
Timely Processing Of Updates From Multiple
Sources

Vishakha Ramani, Ivan Seskar, Roy D. Yates
WINLAB, Rutgers University

Email: {vishakha, seskar, ryates}@winlab.rutgers.edu

Abstract—We consider a system where the updates from
independent sources are disseminated via a publish-subscribe
mechanism. The sources are the publishers and a decision process
(DP), acting as a subscriber, derives decision updates from the
source data. We derive the stationary expected age of information
(AoI) of decision updates delivered to a monitor. We show that
a lazy computation policy in which the DP may sit idle before
computing its next decision update can reduce the average AoI
at the monitor even though the DP exerts no control over the
generation of source updates. This AoI reduction is shown to
occur because lazy computation can offset the negative effect of
high variance in the computation time.

I. INTRODUCTION

A dense metropolis is a complex traffic environment, and
autonomous cars with a plethora of attached sensors still
have limited situational awareness. Hence, holistic situational
awareness of a cloud-connected vehicle is facilitated by

1) timely collection of sensory inputs from different sources
(e.g., other vehicles, pedestrians, and smart city infras-
tructure sensors) , and

2) employing this sensor data to provide timely feedback or
decision updates to participating mobile clients.

For example, cameras at a smart-city intersection [1] can
capture video or images of the intersection and send this
data to a processing system at the edge. The system can then
analyze the data to identify and inform potential public safety
risks such as vehicles running red lights or pedestrians crossing
the street outside of designated areas.

Although, it is possible that the system delivers source
updates to interested clients using traditional synchronous
request/reply communication paradigm, the rigid structure
of such interaction renders the system inefficient for real-
time decisions [2]. Publish-Subscribe (Pub-Sub) systems are
an alternative communication paradigm that enables efficient
and scalable communication among various components. The
delivery of information from publishers to subscribers is
decoupled, meaning that they need not be aware of each other’s
existence. For example, cameras can publish video frames
to the system while a processing system subscribes to this
data and uses it to make real-time decisions about intersection
safety, such as adjusting the timing of traffic lights or alerting
drivers to pedestrians in the area. A middleware (also known
as a broker) acts as an intermediary to manage this distribution
of information from publishers to subscribers.

The presence of different types of subscribers with varying
time scales of operation in an edge computing system allows

for flexibility and adaptability to different requirements and
use cases. For instance, a real-time subscriber could be an
analytics module that processes sensor data in real-time to
detect anomalies or trigger immediate actions. On the other
hand, a batch processing subscriber could be a processing
module that handles a batch of sensor data collected over a
certain time window to generate periodic reports or perform
long-term trend analysis. Consequently, such heterogeneity
requires decoupling subscribers from publishers.

In order to facilitate the required information dissemination,
the data is pushed to the middleware from publisher. However,
two complementary communication modes between middle-
ware and subscriber exist: push and pull modes. Under the
push mode, the subscriber passively receives information from
the pub-sub middleware. In a pull-based approach, subscribers
request messages from the middleware when they are ready to
receive them, rather than waiting for the middleware to push
messages to them.

There are pros and cons to both approaches. However, the
pull mode is better suited for handling a diverse range of
subscribers, without requiring a broker to determine the data
transfer rate for each of them. Subscribers have more control
over the rate at which they consume messages, making it easier
to manage their individual needs [3].

Along with this, a real-time database system, acting as
a middleware system, can support information dissemination
between publishers and subscribers. With these design choices
in mind, we present an analytical framework based on the
publish-subscribe interaction paradigm, that is to be used for
disseminating source updates to interested clients that process
these source updates and arrive at decisions in a timely way.

Considered Problem: The freshness of status information
received by subscriber plays an important role in decision
making. In this work, we focus on a fundamental problem:
What is the average Age of Information (AoI) [4] of decision
updates that are computed from time-varying set of sensor data
published in the database1? We model a class of systems (see
Fig. 1) in which two independent sources submit time-stamped
updates to a writer that is responsible for publishing the source
measurements as updates in the memory. A decision process
(DP), as a subscriber, reads the pair of source 1 and source

1Going forward, we refer to the database as shared memory, or simply as
memory.

Fig. 1. A writer updates shared database with information fetched from two
external sources. A decision process (DP) requests a reader process to read
the pair of source updates from the memory. Monitors that track the age of
source 1 and 2 updates in the memory are denoted •(1) and •(2) respectively;
•(x̂(t)) tracks the age of max-age process in the memory, •(ŷ(t)) tracks the
age of sampled max-age process, and •(ẑ(t)) tracks the age of computed
decision updates at the external monitor.

2 updates from memory and derives a computational result, a
decision update, from this pair that is delivered to a monitor.

