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gatekeeper: Safety Verification and Control

for Nonlinear Systems in Unknown and Dynamic Environments

Devansh Agrawal, Ruichang Chen and Dimitra Panagou

Abstract— This paper presents the gatekeeper algorithm,
a real-time and computationally-lightweight method to en-
sure that nonlinear systems can operate safely within un-
known and dynamic environments despite limited perception.
gatekeeper integrates with existing path planners and feed-
back controllers by introducing an additional verification step
that ensures that proposed trajectories can be executed safely,
despite nonlinear dynamics subject to bounded disturbances,
input constraints and partial knowledge of the environment.
Our key contribution is that (A) we propose an algorithm to
recursively construct committed trajectories, and (B) we prove
that tracking the committed trajectory ensures the system is
safe for all time into the future. The method is demonstrated
on a complicated firefighting mission in a dynamic environment,
and compares against the state-of-the-art techniques for similar
problems.

I. INTRODUCTION

Designing autonomous systems that can accomplish mis-

sion specifications with strict guarantees of safety is still

a bottleneck to deploying such systems in the real world.

Safety is often posed as requiring the system’s trajectories

to lie within a predefined set of allowable states, called

the safe set. If the safe set is not known a priori, but is

instead built based on output (sensor) measurements on-

the-fly, then ensuring safety is even more challenging. We

consider the problem where a robot with limited sensing ca-

pabilities (hence limited information about the environment)

has to move while remaining safe with respect to a dynamic

environment using only available sensory information.

Navigating within a non-convex safe set is often tackled by

path planning techniques [1]–[4]. Since simplified (often lin-

ear) dynamics are used to generate trajectories that lie within

the safe set, these may not be trackable by a nonlinear sys-

tem. Furthermore, since trajectories are planned over finite

horizons, in dynamic environments these methods can fail to

find solutions, leading to safety violations. Recently, Control

Barrier Functions (CBFs) [5] have gained interest since they

offer a computationally-efficient method to maintain forward

invariance of a safe set. However, a suitable CBF needs to be

found, either analytically or using computationally expensive

offline methods [5], [6]. Constructive methods are applicable

to certain classes of dynamics and safe sets, but do not handle

time-varying or multiple safety conditions well [7]–[10].
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Approaches that couple the path planning and control

problems comprise Model Predictive Control (MPC) tech-

niques [11], [12], where dynamically feasible trajectories in

the nonconvex safe set are designed. The nonconvexity of the

problem implies that guaranteeing convergence, stability and

recursive feasibility is challenging. In [13], such guarantees

are obtained by exploiting the differential flatness of the

system, although the resulting mixed-integer problem makes

the method expensive in cluttered/complicated environments.

In this paper, we propose a technique to bridge path

planners (that can solve the nonconvex trajectory generation

problem) and low-level control techniques (that have robust

stability guarantees) in a way that ensures safety, without

modifying either. The idea is that given a nominal trajectory

generated by the path planner (potentially unsafe and/or not

dynamically feasible), using a backup controller we construct

a committed trajectory that is safe, feasible, and defined for

all future time. The low-level controller always tracks the

committed trajectory, and therefore will always remain safe.

This paper’s key contribution is the algorithm to construct

such committed trajectories, and a proof that the proposed

approach ensures safety.

The method takes inspiration from [14] and [15], both of

which also employ the idea of a backup planner/controller.

In [14], a backup trajectory is constructed using a linear

model to ensure the trajectory lies within the known safe set

at any given time. However, ensuring that a trajectory (that

may not be feasible for the nonlinear system dynamics) can

be tracked is challenging. In [15], safety is guaranteed by

blending the nominal control input with a backup control

input. The mixing fraction is determined by numerically for-

ward propagating the backup controller. However, since the

nominal and backup control inputs are mixed, the nominal

trajectory is never followed exactly, even when it is safe to do

so. In this paper, by combining elements from both methods

in a novel manner, we address the respective limitations

of each. Furthermore, we explicitly account for robustness

against disturbances since it turns out to be non-trivial.

Notation: Let N = {0, 1, 2, ...}, and R,R>0,R≥0 denote

the set of reals, positive reals, and non-negative reals. Low-

ercase t is used for specific time points, while uppercase T
is for intervals. ‖·‖ refers to the vector 2-norm. Norm balls

are denoted B(x0, r) = {x : ‖x− x0‖ ≤ r}. A ⊖ B is the

Pontryagin set difference. A function α : R≥0 → R≥0 is

class K if it is continuous, strictly increasing and α(0) = 0.

β : R≥0 × R≥0 → R≥0 is a class KL function if it is

continuous, for each t ≥ 0, β(·, t) is class K, and for each

r > 0, β(r, ·) is strictly decreasing and limt→∞ β(r, t) = 0.
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Fig. 1. Notation used in this paper. The nominal planner can plan
trajectories into unknown spaces, but gatekeeper ensures the committed
trajectory lies within the estimated safe sets, for all future time.

II. MOTIVATING EXAMPLE

We present an example to illustrate the key concepts

in this paper, and challenges when dealing with dynamic

environments and limited perception. A common wildfire

fire-fighting mission is the “firewatch” mission, where a

helicopter is deployed to trace the fire-front, the outer

perimeter of the wildfire. The recorded GPS trace is used

to create a map of the wildfire, used to efficiently deploy

resources. Today, the firewatch mission is often carried out by

human pilots, but in this example, we design an autonomous

controller for a UAV to trace the fire-front without entering

or being surrounded by the fire. Fig. 1 depicts the notation.

