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Abstract— There is growing interest in automating agricul-
tural tasks that require intricate and precise interaction with
specialty crops, such as trees and vines. However, developing
robotic solutions for crop manipulation remains a difficult
challenge due to complexities involved in modeling their de-
formable behavior. In this study, we present a framework for
learning the deformation behavior of tree-like crops under
contact interaction. Our proposed method involves encoding the
state of a spring-damper modeled tree crop as a graph. This
representation allows us to employ graph networks to learn both
a forward model for predicting resulting deformations, and a
contact policy for inferring actions to manipulate tree crops.
We conduct a comprehensive set of experiments in a simulated
environment and demonstrate generalizability of our method
on previously unseen trees. Videos can be found on the project
website: https://kantor-lab.github.io/tree_gnn

I. INTRODUCTION

In response to labor shortages in agriculture, there is grow-
ing interest in adopting labor-saving mechanization, notably
robotics, for automating agricultural tasks [1]. Many of these
tasks such as harvesting, pruning, and inspecting involve
contact interactions like pushing or pulling on branches to
reveal obstructed objects as illustrated in Fig 1. However,
the deformable nature of tree branches presents a significant
challenge for robot manipulation. Deformable objects require
characterization in a higher-dimensional configuration space
to accurately represent their states. Consequently, modeling
the geometry and dynamics of branches becomes a non-
trivial task [2]. Even more challenging is the task of selecting
actions for manipulating trees, such as determining optimal
contact points and the appropriate direction for perturbation.

One approach to modeling tree branch deformation under
applied force is to use Finite Element Analysis (FEA)
[3]. While FEA allows precise offline analysis, real-time
deployment poses difficulties and demands an accurate 3D
model beforehand. Alternatively, we use a method that
approximates tree motions through kinematics and dynamics
models. Past studies have constructed geometric models of
trees with rigid links articulated by spring-damper joints [4]
to determine the equations of motion. We adopt this tree
modeling approach to simulate data of the robot interacting
with the tree. With this dataset, we train a forward model
which approximates the resulting state of a deformed tree
given its initial state and applied action, as well as a contact
policy which generates a set of candidate actions to be
applied given the tree’s initial state and target state. A key
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Fig. 1: Laborious agricultural tasks often require delicate contact interaction
with crops. For example, a worker is (a) harvesting, (b) pruning, and (c)
inspecting [5] crops with their right hand, while pulling/pushing on branches
with their left hand. (d) Overview of our proposed framework for learning
the deformation behavior of tree-like crops under contact interaction.

aspect of our approach is representing the physical structure
of a tree as well as its kinematic and dynamic parameters as a
graph. This approach is particularly intuitive as it involves a
straightforward conversion of the tree geometry in the form
of a Euclidean graph. Moreover, this enables the usage of
Graph Neural Networks (GNNs), known for their inherent
inductive bias properties that allow them to learn latent
relationships between nodes and edges in a graph. This is
especially beneficial for tasks like ours, where understanding
the interaction between different components in the tree’s
structure is crucial for accurate modeling and prediction.

The goal of this study is to establish a framework for
modeling trees in the context of learning crop manipulation.
Through this line of research, we aim to contribute towards
agricultural task automation that demands precise contact
interaction with crops. The key contributions of this paper
are:

« Novel representation of tree crops as graphs, facilitating
a GNN-based tree model trained in simulation using
mass-spring-damper tree models.

o GNN-based policy that infers actions for manipulating
trees towards target states while maintaining adaptabil-
ity to previously unseen tree structures.

« Validation of models and policies in a series of exper-
iments and ablation studies conducted in a simulation
environment.
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II. RELATED WORK

There are several previous studies on automating agricul-
tural tasks with varying degrees of interactions with crops.
For instance, [6]-[8] automates pruning tasks by treating
branches as rigid collisions and avoids interacting with crops
except with the cutting tool. Yandun et al. [9] leverages rein-
forcement learning by penalizing collisions with grapevines
to reach pruning locations. Drawing inspiration from how
humans use both arms to unclutter crops from leaves, dual-
arm robotic systems have been proposed for crop harvesting
[10]-[12]. As leaves are soft, this degree of interaction can
be heuristically addressed [13] without explicitly modeling
interaction dynamics to plan robot actions. In our work, we
propose a general method aimed at intentionally manipulat-
ing tree-like crops, with the goal of automating agricultural
tasks.