Related Work: The issue of update timeliness using Age
of Information (AoI) metric has been extensively studied; see
the surveys [5], [6] and references therein. A majority of
studies focus on analyzing the average AoI of different sources
in single-server multi-source queueing models under different
service policies [7]–[9].

More recently, there have been efforts to employ age opti-
mization in diverse applications such as edge cloud process-
ing for low-latency edge-assisted applications [10], [11], and
timely mobile routing [12], [13]. Authors in [10] discuss a
greedy traffic scheduling policy that selects the next processing
request (job) that offers maximum age penalty reduction. [11]
provides an analytical framework for the problem of optimiz-
ing frame rate and lag synchronization of server and player
in a real-time cloud-assisted gaming application. Authors in
[12], [13] study the effects of concurrency constructs on timely
updating of shared data structures used in network software
and how this, in turn, affects timely routing of information
updates.

In previous works, the system models assumed a tight-
coupling between the source and monitor. The primary goal
was to maintain the status information of the physical process
at the destination nodes. For instance, the just-in-time update
policy [4] generated a fresh update instantaneously by the
source, which started serving as soon as the current update
in service was delivered to the destination node. Many works
[14]–[17] have extended upon this idea and aimed to find
optimal policies for determining sampling times and updating
processes to minimize the Age of Information (AoI) at the
destination node.

In publish-subscribe systems with decoupled producers and
consumers, where producers use independent status updating
policies, and consumers compute on this status information, a
key open problem is to study optimal policies for minimizing
the Age of Information (AoI) of computed updates. This work
aims to study how the decoupling of publishers and subscribers
affect the timeliness of updates computed from base set of
sensor (source) updates.

II. SYSTEM OVERVIEW

In this work, we employ a model that captures the asyn-
chronous operation of the writer and reader of updates in the
shared memory Pub-Sub system. There are three aspects to
the system depicted in Fig. 1: 1) writing the time-varying data
received from two sources into the memory, 2) the arbitration
between reader and writer to access memory, 3) reading the
source data from memory and generating a decision update.
We now give a brief overview of the writing, reading and
decision computation processes.

A. Writing source updates to the memory

We assume each source i 2 {1, 2} independently submits
updates as a rate �i Poisson process to the network and that
these updates arrive fresh at the writer, i.e. with age 0. The
write operations to memory have independent exponential (µ)
service times. We model the writer as a buffer-less service
facility with blocking discipline. Under this model, a source
update arriving at the writer will be served only if the writer
is idle; otherwise, the update is discarded.

Remark 1: In the present study, we investigate a com-
putational regime characterized by relatively longer decision
update times compared to the write times of any update
in the memory. Our focus is not on regimes where writing
to the memory is the overloaded process. Instead, we are
primarily interested in examining the delays associated with
computational processing. Whether we adopt a buffer-less or a
queuing model, the impact of queuing at the writer is expected
to be minimal.

B. Read-Copy-Update

We assume that arbitration between the reader and writer
for the shared memory is facilitated by Read-Copy-Update
(RCU) mechanism. RCU is a lock-less concurrency construct
that allows concurrent forward progress for both reader and
writer. [18]. RCU can be broadly described in two steps [19]:
1) To publish a newer version of a data item, the writer creates
a copy of the RCU protected data item, modifies this copy with
the newer version of this data item, and atomically replaces
the old reference with a reference to this newer version.
This publishing process runs concurrently with ongoing read
processes that continue to read the old copy/version using the
old reference. However, new read requests read the most recent
version. 2) Since some readers in progress hold reference to
“stale” data, the system defers memory reclamation of old data
until after each reader in progress has finished executing its
read-side critical section.

Remark 2: RCU read operations can be performed concur-
rently without any locks, allowing for high concurrency and
low contention. This can be particularly useful in systems with
multiple subscribers and few publishers. In combination, RCU
and Pub-Sub can enable efficient and scalable communication
where multiple components need to access and update shared
data in a concurrent and asynchronous manner.

C. Computing decision updates
We view the decision process (DP) reader as one of many

subscribers to the updates in the memory system. The DP
reader becomes aware of fresher updates in the memory only
when it chooses to query the memory for a fresh sample of the
source update pair. We assume a reader can fetch the updates
of both source 1 and source 2 from memory in negligible
time2. With this assumption, the DP reader is an observer that
is sampling the pair of source updates from the memory as
a point process. Based on this sample, the decision process
derives a decision update which is sent to the monitor, as
shown in Fig. 1. The reader process fetches the next sample
of update pair from the memory only after the computation in
progress is completed.

