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Abstract

Following the recent release of Al assistants, such as OpenAI’s Chat-
GPT and GitHub Copilot, the software industry quickly utilized
these tools for software development tasks, e.g., generating code or
consulting Al for advice. While recent research has demonstrated
that Al-generated code can contain security issues, how software
professionals balance Al assistant usage and security remains un-
clear. This paper investigates how software professionals use Al as-
sistants in secure software development, what security implications
and considerations arise, and what impact they foresee on security
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in software development. We conducted 27 semi-structured inter-
views with software professionals, including software engineers,
team leads, and security testers. We also reviewed 190 relevant
Reddit posts and comments to gain insights into the current dis-
course surrounding Al assistants for software development. Our
analysis of the interviews and Reddit posts finds that, despite many
security and quality concerns, participants widely use Al assistants
for security-critical tasks, e.g., code generation, threat modeling,
and vulnerability detection. Participants’ overall mistrust leads to
checking Al suggestions in similar ways to human code. However,
they expect improvements and, therefore, a heavier use of Al for
security tasks in the future. We conclude with recommendations
for software professionals to critically check Al suggestions, for Al
creators to improve suggestion security and capabilities for ethical
security tasks, and for academic researchers to consider general-
purpose Al in software development.

CCS Concepts

« Security and privacy — Software security engineering; Us-
ability in security and privacy; - Software and its engineering
— Software development techniques.
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1 Introduction

Large language models (LLMs) are among the most notable ad-
vances in artificial intelligence (AI). LLMs such as OpenAI’s GPT [57]
or Codex [56] can generate text and code for given prompts. In No-
vember 2022, OpenAl introduced ChatGPT [57], a general-purpose
Al assistant based on the GPT LLMs that can also generate code.
Other tools explicitly target developers, such as GitHub Copilot [32],
which was introduced already in 2021 [31]. Copilot is integrated
into IDEs to perform automatic completion and generation of code.
We refer to these LLM-powered tools as Al assistants.

Modern Al assistants are very powerful and can help humans
with a few keystrokes, e.g., Copilot was estimated to improve pro-
ductivity by 30% [23, 25]. This and the wide availability can also
explain the quick adoption by the software industry, organizations,
and individual software professionals. According to the 2023 Stack
Overflow (SO) Developer Survey, about 70% of professional de-
velopers are using or are planning to use Al tools within their
development processes and highlight improved productivity and
efficiency as main benefits [69]. Moreover, the survey found devel-
opers already use Al assistants in their development workflow, e.g.,
for writing, testing, debugging, reviewing, or documenting code.

Besides the above benefits, the security performance of LLMs
is overall mixed [22, 73]. While research has identified that LLMs
can support security tasks—albeit with various limitations and
challenges—such as reverse engineering, CTFs, or other offensive
tasks [33, 53, 60, 66, 67, 70], Al assistants are also susceptible to
generating insecure code [36]. For example, one experiment found
Copilot produced vulnerable code in 40% of security-critical pro-
gramming tasks [59], and another showed using Al assistants led
participants to produce significantly less secure code [61]. This is
confirmed by other reports [49, 64, 68] and known issues, such as Al
package hallucinations [14, 46] or amplifying insecure codebases by
replicating their vulnerabilities [21]. While the studies mentioned
above show that using Al assistants can significantly affect security,
they do not explore users’ considerations and how they balance
security and Al assistant usage. We argue that those play a crucial
role and aim to close this gap with this study.

We further argue that Al assistants can be considered a new
source of advice for software professionals. Similar to other advice
sources, this might be problematic given that software professionals
are known to draw heavily on (online) advice [1-3] and that this
advice can impact security negatively [13, 28], e.g., when searching
for and discussing security issues and solutions [54, 74] or when
copying insecure code snippets from SO [1, 27]. It is unclear how
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software professionals work with and scrutinize Al suggestions
compared to other less-than-perfect sources of advice like SO. These
concerns are also apparent in the industry. Google, among other
tech giants like Apple [71] and Samsung [34], banned Al assistants,
including Google’s own Bard, from internal usage due to security
and quality issues of generated code and privacy concerns [20].
As Al assistant suggestions are a new class of advice for software
professionals, it is crucial to understand their impact on software
security and how they address these security considerations.

To address these gaps, we conducted a qualitative interview study
with 27 software professionals, including software engineers, team
leads, and penetration testers, on their experiences with and usage
of Al assistants for software development in the context of security.
Additionally, we reviewed the Reddit discussions regarding the use
of Al assistants for software development and its potential security
impacts. We qualitatively analyzed 68 threads and 122 comments
relevant to using Al in software development and security practices.
The following research questions direct our study:

RQ1: How are Al assistants used in software development in the
context of security? Through interviews with software pro-
fessionals and reviewing Reddit posts, we investigate how
and for which tasks software professionals use Al assistants.
What security concerns and considerations are raised with Al
assistants’ usage in software development? Our interviews
provide insights into the security implications of using Al
assistants. We also investigate the role of policy enforcement,
code reviewing, and the liabilities associated with insecure
code generation.

What do developers expect Al assistants’ future impact on
secure software development will be? Given Al assistants’
rapid development and adoption, we asked the participants
to speculate about future development and security impact.

RQ2:

RQ3:

In this paper, we make the following contributions:

o Qualitative Insights on Security of AI Assistants in Software Devel-
opment: We are the first to present qualitative insights on how
software professionals use Al assistants and consider security
in that context. Participants generally mistrust suggestions’ se-
curity due to overall quality concerns. Nonetheless, they widely
consult Al assistants on security-critical tasks (e.g., threat model-
ing, generating code, vulnerability detection), replacing advice
sources like Google and SO, while critically reviewing sugges-
tions. Overall, participants would adopt Al assistants for security
tasks if their quality improves. The complementing Reddit in-
sights confirm those from the interviews.

Recommendations: We conclude with recommendations for dif-
ferent Al assistant stakeholders in the context of software devel-
opment and security. In summary, software professionals should
remain skeptical and carefully check all AI suggestions, e.g.,
through peer reviewing and software testing. We highlight the
need to improve Al suggestion security and recommend Al as-
sistant creators to ensure decent security and reasonable ethical
safeguards for security tasks. Researchers should focus not only
on Al code assistants, but also general-purpose ones and their
use in software development.

o Artifacts: For transparency, we provide artifacts for both the

interviews and the Reddit analysis (see Availability Section).
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2 Related Work

We discuss related work in two key areas: (i) security aspects of
Al assistants and (ii) Al assistants as a novel advisor for software
professionals.

2.1 Security of Al Suggestions

Several studies raise security concerns when using Al assistants,
such as for code generation. Pearce et al. assessed bugs introduced
by GitHub Copilot due to the unvetted code datasets on which
the LLM was trained and found 40% of generated code to be vul-
nerable [59]. The study concluded by advising developers to “stay
awake” while using the tool as a copilot. A 2023 replication study
found that the proportion of insecure code suggestions decreased
from 36.54% but remains high at 27.25% [49]. Despite these po-
tentially insecure code suggestions, Sandoval et al. found in an
experiment on writing C code that using Al assistant code sugges-
tions causes only 10% more security bugs compared to the control
group (not using Al assistants) [64]. However, Perry et al. found
for five programming tasks in three languages (Python, JavaScript,
C) that participants using Al assistants produce significantly less
secure code while believing to have written more secure code [61].
So-called hallucinations underline that current Al assistants can-
not be blindly trusted. For example, security researcher Lanyado
found that Al assistants hallucinate software packages that—when
registered—are installed by developers and could be used to dis-
tribute malicious code [14, 46]. Moreover, in an industry survey by
Snyk among software professionals, 56.4% reported that insecure
suggestions by Al assistants are common [68].

Given all those security issues in existing Al assistants, the recom-
mendation for developers to “stay awake” is highly important [59].
However, the existing studies only show the current shortcom-
ings, and none explore the considerations of software professionals
when using Al assistants. We argue that human factors need to
be understood and considered so that using Al assistants does not
weaken security. Therefore, we conduct interviews with 27 indus-
try practitioners, and qualitatively complement prior experimental
results [59, 61]. While prior work mainly investigated Al code assis-
tants [49, 59, 61, 64], we also cover general-purpose Al assistants.

