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Abstract—Nonlinear time history analyses of structural
models, widely used in civil engineering, can be time-consuming.
For an urban scale, modeling a large number of structures and
carrying out nonlinear time history analyses under different levels
of hazard intensity is not practical. This can be resolved by the use
of metamodeling, which can effectively reduce the computational
cost while maintaining necessary engineering accuracy. Neural
networks have been proven to be a powerful tool for metamodel
development. However, training a reliable deep learning model
requires a large training dataset that contains representative
input-output relationships, which typically cannot be satisfied in
practical applications. Practically, a trained deep learning model
is a “black box”, which has limited (or no) generalizability. In this
paper, a symbolic-based neural network that does not require an
immense amount of data is proposed to capture nonlinear
structural behavior. In symbolic-based neural networks, symbolic
activation functions are capable of finding mathematical
expressions to describe the mechanism of input-output
relationship, and the hidden state can store the sequence
information of nonlinearity. Case studies are carried out for
reinforced concrete structures subjected to a series of selected
pulse-type ground motions. The results show that the symbolic-
based neural network is a promising approach for estimating the
nonlinear building responses without a large training dataset.

Keywords—neural network, metamodeling, nonlinear structural
response, numerical integration, ordinary differential equation.

I. INTRODUCTION

Nonlinear time history analysis of structural models can
provide reliable information regarding building behaviors under
hazard. It is, therefore, used extensively by civil engineers and
practitioners for multiple objectives, such as building
performance estimation and community resilience evaluation.
For an urban scale, there is a need to carry out reliable nonlinear
time history analyses under different levels of hazard intensity.
This requires a large number of repeated analyses, which can be
time-consuming and impractical. One way to address this issue
effectively is metamodeling, which can enable computationally
efficient analysis of complex structures. Recent studies have
shown that deep learning is a promising approach to
metamodeling for predicting nonlinear structural responses [1-
5]. However, training a reliable deep learning model requires a
large amount of data that contains representative input-output
relationships, which typically cannot be satisfied in most
engineering practices. A deep learning model is a “black box”
model, which highly depends on the quality of training data,
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leading to low accuracy and generalizability outside available
data (e.g., training datasets). Additionally, a trained deep
learning model is not user-friendly for engineers, who may not
have background knowledge of deep learning.

A symbolic-based recurrent neural network (SRNN), which
can effectively overcome the aforementioned limitations of deep
learning, is proposed for the metamodeling of nonlinear building
responses. An SRNN is a recurrent neural network that uses
symbolic activation functions and is designed by leveraging
domain-specific knowledge. The symbolic activation functions
in SRNNs (e.g., sign, absolute value, sine, cosine, square, and
multiplication) can describe the functional relationships
between inputs and outputs, and in turn discover underlying
closed-form formulations, thereby making the SRNN
generalizable. The hidden state of SRNN, which links two
adjacent time steps, can store sequence information and be
useful for learning the nonlinearity of time series data. Domain-
specific knowledge and fundamental principles of existing
metamodels are embedded in SRNN via variations of input data
and selections of mathematical operators. These knowledge and
principles can provide constraints to the parameters of SRNN,
alleviate overfitting issues, and in turn reduce the need for large
training datasets (e.g., > 100 sets of building responses in [5]).
Unlike other deep learning models (e.g., CNN, LSTM,
transformers), the outcomes of SRNN can be simplified as an
ordinary differential equation. The application of SRNN can be
easily achieved by any numerical integration method, which is
readily accessible for engineers.

In this paper, SRNNs are used to estimate the nonlinear
responses of reinforced concrete structures under seismic
excitation.

II. SYMBOLIC-BASED RECURRENT NEURAL NETWORKS

The SRNN for nonlinear building response estimation is
analogous to finding the closed-form formulation of a governing
equation of motion. Using a single degree of freedom (SDOF)
system for illustration, the governing equation of motion at time
i (t;) can be expressed as

iy + flug, g, t, h(ug, w, t, hi—)] = —Yag, (1

where u;, u;, and i; = displacement, velocity, and acceleration
relative to ground at #; 4 = hidden state that stores the
information from the previous time step; /' = mass-normalized
internal restoring force; ag; = ground motion (GM) acceleration



at t; y= influence scalar, which is set equal to one here. As
shown in Fig. 1, the SRNN includes two parts — functions /# and
f— which are both modeled as symbolic neural networks [6-8],
denoted as SNNy and SNNF.