To automate tasks that involve physical interactions with
crops, it is essential to understand and model its dynamics.
3D reconstructed crops are often used to reason about their
responses to external influences [4], [14], [15]. One common
approach to modeling tree dynamics is applying equations of
motions based on the spring-damper system [16]. Yandun
et al. [4] modeled joint-connected branches as a spring-
damper system to predict deformation of trees subjected to
external forces. Spatz and Theckes [17] studied the damped
oscillating behavior of trees when blown by wind. Jacob et
al. [18] also modeled trees in simulation as a mass-spring-
damper system to estimate system parameters from branch
trajectories obtained through active probing. Our work uses
the same simulation setup proposed in [18], however, our
framework leverages graph representations to learn forward
models and manipulation policies.

We use graph neural networks to learn the dynamical
behavior of tree-like crops. GNNs are a class of neural
networks designed to operate on graphs, enabling them to
propagate and aggregate information between nodes and
edges to capture latent relationships [19]-[21]. Building
upon this foundation, Battaglia et al. [22] demonstrated
that GNN models are capable of reasoning about how
objects interact within complex systems. They achieve this
by making dynamical predictions and inferences regarding
system parameters. Furthermore, Sanchez-Gonzalez et al.
[23] extended the application of GNNs to simulate complex
particle physics, and proposed the use of GNNs as learnable
physics engines for dynamical systems [24]. In our work, we
build upon the framework introduced by Sanchez-Gonzalez
et al. by utilizing their graph2graph GNN layer [24] as
the backbone of our model. This allows us to effectively
capture the steady-state behavior of tree-like crops, as well
as learning a policy for contact manipulation.

III. METHODOLOGY

The following section describes our simulation environ-
ment and our approach to learning the forward model to
predict how trees deform and the contact policy for manip-
ulating tree-like crops.

A. Simulation Environment

(a) (b)
Fig. 2: Example of our tree crop model visualized in simulation. (a) Varying
tree sizes and structures are generated in a parallelized environment. (b)
The tree is modeled as a series of rigid links (brown) articulated by spring-
damper joints (green).

We utilize NVIDIA Isaac Gym [25] to simulate defor-
mation of multiple tree structures concurrently as visualized
in Fig. 2(a). To generate tree structures in simulation that
reflect physical tree growth patterns, we use the Space
Colonization Algorithm (SCA) as proposed in [26]. The
SCA randomly distributes attraction points while iteratively
linking tree skeletons to emulate the competition for space
between branches that naturally occur in trees. To simulate
realistic tree movements, we assume that the kinematics and
dynamics of trees can be approximated through a series of
rigid links as in [4]. These links are connected by spherical
joints characterized as spring-damper systems. Specifically,
branches are represented as cylindrical links, and spherical
joints interconnect two or more branches within the tree’s
structure (see Fig. 2(b)). The motion of branches is simulated
using a proportional-derivative (PD) controller, governed by
adjustable stiffness and damping parameters based on the
spring-damper model:

T = K,0, + Kq0, (1)

where 7 represents the applied torque, K, and K, are the
stiffness and damping coefficients respectively, 0, is the
angular position error, and 6, is the angular velocity error.
We populate the stiffness coefficients K based on the
beam deflection model [27]:
B Fr?
T 2EI
where 6 is the angular deflection, F' is the applied force,
¢ is the length of the beam, F is the elastic modulus of
the material, and I denotes the second moment of area of
the cross-section of the beam. Assuming that a tree with
circular branch cross-sections undergoing deformation has

reached steady-state, substituting equation (2) into equation
(1) yields:

2

Enrt
0 3)

where 7 and ¢ denotes the cross-sectional radius and length of
the branch (generated from SCA), respectively. The damping
coefficients are empirically set to be K; = K/10. The
topology of the tree, as well as the control (K, K;) and
geometric (r, £) parameters are stored and loaded using the
Unified Robotics Description Format.