2.2 Security Advice

We argue that Al assistants are a new source of advice for software
professionals, including security advice. Over the last decade, re-
search examining software developers has found that developers
draw heavily on (online) advice [1-3, 13, 27-29, 54, 74]. Researchers
found this advice to influence the security of software [1-3].
Software developers discuss security topics on SO [74]—despite
the site containing an almost balanced mix of secure and insecure
answers [13]. For example, Acar et al. found that only 17% of SO
posts contain secure code snippets and that insecure snippets are
copied and deployed in software [1]. Fischer et al. found that inse-
cure code from SO is widely prevalent in Android apps [27]. Besides
SO, Fischer et al. also identified insecure suggestions among top
Google search results and demonstrated how re-ranking search
results can positively change SO’s security impact [28]. Particularly
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interesting in the context of Al assistants, Fischer et al. demon-
strated how deep-learning-based nudging could help developers
using SO to write secure code [29].

Beyond the security of code, there are other issues with more
general security advice that developers can find online. In a CCS
2022 keynote, Mazurek diagnoses an overall security advice “dis-
aster” that also affects software professionals [50]. For example,
Klemmer et al. found usable security advice on the web to be debat-
able, outdated, or contradicting and might therefore cause insecure
implementations [45]. Moreover, researchers found issues in both
security advice adoption [11, 40] and consensus [63], and struggles
with advice prioritization among software professionals [62].

Considering Al assistants as a new advice source that is consulted
and directed by humans (e.g., with natural language prompts), the
question arises as to whether and how these known challenges of
online advice also translate to Al assistants and how this impacts
security. Our study seeks to answer this question by interview-
ing software professionals to explore human factors like trust and
concerns when using Al assistants for software development. We
argue that understanding such factors is critical as they affect usage
behavior and scrutiny when using Al assistants.

3 Methodology

This section describes how we designed our study, including our
interview recruitment process and line of questioning, our Reddit
review process, and our data analysis.

3.1 Interview Design & Piloting

Typical for early exploratory work like ours, we conducted semi-
structured interviews, as these enable exploration of key themes
but also discussion-led in-depth exploration of novel emerging
topics, e.g., by asking follow-up questions and letting participants
elaborate their thoughts freely. We designed an initial interview
guide based on our RQs. Multiple researchers discussed and revised
the interview guide in various iterations to cover all relevant aspects,
e.g., adding sub-questions, and enhancing question clarity. The
authors had experience with SE, security, and human factors. Finally,
we validated the interview guide in three pilot interviews with
software professionals. We included those for analysis, as we did
not make any significant changes.

3.2 Interview Structure

Below, we outline the structure and content of our interviews.
The semi-structured interview followed an interview guide split
into three sections based on our research questions. The interview
guide is available online (cf. Availability section). We conducted the
27 interviews between July 2023 and March 2024 online via Zoom,
lasting an average of 55 minutes (excluding intro and outro). Each
interview was conducted by one of three interviewing authors.

Introduction. At the beginning of each interview, we introduced
participants to the interview topic and procedure and obtained
consent before recording for later transcription. We asked them
to introduce themselves to get some background information and
warm up the participants.
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Section 1: Usage of Al Assistants (RQ1). First, we asked about Al
assistants’ use, including the tools the participant had used, their
motivation for using them, the tasks for which they used code-
Al assistants, and any policies about using Al assistants in their
organizations. Moreover, we queried participants about their AI
assistant workflow, i.e., how they use and approach Al assistants.

Section 2: Security Implications of AI Assistants (RQ2). Next, we
investigated the participants’ understanding, experience, and opin-
ions on the security implications of using Al assistants. We prompted
participants to discuss security advantages or disadvantages when
using Al assistants for software development. Additionally, we
asked about challenges associated with authorship and liabilities,
e.g., when an Al assistant would introduce a vulnerability.

Section 3: Future and Outlook (RQ3). In the final third section,
we asked participants to elaborate on their outlook on the future
of Al assistants and their impact on software development and
security. We asked how Al assistants have impacted their develop-
ment process and how they expect this to change. We also queried
participants about human and AI capabilities by asking whether
developers or Al produces more secure code. Last, we asked about
any needs, desired changes, and wishes for future Al assistants and
how they could help with security in software development.

Outro & Debriefing. Once the interview was complete, we asked
participants if they had any further comments to make and stopped
the recording afterward. We also asked them to share the study
with anyone they know who might be interested. After the inter-
view, we sent participants the link to a short, anonymous online
demographics questionnaire.

3.3 Recruitment & Inclusion Criteria

To recruit participants, we used our research team’s industry con-
nections, hired software professionals on Upwork, and advertised
our study at a university, following the recommendations of prior
work on developer recruitment best practices [43]. Through Up-
work, we advertised to freelancers with experience writing secure
code and using Al assistants.

People who showed interest in the study were directed to a
screening questionnaire! that began with the developer screening
questions by Danilova et al. [18, 19] and then continued to a series
of questions about their current role and experience with software
development and Al assistants. Participants had to (i) pass two of
three random screening questions by Danilova et al., (ii) be either a
developer, team lead, or security expert, and (iii) at least sometimes
deal with software security and use Al assistants. If a participant did
not fulfill these criteria, we did not consider them for the interview.
Following the screening, we directed the participants who passed to
a consent form explaining the study, outlining the interview’s struc-
ture, and stating how participant responses would be processed.
After acknowledging the consent form, the participant was directed
to a calendar to select a one-hour slot for an online interview based
on their availability and the interviewers’ schedule. We provide
both the recruitment materials and the screening questionnaire
online (see Availability Section).

!Upworkers were screened directly on Upwork and based on their Upwork profiles.
We did not screen participants from our professional networks.
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Each participant was offered compensation in the form of an
Amazon voucher worth $60, or a direct payment via PayPal. Free-
lancers hired via Upwork were paid $60 on the platform.

3.4 Demographics

We recruited a diverse sample of 27 participants for the interviews:
12 from Upwork, 12 from our professional networks, and three
university students also working in industry. Of those, six iden-
tified as tech or team lead, 14 as software developers, and four
as machine learning engineers. Eight participants were security
experts working as security engineers, security testers, or pene-
tration testers. Occasionally, participants held multiple roles. On
average, participants had extensive software industry experience
of 14.6 years (md: 12, min: 2, max: 45). Participants often have to
deal with security: eleven indicated their responsibilities include
security all the time, while the rest indicated they consider security
at least sometimes. Accordingly, participants overall achieved on
average a secure software development self-efficacy score (SSD-
SES) [72] of 55.4 points (md: 60, min: 20, max: 65). Compared to
Kaur et al.’s SSD-SES results for developer samples from Upwork
(mean: 24.1) and students (mean: 21.9) [43], our participants show
high confidence in their secure development skills. The sample
was roughly divided into full- (11) or part-time (5) employees and
self-employed freelancers (17) (multiple answers were possible).
One person was looking for work, and three were students. Most
participants resided in the US, followed by India, Pakistan, the UK,
Brazil, the UAE, Montenegro, Poland, Turkey, and Ukraine. The
majority are highly educated: nine hold a Bachelor’s degree, eight
a Master’s, and two a doctorate. One participant currently attends
graduate school; the remaining hold a college degree. A detailed
overview of all participants is given in Table 1. We observed no
differences in participants’ answers due to geographic diversity, as
participants widely use Al assistants regardless of country [69].

3.5 Interview Analysis

We transcribed the audio recordings using an internal university
service and Amberscript [5]. Amberscript initially creates an Al-
based transcript before it is corrected by a human transcriber. Ad-
ditionally, we reviewed the transcripts for any transcription errors
and corrected them, e.g., field-specific terms or acronyms. Upon
finalizing a transcript, we destroyed the interview’s recording.