The inputs of SRNN include u;, u;, and the signs of u; and #;
[6, 7]. The sine and cosine functions of u; and u;, which can
increase the model accuracy [7-9], are also included as the inputs
of SRNN. As observed in parametric studies, including the
relative time (7;), which varies from 0 to the building’s
fundamental period at the given time interval, as an input of
SRNN can also increase the model accuracy. Additionally,
u; / (uil+1) is included to model post-yielding softening behavior
[10]. In order to learn the potentially complex input-output
relationship, the proposed SNNy includes two layers of
commonly used symbolic activation functions, which can
produce a polynomial function up to the fourth order (see Fig. 2
(a)). Using the concept of residual neural network [11] and
analogous to current symbolic neural networks [6-8, 12], SNNy
allows inputs (and outputs of hidden layers) to pass directly to
the following layers, which can significantly reduce the number
of parameters while maintaining required accuracy. The
proposed SNNF is a fully connected network that includes only
one layer, which is the linear combination of inputs (see Fig. 2
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Fig. 1. The SRNN designed for building response prediction from time step 1
to n.
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III. TRAINING ALGORITHM

As shown in Fig. 1, except for the hidden state at the first time
step (h;, which is initialized as 0), there is no information
known about the hidden states of the SRNN prior to training.
More specifically, from the second time step, one input used in
the SNNF calculation is unknown. This implies that the SRNN
cannot be simply trained by minimizing the difference between
recorded and estimated acceleration time series. One way to
resolve this issue is by embedding SRNN with numerical
integration. Numerical integration can link building responses
between two adjacent time steps via a time-integration scheme
and provide inputs for the hidden state. Using SRNN embedded
with numerical integration, the time series of displacement,
velocity, and acceleration can be estimated together; training
can be conducted by minimizing the differences between these
time series. The corresponding loss function is
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Fig. 2. Architectures of two parts of the SRNN (a) SNNy and (b) SNNr (solid
thick black arrow = identity, solid thin red arrow = fully connected with weights
and bias, dotted green arrow = mathematical operations).
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where Yi = [a - uy, f - uy, iiy], a vector including the recorded
displacement, velocity, and acceleration of the jth training time
series at the ith time step; a and f = hyperparameters to increase
the contributions of displacement and velocity in loss,
respectively, which can be estimated based on the ratios between
the magnitudes of displacement and velocity to acceleration; Y;
= vector including the displacement, velocity, and acceleration
estimated by the SRNN; 7n = number of time steps of the jth
training time series; m = number of training time series.
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A. Fourth Order Runge-Kutta Integration

For illustrative purposes, the fourth order Runge-Kutta
integration method (RK4) [13] is used to embed with SRNN.
Other numerical integration methods can also be used. In RK4,
with displacement and velocity at #;, the states at #+; can be
estimated as

Uiy = U; + %At(kl + 2k, + 2ks + k) 3)

Uiy = U + %At(l1 + 20,42l 4+ 1,) (4)

where k;, k>, k3, and ks = slopes of displacement (see Fig. 3); /;,
b», I3, and I, = slopes of velocity (see Fig. 3); and Ar = time
interval between two adjacent time steps.

B. Parameter Pruning

As shown in Fig. 2, the SRNN includes several variations of
displacement and velocity as inputs and candidate symbolic
activation functions. Even for an SDOF system, the SRNN has
a large number of parameters (i.e., 357). To improve the
generalizability of SRNN, the trivial and redundant parameters
are pruned using the following steps:

1)  For the first 50% of training epochs, train the SRNN
using the loss function as expressed in (2).

2) For the 50% to 75% of training epochs, train the
SRNN using the following loss function, which is

1 1 N P
Loss = =37, [Z 31, (% = ¥)? + 6 (Veop, — Yeop))?| (5)

where top; = top few positive and negative values of
displacements, velocities, and accelerations of the jth training
time series (e.g., top 10); & = user-defined hyperparameter
larger than 1 that emphasizes the importance of peak building
responses (e.g., 10).

3) Forthe 75% to 85% of training epochs, include the L1
norm of the SRNN’s parameters in the loss function to shrink
these parameters towards zero [14]. The loss function is

Loss =
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where A = user-defined hyperparameter to control the
contribution of L1 norm to loss; ||®||; = L1 norm of SRNN’s
parameters.

4)  Set the SRNN’s parameters with absolute values
smaller than a user-defined threshold as zero [14]. This serves
to prune out these trivial and redundant parameters.

5)  For the 85% to 100% of training epochs, train the
SRNN using the loss function as expressed in (5). This allows
the remaining parameters to migrate to their appropriate values.

Note that the boundaries of training epochs (e.g., 50%, 75%,
85%) are user-defined. The aforementioned boundaries are the
ones used in Section IV. Applications, Part C. Nonlinear
Response Estimation for Single Degree of Freedom System.