The fire is constantly evolving, and expanding outwards.

Thus the safe set, the set of states located outside the fire,

is a time-varying set denoted S(t). Since the rate of spread

of fire is different at each location, (it depends on various

environmental factors like slope, vegetation and wind [16],

[17]), the evolution of the safe set S(t) is unknown.

That said, it is often possible to bound the evolution of

S(t). In this example, we assume the maximum fire spread

rate is known. To operate in this dynamic environment, the

UAV makes measurements, for example thermal images that

detect the fire-front. However, due to a limited field-of-view,

only a part of the safe set can be measured.

The challenge, therefore, is to design a controller for the

nonlinear system that uses the on-the-fly measurements to

meet mission objectives, while ensuring the system state x(t)
remains within the unknown safe set at all times, i.e.,

x(t) ∈ S(t), ∀t ≥ t0. (1)

This paper proposes a technique to ensure this. When new

information from the perception system arrives, we construct

a candidate trajectory and check whether (1) holds for the

candidate. If it does, the candidate trajectory becomes a

committed trajectory. The low-level controller always tracks

the last committed trajectory, ensuring safety.

Since S is unknown, verifying (1) directly is not possible.

We ask a related question: given the information available at

some time tk, does a candidate trajectory pcank (t) satisfy

pcank (t) ∈ Bk(t), ∀t ≥ tk, (2)

where Bk(t) is the estimated safe set (for each t ≥ tk),

constructed using only the sensory information available

up to time tk. If we assume the perception system is not

incorrect, Bk(t) ⊂ S(t) ∀t ≥ tk, then any candidate

trajectory that satisfies (2) will also satisfy pcank (t) ∈ S(t).
However, since the check in (2) needs to be performed over

an infinite horizon t ≥ tk, it is not numerically feasible. A

key contribution of this paper is to show how we can perform

this check by verifying only a finite horizon into the future.

Referring back to the firewatch mission, if the UAV is able

to fly faster than the maximum spread rate of the fire, a safe

course of action could be to simply fly perpendicular to the

firefront, i.e., radially from the fire at a higher speed than the

maximum fire spread rate. This maneuver is an example of a

backup controller, since it encodes the idea that if the system

state reaches a backup set Ck(t) at some time tkB ≥ tk,

then the backup controller πB
k ensures that x(t) ∈ Ck(t) for

all t ≥ tkB . In the firewatch mission, πB
k is controller that

makes the UAV fly perpendicular to the firefront, and Ck(t)
is the set of states that are “sufficiently far from fire, with a

sufficiently high speed perpendicular to the fire.”1 Since the

fire is constantly expanding, the Ck(t) set is also changing in

time: the set of safe states needs to continue moving outwards

radially. Furthermore, at each k, the backup controller and

set can be a different, so we index these by k as well.

Using the notion of backup controllers, (2) reduces to:

pcank (t) ∈ S(t) ∀t ≥ tk (3)

⇐⇒

{

pcank (t) ∈ S(t) if t ∈ [tk, tkB)

pcank (t) ∈ S(t) if t ∈ [tkB ,∞)
(4)

⇐=

{

pcank (t) ∈ Bk(t) if t ∈ [tk, tkB)

pcank (tkB) ∈ Ck(tkB)
(5)

for any tkB ≥ tk, provided (I) Bk(t) ⊂ S(t), (II) Ck(t) ⊂
S(t) ∀t ≥ tkB , and (III) for t ≥ tkB the control input to the

candidate trajectory is πB
k . These conditions can be verified

easily: (I) is the correctness of the perception system, (II) is

the defining property of a backup controller, and (III) will

be true based on how we construct the candidate trajectory.

Notice that in (5), we only need to verify the candidate

trajectory over a finite interval [tk, tkB ], but this is sufficient

to proving that the candidate is safe for all t ≥ tk.

In the following sections, we formalize the gatekeeper

as a method to construct safe trajectories that balance be-

tween satisfying mission objectives and ensuring safety.

1A worked example with exact expressions for S(t),Bk(t), Ck(t) is in
the appendix of an extended version of this paper, uploaded here: [18].



III. PROBLEM FORMULATION

Consider a nominal and a perturbed nonlinear system:

ẋ = f(x, u), (6)

ẋ = f(x, u) + d(t), (7)

respectively, where x ∈ X ⊂ R
n is the state, u ∈ U ⊂ R

m is

the control input, and f : X ×U → R
n defines the (nominal)

system dynamics. The additive disturbances d : [t0,∞) →
R

n are bounded, supt≥t0
‖d(t)‖ = d̄ < ∞.

Given a control policy π : [t0,∞) × X → U , an initial

condition x(t0) = x0 ∈ X , and a bounded disturbance signal

d(t) ≤ d̄, t ≥ t0, the initial-value problem describing the

closed-loop system dynamics are:

ẋ = f(x, π(t, x)), x(t0) = x0, (8)

ẋ = f(x, π(t, x)) + d(t), x(t0) = x0. (9)

We assume that for each bounded disturbance signal d(t), the

solution x(t) exists and is unique for all time t ∈ [t0,∞).
Our method is based on concepts in forward invariance.