When the DP reader’s inter-sample times form a renewal
process, this is an example of the model of renewal process
sampling of updates introduced in [20]. In this model, the DP
reader generates an age process ŷ(t) at the input to the DP
that is a sampled version of the max-age process x̂(t) in the
memory. Specifically, in the absence of a read, ŷ(t) continues
to grow at unit rate. However, if the DP reader makes a read
at time ⌧ , then ŷ(t) is reset to ŷ(⌧) = x̂(⌧). This update
pair is then processed by the DP for a time T so that at time
⌧ + T a decision update with age ŷ(⌧) + T is delivered to
the monitor. The age at the monitor, ẑ(t), is then reduced to
ẑ(⌧+T) = x̂(⌧)+T . At this time, the DP reader may choose to
fetch a new sample pair from the memory, or it may choose
to wait for a time W before fetching the next sample pair.
When the DP reader employs non-zero waiting times, we say
the DP is using a lazy sampling policy [16]. Fig. 2 illustrates
the evolution of age processes x̂(t), ŷ(t), and ẑ(t).

D. Paper Overview and Contributions
We divide our AoI analysis into two stages: 1) We analyze

the average age of updates in shared memory. 2) We analyze
the additional delay induced by the decision process compu-
tations. First, section III presents a stochastic hybrid system
(SHS) evaluation of the update age processes in the memory.
For the system with sources i = 1, 2, we derive the stationary
expected ages E[xi(t)] as well as the expected age of the max-
age process x̂(t) = max(x1(t), x2(t)), .

In section IV, stage two of our analysis, we evaluate the
age ẑ(t) of the decision update process at the monitor. The
decision process is said to be sampling the source updates from
the memory as it holds a sample of updates that were written
to the memory. Even though the sampling and computation of
the DP makes no attempt to use the age of its sampled updates
to optimize its operation, we show that a lazy sampling policy
will be able to reduce ẑ(t). Here we will see that analysis
of ẑ(t) is separable from the prior SHS analysis of the max-
age process x̂(t) in the shared memory. In particular, the AoI

2This assumption is consistent with RCU reads being lightweight and fast,
so that the heavier load is indeed induced by actual decision computation.
Further, our model assumes that the DP reader fetches updates from the
memory at some finite average rate such that the combined read request
process of all subscribers does not overload the shared memory system.

age

t

x̂(t)

ŷ(t)

ẑ(t)

x̂(0)
ŷ(0)
ẑ(0)

H

⌧1
H

⌧2
H

⌧i�2
H

⌧i�1
H

⌧i

Y1 Y2

T2 W2

Yi�1 Yi

Ti Wi

Hi

Fig. 2. Example AoI evolution of the max-age process x̂(t) at the
memory, the sampled max-age process ŷ(t) with lazy sampling at
the input to the DP, and the age process ẑ(t) at the monitor. The DP
reader samples updates from the memory at times ⌧1, ⌧2, . . ., marked
by H. Yi is the sampling period for sample i, Ti is the computation
time for decision update based on sample i�1, and Wi is the waiting
time to get the i

th sample.

reduction afforded by lazy sampling can be applied to any
stationary update age process that is sampled by the DP.

III. AGE OF SOURCE UPDATES IN THE MEMORY

Let Ui,1, Ui,2 . . . be the sequence of source i update pub-
lication times. At any time t, Ni(t) source i updates have
been published in the memory, and the most recent update is
published at time Ui,Ni(t). It follows that the source i update
process has age xi(t) = t � Ui,Ni(t) in the memory. Under
this model, the update age xi(t) is reset to the write time
W ⇠ exp(µ) when it is published at time Ui,Ni(t). When
the writer writes a fresh source i update at time t

0, the max-
age process x̂(t) is reset to x̂(t0) = xj(t0), with j 6= i. In
the following, we use a Stochastic Hybrid System (SHS) to
capture the evolution of update age processes in the memory.

A. SHS Overview

To evaluate AoI of source updates, we use a Stochastic
Hybrid Systems (SHS) [21] approach, a technique introduced
for AoI evaluation in [22] and since employed in AoI evalu-
ation of a variety of status updating systems [20], [23]–[29].
A stochastic hybrid system has a state-space with two compo-
nents – a discrete component q(t) 2 Q = {0, 2, . . . ,M} that is
a continuous-time finite-state Markov Chain and a continuous
component x(t) = [x0(t), . . . , xn(t)] 2 Rn+1. In AoI analyses
using SHS, each xj(t) 2 x(t) describes an age process of
interest. Each transition l 2 L is a directed edge (ql, q0l) with
a transition rate �

(l) in the Markov chain. The age process
vector evolves at a unit rate in each discrete state q 2 Q, i.e.,
dx
dt = ẋ(t) = 1n. A transition l causes a system to jump from
discrete state ql to q

0
l and resets the continuous state from x to

x0 using a linear transition reset map Al 2 {0, 1}(n⇥n) such
that x0 = xAl. For simple queues, examples of transition reset
mappings {Al} can be found in [22].

l ql ! q
0
l �

(l) xAl

1 01 ! 1 �1 [0, x1, x2, x̂]

2 1 ! 02 µ [x0, x0, x2, x2]

3 02 ! 1 �1 [0, x1, x2, x̂]

4 02 ! 2 �2 [0, x1, x2, x̂]

5 2 ! 01 µ [x0, x1, x0, x1]

6 01 ! 2 �2 [0, x1, x2, x̂]

01

1

2

02

�1

�2

µ

�1

�2

µ

Fig. 3. The SHS transition/reset maps and Markov chain for the update age
in the shared memory.