To identify common themes in the software professionals’ expe-
riences using Al assistants in software development, we adopted
the six-step thematic analysis approach [7, 15] by Braun and Clarke.
After familiarizing themselves with the material by conducting
the interview and/or reading the transcripts (step 1), three authors
analyzed one transcript to develop an initial codebook inductively
(step 2). After the first transcript, the coders analyzed the transcripts
individually so that two coders independently examined each in-
terview. After completing the independent transcript coding, both
coders merged and reviewed the coding. During these sessions, we
discussed new codes and disagreements to arrive at a consensus
by the end of the meeting. We also began categorizing codes into
themes based on their commonalities (step 3). In this process, the
codebook and higher-level themes developed as we refined them in
each iteration with the insights from the newly coded interviews
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(step 4). The codebook and themes were reviewed multiple times
during the analysis until we reached saturation and a clear defini-
tion for each code and theme (step 5). We report the themes, their
codes, and example quotes in Section 4 (step 6). On average, we
assigned 84 codes per interview transcript. We provide the final
codebook in the extended version.

We do not report inter-rater reliability (IRR) [51]; Braun and
Clarke advocate not to use IRR for their reflexive thematic analysis
approach [8, 9]. Other researchers support this [12].

3.6 Reddit Discourse Review

Next, we investigated online discourse on Reddit about using gen-
erative Al assistants and their effect on code security. We chose
to complement the interviews with a review of online discussions
to assess whether sentiments described in our relatively small par-
ticipant sample were reflected in broader discussions on this key
forum. While this did not provide many additional insights, it sup-
plemented and reinforced the findings from the interviews.

3.6.1 Data Collection. In an initial exploratory gray literature re-
view based on Google searches, we found Reddit to be the main
place to discuss Al assistant usage including developer perceptions
of Al-generated code. This is also supported by other studies fo-
cusing on Reddit as the platform includes in-depth informal SE
discussions [39, 41, 47]. Similar platforms, like SO, only included
examples of Al use for coding or debugging support. Therefore, we
decided to focus on Reddit.

We searched r/compsci, r/programming, r/learnprogramming,
and r/Technology, the most popular computer science and pro-
gramming subreddits (i.e., at least one million members). We chose
these subreddits due to their large membership and active discus-
sions about trending development topics like generative Al We also
searched r/ChatGPTCoding, which focuses explicitly on Al-assisted
development and potentially yields more specific discussions. For
each subreddit, we repeated our previous Google searches, and
additionally new terms based on our interview questions, and com-
mon terms identified through our initial gray literature search (see
extended version). We reviewed each returned post whether it dis-
cussed the usage of Al assistants for coding and, for relevant posts,
we identified themes in Al assistant usage (Section 3.6.2). For each
relevant post, we collected the top ten comments, which we also re-
viewed for relevance. Next, we calculated term frequency amongst
relevant posts and comments. We created additional queries from
frequent terms in relevant discussions. We then performed a sec-
ond round of searches and repeated our relevance assessment of
all returned posts and comments. We used various search terms, to
prevent missing security discussions not containing “security.” In
total, our searches yielded 397 posts and 366 comments. Of these,
68 posts and 122 comments were relevant.

3.6.2 Analysis. To determine the collected Reddit posts’ and com-
ments’ relevance and extract themes, we followed an iterative, open
coding approach [17]. First, three authors analyzed 50 documents
(from the initial gray literature review) and posts to develop the
codebook. Then, two authors independently coded posts and com-
ments in groups of 50 using the initial codebook and allowing addi-
tional codes to emerge. After each round, the coders met, compared
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codes, resolved disagreements, updated the codebook as necessary,
and re-coded any previously coded documents. We calculated Krip-
pendorft’s alpha (@) to measure IRR [37]. This process was repeated
for four rounds (i.e., 200 documents), until acceptable reliability was
reached (a = 0.91) [37]. The remaining documents were divided
evenly between two researchers and coded by a single researcher.

3.7 Limitations and Threats to Validity

3.7.1 Interviews. As usual for interview studies, our work has
typical limitations that can affect results, such as self-reporting,
social desirability, and participation biases. For example, partic-
ipants might not have shared any forbidden AI assistant usage
or overreported the extent to which they validate Al-generated
code. While conducting the interviews in English might reduce the
number of potential participants and could skew the results, we
think this is an acceptable trade-off as English can be considered
the primary language in software development. We note that the
interviews focused on professional software development contexts
within companies and larger organizations and might not apply to
other scenarios, e.g., hobbyists or open-source developers. In line
with the overall widespread usage of Al assistants among profes-
sionals [69], our sample includes only few participants who do not
use Al assistants professionally (e.g., due to company policy), but
for private projects. Given the unequal distribution, we possibly
gained more insights from Al users than non-users.

3.7.2  Reddit Analysis. This review has limitations that are common
to similar artifact reviews. First, our sample is specific to Reddit.
This population is likely more active than other developers and may
not represent the whole community. However, this higher level of
engagement offers an upper bound, as these users are also more
likely to consider themselves passionate about new technologies
like Al assistants [30]. Additionally, Redditors’ comments are lim-
ited in scope and may not provide full context to describe their
thoughts and motivations, as this was not the goal of their original
post. However, this is complemented by in-depth interview insights.
Finally, our searches are a snapshot of the beginning of widespread
Al assistant usage and should be considered in context; software
professionals’ relationships with AT assistants will likely change.

3.8 Ethics

Ethical approval for this study was granted by the ethical and insti-
tutional review boards (IRB/ERB) of our institutions. The research
plan and study procedure adhere to (i) the ethical guidance of the
Menlo Report [44] and corresponding ACM policies [4], and (ii) the
EU General Data Protection Regulation (GDPR). We stored data
with personally identifiable information (PII) in a secure, self-hosted
storage. For transcription, we used internal university and GDPR-
compliant services. Besides informing themselves and acknowl-
edging the consent form before the interview, we also introduced
participants to our data handling practices, clarified any open ques-
tions, and let them know their participation was entirely voluntary.
They could skip questions or leave the interview at any time.

4 Results

Below, we detail the results from our qualitative analysis and com-
plement it with additional insights from the Reddit analysis, where
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Figure 1: Qualifiers and their respective percentages as used
to report our qualitative results. Graphic from Amft et al. [6].

appropriate. For our qualitative interview insights, we do not report
exact numbers but rough qualifiers (see Figure 1). Exact numbers
on individual codes’ occurrence can be found in our codebook
(extended version). For the Reddit analysis, we report descriptive
statistics, as the sample was sufficiently large and as we achieved
an appropriate IRR [51] (cf. Section 3.6.2).

4.1 Al Assistant Overview

To set the general context for the following subsections, we provide
an overview of participants’ Al assistants.

4.1.1 Al Assistants. We found participants widely use Al assistants
in their professional work. Almost all reported using some AI as-
sistant and doing so very often, most even daily, for various tasks
(cf. Section 4.2.1). Participants mainly use ChatGPT and GitHub
Copilot, which aligns with the results of SO’s 2023 developer sur-
vey [69]. Participants also reported using other general-purpose
chatbots by Google (Bard/Gemini) and Microsoft (Bing Chat), but
more rarely. A few participants mentioned other models for coding,
such as UniXcoder, Amazon CodeWhisperer, and Llama. However,
they were used less often for various reasons, including secondary
use of Llama when dealing with sensitive information or propri-
etary code that should not be shared with ChatGPT or when the
primary Al assistant does not yield the anticipated results. Other
participants tried assistants (e.g., Amazon CodeWhisperer) for a
while, but then abandoned them in favor of ChatGPT or Copilot.
An overview of participants’ Al assistants is given in Table 1.

4.1.2  Experience with Al Assistants. All participants reported hav-
ing used Al assistants previously. Most participants started using Al
assistants after ChatGPT emerged in late 2022. Participants became
aware of Al assistants through the widespread news and social
media coverage around LLMs; peers, friends, and colleagues using
Al assistants; or sometimes, via clients requesting Al features.