Definition 1. For system (6), a controller π : [t0,∞)×X →
U renders a set C(t) ⊂ X controlled-invariant on t0 if, for

the closed-loop system (8) and any τ ≥ t0,

x(τ) ∈ C(τ) =⇒ x(t) ∈ C(t), ∀t ≥ τ. (10)

Definition 2. For system (7), a controller π : [t0,∞) ×
X → U renders a set C(t) ⊂ X robustly controlled-invariant

on t0 if, for the closed-loop system (8) and any bounded

disturbance d(t) with supt≥t0
‖d(t)‖ ≤ d̄, for any τ ≥ t0,

x(τ) ∈ C(τ) =⇒ x(t) ∈ C(t), ∀t ≥ τ. (11)

The objective of this paper is to design a controller that

ensures that system trajectories remain within S(t). We

assume the following are available:

• a perception system that can estimate the safe set

• a nominal planner that uses simplified dynamics to

generate desired trajectories to satisfy mission require-

ments (for example reaching a goal state, or exploring

a region)

• a trajectory tracking controller

• a backup controller that can stabilize the system to a

control invariant set.

Each is described in further detail below.

1) Perception System: Let S(t) ⊂ X be the time-varying

set of safe states, which in general is unknown. We assume

that the perception system can construct estimates of the safe

set that are updated as new information is acquired. The

information is available at discrete times tk, k ∈ N. Let the

estimated safe set at the k-th iteration (i.e., at time tk) be

Bk(t). We assume that:

Assumption 1. The estimated safe set Bk(t) satisfies

Bk(t) ⊂ Bk+1(t) ⊂ S(t) ∀t ≥ tk, ∀k ∈ N. (12)

This is essentially a correctness assumption: if the k-th

measurement classifies a future state x(t) (for t ≥ tk) as

safe, we assume the next measurement will not reclassify

x(t) as unsafe. This assumption (while stated more gener-

ally) is common in the literature on path planning in dy-

namic/unknown environments [19], [20]. Depending on the

application, various methods can be used to computationally

represent such sets, including SDFs [21] or SFCs [22].

2) Nominal Planner: We assume that a nominal planner

enforces the mission requirements by specifying the desired

state of the robot for a short horizon TH into the future.

Definition 3. A trajectory p with horizon TH is a piecewise

continuous function p : T → X defined on T = [tk, tk +
TH ] ⊂ R. A trajectory p is dynamically feasible for the

system (6) if there exists a control policy u : T → U s. t.

p(t) = p(tk) +

∫ t

tk

f(p(τ), u(τ))dτ, ∀t ∈ T . (13)

Denote the nominal trajectory available at the k-th iteration

by pnomk , defined on [tk, tk + TH ]. We do not require pnomk

to be dynamically feasible.

3) Tracking Controller: We assume a state feedback con-

troller πT : X × X → U that computes a control input

u = πT (x, p(t)) to track a given trajectory p(t); we refer to

this policy as the tracking controller [23]–[25]. We assume

that the tracking controller is disturbance-to-state stable:

Definition 4. For any trajectory p(t) defined on T =
[tk, tk + TH ] that is dynamically feasible for the nominal

system (6), the closed-loop dynamics of the perturbed sys-

tem (7) under the tracking controller πT given by:

ẋ = f(x, πT (x, p(t)) + d(t) (14)

is disturbance-to-state stable, i.e., for any disturbance d(t),

‖x(tk)− p(tk)‖ ≤ δ =⇒

‖x(t)− p(t)‖ ≤ β(δ, t− tk) + γ(d̄), ∀t ∈ T , (15)

where β : R≥0 × T → R≥0 is class KL , γ : R≥0 → R≥0

is class K , and d̄ = supt≥t0
‖d(t)‖.

4) Backup Controller: In the case when a safe set S
can not be rendered controlled invariant for given system

dynamics, the objective can be reduced to finding a set

C ⊂ S, and a controller π : C → U that renders the set C
controlled invariant. For example, by linearizing (6) around

a stabilizable equilibrium point xe, an LQR controller can

render a (sufficiently) small set of states around xe forward

invariant [26, Thm. 4.13, 4.18]. This observation leads to the

notion of backup safety [15], [27].

Definition 5. A controller πB
k : T × X → U is a backup

controller to a set Ck(t) ⊂ X defined for t ∈ T = [tk,∞)
if, for the closed-loop system

ẋ = f(x, πB
k (t, x)), (16)

(A) there exists a neighborhood Nk(t) ⊂ X of Ck(t), s.t.

Ck(t) is reachable in fixed time TB:

x(τ) ∈ Nk(τ) =⇒ x(τ + TB) ∈ C(τ + TB), (17)



and (B) πB
k renders Ck(t) controlled-invariant:

x(τ) ∈ C(τ) =⇒ x(t) ∈ C(t) ∀t ≥ τ. (18)

We make the following assumption:

Assumption 2. At the k-th iteration, a set Ck(t) and a backup

controller πB : [tk,∞)×X → U to Ck(t) can be found s.t.

Ck(t) ⊂ S(t), ∀t ≥ tk. (19)

Note that while we assume Ck(t) ⊂ S(t), we do not

assume the trajectory to reach Ck(t) is necessarily safe, or

that the set Ck(t) is always reachable. This is in contrast to

backward reachability based methods [9], [10], [28], [29].

In summary, the problem statement is

Problem 1. Consider a dynamical system (7) with a percep-

tion system satisfying assumption 1, a nominal planner that

generates desired trajectories, a disturbance-to-state stable

tracking controller, and a backup controller satisfying as-

sumption 2. Design an algorithm to track desired trajectories

while ensuring safety, i.e., x(t) ∈ S(t) for all t ≥ t0.