For a discrete state q̄ 2 Q, let

Lq̄ = {l 2 L : q0l = q̄}, L0
q̄ = {l 2 L : ql = q̄}. (1)

denote the respective sets of incoming and outgoing transi-
tions. Age analysis using SHS is based on the expected value
processes {vq(t) : q 2 Q} such that vq(t) = E[x(t)�q,q(t)],
with �i,j denoting the Kronecker delta function. For the SHS
models of age processes considered here, each vq(t) will
converge to a fixed point v̄q . The fixed points {v̄q : q 2 Q} are
the solution to a set of age balance equations. The following
theorem provides a simple way to calculate the age-balance
fixed point and then the average age.

Theorem 1. [22, Theorem 4] If the discrete-state Markov
chain q(t) 2 Q = {0, . . . ,M} is ergodic with stationary
distribution ⇡̄ = [⇡̄0 · · · ⇡̄M] > 0 and there exists a non-
negative vector v̄ = [v̄0 · · · v̄M] such that

v̄q̄

X

l2Lq̄

�
(l) = 1⇡̄q̄ +

X

l2L0
q̄

�
(l)v̄qlAl, q̄ 2 Q, (2)

then the average age vector is E[x]= lim
t!1

E[x(t)]=
P

q̄2Q v̄q̄ .

B. SHS Analysis of Age in Shared Memory

The age of updates in a shared memory system with
bufferless service at the writer can be described by the SHS
Markov chain and table of state transitions shown in Fig. 3.
The continuous age state vector is x = [x0, x1, x2, x̂], where
x0 is the age of the update being written; xi, i = 1, 2, is the
age of the source i update in memory; and x̂ = max(x1, x2).
The discrete state is Q = {01, 02, 1, 2}. At time t, the system
is in state 0i if the writer is idle and the oldest update belongs
to source i. State i 2 {1, 2} corresponds to the writer writing
source i update.

We now describe SHS transitions enumerated in the table
in Fig. 3. For each collection of transitions, we focus on the
age state components that change.

• l = 1, 3, 4, 6: In system idle states 01 and 02, the writer
receives a new source update and initiates a new write
mechanism. x0

0 = 0 as the writer receives a fresh update,
and x

0
1, x

0
2, x̂

0 are unchanged as the update is not yet
written to the memory.

• l = 2, 5: The writer finishes writing and publishes a new
source update.

l = 2 : the writer publishes source 1 update: x0
1 = x0 as

the age of source 1 update in the memory is reset to
just written update. The source 2 update becomes the
oldest update in the memory; hence, x̂0 = x2.

l = 5 : The writer publishes source 2 update: x0
2 = x0,

the source 1 update becomes the oldest update, and
x̂
0 = x1.

For the SHS analysis, we employ the normalized rates

⇢1 = �1/µ, ⇢2 = �2/µ. (3)

We note that ⇢ = ⇢1 + ⇢2 is the total offered load of source
updates being written to the memory. The Markov chain
in Fig. 3 has stationary probabilities ⇡ with normalization
constant C⇡ given by

⇡ = [⇡01 ⇡1 ⇡2 ⇡02] = C
�1
⇡ [⇢2/⇢ ⇢1 ⇢2 ⇢1/⇢], (4a)

C⇡ = 1 + ⇢. (4b)

With the shorthand notation

� = �1 + �2, (5)

we now use Theorem 1 to solve for

v̄ = [v̄01 v̄1 v̄2 v̄02], (6)

where vq = [vq0 vq1 vq2 vq3], 8q 2 Q. This yields

�v̄01 = 1⇡̄01 + µv̄2A5, (7a)
µv̄1 = 1⇡̄1 + �1v̄01A1 + �1v̄02A3, (7b)
µv̄2 = 1⇡̄2 + �2v̄01A6 + �2v̄02A4, (7c)
�v̄02 = 1⇡̄02 + µv̄1A2. (7d)

We can now use Theorem 1 to calculate the AoI of source i

update in the memory as E[xi] = v01,i+ v02,i+ v1,i+ v2,i for
i 2 {1, 2} as well as E[x̂] = v01,3 + v02,3 + v1,3 + v2,3. Some
algebra yields the following theorem.