K,=
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B. Dataset Collection

We abstract the physical structure of a tree as a directed
graph denoted by G' = (g, {n;};=1..v, {e;;}), where g is a
vector of global attributes, {n;};=1...n consists of N nodes
representing branch locations in the tree with node attributes
n;, and {e;;} consists of edges representing cylindrical
branches connecting parent node n; and child node n; with
attributes e;;. Using our tree generation pipeline (Sec. III-
A), we generate 100 unique tree topologies for each tree
size ranging from 10 to 30 nodes (with increments of 1)
as illustrated in Fig. 3(a). The height of the trees range
between 0.6m and 1.7m. In order to simulate and acquire
data pertaining to tree contact manipulation, we employ an
unconstrained Ll-shaped rigid end-effector that pushes the
tree. The end-effector initiates contact with a tree node and
subsequently follows a linear trajectory along the direction of
the wrist as shown in Fig. 3(b). The selection of the contact
node, as well as the direction and distance of the end-effector
trajectory are sampled from a uniform distribution.

LI-shaped
End-Effector

Ly

(@) (®)
Fig. 3: Visualization of the dataset collection. (a) Trees with varying sizes
and randomized structures are generated as discussed in Sec. III-A. (b) A U-
shaped end-effector makes contact and pushes the tree by tracking a linear
trajectory. The initial tree state, end-effector trajectory, contact node, and
the final tree state is recorded for each push interaction episode.

Each data point is composed from a push interaction
episode by recording the initial node absolute positions
P; = [Pz, Py, Dp-), displaced final node absolute positions
P; = [P}, Py, p.], end-effector trajectory 7 = [dz,dy, dz],
contact node flag c;, and stiffness coefficients of joints K.
The contact node flag indicates which tree node the end-
effector makes contact with (c; = 1 if node is in contact, 0
otherwise), hence only one node is set as the contact node
in each episode. We collected a training dataset comprising
6,000 push interactions for each tree size category with
node counts of N € {11,13,15,17,19}, and a testing
dataset comprising 1,000 push interactions for each tree size
category spanning the range of N € [10, 30], resulting in a
combined dataset of 51,000 push interactions.

C. Learning the Forward Model & Contact Policy

1) Forward Model: The forward model problem involves
predicting the tree’s future state, based on its initial state and
the actions performed by the end-effector (see Fig. 4(a)). We
encode the input graph Gj, with the following global, node,

and edge attributes:

g=1[T] “)

n; = [¢;] (5)

eij = [p;j — Pi, vij, K] (6)

where v;; = 1 if the direction of the edge is along the

direction from the tree’s root-to-leaf, or —1 otherwise. The
forward model is trained to predict the positional differences
Ap; = [Apy,Apy,Ap.] for each node at steady-state.
Hence, the absolute node positions are obtained by updating
the initial node positions with the predicted differences.

2) Contact Policy: The contact policy problem is to
predict the contact location and action required from the
end-effector, given information on the trees current state and
its desired target state (see Fig. 4(b)). The input graph Gij,
for the contact policy shares the same edge attributes as the
forward model in equation (6), however, the global attributes
is null and the node attributes is defined as:

n; = [p; — pj] (7)

which encodes per node position difference between the
target state and current state. The target states are set to be
the final node positions recorded in simulation which ensures
feasibility. We train our contact policy to predict a per-node
linear end-effector trajectory Tpmd = [dz,dy,dz], and a
per-node affordance score s;. The affordance score ranges
between 0 and 1 such that Z i—1 85 = 1, quantifying which
node the end-effector should make contact with relative to
all other nodes in the tree.