IV. PROPOSED SOLUTION

gatekeeper is an additional module that lies between

the traditional planning and control modules. It takes tra-

jectories generated by the nominal planner, and instead of

passing them directly to the low-level tracking controller, it

computes a safe committed trajectory that is passed to the

low-level tracking controller instead. In this section, we will

demonstrate how to construct these committed trajectories.

To aid the reader, the analysis is first presented for the

nominal case, and later extended to the perturbed case. The

various trajectories and times are depicted in Fig. 1.

A. Nominal Case

Suppose at the k-th iteration, k ∈ N \ {0}, the previously

committed trajectory is pcomk−1. gatekeeper constructs a

candidate trajectory pcan,TS

k by forward propagating a con-

troller that tracks pnomk over an interval [tk, tk + TS),
and executes the backup controller for t ≥ tk + TS . TS

is a switching time that gatekeeper will optimize, as

described later. Formally,

Definition 6. Suppose at t = tk,

• the state is x(tk) = xk

• the nominal trajectory is pnomk defined on [tk, tk +TH ]
• πB

k is a backup controller to the set Ck(t)

Given a TS ∈ [0, TH ], the candidate trajectory pcan,TS

k is the

solution to the initial value problem

ṗ = f(p, u(t)), p(tk) = xk, (20)

u(t) =

{

πT (p(t), pnomk (t)) t ∈ [tk, tk + TS)

πB
k (t, p(t)) t ≥ tk + TS .

(21)

The candidate trajectory pcan,TS

k is defined on [tk,∞).

We say a candidate trajectory is valid if the following hold:

Definition 7. A candidate trajectory pcan,Ts

k defined by (20)

is valid if the trajectory is safe wrt the estimated safe set:

pcan,TS

k (t) ∈ Bk(t), ∀t ∈ [tk, tk,SB ], (22)

and the trajectory reaches Ck(t) at the end of the horizon:

pcan,TS

k (tk,SB) ∈ Ck(tk,SB), (23)

where tk,SB = tk + TS + TB .

Notice that checking whether a candidate is valid only

the solution pcan,TS

k over the finite interval [tk, tk + TS +
TB]. This means that the candidate can be constructed by

numerical forward integration over a finite horizon.

Next, we define how to construct a committed trajectory.

Definition 8. At the k-th iteration, define

Ik =
{

TS ∈ [0, TH ] : pcan,TS

k is valid
}

, (24)

where pcan,TS

k is as defined in (20), and Def. 7 is used to

check validity.

If Ik 6= ∅, let T ∗
S = maxIk. The committed trajectory is

pcomk (t) = p
can,T∗

S

k (t), t ∈ [tk,∞). (25)

If Ik = ∅, the committed trajectory is

pcomk (t) = pcomk−1(t), t ∈ [tk,∞). (26)

Def. 8 defines how the k-th committed trajectory is con-

structed using the nominal trajectory pnomk and the backup

controller πB
k .

Finally, we prove the proposed strategy guarantees safety.

Theorem 1. Suppose pcan,TS

0 is a dynamically feasible

candidate on [t0,∞) that is valid by Def. 7 for some TS ≥ 0.

If, for every k ∈ N, pcomk is determined using Def. 8, then

pcomk (t) ∈ S(t), ∀t ∈ [tk,∞). (27)

Furthermore, if x(t0) = pcom0 (t0), and control input to

the nominal system (6) is u(t) = πT
k (x(t), p

com
k (t), for t ∈

[tk, tk+1), then the closed-loop dynamics (8) satisfy x(t) ∈
S(t) for all t ≥ t0.

Proof. The first claim, i.e., pcomk (t) ∈ S(t) for t ≥ tk is

proved by induction. Base Case: k = 0. Since pcan0 is a

valid trajectory, it is committed, i.e., pcom0 = pcan,TS

0 . Then,

pcom0 (t) ∈

{

B0(t) for t ∈ [t0, t0,SB)

C0(t) for t = t0,SB

=⇒ pcom0 (t) ∈

{

S(t) for t ∈ [t0, t0,SB)

S(t) for t ≥ t0,SB

⇐⇒ pcom0 (t) ∈ S(t) for t ≥ t0

where t0,SB = t0 + TS + TB .

Induction Step: Suppose the claim is true for some k ∈ N.

We will show the claim is also true for k+1. There are two

possible definitions for pcomk :



Case 1: When Ik+1 6= ∅, p
can,T∗

S

k+1
is a valid candidate, i.e.,

pcomk+1(t) = p
can,T∗

S

k+1
(t) ∀t ≥ t0

∈

{

Bk+1(t) for t ∈ [tk+1, tk+1,SB)

Ck+1(t) for t ≥ tk+1,SB

∈ S(t) for t ≥ tk+1

Case 2: If Ik+1 = ∅, the committed is unchanged,

pcomk+1(t) = pcomk (t) ∈ S(t), ∀t ≥ tk+1.

This completes the first claim. Next, we prove that x(t) ∈
S(t) for all t ≥ t0. We do so by proving that ∀k ∈ N, x(t) =
pcomk (t) for all t ∈ [tk, tk+1). Again, we use induction.