Theorem 2.
(a) Source i updates in the memory have average age

E[xi] =
1

µ

✓
1 + ⇢

⇢i
+

⇢

1 + ⇢

◆
. (8)

(b) The max-age process x̂(t) = max(x1(t), x2(t)) in the
memory has average age

E[x̂] =
(1 + ⇢)2(⇢21 + ⇢1⇢2 + ⇢

2
2) + ⇢

2
⇢1⇢2

µ⇢(1 + ⇢)⇢1⇢2
. (9)

Not surprisingly, the expected max-age E[x̂] is symmetric in
the load parameters ⇢1 and ⇢2. However, since the formula
(9) is somewhat opaque, a plot of E[x̂] appears in Fig. 4.
A possibly non-obvious observation from the figure is that
increasing the overall updating load ⇢ generally improves the
average max-age because the writer queues no updates. The
figure also reveals that the average max-age is penalized by
asymmetry in the update rates of the individual sources. This
is in part because a source that updates slowly will have high
age and thus cause the max-age to be large. However, it is
also true that with asymmetric loads, the high rate source will

0 0.5 1

10

20

30

Fig. 4. Average age of max-age process x̂(t) in the memory. For a fixed
updating load, we vary ↵ with ⇢1 = ↵⇢ and ⇢2 = (1� ↵)⇢.

cause updates of the low rate source to be discarded at the
writer. Because the writer is non-selective in offering service,
it may be performing updates for the high rate source even
when the age of that source is already low.

IV. AGE OF DECISION UPDATES

In section II-C, we observed that the DP reader is sampling
the source updates from the memory as a point process. In
particular, we assume the inter-sample times Y1, Y2, . . . that
are i.i.d continuous random variables identical to Y . In this
case, the update sample times form a renewal process, and in
the parlance of [20], the update age process ŷ(t) is sampling
the max-age update process x̂(t) in the shared memory.

A. Average Age at the Decision Process

At time t, the most recent read from memory occurred at
time t�Z(t). That is, Z(t) is the age of the sampling renewal
process. When the renewal process is in equilibrium, Z(t) is
stationary with first moment [30, Theorem 5.7.4]

E[Z] =
E[Y 2]

2 E[Y]
. (10)

Next, following the approach in [20], we observe that the DP
reader does not fetch any update in the interval (t� Z(t), t].
Hence, at time t, the update age ŷ(t) satisfies

ŷ(t) = x̂(t� Z(t)) + Z(t). (11)

Further, Z(t) is independent of x̂(t) because the inter-sample
times Yi are independent of the age processes in the shared
memory. Thus stationarity of E[x̂(t)] implies E[x̂(t�Z(t)] =
E[x̂(t)] = E[x̂]. It then follows from (10) and (11) that ŷ(t)
has expected value3

E[ŷ] = E[x̂] + E[Z] = E[x̂] +
E[Y 2]

2 E[Y]
. (12)

3A stronger distributional result is derived in [20, Theorem 6] that is not
needed for the average AoI analysis here.

B. Average Age at the Monitor: Lazy Sampling
When the DP reader samples the shared memory, the DP

then computes a decision update based on this sample. On
delivery of a decision update to the monitor, the update age
ẑ(t) is reset to the age of the oldest source update that was
read and used to compute the decision update. This means that
an arrival of decision update at the monitor at time t resets
ẑ(t) to ŷ(t).

In this work, we assume that the decision computation
times are i.i.d continuous random variables T1, T2, . . ., each
identically distributed to T . We will consider a DP that
performs lazy sampling: after delivering the computation to
the output monitor, the DP reader waits for a random time
W before reading again. The alternative to being lazy is the
zero-wait policy, a special case of lazy when W = 0.

Fig. 2 depicts the evolution of the max-age process x̂(t) =
max(x1(t), x2(t)), the status-sampling process ŷ(t), and the
age at the monitor ẑ(t). with i.i.d inter-sample intervals
Y1, Y2, . . . such that samples are taken at times ⌧i =

Pi
j=1 Yj .

Under lazy sampling, we admit the possibility that the
ith computation time Ti and the ith waiting time Wi are
correlated. However, in order for the ŷ(t) process to be sam-
pling the shared memory with independent inter-sample times
Yi = Ti+Wi, we require that the pairs (T1,W1), (T2,W2), . . .
to be i.i.d., identical to (T,W). Under this assumption, it
follows directly from (12) that the average update age at the
input to the DP is

E[ŷ] = E[x̂] +
E[(T +W)2]

2 E[T +W]
. (13)

Curiously, (13) reveals that the problem of minimizing the
average age at the input to DP appears to be isomorphic to
the timely updating problem that was originally formulated in
[16], [17], where the suboptimality of zero-wait policies was
first identified. However, in this system, our objective is not
to minimize E[ŷ] but rather to minimize the average age E[ẑ]
at the monitor. Since ẑ(t) is penalized by the waiting time
W , choosing W to minimize E[ŷ] may not be good for E[ẑ].
Fortunately, the following claim verifies this is not the case.