4.1.3 Motivations for Using Al Assistants. Participants reported
several motivations for using Al assistants. While some reported
security-related motivations, these were rare. Some participants
mentioned that Al assistants could support them as a security expert
in their work:
“For the security point, there are a lot of checks that maybe, as a devel-
oper, I couldn’t be aware of. Security is exactly one of those points that
are not for humans because I believe a lot in machine solutions.” — P1

Those participants anticipate Al assistants conducting comprehen-
sive security checks or advising them with more security expertise
than they have themselves.

However, most participants were motivated by the increased
productivity and time savings when using Al assistants. One par-
ticipant explained this by saying: ‘Tt can absolutely support us, it
can make us more efficient at our jobs, and [...] if I become more
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efficient, I need less headcount to do the same amount of work.” (P17).
Along those lines, a few participants reported that using Al assis-
tants can save money—for security, P4 stated that Al assistants
save money compared to expensive security scanners. Given the
productivity improvements, some participants used Al assistants
to stay competitive, learn new or enhance their skills in software
development. About half also mentioned a general curiosity in Al
and new technology. Participants also reported certain tasks (dis-
cussed in Section 4.2.1) as use-cases motivating their Al assistant
use, e.g., generating code or retrieving information.

4.2 Usage of Al Assistants

We asked participants how they used Al assistants for software
engineering and security (RQ1). Below, we report the tasks they
perform with Al assistants, participants’ associated concerns, how
their professional context constrains usage, and how they validate
Al-generated code.

4.2.1
participants use Al assistants for security-specific tasks in software
development (e.g., threat modeling, identifying vulnerabilities)—
participants used Al assistants for many tasks throughout the soft-
ware development life cycle (SDLC), e.g., generating code, writing
documentation or requirements. Although the latter are not pri-
marily security-focused, they have security implications.

Security Tasks: Many participants reported using Al assistants
for security tasks. Identifying vulnerabilities and fixing security
bugs in code were mentioned the most by some participants: “If you
Jjust grab some pieces of code that are exploitable and just paste them
in ChatGPT [...] Probably the Al is going to find out some changes
for you to make the code more secure.” (P15). Some participants used
Al assistants earlier in the SDLC. P4 mentioned using ChatGPT
for threat modeling: “What we are doing is using all this prompt
engineering and giving as much information as possible to the tool
and help us in defining the threat models rather than doing manual
work.” (P4). While P4 mentioned Al assistants are not perfect, they
at least provide a solid starting point for manual refinement, and
sometimes, they would have forgotten the Al-suggested attack
vectors otherwise. P15 also mentioned using Al assistants to create
an exploit, and P12 mentioned Al assistants helped them explain
results from static analysis tools. We found our software engineers
used Al assistants slightly more for security tasks, like checking
for vulnerabilities, than those primarily focused on security, e.g.,
security testers. One explanation is that participants with a strong
security background assume Al performs worse on security tasks.

Notably, only two Reddit posts specifically targeted security
and no comments. While rarely discussing security explicitly, com-
menters pointed out that Al-generated code is often of low quality
and should not be relied on (P=3, C=24)%, which could include secu-
rity issues. One commenter explained ‘Tt [AI] will lead to tech debt
and shabbily maintained and written code.” This Al skepticism was
the most common response to posts indicating a use or interest in
using Al assistants for code generation. On average, posts about
code generation received 0.62 comments indicating Al-generated
code should be thoroughly scrutinized.

Tasks. Similar to the motivations above, we find—while some

2C denotes the number of comments about a topic, P the number of posts.
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Table 1: Overview of the 27 interviews, participants, and Al assistants they use.
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® Used the respective Al assistant. O Did not use it.

Coding-Related Tasks: Most often, almost all participants re-
ported using Al assistants for coding-related tasks. Almost all par-
ticipants used Al assistants to generate code, as in this example:

“In most cases, I found the code written by ChatGPT to be a very good
starting point. It’s never perfect, but a very good starting point that we
Jjust need to add a few if-else statements to catch some edge cases or to
fill in our credentials for certain databases.” — P12

This sentiment was common on Reddit, as 33 posts described using
Al assistants to generate code or wanting to learn how to use
Al assistants. Similarly, this was the second-most common topic
of Al assistant-related Reddit comments (C=30). The only more
common comment topic was whether Al assistants would replace
developers altogether (P=9, C=48). Regarding code generation, a
few participants stated that they used Al assistants to translate code
into other programming languages. At the same time, participants
said they might not understand code for unfamiliar programming
languages: ‘T have close to no experience with Rust and I guess I can
ask ChatGPT to produce Rust code for me, even though I would not be
able to actually understand whether it’s correct or not.” (P2).

Some participants reported using ChatGPT for debugging code,
fixing bugs, or explaining code: “The thing I love about things like
ChatGPT is it doesn’t just give you the answer, it explains why, es-
pecially if you’re asking it for code it will tell you: [...] here’s what
it does.” (P17). Minor other use cases were related to code quality,
such as refactoring, optimizing, and reviewing code. These uses
were reflected in the Reddit discourse, with several posters and
commenters describing using or wanting to use Al assistants for
debugging (P=7, C=0) or explanations (P=7, C=4). Few discussed

! Number of codes assigned to the interview transcript.
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refactoring (P=2, C=0) and optimizing (P=4, C=10). One Redditor
preferred using ChatGPT to do more straightforward coding tasks,
saying they “[Use] ChatGPT for automating the boring stuff like code
refactoring, unit tests, and code documentation” (redditor).

Information & Advice Source: The majority of participants
reported consulting Al assistants as general sources for researching
information, asking questions, and obtaining advice. About half
of the participants said they use Al assistants as replacements for
search engines (like Google) and online communities (like SO). Two
participants fittingly describe it: “Wherever I would formerly use
StackOverflow, I now use OpenAI [ChatGPT].” (P17) and “Previously
[...] you would say, ‘Have you Googled it?’ Nowadays we’ll say, ‘Did
you ask ChatGPT?’” (P12).

Documentation & Requirement Analysis: Lastly, we found
the majority of participants used Al assistants to perform tasks sup-
porting application design and development in the SDLC—beyond
coding. This includes requirement analysis, creating documentation
and reports, and writing Jira stories (e.g., for bugs/issues). A few
participants who conducted security tests said they write their se-
curity reports with Al assistance. Facing those tasks likely explains
the higher popularity of ChatGPT compared to GitHub Copilot.

Tasks Al Assistants are not Used for: Some participants ex-
plicitly said not to use Al assistants for the above-mentioned tasks.
For example, some participants stated not to use it for discovering
vulnerabilities: “Vulnerability wise, I don’t think it does that good,
Jjust to identify that source code wise. [...] Other premium scanners or
some things would be doing a better job, I guess.”(P13). The concerns
about Al assistant performance and capabilities were also prevalent
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among other participants and prevented them from Al-assisted bug
fixing, code reviews, or threat modeling: ‘T even tried to use for the
threat modeling, but it was so bad that it was [...] just a nightmare. I
Jjust [...J[did] it from scratch by myself.” (P25).

Security Relevance of Non-Security Tasks: Considering code
generation, the primary task is not security, but using insecure Al-
suggested code might have severe security consequences. However,
some participants explicitly mentioned that generated code has
almost no security impact, as they would only create smaller snip-
pets or not use them in production. P15 explained: ‘T don’t generate
one page of code. It’s just a few lines of code [...]. Those are small
functions; they don’t have security concerns at all.” (P15). Participants
predominantly expressed that security issues would be easier to
spot when generating smaller code chunks, which is their typical
use case. We cannot assess this hypothesis without future research—
the participants’ experience might be correct. Still, small snippets
might be dangerous, e.g., when Al hallucinates packages [14, 46].
Besides code generation, searching and looking up information
could be security-relevant; if the Al output is incorrect, software
professionals might make decisions that undermine security.

4.2.2  Organizational Context & Privacy Constrain Al Assistant Us-
age. While most participants use Al assistants daily for various
tasks, they reported that the professional context in their orga-
nization can constrain how Al assistants are used. When asked
about security, participants did not mention constraints due to the
security of the software they create but mainly privacy, legal, and
indirect security concerns when using third-party Al assistants.