Base Case: Since we are considering the nominal system

dynamics (6), if x(t0) = pcom0 (t0), and the tracking con-

troller is disturbance to state stable (15),

‖x(t)− pcom0 (t)‖ ≤ β(0, t− t0) + γ(0) = 0

∴ x(t) = pcom0 (t) ∀t ∈ [t0, t1)

Induction Step: Suppose for some k ∈ N, x(t) = pcomk (t)
for t ∈ [tk, tk+1). There are two cases for pcomk+1

: Case 1:

a new candidate is committed, ∴ pcan,TS

k+1
(tk+1) = x(tk+1).

Since the tracking controller is disturbance-to-state stable,

this implies x(t) = pcomk+1
(t) for t ∈ [tk+1, tk+2). Case 2: A

new candidate is not committed, ∴ pcomk+1
(t) = pcomk (t) for

t ∈ [tk+1, tk+2). Since x(tk+1) = pcomk (tk+1), the tracking

controller ensures x(t) = pcomk+1
(t) for t ∈ [tk+1, tk+2).

Therefore, x(t) = pcomk (t) ∈ S(t) ∀t ∈ [tk, tk+1), for

each k ∈ N. Thus, x(t) ∈ S(t) for all t ≥ t0.

Remark 1. Notice that this construction method allows safe

nominal trajectories to be followed closely: suppose at tk a

candidate trajectory pcan,TS

k is committed, i.e., tracking the

nominal over [tk, tk +TS) is safe. If the next iteration starts

within this interval (tk+1 ∈ [tk, tk + TS)), and a new valid

candidate pcan,TS

k+1
is found, the system will track it over the

larger interval [tk, tk+1 + TS) and the backup controller is

not used. As such, when gatekeeper is run frequently (i.e.

tk+1 − tk is small), the committed trajectory is closer to the

nominal trajectory. In practice, often, planners compute paths

based on a global map, updated less frequently than the local

map. Running gatekeeper on every local map update

allows the system to be more reactive to new information.

B. Perturbed Case

We now address the case where the disturbances are non-

zero. The algorithm is identical to that presented above,

except that the validation step will be redefined. First, we

highlight the problem that disturbances introduce. Recall

Assumption 4, which defines the maximum tracking error.

A specific scenario is visualized in Fig. 2. If instead

of (22), we checked that the tube containing the system

trajectories lies within the safe set (green tube in Fig. 2a),

then indeed, the system can remain safe. However, at the

next iteration, for any new candidate, the new tube (red tube

in Fig. 2a) will intersect with the unsafe set. Therefore, no

Obstacle Obstacle

a) b)Incorrect Approach Proposed Approach

Candidate tube

intersects with

unsafe set 

New candidate

tube is safe

Fig. 2. Diagram depicting the challenge due to disturbances. (a) Green
line shows the committed trajectory at iteration k, and the shaded region
is the tube that contains the system trajectory. If the validation step only
checks that the green tube lies within the safe set, a new candidate trajectory
(red) cannot be committed, since the candidate tube (red shaded region)
intersects with the unsafe set. (b) shows the proposed approach, where a
tube of larger radius R is used to validate the trajectory. This ensures that
at the next iteration, there is sufficient margin for a new trajectory to be
committed.

new candidate trajectory can be committed, i.e., an undesired

deadlock is reached: x(t) ∈ Ck(t) for all t ≥ tk,SB .

To avoid this behavior, we must use a larger radius when

performing the check:

Definition 9. A candidate trajectory pcan,Ts

k defined by (20)

is robustly valid with robustness level r ≥ 0, if

• it is robustly safe over a finite interval:

pcan,TS

k (t) ∈ Bk(t)⊖ B(0, R) ∀t ∈ [tk, tk,SB], (28)

• at the end of the interval, it reaches the interior of Ck(t):

pcan,TS

k (tk,SB) ∈ Ck(tk,SB)⊖ B(0,m), (29)

• and the set Ck(t) is R away from the safe set boundary:

Ck(t) ⊂ S(t) ⊖ B(0, R) ∀t ≥ tk, (30)

where m = β(r, TS + TB) + γ(d̄) and R = β(r, 0) + γ(d̄).

Notice that γ(d̄) ≤ m ≤ R for each r, but in the limit as

r → 0, γ(d̄) = m = R.

Theorem 2. Suppose pcan,TS

0 is a dynamically feasible can-

didate trajectory on [t0,∞) that is robustly valid by Def. 9

for some r, TS > 0. Suppose

∥

∥

∥
x(t0)− pcan,TS

0 (t0)
∥

∥

∥
≤ r.

If, for every k ∈ N, pcomk is determined using Def. 8

(except that validity is checked using Def. 9), and the control

input to the perturbed system (7) is

u(t) = πT
k (x(t), p

com
k (t)) ∀t ∈ [tk, tk+1] (31)

then the closed-loop (9) satisfies x(t) ∈ S(t), ∀t ≥ t0.

Proof. This proof is almost identical to that of Thm. 1. We

highlight the main differences. We need to prove two things:

(A) for every iteration k,

∥

∥

∥
x(tk)− pcan,TS

k

∥

∥

∥
< r and (B) if

(A) is true, then tracking the k-th robustly valid candidate

trajectory for t ≥ tk ensures x(t) ∈ S(t).



Part (A): The base case, k = 0, is assumed in the

theorem statement. For k ≥ 1, notice that when pcan,TS

k

is constructed, according to (20), the candidate is a forward

propagation from the initial condition pcan,TS

k (tk) = xk =

x(tx). Therefore,

∥

∥

∥
x(tk)− pcan,TS

k (tk)
∥

∥

∥
= 0 ≤ r.