IV. APPLICATIONS

The nonlinear time history analysis results of simplified and
detailed models of a 3-story reinforced concrete building under
series of selected pulse-type GMs are used to evaluate the
proposed SRNNSs.

A. Building and Structural Models

A 3-story representative reinforced concrete building located
in Financial District, San Francisco, California, is designed as a
reinforced concrete special moment frame structure, according
to ASCE 7 [15] Risk Category II at design hazard level. The
typical floor plan of the designed building is shown in Fig. 4.
The story heights are 4.27 m and 3.66 m for the first story and
all other stories, respectively. The fundamental period of the
designed building is about 0.6s.
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Fig. 4. Plan view of the designed 3-story representative reinforced concrete
building.

A detailed 3D nonlinear model of the designed building is
developed using OpenSees [16]. The distributed plasticity is
included using nonlinear beam-column elements with sections
discretized into concrete core, concrete cover, and steel fibers.
The modified Kent and Park model is used to account for the
confinement effects in the concrete core [17]. Buckling and bar-
slip effects of reinforcing bars are included [18-21]. Additional
information about the building design and the development of
its detailed 3D nonlinear model is available [22]. The responses
at the center node of each story are used to assemble a multiple
degrees of freedom (MDOF) system for SRNN evaluation. A
simplified 2D nonlinear model of the designed building is also
developed based on [23], using a truss element with uniaxial
hysteretic material in OpenSees [16]. The model’s responses are
used to assemble an SDOF system for SRNN evaluation.

B. Building Response Data

The nonlinear time history analyses of the simplified and
detailed structural models of the designed building are
conducted under a series of pulse-type GMs using OpenSees
[16]. Note that only pulse-type GMs are selected because they
typically have larger damage potential than ordinary GMs [28].
Using spectral acceleration as the GM intensity measure, the
pulse-type GMs are selected by matching the median and
median +/— logarithmic standard deviation of the conditional
spectrum at the building’s fundamental period [29-31].
Additional information about the GM selection is available [22].
The nonlinear responses of structural models obtained from
these selected pulse-type GMs are randomly separated into two
datasets — training and test (see Table 1). The training dataset is
used to train SRNN to learn the governing equation(s) of motion.
The test dataset is used to evaluate the generalizability of learned
SRNN, more specifically, to test the performance of learned
SRNN for unseen GMs. Note that for the detailed structural
model, which is much more complex than the simplified one,
the nonlinear time history analysis is performed at a small time
interval (0.01s) to alleviate the convergence issue of finite
element approximation in OpenSees [16].

TABLE L. DATASETS FOR SRNN EVALUATION
Structural Numb'er' of GM Time (s)
model type olf);‘fxszsr)n Tré?”msng éﬁz Interval | Duration
Simplified 1 20 4 0.1 15

Detailed 3 6 1 0.01 12

C. Nonlinear Response Estimation for Single Degree of
Freedom System

Since the simplified structural model is an SDOF system, the
SRNN shown in Fig. 1 and Fig. 2 can be used without
modification. The SRNN is trained using the Adam optimizer
[32] for 1000 epochs with a batch size of 150. Note that the total
number of time steps of one GM is 150, which indicates one
GM’s responses is used as a batch. The initial learning rate is
0.005 and decays 10% whenever the training loss stops
decreasing for 4 epochs. The hyperparameter for the [; norm is
setas 0.001. A threshold as 0.001 is used to prune the parameters
of SRNN. Note that the aforementioned hyperparameters are
obtained by a parametric study as multi-objective optimization
for minimizing training time while maintaining reasonable
prediction accuracy.

The number of parameters after pruning is 337, which is

about 94% of the original 357 parameters. It is worth noting
that, for SNNp, |p2| is pruned out in the second layer. It means
that the absolute value of linear combination of inputs is not
needed. For SNNf, cosine function of u; is pruned out. The
pruned out parameters can provide some guidance to the users
when applying SRNN to similar engineering problems.

The generalizability of learned SRNN is evaluated as the
prediction accuracy of nonlinear response estimation of
simplified structural model under 4 unseen (test) GMs. The
comparisons between the recorded nonlinear responses and the
ones estimated by SRNN near the main pulse of one
representative test GM are shown in Fig. 5. The Pearson
correlation coefficient (p) between these two sets of building
responses is used as a numerical measurement of prediction
accuracy. Using displacement for illustration, p is calculated as

p= ?:1[(ui - 17) ' (ai - ﬁ)]
JZ?ﬂ(ui - ﬁ)z ' Z?ﬂ(ﬁi - ﬁ)z

where # and 7 are the mean values of recorded and estimated
displacements. The closer the p to 1, the higher the accuracy is.
As shown in Fig. 5, all p’s are larger than 0.95, which means a
very high prediction accuracy (generalizability). Both the
graphical (Fig. 5) and numerical (p) results indicate that the
SRNN can accurately capture the nonlinear responses of
simplified structural model. Also, the structural analysis time
can be reduced from a few minutes (using OpenSees [16]) to a
few seconds (using SRNN).

