batch can be a potential bottleneck for model accuracy 
improvement. 

The SRNNs presented in this paper can also be applied to 
other engineering problems in which the governing equations 
are ordinary differential ones. 
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