Part (B): If pcan,TS

k is robustly valid,

pcan,TS

k (t) ∈

{

Bk(t)⊖ B(0, R) t ∈ [tk, tk,SB)

Ck(t)⊖ B(0,m) t ∈ [t0,SB,∞)

Therefore, if x(t) were to track pcan,TS

k for all t ≥ tk,

x(t) ∈

{

Bk(t) t ∈ [tk, tk,SB)

Ck(t) t ∈ [tk,SB ,∞)
=⇒ x(t) ∈ S(t) ∀t ≥ tk

since by Assumption 4,

∥

∥

∥
x(tk)− pcan,TS

k (tk)
∥

∥

∥
≤ r implies

∥

∥

∥
x(t)− pcan,TS

k (t)
∥

∥

∥
≤ β(r, t− tk) + γ(d̄) ≤ R, ∀t ≥ tk.

To complete the proof, notice that since the commit-

ted trajectory over the interval [tk, tk+1) corresponds to a

robustly valid candidate trajectory, tracking pcomk implies

x(t) ∈ B(pcomk (t), R) ⊂ S(t), for all t ∈ [tk, tk+1). Since

this is true for all k ∈ N, x(t) ∈ S(t) for all t ≥ t0.

Remark 2. The theorem can be interpreted as guide-

lines/constraints on the nominal planner. For instance, re-

quiring trajectories to lie in B(tk) ⊖ B(0, R) corresponds

to the common practice of inflating the unsafe sets by a

radius R. However, what should the inflation radius be?

The theorem shows that any R ≥ γ(d̄) is sufficient. Fur-

ther increasing R (by increasing r) makes solutions more

conservative, but robust to mismatch in initial conditions

‖x(tk)− pcomk (tk)‖ ≤ r. This can be used to account for

errors due to state estimation or computation time.

Remark 3. The construction of committed trajectories is

summarized in pseudo-code in Alg. 1. Determining max I
is not computationally expensive, since it is an optimization

over a scalar variable in a bounded interval. We used a simple

grid search with N points. Therefore, upto N initial value

problems need to be solved. Using modern diffeq libraries,

e.g. [30], this can be done very efficiently. In our simulations,

with N = 10, the median computation time was only 3.4 ms.

V. EXTENDED CASE STUDY

Code and Animations: [18].

We simulate an autonomous helicopter performing the

firewatch mission, around a fire with an initial perimeter of

16 km. The helicopter begins 0.45 km from the fire front,

and is tasked to fly along the perimeter, without entering

the fire, while maintaining a target airspeed of 15 m/s. The

helicopter is modelled as:

ẋ1 = x3 cosx4 ẋ2 = x3 sinx4

ẋ3 = u1 ẋ4 = (g/x3) tanu2

Algorithm 1: gatekeeper

1 Parameters: N > 0 ∈ N

// Do a grid search backwards over

the interval [0, TH ]:
2 for i in range(0, N ): do

3 Using Bk(t), identify Ck(t) satisfying assum. 2.

4 TS = (1− i/N)TH

5 Solve the initial value problem (20) to determine

pcan,TS

k (t) over the interval [tk, tk + TS + TB]

6 if pcan,TS

k is robustly valid by Def. 9 then

7 pcomk = pcan,TS

k

8 return

// no candidate is valid, I = ∅
9 pcomk = pcomk−1

10 return

where x1, x2 are the cartesian position coordinates of the

helicopter wrt an inertial frame, x3 is the speed of the vehicle

along its heading, x4 is the heading, and g is the acceleration

due to gravity. The control inputs are u1, the acceleration

along the heading, and u2, the roll angle. The inputs are

bounded, with |u1|< 0.5g and |u2|< π/4 rad. This system

models a UAV that can control its forward airspeed and

makes coordinated turns. Notice the model has a singularity

at x3 = 0, and the system is not control affine.

The fire is modeled using level-set methods [31]. In

particular, the fire is described using the implicit function

φ : R×R
2 → R, where φ(p, t) is the signed distance to the

firefront from location p at time t. Hence, the safe set is

S(t) = {x : φ(t, [x1, x2]
T ) ≥ 0

where [x1, x2] is the position of the UAV. The evolution

of the fire is based on the Rothermel 1972 model [16].

Each point p on the fire-front travels normal to the front

at a speed σ(p), satisfying: ∂φ
∂t
(t, p) + σ(p) ‖∇φ(t, p)‖ = 0,

where σ : R2 → R is the Rate of Spread (RoS). The RoS

depends on various environmental factors including terrain

topology, vegetation type, and wind speeds [16], [17] but can

be bounded [32]. The simulated environment was assigned

an RoS function that the controllers did not have access to.

The only information the controllers were allowed to use was

the thermal image (to detect the fire within a ±1 km range)

and assumption that the maximum rate of spread is 8 km/h.

We compare our approach against the nominal planner and

two state of the art methods for similar problems, Fig. V.

In particular, we compare (A) a nominal planner (black),

(B) FASTER [14] (purple), (C) Backup Filters [15] (blue)

and (D) gatekeeper (green). Since these methods were

not originally developed for dynamic environments with

limited perception, both methods (B, C) were modified to

be applicable to this scenario. See [18] for details.

The simulation environment and each of the methods were

implemented in julia, to allow for direct comparison.

