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Towards Autonomous Crop Monitoring: Inserting
Sensors in Cluttered Environments

Moonyoung Lee , Aaron Berger , Dominic Guri , Kevin Zhang , Lisa Coffey , George Kantor ,
and Oliver Kroemer

Abstract—Monitoring crop nutrients can aid farmers in opti-
mizing fertilizer use. Many existing robots rely on vision-based
phenotyping, however, which can only indirectly estimate nutri-
ent deficiencies once crops have undergone visible color changes.
We present a contact-based phenotyping robot platform that can
directly insert nitrate sensors into cornstalks to proactively monitor
macronutrient levels in crops. This task is challenging because
inserting such sensors requires sub-centimeter precision in an
environment which contains high levels of clutter, lighting vari-
ation, and occlusion. To address these challenges, we develop a
robust perception-action pipeline to grasp stalks, and create a
custom robot gripper which mechanically aligns the sensor before
inserting it into the stalk. Through experimental validation on 48
unique stalks in a cornfield in Iowa, we demonstrate our plat-
form’s capability of detecting a stalk with 94% success, grasping a
stalk with 90% success, and inserting a sensor with 60% success.
In addition to developing an autonomous phenotyping research
platform, we share key insights obtained from deployment in the
field.

Index Terms—Agricultural automation, field robots, grippers
and other end-effectors.

I. INTRODUCTION

W ITH advancements in AI and robotics, the agricultural
sector is well-positioned to adopt precision agriculture

methods that can enhance crop production and minimize envi-
ronmental footprint [1]. For example, one of the predominant
issues faced by farmers is the overuse of fertilizers, which
can be alleviated with increased sensing accuracy [2], [3].
Many existing research works focus on automating vision-based
crop monitoring and phenotyping [4], [5], [6], [7], [8], [9],
specifically for detecting cornstalks [10], [11]. However, visible
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Fig. 1. Robot inserting sensors into cornstalks to monitor plant nitrate con-
centration in Curtiss Farm, Iowa. Our custom gripper utilizes contacts in a
clutter-rich environment to precisely align with stalks and insert sensors.

plant features are a lagging indicator of nutrient deficiencies.
Early detection of these deficiencies enables farmers to respond
sooner, enhancing harvest yield. Consequently, our research
emphasizes contact-based phenotyping. This involves insert-
ing nitrate sensors developed at Iowa State University [12],
[13] into cornstalks to monitor nitrogen concentration, allowing
agronomists to proactively address crop deficiencies.

While less abundant than vision-based phenotyping, there
are several studies that measure plant traits using contact-based
sensors. Examples include robots with custom leaf-grasping
grippers which measure chlorophyll content with a SPAD me-
ter [14] or spectral reflectance with a spectrometer [15]. Sensor
penetration through leaves has also been demonstrated in [16],
[17], which use a needle-like fluorometer to detect chlorophyll
fluorescence emission. In addition to interacting with leaves,
there have been efforts to grasp cornstalks to measure diame-
ter [18]. Our work is most similar to contact-based phenotyping
methods deployed on sorghum plants, where a force-gauge sen-
sor is probed into a stalk to measure strength [19], [20]. However,
unlike reusing a single probe for multiple measurements, our
task involves deploying sensors in multiple plants, which assists
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Fig. 2. Overview of the task: (a) Sensor to convert nitrate to voltage and the sensor sleeve for protection when penetrating into stalks; (b) Cross-section view
of a stalk after a successful insertion; (c) View of the insertion location after a deployed sensor has been manually removed; (d) View of a stalk showing the pith
region, a solid node near the root, and the grow-point region composed of layers of leaves; (e) Cluttered field environment with varying stalk spacing, occlusion
from leaves, and uneven ground terrain. The deployed sensor is wired to the data logging unit to store data over the plant’s life cycle.

a farmer in taking action to address deficiencies in a large area
of a field.