The primary concern among most participants was leaking sen-
sitive data when using third-party Al assistants—either that the AI
provider is breached or their inputs are used for training LLMs and
might be reproduced by future models. A few participants stated
that they feared their code or internal knowledge might be leaked
and used by attackers, e.g., to find and exploit vulnerabilities in
their code. Due to these concerns, many participants reported using
Al assistants only in one direction: using the Al-generated code,
but never supplying their code to the model.

However, participants were mainly concerned about leaking
proprietary information and code, confidential company data, vi-
olating non-disclosure agreements, license agreements, or other
contracts, or leaking otherwise protected data or PII. Consequently,
participants police themselves on what they supply as inputs to Al
assistants. P09 describes this fittingly:

“T cannot simply copy code to a ChatGPT or other Al assistant because
they’re going to put it on a larger pool of data and supply it everywhere.
The security measures in our company or any company in general
wouldn’t permit us to do those things. We’ll have to break down the
problem statement and essentially ask only the context, as if asking
another person who is not in our company.” — P09

Due to leakage concerns, some organizations set Al usage policies
(Section 4.3.3) or desire self-hosting models or getting privacy guar-
antees (Section 4.4.3). While this sentiment was not common on
Reddit, one commenter, in response to a post about using Al assis-
tants, warned [it] returns entire snippets of copyrighted code without
any attribution.” We expect the discrepancy between interviews
and Reddit comes from the focus on internal organization policies.
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Participants reported other minor constraints that were largely
unrelated to security. This includes copyright infringement and
intellectual property violations when using Al assistants that re-
produce training data and high Al assistant costs, e.g., for subscrip-
tions or operation costs if self-hosting. For most, the costs were
outweighed by productivity improvements.

4.2.3  Quality Assurance of Al-Generated Code. Generally, partic-
ipants reported checking Al-generated outputs, especially code,
before using them. This is grounded in a general mistrust due
to correctness and reliability issues that participants experienced,
which they also translate to security (Section 4.3.1). One participant
said: ‘T just think there are vulnerabilities and there are things that it
doesn’t know. Currently, and at least for the next five years, I think all
code written by AI will need to be gone over by a professional.” (P14).
Overall, we found participants to commonly follow a three-step
process to check Al-generated code, as depicted in Figure 2:

(1) Manual Inspection: First, almost all participants said to
inspect the generated code and check for anomalies or issues: ‘T
don’t completely trust them, but I at least read over their code.” (P19).
While some participants mentioned specifically checking for se-
curity issues, the majority was more concerned about functional
correctness—one even said not to check security at all.

(2) Copy, Execute, and Fix Suggested Code: Next, many par-
ticipants reported copying and executing the suggested code to
check whether it works. If not, they fix it manually or with the Al
assistant’s help. However, a few participants indicated not adopting
the generated code but using it as a blueprint, re-implementing the
final code entirely on their own: “[I] reuse it without copying, but just
reading, understanding how it works, and doing it by myself.” (P27).

(3) Peer Review & Software Testing: Third, about half of the
participants reported that they complement their checks with peer
reviews before merging code. The respective reviewers varied de-
pending on the organizational structure and resources: Participants
reported other team members, team leads, quality assurance teams,
or dedicated security experts/teams. We suspect a higher preva-
lence of peer reviewing, as it is a common practice not specific to
Al-generated code that participants might not report. Some partici-
pants said they did not distinguish human and Al-generated code
and apply the same reviewing and testing procedures:

“This isn’t something that we introduced because of generative Al [...].
We’ve always had a full SDLC. [...] the same rules apply as every other
piece of code you write. Code that’s generated by the Al goes to the exact
same review process [...]" — P17

Similarly, many participants used various forms of software
testing to validate Al-generated code. This included classical forms
of software testing like unit tests, static analysis tools, and fuzzing.
Some participants asked the Al assistant who generated the code
to check it or cross-check it with another Al assistant.

Key Findings: Usage of AI Assistants (RQ1).

o Al assistants are used for various security tasks, such as threat model-
ing or vulnerability detection, and security-relevant tasks (e.g., code
generation) in the SDLC. Moreover, participants consult Al assistants
with general questions and for advice, replacing SO and Google.

o In the corporate context, the main concern is privacy—not security of
software created with its help—which constrains Al assistant usage.
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Figure 2: Our participants described three steps to inspect Al-generated code.

e While Al-generated code is often directly copied to codebases, it un-
dergoes quality assurance similar to human-written code, including
peer review and software testing.

4.3 Security Concerns & Considerations

Below, we cover participants’ security concerns and considerations
(RQ2). As participants largely showed mistrust in Al suggestions,
we report on reasons for their mistrust. Moreover, we report on Al
assistant usage policies in the participants’ corporate context.

4.3.1 Security Concerns and Al Assistant Challenges. Overall, par-
ticipants generally mistrusted Al assistants for security due to
several challenges they experienced.

Mistrust and Blind Trust: Most participants mistrusted Al as-
sistants and their generated suggestions, as they doubt the security
of its suggestions or more indirectly the correctness of suggestions:

“Right now, I will not be able to trust the code produced by ChatGPT in
security-sensitive scenarios [...] It’s mostly like I cannot really trust the
correctness of this code, I'm not sure I should trust the security properties
of it either.” — P02

Despite this general mistrust, many participants feared negative
security impacts as they expect some software professionals might
trust Al blindly, not questioning security: ‘T worry that people will
lean on or depend too much on the things generated by Al and forget
about the security.” (P03). Relatedly, some participants complained
that Al assistants are always confident, even if the suggestions are
wrong or insecure. Instead, participants desired Al assistants to
indicate their confidence, similar to how humans would express
uncertainty about a solution. Many participants also mentioned
that wrong Al suggestions are hard to recognize.

Poor AI Suggestion Quality: Participants expressed the above
mistrust concerning poor Al suggestion quality—for general sug-
gestions and Al-generated code. Most participants reported overall
quality issues, such as inaccurate, outdated results—due to older
datasets on which LLMs were trained—or hallucinations. A few
also expressed that quality degraded over time.

Almost all participants expressed quality problems when gener-
ating code with Al assistants. This mainly concerned the necessity
to review and rework code (Section 4.2.3) as the majority experi-
enced that code did not work as intended or were even concerned
that AT might otherwise introduce bugs: ‘T don’t think we’ve ever
taken anything directly from the Al [...] straight into code. Even after
all the checks, I think everything’s had to go through and be subtly
changed.” (P17). Especially for more complex problems and when
generating larger amounts of code, about half the participants re-
ported lower quality. A few participants found Al-generated code
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challenging to refactor. This aligns with some participants who said
Al-generated code was hard to understand and fix.

These issues likely relate to the interaction challenges the par-
ticipants mentioned with Al assistants. For most participants, that
concerned prompting and prompt engineering, i.e., steering the
Al assistants to generate what the user desires. Many participants
reported needing to change their prompts in multiple iterations
until they were satisfied with the Al-generated answers. One par-
ticipant said: “You end up just having to both tweak the prompts and
then tweak the code [...] to actually fit your purpose.” (P08). Fittingly,
many participants struggled to provide the LLM with enough con-
text to create high quality results, mentioning the limited context
windows and numbers of tokens that LLMs can process, or request
limits in Al assistants. P06 summarizes all this well: “Code generated
by Al [might not] be safe because it does not know the entire code,
it just gives relation to my question of what I asked. I don’t feel it’s
completely safe. I do check back.” (P06).

Actual Security Issues through AI Assistants: Despite the
widespread security and quality concerns, participants rarely re-
ported facing security issues using Al assistants. Instead, experi-
ences were mixed. While a few were unsure, some participants did
not perceive any change in their projects’ security since adopting
Al assistants. Only a few mentioned security improvements, like
identifying a new attack vector in their software. A few others,
however, reported security shortcomings in the generated code:

“For example, it doesn’t hash the password, it doesn’t add salt to the
password unless you specifically tell it to do that. [...] Generally, it’s
not very secure. We will generally find mistakes in the majority of code
snippets that it creates.” — P08

Nonetheless, others did not experience security issues despite all
other quality shortcomings: ‘Tt definitely writes bad or suboptimal
code in some places, but I don’t frequently see glaringly obvious
security vulnerabilities being created by the AL” (P17).