Tsit5() [30] with default tolerances was used to simulate
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Fig. 3. Simulation results from Firewatch mission. (a) Snapshots of the fire and trajectories executed by each of three controller. The fire is spreading
outwards, and the helicopters are following the perimeter. The black line traces the nominal controller, the blue line is based on the backup filter adapted
from [15] and the green line shows the proposed controller. (b, c) show specific durations in greater detail. At t = 0, the gatekeeper controller behaves
identically to the nominal controller, and makes small modifications when necessary to ensure safety. The backup filter is conservative, driving the helicopter
away from the fire and slowing it down. (d) Plot of minimum distance to fire-front across time for each of the controllers. (e) The nominal controller
becomes unsafe 3 times, while FASTER, the backup controller, and the gatekeeper controllers maintain safety. Animations are available at [18].

Distance to Fire [km] Velocity [m/s] Comp. time [ms]
Minimum Mean Std. Mean Std. Median IQR

Target ≥ 0 0.100 - 15.0 - - -

Nominal Planner -0.032 0.098 0.032 15.14 0.73 27.32 4.37 Unsafe
FASTER [14] 0.040 0.101 0.030 12.60 2.08 78.50 20.64 Safe, but gets trapped in pocket
Backup Filters [15] 0.081 0.240 0.054 10.11 3.52 0.87∗ 0.05 Safe, but conservative and slow
Gatekeeper (proposed) 0.049 0.108 0.034 14.91 1.35 3.39 0.11 Safe

TABLE I. Comparison of gatekeeper (ours) with the nominal planner, FASTER [14], and backup filters [15]. The distance to the firefront, velocity
of the helicopter, and computation time per iteration are reported for each method. IQR = interquartile range. ∗Since the backup filter is run at each control
iteration instead of every planning iteration, it runs 20 times as often as gatekeeper, i.e., is 5 times as computationally expensive as gatekeeper.

the different controllers. Each run simulates a flight time

of 50 minutes. The controllers were implemented as zero-

order hold, updated at 20 Hz. Measurements of the firefront

are available at 0.1 Hz, triggering the planners to update,

intentionally slow to highlight the challenges of slow per-

ception/planning systems. The measurements are a bitmask

image, defining the domain where φ ≤ 0, at a grid resolution

of 10 meters. All experiments were performed on a 2019

Macbook Pro (Intel i9, 2.3 GHz, 16 GB).

In the nominal planner, a linear MPC problem is solved to

generate trajectories that fly along the local tangent 0.1 km

away from firefront at 15 m/s. The planner uses a simplified

dynamic model for the helicopter, a discrete-time double

integrator. This problem is a convex quadratic program (QP),

solved using gurobi. The median computation time is

27 ms, using N = 40 waypoints and a planning horizon of

120 seconds. The tracking controller is a nonlinear feedback

controller that directly tracks trajectories of the double inte-

grator, based on differential flatness [13], [25]. When the low

level directly tracks nominal trajectories, the system becomes

unsafe, going as far as 32 m into the fire.

In FASTER, the same double integrator model is assumed,

and a similar MPC problem is solved. We impose additional

safety constraints, that the committed trajectory must lie

within a safe flight corridor [22] based on the signed distance

field to the fire, corrected based on the maximum fire spread

rate. While this approach does keep the helicopter outside the

fire, it gets surrounded by the fire (Fig. Va). This is ultimately

due to the fact that FASTER only plans trajectories over a

finite planning horizon, and is therefore unable to guarantee

recursive feasibility in a dynamic environment. Due to the

additional constraints on the QP, FASTER is about 3 times

slower than the nominal planner.

In the Backup Filters approach, the backup trajectory



is forward propagated on the nonlinear system over the

same 120 second horizon. The backup controller makes the

helicopter fly radially, i.e., is a simple feedback controller.

Backup trajectories can be computed extremely efficiently,

requiring less than 1 ms per iteration. While this approach

keeps the system safe, it does so at the cost of performance:

the mean distance to the fire is 0.24 km, more than twice

the target value, and the average speed is 10 m/s, 33% less

than the target. This is behaviour is because the desired flight

direction is perpendicular to the backup flight direction, and

therefore the trajectory is off-nominal.

In gatekeeper, the committed trajectories are con-

structed by maximizing the interval that the nominal trajec-

tory is tracked, before implementing the backup controller.

This allows the system to follow the nominal, and deviate

only when required to ensure safety: in Fig. Vc, we see that

gatekeeper chooses to not fly into the pocket, since it

cannot ensure a safe path out of the pocket will exist in the

future. gatekeeper is computationally lightweight, with a

median run time of 3.4 ms, more than 20 times faster than

FASTER. This is primarily because gatekeeper searches

over a scalar variable in a bounded interval, instead of

optimizing R
4N+2N−2 variables as in the MPC problem.

VI. CONCLUSION

This paper proposes an algorithm (“gatekeeper”) to

safely control nonlinear robotic systems while information

about dynamically-evolving safe states is received online.

The algorithm constructs an infinite-horizon committed tra-

jectory from a nominal trajectory using backup controllers.