Theorem 3. If x̂(t) is a stationary process, then for any
waiting policy such that Wi depends only on Ti, the average
age at the monitor satisfies

E[ẑ] = E[ŷ] + E[T]. (14)

The proof appears in the Appendix. We observe that The-
orem 3 can give one the mistaken impression that E[ẑ] is
insensitive to the waiting time W . In fact, the theorem says
that the waiting time W affects E[ŷ] and E[ẑ] identically. A
hand-waving intuition is that ẑ(t) lags ŷ(t) only during the
computation time T but, once the computation is complete,
ẑ(t) = ŷ(t) during any waiting period.

Combining (13) and (14), we obtain an end-to-end charac-
terization of the average age in the system:

E[ẑ] = E[x̂] +
E[(T +W)2]

2 E[T +W]
+ E[T]. (15)

Since the computation time T is given, (15) shows that the
choice of a waiting function W as a function of T is the same
problem formulated in [16], [17]. Hence the solution is the
same, namely the �-minimum waiting policy

Wi = (� � Ti)
+
, (16)

where the parameter � is chosen by numerical line search.
With this policy, T + W = max(�, T) and it follows from
(15) that the policy achieves end-to-end average AoI

E[ẑ] = E[x̂] +
E[max(�2

, T
2)]

2 E[max(�, T)]
+ E[T]. (17)

For completeness, the effectiveness of waiting is demonstrated
in section V by some numerical evaluations of the lazy sam-
pling policy. We will see that lazy sampling becomes important
when the variance of the computation time T becomes large.
Before presenting these results, we comment on the connection
of this lazy sampling model to the lazy updating model in [16],
[17].

In [16], [17], the random variable T represented the delivery
time of a fresh update (say through a network) to the monitor.
Fresh updates were generated at will and W represented the
waiting time prior to generating the next fresh update. A
key element of this system was the tight coupling of waiting
and update generation. In this setting, the intuition behind
�-minimum waiting was that if the prior delivery time was
small, the age at the monitor would be small and it would be
a waste of network resources to deliver an update when the
age reduction afforded by the update would be small.

In this work, updates are generated by an exogenous process
that is beyond the control of the DP. Moreover, because
updates are disseminated through a shared memory publication
process, the age processes of updates in shared memory are
essentially uncoupled from the update sampling/processing
policy implemented by the DP. In particular, any time the DP
reader fetches a sample pair from the memory, the update age
of that pair has expected value E[x̂], which is just the average
age in the shared memory. Nevertheless, even though DP
operation is uncoupled from the age process in shared memory,
the �-minimum waiting policy is effective. In particular, it
reduces the expected value of ŷ(t), the age process at the
input to the DP. What is happening is that the waiting policy
mitigates the deleterious effect of high-variance computation
times T on the sampling policy at the DP reader. We note
that Theorem 3 went unrecognized in [16], [17]. Specifically,
Theorem 3 shows that no matter what policy is used, the output
always lags the input by E[T] in terms of average age.

V. NUMERICAL EVALUATION

In this section, we examine some numerical examples of
the performance �-minimum waiting policy, simply to remind
the reader of the benefits of waiting. Fig. 5 illustrates age
performance with respect to variance in the computation time
with probability distributions exp(1) (Fig. 5(a)), and Log-

0.2 0.4 0.6 0.8 1

8.5

9

9.5

(a) T ⇠ exp(1)

0.2 0.4 0.6 0.8 1

5

10

15

20

 = 1

 = 1.5

 = 2

(b) T ⇠ Log-Normal(1, e�
2 � 1)

Fig. 5. Average age at the monitor vs the sampling rate � for the �-minimum
policy for different distribution of computation time T . Total offered load by
source updates is ⇢ = 1, with ⇢1 = ⇢2 = 0.5. Notice that � = 1 is the
zero-wait computation policy.

Normal(1, e�
2 � 1) (Fig. 5(b)). The log-normal distributed

computation times T has PDF [31],

fT (t) =
e
�(ln(t)�b)2/2�2

p
2⇡�t

, t > 0, (18)

with free parameters b and � > 0. In our numerical evalu-
ations, we consider a given distribution on T such that the
computation time is normalized to E[T] = 1. In this regard,
for Log-Normal distribution, for each �, we set b = ��

2
/2

so that E[T] = 1. By varying �, we vary Var[T] = e
�2 � 1.