Security Concerns: Most participants expressed security con-
cerns when using Al assistants. Many doubted its ability for security
tasks, as one said: ‘7 would never rely on ChatGPT for security.” (P26).

First, about half the participants found that Al assistants will
likely introduce security issues through generated code: ‘T think
the more code will be produced by the current existing Al tooling,
the more we’ll see security bugs in them, and we’ll probably see new
patterns of security bugs.” (P02).

Second, some participants were concerned about LLM poisoning
and facing models trained to create insecure suggestions. A few
outlined that they would not be able to recognize this: “What if it
is developed using a data set that is inherently vulnerable? [...] Those
challenges are there.” (P04). Similarly, a few were concerned about
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Al assistants acting as a malicious dependency: “Actually, anything
that’s produced also has that vulnerability.” (P08).

Third, some participants questioned Al assistants’ suitability for
security at all or partly: “ChatGPT is much more limited in cyber se-
curity, but it’s very good in code generation and programming.” (P24).
For example, participants found it performs worse than static ap-
plication security testing (SAST) tools in finding vulnerabilities;
P13 and P26 argued that current Al models, like GPT and Codex,
cannot handle more complex security tasks. A few participants
experienced that ChatGPT needs to be actively directed into a “se-
curity mindset” in their prompts and questioned why this is not a
default: “Honestly, I'm not so satisfied with the security level of the
code because ChatGPT doesn’t include it by default. If you don’t ask
it, it doesn’t include the security steps in the code.” (P27).

4.3.2 Al Assistants’ Ethics Safeguards on Security Tasks: Some par-
ticipants reported that the ethical safeguards built into Al assistants
(also called guardrails or constraints) rejected their prompts for secu-
rity tasks, e.g., finding vulnerabilities. However, several participants
explained that they had reframed their prompts to circumvent the
Al assistants’ safeguards and have it assist with a vulnerability:
“In ChatGPT, for example, if I'm asking how to do an SQL injection, it
will say ‘SQL injection is an unethical thing, sorry, I can’t help you with
that” If 'm asking in some [...] indirect way, it will explain to me all
the details.” — P07
Therefore, participants perceived it more like a circumventable
usability obstacle, but not an actual constraint. However, this might
not be enough to leverage Al assistants for more offensive security
tasks, even when circumventing ethics constraints. For example,
P25 explained that Al assistants can suggest possible attack vectors
but will not perform the attack for them:
“It gives you some tricks. [...][and] possible attack vectors, but it will
not make the attack instead of you. If you don’t [...] understand how
the basic attack works, just using one command that ChatGPT gives
you, will not make you a successful attacker or hacker” — P25

4.3.3  Policy & Regulations on Al Usage. As large tech companies,
such as Apple or Google, have banned the use of Al assistants for
security and quality reasons, we asked participants about policies
on using Al in their work.

About half of the participants stated their company did not have
a policy regulating the use of Al assistants. Participants who work
in companies that recently started using Al assistants argued that
policies were not considered as they needed to test the boundaries
and use cases of Al assistants. One participant declines policies and
explicitly said: “No, absolutely no. No policy interference!” (P10). Self-
employed participants did not require a policy, since they work for
themselves. Some participants advocate for self-policing and argue
that a policy is not required when following common sense, e.g., not
sharing sensitive data. A few participants expressed that the need
for policies when using Al assistants is security-relevant, especially
when using it to generate code that, therefore, needs to be tested (see
Section 4.2.3). These participants desire a standardized verification
process to evaluate and verify the security of the generated code
before merging it to the main code base.

Besides policy absence, other participants reported having poli-
cies. A few even reported that their companies banned Al assistants
by policy, but mainly for privacy reasons, as outlined in Section 4.2.2.
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One explained how their company developed a custom Al assistant
based on public LLM APIs, which serves as a proxy that filters
requests based on the company policy before sending the prompt
to the third-party LLM. Another participant explained that Al as-
sistants remain forbidden by default but can be used when clients
authorize their data to be shared with Al assistants.

Participants rarely reported shadow practices, while a few as-
sumed Al assistants usage anyway, even if forbidden. P16 justified
their use of ChatGPT, even though their company requires Bing
Enterprise because they perceived the former to perform better.

4.3.4 Responsibility for Al-Generated Code. For a fictive scenario,
we asked about responsibility when Al-generated code is used in
production, only to find it vulnerable and exploited later. Almost all
participants agreed the human who uses the Al assistant remains
responsible, while a few said their company is also responsible.
Participants mainly argued that an Al assistant is a tool and does
not replace the developers’ agency, but developers must check
suggestions before using them. P01 compared it to copying and
pasting code from SO, stating that it is the human’s responsibility
that the code works as intended. P08, however, argued that their
company would be responsible as it should have ensured a code
review process, specifically for Al-generated code. Only a few other
participants said they consider the Al assistant creators responsible.

4.3.5 Security Performance: Human vs. Al. We asked participants
who wrote the more secure code, comparing humans and AL Over-
all, participants’ opinions differed. About half of them argued that
humans would create more secure software. On the contrary, some
expected Al to perform better. A few participants said that Al as-
sistants currently perform at the level of junior human developers
but expect Al to become better than humans. While P02 currently
expected neither to perform well, some participants perceived Al as-
sistants and humans to complement each other, therefore achieving
the best security when Al assists humans:

“I think that the most secure code would be a combination of the two. I
think that both I and the model alone would generate code with insecu-
rity. I think that the combination of both me and the model would write
the most secure code.” — P14

Key Findings: Security Concerns & Considerations (RQ2).

e When using Al assistants, participants consider security, indicated
through many security concerns, but only a few faced actual security
issues. The overall (security) mistrust in Al assistants is primarily due
to code quality concerns.

o Participants mainly assume humans to perform better security-wise
than Al assistants, and perceive humans to remain responsible, as Al
is just an assisting tool.

o Al assistant usage policies are rare and mainly motivated by privacy
concerns, but some participants desire policies to ensure secure usage.

4.4 Expected Future Impact of AI Assistants on
Security and Development Practices

Lastly, our participants shared their views on the future impact of

Al assistants on software development, the changes they expect

to software development, their influence on software security, and
their wishes for future usage of Al tools (RQ3).



Using Al Assistants in Software Development: A Qualitative Study on Security Practices and Concerns

4.4.1  Future Impact on Security. Participants were undecided re-
garding the future impact of Al assistants on security. Many ex-
pected Al tools to help with security, as they believed Al tools
would be able to support developers with security during software
development. For example, they imagined Al could find common
vulnerabilities and take over static code analysis. Some stated, how-
ever, that the quality and accuracy of the tools would need to
improve for use in security tasks: “If we can make sure Al spits out
perfectly secure code, which it will be capable of doing along the line,
then AI will be improving the overall cybersecurity posture.” (P26).
In contrast, about half of the developers expected using Al as-
sistants to impact software security negatively. For example, some
noted that the quality of Al tools was not yet high enough to ensure
security, but they expected this to be the case in the future:

“For the first time, using Al tools for writing applications, we will have
more vulnerabilities, and we will need to fix them. However, with time,
the AI model will learn some details, and I think it will be fixed.” — P27

A few others suspected developers of blindly trusting the Al output
during software development and about software security, resulting
in vulnerabilities being introduced into the software: “If youre just
blindly [...J[using Al and check] the code in without proper testing
or without proper reviewing, I think there is a very high chance that
there can be a security flaw in that.” (P9).

Further, some had concerns that Al assistants could effectively
be used by potential attackers, with Al tools being able to find and
exploit common vulnerabilities, making it possible for attackers
with little technical knowledge to perform attacks:

‘I think decades ago, script kids referred to kids who get access to some
dangerous piece of code. They do not necessarily know what the code
does, but when they run it, it’s very damaging. Nowadays, the kids just
need to express what they want to achieve, and then ChatGPT will write
some bad code for them.” — P12

4.4.2  Expected Changes to the Software Development Process. Over-
all, participants expected Al assistants to become more involved
in the software development process, taking over more mundane
tasks, thus shifting the developers’ responsibilities toward complex
tasks that Al assistants cannot solve.