Manually installing these nitrate sensors with corresponding
data logging units across a farm is a laborious process that is
difficult to scale [21], [22]. Thus, we present a robotic research
platform capable of autonomously inserting nitrate sensors and
deploying corresponding data logging units in the field. We
believe our presented work can benefit the agricultural robotics
community by identifying key challenges in deploying a robot
for contact-based phenotyping. By sharing our design decisions
and valuable insights obtained in the field, we hope to contribute
to building a fully autonomous phenotyping research platform
that can support farmers.

To summarize, the contributions of this paper are:
� An open-sourced platform capable of autonomously de-

ploying nitrate sensors into stalks
� Evaluation of our robotic platform on 48 sensor insertion

trials at Curtiss Farm, Iowa
� A dataset of 7600 cornstalks for segmentation tasks

II. CHALLENGES OF SENSOR INSERTION IN CORN

In contrast to robotics experiments conducted in a controlled
indoor lab environment, agricultural robotics is challenging due
to extreme variations in field conditions and limited accessibility
to test a system due to the narrow time frame of seasonal crops.
For the task of cornstalk sensor insertion, we specifically discuss
the challenges that arise in near-ground precise manipulation
tasks and the perception difficulties when operating in a clut-
tered, outdoor environment.

A. Contact Interaction Challenges

One of the main challenges is the sub-centimeter precision
required to insert a small sensor (whose probe is 12x3x2 mm
in dimension, shown in Fig. 2(a) for accurate data logging.
The stalk diameter and probe length are of similar magnitude,
so it is important to precisely insert sensors near the vertical
center of the stalk. If the sensor is instead inserted near the
edge, the insertion may not be deep enough to fully immerse
the sensor’s two electrode pads into the stalk, leading to faulty

sensor readings. Examples of successful insertions are shown in
Fig. 2(b), (c), (e).

The variation of stalk shape and diameter observed in the field
make this required precision difficult. For example, while some
stalks have circular cross-sections, a large portion have elliptical
cross-sections, making the direction of insertion important. For
the purpose of monitoring crop nitrate concentration, it is ideal
to insert sensors in corn plants in the V4-V8 stages of the plant’s
life cycle [13]. The stage of a corn plant is measured by the
number of leaf collars: V4-V8 plants have four to eight leaf
collars, a stalk diameter between 12–40 mm, and are typically
grown in 14–28 days.

An additional requirement for the sensor to properly monitor
nitrate concentration is to be placed in the pith region of the
stalk, referred as the first node typically 2–10 cm above the
ground (Fig. 2(d). The pith region does not structurally change
over the plant’s growth cycle, allowing for consistent measure-
ment from an embedded sensor. In the grow-point region, how-
ever, the stalk contains layers of leaves that continuously grow
over the life cycle and thus force out the embedded sensor from
within the stalk. This requirement to operate in close proximity
to the soil poses a challenge: the terrain of a cornfield is highly
uneven, and ditches and mounds may collide with the robot arm.

Another challenge is the high variation in corn plant spacing,
as shown in Fig. 2(e). Even when corn seeds are planted with a
predetermined density on a seeder machine, tillers (reproductive
shoots growing upward from the same plant) and other growing
conditions lead to narrower or wider gaps between stalks.

B. Perception Challenges

These described variations in stalk shape and spacing also
make perception difficult, as heuristics like expected stalk spac-
ing and maturity are inaccurate. Varying lighting conditions
depending on time of day also pose a challenge: as the robot
traverses through corn plant rows, the camera switches between
facing east and west. In the morning and evening, these view-
points introduce problems with sun flare or severe overcast
shadows from the stalks and the robot itself. Another chal-
lenge arises from the frequent occlusion of stalks from nearby
leaves, as shown in Fig 1. Lastly, targeting the near-ground pith
region is difficult as highly uneven terrain make vision-based
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Fig. 3. Cornfield specification and key dimensions of the robot platform.

height predictions inaccurate–ground plane detection methods
like RANSAC and image segmentation were tested, but did not
accurately identify ground height around the corn plants.