These numerical results are largely similar to those in [16],
[17]. In particular, the results remind the reader that zero-wait
becomes increasingly sub-optimal when the computation time
T has high variance. The choice of � specifies a sampling rate

� =
1

E[T] + E[W]
=

1

E[max(�, T)]
(19)

at the DP reader. We then plot the average age at the monitor
as a function of �. Because E[T] = 1, the maximum update
sampling rate is � = 1, which corresponds to the zero-wait
policy. As � ! 0, the average age is increasingly dominated
by the average inter-read time 1/�, because updates become
too infrequent.

VI. CONCLUSION

In this work, we focused on the problem of timely pro-
cessing of updates from multiple sources. Specifically, we

considered a model of a publish-subscribe system where a
writer publishes updates from two independent sources in a
shared memory and decision updates are derived by a decision
process by reading from the memory. The decision processing
is a subscriber that works independently of how the source
updates are recorded in the memory. Even though the decision
processing operates without knowledge of the ages of updates
in the shared memory, its reading policy is still able to improve
the end-to-end decision update timeliness.

We recognize that there could be other DP reading policies
that exploit knowledge of the update age processes in shared
memory to further reduce decision update age at the monitor;
identifying such policies would be an interesting avenue for
future research.

Another drawback of our system model is that when stale
values are read from the shared memory, the DP will still
perform its computations, even though the resulting DP update
is not age-reducing. Effectively, the DP is waiting for a
computation time before attempting to retrieve new updates
from memory. Instead, it would be better for the DP to discard
the stale updates and wait for an optimized time before reading
the memory again. Analyzing such a model also remains as
future work.

ACKNOWLEDGMENT

This work was supported by the US National Science
Foundation under grant number CNS-2148104.

REFERENCES

[1] D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen,
J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy,
S. Maheshwari, P. Skrimponis, and C. Gutterman, Challenge: COSMOS:
A City-Scale Programmable Testbed for Experimentation with Advanced
Wireless. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3372224.3380891

[2] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and evaluation of
a wide-area event notification service,” in Foundations of Intrusion Tol-
erant Systems, 2003 [Organically Assured and Survivable Information
Systems], 2003, pp. 283–334.

[3] “Kafka 3.4 documentation,” https://kafka.apache.org/documentation.
html#design_pull, accessed: 2023-05-04.

[4] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE INFOCOM, March 2012, pp. 2731–2735.

[5] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new
concept, metric, and tool,” Foundations and Trends in Networking,
vol. 12, no. 3, pp. 162–259, 2017.

[6] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–
1210, 2021.

[7] M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of information
in multi-source queueing models,” IEEE Transactions on Communica-
tions, vol. 68, no. 8, pp. 5003–5017, 2020.

[8] R. Yates and S. Kaul, “Real-time status updating: Multiple sources,” in
Proc. IEEE Int’l. Symp. Info. Theory (ISIT), Jul. 2012.

[9] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. IEEE Int’l. Symp. Info. Theory (ISIT),
Jun. 2015.

[10] J. Zhong, W. Zhang, R. Yates, A. Garnaev, and Y. Zhang, “Age-aware
scheduling for asynchronous arriving jobs in edge applications,” in
Infocom Workshop on Age of Information, Apr. 2019.

[11] R. Yates, M. Tavan, Y. Hu, and D. Raychaudhuri, “Timely cloud
gaming,” in Proc. INFOCOM, May 2017, pp. 1–9.

[12] V. Ramani, J. Chen, and R. D. Yates, “Lock-based or lock-less: Which
is fresh?” 2023.

[13] ——, “Timely mobile routing: An experimental study,” 2023.
[14] B. Zhou and W. Saad, “Joint status sampling and updating for

minimizing age of information in the internet of things,” CoRR, vol.
abs/1807.04356, 2018. [Online]. Available: http://arxiv.org/abs/1807.
04356

[15] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal information
updates in multihop networks,” CoRR, vol. abs/1701.05711, 2017.
[Online]. Available: http://arxiv.org/abs/1701.05711

[16] R. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE Int’l. Symp. Info. Theory (ISIT), June 2015, pp.
3008–3012.

[17] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B.
Shroff, “Update or wait: How to keep your data fresh,” IEEE Trans.
Info. Theory, vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[18] P. E. Mckenney, J. Appavoo, A. Kleen, O. Krieger, O. Krieger, R. Rus-
sell, D. Sarma, and M. Soni, “Read-copy update,” in In Ottawa Linux
Symposium, 2001, pp. 338–367.

[19] P. E. McKenney, “What is rcu? – “read, copy, update”,” [Online].
Available from: https://www.kernel.org/doc/html/latest/RCU/
whatisRCU.html.

[20] R. D. Yates, “The age of information in networks: Moments, distribu-
tions, and sampling,” IEEE Transactions on Information Theory, vol. 66,
no. 9, pp. 5712–5728, 2020.

[21] J. P. Hespanha, “Modelling and analysis of stochastic hybrid systems,”
IEE Proceedings-Control Theory and Applications, vol. 153, no. 5, pp.
520–535, 2006.