Participants mentioned a variety of tasks for which they want
to use Al in the future. The majority expected to be able to use
Al on security-relevant tasks. This includes code generation, secu-
rity reviews, vulnerability detection, software testing, and malware
analysis. However, many participants agreed that the suggestion
quality needs to improve for such tasks. Some participants expect
this to happen in the future: ‘T think over the course of time, in the
next three, two, or four years, definitely Al will write better code than
developers. That is something more secure and better.” (P4). Partici-
pants expect Al assistance for other tasks, like maintaining code,
installing and updating libraries, or software design.

Some participants speculated that Al tools might improve through
highly task-specific training, e.g., tools specifically trained for soft-
ware security instead of models for general use. They expect these
tools would perform better and would trust them more:

“Tt will be really hard to trust and rely on the [general] models when
there are security properties required. However, I guess that if a model
was developed with a security-first principle, focused on security, the
story might be different [...]” — P2
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Many participants expected significant shifts in software de-
velopers’ responsibilities, such as developers becoming prompt
engineers or becoming an Al supervisor who primarily evaluates
AT suggestions. About half of the participants did not expect Al
assistants to replace humans in software development. Instead, they
suspect Al assistants will speed up tedious and time-consuming
tasks, shifting software developers’ tasks with more time for high-
level tasks. Thus, the majority shared a generally positive outlook
on AT’s influence on its future integration into the SDLC: T don’t
think it will ever replace a developer. [...] I think it’s more likely that
we, as a software engineering industry, would do less and less of those
mundane tasks and more of the interesting stuff.” (P16). However,
some were worried about their job, as Al might perform many
current software developer tasks if they further improve. This fear
was mostly caused by Al assistants’ ability to solve many tasks very
quickly compared to human developers.

4.4.3 Wishes. Participants hoped that the usability of Al assistants
would improve along with the quality of the generated output. For
example, some developers hoped Al tools would be better integrated
into IDEs. A few others wanted easier methods to prompt the Al,
e.g., voice commands or the ability to pass drawings and diagrams
to the Al to explain program structures easily. This was combined
with the wish for technical improvements of the Al systems, for
example, a larger context window:

“Generative Al will get more powerful and can process more context
and broader context to generate better codes, and maybe in the future,
a whole project, which will need very minor modifications from the
human user or developer, probably.” — P20

However, many participants mentioned that the output quality
needs to improve before Al assistants could be of greater help to
them, as they had issues with the quality and correctness of the Al
output in the past (Section 4.3.1). About half were confident that
the quality would improve in the future, with a few unsure how
fast these tools could improve: ‘T think they still have a long way to
go. There is a lot more training that they should undergo. They have
to improve.” (P10). A few participants mentioned observing a drop
in the quality of the Al output over time, claiming the Al needs to
be trained with higher-quality data.

As most participants had concerns regarding leaking sensitive
data and IP through third-party Al assistants (Section 4.2.2), some
desire and expect increased use of self-hosted and specialized Al
assistants within companies:

“The thing is, if you are having your local model, which is, again, coming
to the security and the privacy, that’s the only way that your data is
not accessed. [...][If] this model on your server, it’s not going outside
your network.” — P21

Key Findings: Expected Future Impact (RQ3).

e Participants expect their role to shift from writing code to more cre-
ative and complex tasks, leaving the mundane for Al assistants under
their supervision.

o Participants desire improvements in Al assistant quality, correctness,
and security abilities.

e Some participants envision Al assistants to improve in security tasks,
while others argue for a negative impact.
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5 Discussion

Below, we discuss our results by setting them in context and deriv-
ing recommendations on usage and future Al assistants.

5.1 (Mis)Trust in Al Assistants

While our participants largely maintain a critical mistrust towards
Al assistants, they widely use them in software development (e.g.,
to generate code) at the same time. Although this mistrust applies
to security (e.g., generating vulnerable code), participants reported
security issues rarely. They used other aspects, like functionality
and correctness of Al suggestions, as a proxy to assess Al assis-
tants’ security performance. That said, mistrusting Al assistant
security is likely due to overall quality issues that participants
widely experience. Currently, this skepticism leads participants to
use Al assistants with care and scrutinize Al suggestions. Changes
to these proxy indicators might affect developer behavior. For exam-
ple, future quality improvements might lead to blindly trusting Al
assistants and not checking code suggestions’ security before using
them. Further, getting more used to Al assistants might have similar
effects and could be expected for such a novel technology. How-
ever, this hypothesis needs to be investigated in future research.
The Reddit discourse analysis broadly aligns with the interview
findings, as Redditors and our participants use Al assistants for
various software development tasks. We found similar mistrust in
Al assistants, as interviewees and Redditors expressed the need to
scrutinize Al suggestions.

5.2 Comparison with Related Work

5.2.1 Mismatch with Prior Experimental Results. As this study con-
tributes qualitative insights that complement prior experiments on
the security impact of Al assistants, a comparison finds a major
mismatch: While our participants reported to critically scrutinize
Al suggestions (Section 4.2.3) due to general mistrust and did not
perceive negative security impact from Al usage, a negative secu-
rity impact is evident in practice [49, 59, 61, 64, 68]. This mismatch
reveals a skewed self-perception, so that software professionals
overestimate their capabilities in scrutinizing Al suggestion for
security. Nonetheless, we conclude that software professionals are
aware of potential security issues due to Al assistant usage and
try to “stay awake” [59], but seem to lack methods and support to
effectively validate Al suggestions.

5.2.2  Security Capabilities of Al Assistants. Our participants feel
that Al capabilities are still limited and unreliable, while being
a supportive tool at the same time. However, they generally be-
lieve LLMs will become more helpful in assisting with security
in the future (Section 4.4). Currently, research found mixed capa-
bilities in AI assistants, ranging from poor quality and insecure
suggestions [49, 59, 61, 64] to autonomously outperforming CTF
players [33, 53, 60, 66, 67, 70]. As our participants did not perceive
such immense benefits, this supports that studies might overesti-
mate Al security performance [22, 73] when used in practice. Based
on our interviews, we hypothesize that challenges when using Al
assistants, e.g., providing enough context, engineering prompts, or
ethics safeguards, currently prevent leveraging the full potential
that might be achievable in theory and under ideal lab conditions.
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5.3 Al Assistants as a (Novel) Source of Advice

We found our assumption confirmed that Al assistants are a new
advice source. Participants reported to have primarily replaced
classical online advice sources, like Google and SO, by using Al
assistants (Section 4.2.1). We see similar usage patterns, such as
copying, pasting, and adapting code (Section 4.2.3)—that are known
to cause security issues, e.g., when copying from SO [27]. Compa-
rably, the research community also found software professionals to
achieve worse security when using Al assistants compared to not
using them [49, 59, 61, 64]. While recent research found ChatGPT
not to entirely replace SO, 35% preferred the former due to its lan-
guage characteristics and comprehensiveness—even with a large
portion of incorrect answers [42].

Considering Al assistants a (partial) replacement for other on-
line advice sources, it remains an open question how Al assistants
impact online knowledge communities in which they have been
trained (partly). Recently, Burtch et al. found Al assistants degrade
online communities and reduce the number of users on SO [10].
This could cause a “vicious cycle” of feedback when it drains the
online communities on which it is trained. Following that argu-
ment and given the often poor quality and insecure suggestions on
SO, creators of Al assistants need to be aware of this problem and
prevent reinforcing insecure suggestions [21].

5.4 Recommendations

Below, we give recommendations for Al assistant users and creators:

5.4.1 Critically Scrutinizing Al Suggestions. We advocate, similar
to other work that demonstrated the security shortcomings of Al
code assistants [59], to critically validate all Al suggestions. De-
spite the found mismatch that questions its feasibility for software
professionals (Section 5.2.1), we argue that awareness of Al unreli-
ability and potential security issues is important nonetheless—and
required for critical scrutiny. While our participants often already
showed this awareness, we underline the need to educate software
professionals and companies about potential security issues arising
from Al usage, e.g., package hallucinations [14, 46].