54 Forward
ACtlon 7— w &TL

Initial State Per Node Differences Ap; j

n; = [¢]
€5 = [p] pl7U1j7KS]

(@)
.-&. | 1—. OX\§§£Q -
Initial State Target State Per Node Trajectory 7;
— I/ .
n; = [p; — py] Per Node Affordance 5

€;j = [Pj — Pi» vij, Ks]

(b)
Fig. 4: The input and output diagrams of the (a) forward model and (b)
contact policy.

D. GNN Model

We use the graph2graph layer proposed in [24] for our
GNN model to learn both the forward model as well as the
contact policy. The graph2graph layer consists of two sub-
functions, f. and f, implemented as multilayer perceptrons
(MLP), to compute edge and node feature embeddings as
follows:

1) For each edge e;;, compute new edge feature embed-

ding e;;:
e/, = fe(g,n;,nj, e;5) (8)
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Fig. 5: Our GNN model architecture utilizes stackable graph2graph layers [22], placed between input embedding layers and output prediction heads. The
model takes as input a graph Gj, and outputs per-node predictions. Different output heads are used for the forward model and the contact policy.

2) For each node n;, aggregate incoming edge embed-
dings:
& =2 ¢ ©)

and subsequently compute new node embeddings n’:

n; = fu(g,n;, &) (10)

The graph2graph layer is stacked such that the output node
and edge embedding of the current layer is passed as input to
the next layer. We empirically set our GNN model to contain
five graph2graph layers placed between preprocessing MLPs
that extract node/edge feature’s from their raw attributes, and
post-processing MLP output heads. The overall architecture
of our GNN model is shown in Fig. 5, where the forward
model and the contact policy shares the same GNN back-
bone, and differs only by their input attributes and output
heads.

We further note that the input graph is preprocessed into
a fully connected graph (as opposed to having a partially
connected graph with edges only at physical branches) prior
to being passed into the model. Information of the tree struc-
ture is preserved by setting K, = 0 for non-branch edges,
while v;; preserves the tree growth direction from root-to-
leaf. The reason for this is to facilitate direct message passing
between all nodes and edges. Preliminary tests suggested this
provides significant performance advantages over a partially
connected graph, further discussed in our ablation studies in
Sec. IV-D.

The GNN model is implemented using Pytorch Geometric
[28]. All MLPs in Fig. 5 are composed of three fully
connected layers with a hidden-size of 128. The forward
model and contact policy are trained separately, hence the
two models do not share weights. We use Adam with a batch
size of 64 and learning rate of 0.001 to optimize the model.

E. Contact Policy with a Robot Arm

Given an initial state and target state of a tree, the contact
policy outputs a set of candidate actions represented as per-
node trajectories {7} and affordance scores {s;}. The
contact policy, however, cannot be directly executed by a
robot arm because the training data is collected using a
free-floating end-effector. In order to address the robot’s
joint configuration space, workspace limitations and collision
constraints that may arise from the disparity between a free-
floating end-effector and a robot arm, we check the feasibility

of candidate actions and select the best action. We achieve
this by making use of the multimodal solution offered by
the per-node trajectories {77’} and affordance scores {s;}
as presented in Algorithm 1. We iteratively apply the RRT*
algorithm to each node, prioritized by decreasing affordance
scores, aiming to identify a valid joint space trajectory for
a robot arm to reach and interact with the candidate node.
If a feasible path is identified, the policy can be executed.
Otherwise, we proceed to the next candidate node and repeat
the process.

Algorithm 1 Contact Policy Trajectory Planner

Input: Input Graph Gi,
Output: Joint Space Trajectory J
1. {77}, {si} < ContactPolicy(Gin)
torder < ArgSortDescending({si})
for 7 in Zorder

J + RRTStar(T™)

if J is feasible

return J

SANSANE R

IV. EXPERIMENT RESULTS
A. Metric & Baselines

To assess our method, we train and test both the forward
model and the contact policy using the dataset described in
Sec. III-B. Our evaluation metric is the error between the
predicted node position pgred and target node position p/; for
each tree, averaged within the tree size category N:

D 7 pred

B >_g—1 MaXjen |[P; —P; || (11
B D

where D is the total number data points (episodes) in
category N. For each tree, we only measure the maximum
node position error to capture the error upper-bound. The
forward model directly provides predicted node positions
pg’-red by summing the predicted differences to the initial
states. However, the contact policy predicts actions instead.
Hence, we execute the predicted action in simulation and
compare the resulting node positions with the target state
for contact policy evaluation.