[22] R. D. Yates and S. K. Kaul, “The age of information: Real-time
status updating by multiple sources,” IEEE Transactions on Information
Theory, vol. 65, no. 3, pp. 1807–1827, 2018.

[23] R. D. Yates, “Age of information in a network of preemptive servers,”
in IEEE Conference on Computer Communications (INFOCOM) Work-
shops, Apr. 2018, pp. 118–123, arXiv preprint arXiv:1803.07993.

[24] S. Farazi, A. G. Klein, and D. R. Brown, “Average age of information
for status update systems with an energy harvesting server,” in IEEE
Conference on Computer Communications (INFOCOM) Workshops,
April 2018, pp. 112–117.

[25] A. Maatouk, M. Assaad, and A. Ephremides, “Minimizing the age
of information: NOMA or OMA?” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), 2019, pp. 102–108.

[26] S. Kaul and R. Yates, “Age of information: Updates with priority,” in
Proc. IEEE Int’l. Symp. Info. Theory (ISIT), Jun. 2018, pp. 2644–2648.

[27] A. Maatouk, M. Assaad, and A. Ephremides, “On the age of information
in a CSMA environment,” IEEE/ACM Transactions on Networking, pp.
1–14, 2020.

[28] M. Moltafet, M. Leinonen, and M. Codreanu, “Moment generating
function of the AoI in a two-source system with packet management,”
IEEE Wireless Communications Letters, vol. 10, no. 4, pp. 882–886,
2021.

[29] ——, “Source-aware packet management for computation-intensive sta-
tus updating: MGF of the AoI,” in 2021 17th International Symposium
on Wireless Communication Systems (ISWCS), 2021, pp. 1–6.

[30] R. G. Gallager, Stochastic processes: theory for applications. Cam-
bridge University Press, 2013.

[31] R. Yates and D. Goodman, Probability and Stochastic Processes: A
Friendly Introduction for Electrical and Computer Engineers, ser. Prob-
ability and Stochastic Processes: A Friendly Introduction for Electrical
and Computer Engineers. Wiley, 2014.

APPENDIX

Proof. (Theorem 3) Suppose t 2 (⌧i�1, ⌧i], the ith inter-
sample interval. We observe from Fig. 2 that ŷ(⌧i�1) =
x̂(⌧i�1) because the reader fetches update i � 1 at that time.
However, at that time, the monitor has only received the
decision update based on update i�2, which had age ŷ(⌧i�2)
at time ⌧i�2 and now, at time ⌧i�1 = ⌧i�2 + Yi�1, has age
ŷ(⌧i�2) + Yi�1. Hence, at time ⌧i�1, the monitor has age

ẑ(⌧i�1) = ŷ(⌧i�2) + Yi�1. (20)

Defining Hi = ŷ(⌧i�2) + Yi�1 � ŷ(⌧i�1), we can write

ẑ(⌧i�1) = ŷ(⌧i�1) +Hi. (21)

Since ŷ(⌧i) = x̂(⌧i) for all i,

Hi = x̂(⌧i�2) + Yi�1 � x̂(⌧i�1). (22)

It follows from stationarity of x̂(t) and independence of the
sampling times ⌧i and x̂(t) that

E[Hi] = E[x̂(⌧i�2)] + E[Yi�1]� E[x̂(⌧i�1)]

= E[Yi�1] = E[T] + E[W]. (23)

At time ⌧i�1, the ith busy period starts and both ŷ(t) and ẑ(t)
grow linearly at rate 1 because neither process sees an update.
Hence, ẑ(t) = ŷ(t) +Hi during the busy period. Only when
the busy period completes at time ⌧i�1+Ti does ẑ(t) drop and
become equal to ŷ(t). Let events Bt and It correspond to the
decision process being busy and idle respectively, at time t. In
this interval, the event Bt occurs while ⌧i�1  t  ⌧i�1 +Ti;
otherwise It occurs if ⌧i�1 + Ti  t  ⌧i. With these events,
we can write

ẑ(t) =

(
ŷ(t) +Hi, if Bt,

ŷ(t), if It.
(24)

For t � ⌧i�1, event Bt is independent of Hi, and it follows
from the law of total expectation that

E[ẑ(t)] = E[ŷ(t) +Hi|B] P[Bt] + E[ŷ(t)|It] P[It]
= E[ŷ(t)] + E[Hi] P[Bt]. (25)

In each renewal period, the decision process is busy for time
T and then idle for time W . By considering a renewal reward
process in which a reward T is earned for the busy period, it
follows that the limiting fraction of time spent in a busy state
is given by

P[Bt] =
E[T]

E[T] + E[W]
. (26)

Applying (23) and (26) to (25) yields the claim.