How to scrutinize Al suggestions (and generally ensuring code
security) remains an open question. As a rule of thumb, we recom-
mend treating Al-generated code like human code and applying
the same quality assurance measures, e.g., code reviews, software
testing, static analysis, or pentesting. Many software professionals
and companies already had such structured processes (cf. Figure 2).

Given potential security decreases, we argue that Al assistant
usage should be considered depending on the security guarantees
needed in a software project on a case-by-case basis. Currently, our
participants are concerned that Al assistants do not outperform hu-
mans with expert security knowledge, raising the question of why
Al is used for security-critical tasks. Given that participants (need
to) check the Al suggestions, humans with sufficient knowledge
and skills are still required to do these checks anyway.

5.4.2 Improving Model Quality and Security. Given the current
widespread usage of Al assistants, which can be expected to become
even more ubiquitous, reducing security issues at the model level
is likely to have the highest impact. Our participant’s quality and
security concerns were reflected in the demand for improved future
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models (Section 4.4.3). As our participants, we anticipate further Al
assistant improvements. Along with the general improvements in
Al assistant quality and performance, Al creators should also ensure
suggestions are reliable and secure to avoid risk to downstream
users of software built with Al suggestions.

We argue that models with security capabilities are needed if Al
assistants are used in software engineering. For example, coding
models must be constrained to generate secure code suggestions (at
least at a high rate). As this can largely depend on the LLMs’ training
data, we advocate rethinking what data is used for training. While
current models are trained on large corpora of online content, e.g.,
from GitHub or SO, it is no surprise that the resulting Al suggestions
might be insecure given many insecure code snippets online [27-
29]. Using datasets with better quality and security could also make
Al suggestions more secure. For existing models, security hardening
techniques should be considered [38].

We hypothesize that using task-specific models, e.g., for vul-
nerability detection, threat modelling, or secure code generation,
instead of general-purpose models might result in better quality and
security capabilities. For example, HackerOne recently launched
Hai beta, an Al assistant specifically tailored to vulnerability intel-
ligence tasks, e.g., to assist with vulnerability remediation [35].

5.4.3 Leveraging Prompt Engineering. To improve and get the best
possible Al assistant suggestions, we recommend software pro-
fessionals to leverage prompt engineering. Also, the Al assistant
creators suggest prompt engineering, e.g., OpenAl [58], indicating
this is necessary to circumvent low-quality suggestions like our
participants reported. When not satisfied with the first suggestion,
software professionals should try to iteratively refine their prompts,
e.g., starting with simple queries, then providing more context, be-
ing more specific, or splitting a problem in smaller sub-problems.
Many participants already apply known prompt engineering tech-
niques [26] by adapting their prompts to obtain the desired Al
suggestions (Section 4.3.1). We recommend learning about and
exploring prompt engineering practice guides [26, 58, 65]. Still,
prompt engineering remains a significant usability obstacle, limit-
ing Al assistant usefulness [48].

5.4.4  Shifting from Compliance-Driven to Security-Driven Policies.
Interestingly, the companies participants work for seem less con-
cerned about the security of Al-suggested code. Instead, they view
data usage and privacy aspects (Section 4.3.3) as the main motiva-
tion behind AI assistant usage policies—although Google did ban
AT assistants due to security concerns [20]. Given many partici-
pants shared Al assistant security concerns, one explanation for
compliance-driven policies is that management or legal teams cre-
ate them, but not software professionals, as our participants were
rarely involved. Another explanation is that Al suggestions are
evaluated like human code (Section 4.2.3), not needing a dedicated
policy. Nonetheless, we think data and privacy leakage concerns
are important aspects and need to be considered by companies; re-
cently, Niu et al. uncovered that about 8% of prompts to the GitHub
Copilot models result in privacy leaks [55]. Overall, we acknowl-
edge that using Al assistants is a trade-off between security, privacy,
cost, efficiency, and liability. We call companies to remember to
consider security in this trade-off.
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5.4.5  Prioritizing Usage of Privacy-Friendly Al Assistants. A signifi-
cant participant concern was leaking data and sensitive informa-
tion when using Al assistants (Section 4.2.2), which also results
in policies regulating usage (Section 4.3.3). Other researchers also
found these privacy concerns among general users of Al assistants,
and we can confirm trade-offs between privacy and utility [75]
for software professionals. Consequently, participants desire self-
hosted Al assistants, i.e., not involving a third party, or private
ones, i.e., hosted by a third party but with privacy guarantees (e.g.,
no training on prompts). The latter might be interesting if the
hardware is unavailable, e.g., to host models like Llama [52]. We
recommend software professionals and companies to consider these
more privacy-friendly variants of Al assistants. The creators of Al
assistants should offer their models either for self-hosting or in a
private subscription. The industry recognizes this need already;
for example, GitHub recently launched Copilot Enterprise [16, 24].
When also fine-tuning such models (e.g., on a company’s code base),
this might improve quality and security of Al suggestions.

5.4.6 Balancing Ethical Concerns and Using Al Assistants for Secu-
rity. As participants reported, one limitation to using Al assistants
for security tasks are the implemented ethics safeguards. Al assis-
tants might refuse prompts they deem unethical, e.g., more offensive
security tasks like identifying a vulnerability or creating an exploit
(Section 4.3.2). While these ethical considerations are important,
they create a dilemma, as vulnerabilities must be found and fixed
to improve security. For ethical usage, e.g., security evaluations of
one’s software, this can limit Al assistants’ usefulness—for valid use
cases that would be done by human security experts otherwise. Fur-
ther, participants reported circumventing safeguards with prompt
engineering. While we advocate the creation of Al assistants for
specific security tasks, we believe it is necessary to discuss the
ethics first and to implement the respective ethical constraints that
cannot be easily circumvented. This is also necessary as specific
security Al assistants like Hai [35] emerge.

5.5 Outlook & Future Work

5.5.1 General-Purpose & Code Al Assistants. Table 1 confirms the
wide usage of ChatGPT and other general-purpose Al assistants
among software professionals [69], even more than coding assis-
tants like GitHub Copilot. However, we perceived a strong focus on
Al code assistants like Copilot in security research [49, 59, 61, 64].
Future research should close this gap and consider both coding-
related and general-purpose Al assistants (which are also used for
coding tasks), e.g., comparing the security impact of using both
kinds. Similarly, the creators of general-purpose models should also
consider the security impact when their models are capable of and
used for software development tasks.

5.5.2 Al Assistants vs. Other Advice Sources. Considering Al assis-
tants as novel advice sources (Section 5.3), the question of whether
software professionals deal differently with Al assistants’ sugges-
tions and other advice sources arises. Hence, we advocate exper-
iments to compare the security impact of Al assistants to other
advice sources (e.g., Google, SO), similar to earlier related work [1].
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6 Conclusion

We investigated software professionals’ usage of Al assistants in
software development, focusing on security and their security con-
siderations in 27 interviews, complemented by the analysis of Reddit
posts. Besides being used often by almost all participants, we found
that both coding Al assistants, like Copilot, and general-purpose
Al assistants, like ChatGPT, are widely used for security-critical
software development tasks (e.g., code generation, threat model-
ing, code reviews, and vulnerability detection). Despite ubiquitous
usage, we found that our participants mistrust and check Al sugges-
tions. While security is a primary concern, only a few participants
reported negative experiences with Al assistants in the past. As our
results qualitatively complement prior experiments [49, 59, 61, 64],
a comparison reveals a mismatch between our participants’ re-
ported scrutiny and actual code security when using Al assistance.
This indicates that software professionals overestimate how well
they can scrutinize Al suggestions. A contributing factor is likely
that participants reasoned about Al assistant security capabilities
based on proxies such as functionality. Overall, we conclude that
Al assistants change software development by being a novel source
of security and security-relevant advice for software professionals.
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