For baseline methods, we compare our forward model
and contact policy with a learned PointNet [29] baseline
model, which we trained to make predictions on the same
data as the GNN model. One important distinction between
these two model architectures is that PointNet is specifically
designed to handle point cloud data without any edges.

eEN
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Forward Model Predictions Contact Policy Predictions

Fig. 6: Visualization of forward model and contact policy predictions on tree sizes of N € {26,28,30}. The initial tree, ground truth target tree, and
predicted tree is shown in the colors brown, green, and red, respectively. The magenta arrow in the forward model predictions depict the applied action.
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Fig. 7: Performance of the Forward Model (Top) and Contact Policy (Bottom) against baseline methods. The No Action baseline is the error measured
when the tree remains still. The bars represent the maximum node prediction error per tree, averaged within the tree size category (refer to equation (11)).

Circled tree sizes (/) were seen during training, while the rest are predicted in a zero-shot manner indicating generality of the model to unseen systems.
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Hence, the PointNet model inherently lacks awareness of the
underlying tree structure and its associated attributes (recall
equation (6)). We additionally compare the contact policy
with two heuristic baselines:

o Greedy Baseline: The end-effector makes contact with
the tree node n; that is farthest from its target position,
then pushes the tree along the vector T = p;» - pj-

« Random Baseline: The end-effector makes contact
with a randomly chosen node n;, then pushes the tree
along the vector 7 = p; — p;.

B. Evaluation Results

Using our method, we can accurately replicate the for-
ward tree model with the GNN, and learned policies can
push trees to a desired target position. Both forward model
and policies generalize to previously unseen trees. Fig. 6
illustrates the forward model and contact policy predictions,
while Fig. 7 plots the error metric against tree size category.
The GNN-based model outperformed baselines for both the
forward model and contact policy predictions. Specifically,
our method achieves an average node position error of 2.2cm
(GNN) as opposed to 11cm (PointNet) for the forward model
predictions, and 2.5cm (GNN) compared to 4.2cm (PointNet)
for the contact policy predictions. We also show that the
GNN model can generalize to make zero-shot predictions
on more complex tree structures that were held out during
training. This is shown in Fig. 7, where the model was trained
on a training dataset with a maximum tree size of N = 19,
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=
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Fig. 8: (a) Bar plot showing the prediction error versus the node affordance
rank. (b) Violin plot showing the distribution of node affordance scores
versus the affordance rank. The embedded tree graph depicts an example
of a tree’s affordance score and its resulting rank for two of its nodes.

while consistently performing zero-shot predictions even up
to trees of N = 30.

C. Multimodal Solution with a Simulated Robot Arm

The affordance scores and actions predicted by the contact
policy offer a multimodal solution for manipulating a tree
to its target state. We demonstrate this by executing the pre-
dicted action for each node and measuring the resulting node
position error. Fig. 8(a) illustrates the maximum and average
node position errors, while Fig. 8(b) displays the distribution
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Fig. 9: The URS robot arm manipulates the tree-crop (brown) to its target state (green) by executing the trajectory obtained from Algorithm 1.
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Fig. 10: Evaluating the Contact Policy using a simulated URS Robot Arm.
The yellow bars display the histogram depicting the number of feasible
plans discovered per node affordance rank. A total of 2,100 episodes were
tested. The associated initial node target distance (green dashed line) and
resulting node position error (blue dashed line) are also plotted.

of affordance scores corresponding to these errors. These
metrics are plotted against the node affordance rank (ordered
based on decreasing affordance scores), averaged over 100
testing data points for trees with 15 nodes. The plot indicates
that the position error increases as the affordance score
decreases until the sixth highest-scoring node, after which
the error tends to plateau. This behavior can be attributed
to the tree’s branching structure, as contacting one sub-tree
versus another may not significantly affect the outcome if
neither of them is the primary target for manipulation.