By extending a section of the nominal trajectory with the

backup controller, gatekeeper is able to follow nominal

trajectories closely, while guaranteeing a safe control input

is known at all times. We applied the algorithm to an aerial

firefighting mission, where we demonstrated gatekeeper

is less conservative than similar methods, while remaining

computationally lightweight. While we have demonstrated

the approach on a firefighting scenario, the method is appli-

cable to a wide range of scenarios where only limited safety

information is known, for instance, overtaking or merging

scenarios for autonomous vehicles. Future directions involve

developing more general methods to identify backup con-

trollers, and understanding how the method can be applied

to adversarial multi-agent settings.
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APPENDIX

A. Worked Example for the Firewatch Scenario

This example demonstrates how the sets S(t),Bk(t), Ck(t)
are related.

Consider the firewatch mission. For simplicity, consider a

double integrator system,

ẋ = Ax+Bu (33)

where xpos = [x1, x2]
T is the position of the helicopter, and

xvel = [x3, x4]
T is the velocity.

Say the fire starts at t = t0, at the location p = [0, 0]T . The

fire expands radially, where the rate of spread is σ : R2 →
R≥0, i.e., σ(p) is the rate of spread at a location p ∈ R

2. To

make the algebra easier, say the rate of spread only depends

on ‖p‖, i.e, σ(p1) = σ(p2) for any ‖p1‖ = ‖p2‖. This means

that the fire always spreads out uniformly, and is always a

circle.

Therefore, the safe set is time-varying, and can be de-

scribed as

S(t) =

{

x : ‖xpos‖ ≥

∫ t

0

σ(r(τ))dτ

}

∀t ≥ 0 (34)

where r(t) is the radius of the fire at time t ≥ t0.

Since we don’t know σ, we don’t actually know S(t).
Instead, we assume a reasonable upper bound is known:

σ(r) ≤ 2 m/s for all r ≥ 0.

Therefore, at the initial time, we can define an estimated

safe set:

B0(t) = {x : ‖xpos‖ ≥ 2(t− t0)} ∀t ≥ t0 (35)

and therefore

B0(t) ⊂ S(t) ∀t ≥ 0 (36)

Notice that B0(t) is not a controlled invariant set for the

double integrator.2

Suppose the system can directly measure the fire’s radius.

Let the k-th measurement be rk = r(tk). This allows us to

define the k-th estimated safe set:

Bk(t) = {x : ‖xpos‖ ≥ rk + 2(t− tk)} ∀t ≥ tk (37)

It is easy to verify that

Bk(t) = {x : ‖xpos‖ ≥ rk + 2(t− tk)}

=

{

x : ‖xpos‖ ≥

∫ tk

t0

σ(r(τ))dτ + 2(t− tk)

}

⊂

{

x : ‖xpos‖ ≥

∫ tk

t0

σ(r(τ))dτ +

∫ t

tk

σ(r(τ))dτ

}

=

{

x : ‖xpos‖ ≥

∫ t

t0

σ(r(τ))dτ

}

= S(t)

2Technically, a higher-order CBF could be used to design a QP controller
that renders a subset of B0(t) forward invariant, but this is only possible
since B0(t) is a sufficiently smooth function that we can analyze analyti-
cally.

fire is expanding

radially

Fig. 4. Depiction of the scenario in the worked example.

i.e. Bk(t) ⊂ S(t) for all t ≥ tk.

Similarly, we can verify that for any k ≥ 0,

Bk+1(t) = {x : ‖xpos‖ ≥ rk+1 + 2(t− tk+1)}

=

{

x : ‖xpos‖ ≥ rk +

∫ tk+1

tk

σ(r(τ))dτ + 2(t− tk+1)

}

⊃ {x : ‖xpos‖ ≥ rk + 2(tk+1 − tk) + 2(t− tk+1)}

= {x : ‖xpos‖ ≥ rk + 2(t− tk)}

= Bk(t)

i.e., Bk(t) ⊂ Bk+1(t) for all t ≥ tk.

This shows that assumption 1 is satisfied for this percep-

tion system.

Next, we define the backup controllers.

For any k ∈ N, suppose the state is xk = x(tk). The

backup controller should drive the system radially away from

the fire. Define nk as the unit vector pointed at x(tk):

nk =
xpos(tk)

‖xpos(tk)‖
(38)

Notice that if the position followed the reference

pref (t) = (1 + rk + 2(t− tk))nk (39)

then the reference is moving radially at a speed of 2 m/s,

and therefore faster than the maximum spread rate of the

fire. Thus pref (t) is a safe trajectory for all t ≥ tk.

This leads to the following backup controller:

πB
k (t, x) = −K

([

xpos

xvel

]

−

[

pref (t)
2nk

])

(40)

where K ∈ R
2×4 is a stabilizing LQR controller for the

double integrator.

This controller will stabilizes the system to time varying

set Ck(t), where

Ck(t) =

{

x :

∥

∥

∥

∥

x−

[

pref (t)
2nk

]
∥

∥

∥

∥

≤ 1

}

(41)

This set is controlled invariant using the backup controller

πB
k . Geometrically, Ck(t) is a unit norm ball that is moving

radially at 2 m/s in the nk direction. Therefore, it is apparent

that Ck(t) ⊂ S(t) for all t ≥ tk, since the set is moving



outwards radially at a speed higher than the maximum spread

rate.

This example demonstrates how S(t), Bk(t), Ck(t) can

be defined. The main validation step in gatekeeper, will

confirm whether after following the nominal trajectory over

[tk, tk + TS), the system is able to safely reach Ck(t) using

the backup controller πB
k .

While in this example the sets were described analytically,

in the simulation case study, they were represented numeri-

cally using signed distance fields.
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