()



only the second story is adjacent. Three SRNNS are trained as a
system of second order ordinary differential equations
embedded with RK4. The training setups are similar to the ones
for the simplified structural model. It is worth noting that the
small time interval (0.01s) leads to a large number of time steps
for one GM (1200). Based on the parametric studies, using the
building responses of one GM as a training batch can be time-
consuming and/or cause numerical instability. To resolve the
aforementioned issues, a batch size of 120 is used, which
corresponds to 1.2s — equal to two fundamental periods of the
designed building. The hidden state is initialized as zero for each
batch. It implies that the hidden state can only store the sequence
information of nonlinearity for a portion of GM. This is a trade-
off between training efficiency and model accuracy. As a result
of this trade-off, the detailed structural model’s SRNNs cannot
reach the same level of accuracy as the simplified structural
model’s SRNN does, which uses one GM’s responses as a batch.
Consequently, the parameter pruning, which may further reduce
prediction accuracy, is not performed for this MDOF case study.

The comparisons between the recorded and estimated
nonlinear responses near the main pulse of the test GM are
shown in Fig. 6. The SRNNs can finish the nonlinear response
prediction in a few seconds, which is significantly faster than the
24 hours structural analysis using OpenSees [16]. However, near
the peak displacements, the p for displacement varies from 0.83
to 0.88 (see Fig. 6 (c)), which is not as high as the one for
simplified structural model (i.e., 0.96). It means that the
generalizability of detailed structural model’s SRNNs is lower
than the one of simplified structural model, which may be due
to the following reasons:

1) The error between the closed-form formulations
estimated by SRNNs and the governing equations of motion is
drastically accumulated throughout integrations, especially for
this test GM with a large number of time steps (1200).

2)  The hidden state initialization for each batch leads to
that the hidden state can only store a portion of (not all) the
sequence information of nonlinearity.

3) The training dataset is comparably small (6 pulse-type
GMs compared with 20 pulse-type GMs for SDOF system).
The limited training data may not provide sufficient
information for the detailed structural model’s SRNNs to
comprehensively learn the complex nonlinear behaviors.

If the user requires the model accuracy to be further
improved, it can be achieved by 1) including a layer of symbolic
activation functions in SNNF to produce a polynomial function
and 2) increasing batch size and using a different numerical
integration method (e.g., Euler’s method).

V. CONCLUSIONS

SRNN designed by leveraging domain-specific knowledge
and fundamental principles of existing metamodels can
approximately capture nonlinear building responses with low
computational cost while maintaining necessary engineering
accuracy. Training SRNN does not require a large dataset, and
the learned SRNN can have high generalizability (i.e., the
prediction accuracy of structural nonlinear response under an
unseen GM). The results of SRNN are two sets of equations
obtained from SNNy and SNNF, which can construct an ordinary
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Fig. 6. Comparison between the nonlinear responses of the detailed structural
model under the test GM estimated by the SRNNs and recorded by nonlinear
time history analysis at each story for (a) accelerations, (b) velocities, and (c)
displacements.

differential equation. It means that, when applying SRNN, only
a numerical integration is needed, no deep learning knowledge
is required. This makes SRNN to be a user-friendly approach
that can be easily implemented by engineers. The following
conclusions are drawn based on the applications:



o Including the variations of displacement, velocity, time
as inputs, and commonly used symbolic activation
functions in SRNNs can improve prediction accuracy.

e For an SDOF system, SRNN has high generalizability
and is presented as accurately predicting nonlinear
responses with a small training dataset (e.g., 20 pulse-
type GMs).

e For an MDOF system, by leveraging the concept of
shear-beam [23-27], SRNNs can capture an
approximation of nonlinear responses. Due to the
comparatively small training dataset (e.g., 6 pulse-type
GMs) and hidden state initialization for each batch, the
prediction accuracy is not as high as the one for the
SDOF system.

e When the training time series has a large number of time
steps (e.g., > 1000), hidden state initialization for each
batch can be a potential bottleneck for model accuracy
improvement.

The SRNNs presented in this paper can also be applied to
other engineering problems in which the governing equations
are ordinary differential ones.
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