We apply Algorithm 1 to execute the actions obtained
from the contact policy on a simulated URS robot arm as
illustrated in Fig. 9. To assess the method, we tested the
algorithm on 100 episodes for each tree size ranging from
N € [10, 30], resulting in a planning success rate of 82.9%.
Fig. 10 depicts the histogram of successfully planned contact
node ranks, along with its corresponding node position er-
rors. The algorithm returned a valid trajectory for the highest
ranking node 22.9% of the time, gradually decreasing for
lower ranking nodes. The error metric is also consistent with
the results obtained in Fig. 8(a), where the error gradually
increases as the node rank increases.

D. Ablation Study

1) Ablation of Edge Attributes: In this study, we aim
to show that the GNN model is effectively learning the
relationships intrinsic to the tree structure as a graph. To
this end, we perform experiments by training the forward
model using the same architecture as our proposed method
while removing all edge attributes, as well as systematically
removing a single edge attribute for each experiment (see
Table I, Rows 1-5). The results indicate that the removal of
any one edge attribute leads to a higher node prediction error.
This underscores the critical role of each edge attribute in
enabling the model to accurately predict nodes by learning

TABLE I: Ablation Study of Edge Attributes & Input Graph Connectivity

Ablation Number of Gin Included Edge Prediction

of G2G Layers  Connectivity Attributes e;; Error (m)
5 Full ['] 0.110
Edge 5 Full [vij, K] 0.067
Attributes 5 Full [P; — Pi,vij] 0.038
5 Full [pj — pi, Ks] 0.026
Ours 5 Full [pj —Pi,vij, K] 0.023

) ;nl;u; 5 7 " Pattial  [pj—pi,vi, Ks] 0047

Graph 10 Partial [pj —Pi, Vij, KS] 0.039
Connect- 15 Partial [pj —Pi, Vij, Ks] 0.043
ity 20 Partial pj —Pi, vij, Ks) 0.044

latent relationships intrinsic to the tree structure.

2) Ablation of Input Graph Connectivity: We also demon-
strate the benefit of preprocessing the input graph into a fully
connected form, as opposed to a partially connected one with
edges exclusively at physical branches. We train the forward
model on partially connected graphs with varying numbers of
graph2graph layers, which is then compared to our proposed
model trained on fully connected graph inputs (see Table I,
Rows 5-9). Even with an increased number of graph2graph
layers, employing a fully connected graph as input for a
model with only 5 graph2graph layers (ours) surpasses the
performance of models with up to 20 graph2graph layers
trained on partially connected input graphs. This indicates
that the fully connected graph representation significantly
enhances the model’s ability to learn and capture latent
relationships within the tree graph.

V. CONCLUSION

In this study, we presented a framework that encodes tree
crops, modeled as spring-damper systems, into a graph repre-
sentation. This enables the learning of both a forward model
to predict resulting deformations, and a policy to execute
non-prehensile contact actions for tree manipulation, using
graph neural networks. Our proposed framework has been
comprehensively evaluated in simulation using a simplistic
model of tree dynamics. However, validating the method in
the real world remains as future work. This involves exten-
sive system identification of the tree’s dynamic parameters,
as well as consideration of more complex properties (such
as the anisotropic characteristics of branches). For example,
estimating parameters by probing on real trees [18] may lead
to realistic simulation for nonlinear dynamical deformation
of tree crops. These steps are imperative to achieve Sim2Real
policy transfers for practical field applications, which we
intend to pursue in our next steps. Applying our learned
forward model to implement model-predictive control or
model-based reinforcement learning for task-specific crop
manipulation also remains as future work.
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