III. ROBOT PLATFORM OVERVIEW

The robot platform consists of a six degree-of-freedom xArm
robot attached to a four-wheel-drive mobile platform with a
custom end-effector for the sensor insertion task. The mobile
base is built upon the commercially available Amiga platform
which allows for modular hardware adaptations to the required
agriculture task as discussed in [23]. Our mobile base is modified
by adjusting the bar extrusion for width and height according
to the field specifications at Curtiss Farm, Iowa, as shown in
Fig. 3. The width of the mobile base (between left and right
wheel centers) is set at 1.5 m to accommodate the 0.75 m corn
row spacing. The height of the bottom of the robot platform is set
according to the expected corn plant height at the V4-V8 stages,
such that the robot’s platform hovers above the two straddled
corn plant rows.

All software for the robot runs onboard on the mini-ITX
motherboard containing an Intel i9 24-core 3 GHz CPU and
an external RTX4070 GPU, enclosed in a weather-resistant box.
The platform is powered by two Lithium-ion batteries providing
a roughly 3 h run-time in the field.

IV. GRIPPER DESIGN

A. Design Motivation

As discussed in Section II, the main challenges for precise
sensor insertion in the field are variation in stalk attributes
(shape, diameter, spacing, and clutter) and the actual contact
interaction with the stalk. While there are visual methods to
reduce pose uncertainty such as multi-view pose estimation
and visual servoing [24], these approaches are less applicable
in cluttered environments due to occlusion and collision risks.
Another approach to improve robustness for precision tasks is
to model the physical contact interaction between the gripper
and the deformable stalk. Previous works have shown plant
interactions can be modeled analytically [25] or learned [26], but
face difficulty in generalizing to the wide variations encountered
in the real environment. Instead, to achieve the required preci-
sion, we design the gripper system to mechanically induce the
alignment of the sensor and corn stalk using funneled edges and

Fig. 4. Custom gripper for senor insertion. The V-sliding block is actuated to
press against the stalk, compressing the spring and exposing the sensor.

Fig. 5. Sequence of contacts with the stalk for sensor alignment.

spring-loaded compliance. For compactness, the gripper utilizes
only one linear actuator to push the sensor into the stalk.

B. Gripper Mechanism

To fit between corn plants and insert sensors near the ground,
the gripper is compact, measuring 254 × 76 × 76 mm (L ×
W × H). The gripper contains an Intel D405 stereo camera for
stalk detection, a 50 mm stroke linear actuator for linear sensor
insertion, a spring-loaded V-sliding-block for compliance, and
a rigid C-shaped funnel piece (Fig. 4) for centering the stalk for
insertion. The linear actuator’s force of 90 N and stroke length of
50 mm were empirically determined to best address stalk rigidity
and diameter in a plant’s V4-V8 stages.

The front end of the C-shaped funnel is designed as a wedge to
traverse through corn plant leaves while approaching the targeted
stalk. In cases where the gripper collides with the targeted stalk
during the approach motion due to pose estimation or motion
execution error, the wedge also guides the stalk until it enters
the funnel. As the robot arm moves laterally to position the stalk
inside the funnel, the funneled edge comes in contact with the
compliant stalk and guides it to the region precisely in front
of the V-sliding-block (Fig. 5). The linear actuator then pushes
the V-sliding-block to the wall of the funnel where the stalk is
located. Because of the stalk’s compliance and roundness, as the
V-sliding-block comes in contact with the stalk, the stalk further
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Fig. 6. Overview of the sensor insertion sequence. The user manually drives to a general location and initiates the sequence. The xArm scans for a valid stalk,
executes an open-loop motion that utilizes mechanical alignment in the gripper, inserts the sensor, deploys the data logging unit, and awaits command in the next
region.

aligns to the cusps of the V-sliding-block. Since the V-sliding-
block is spring loaded, upon contact with the stalk, the block
slides backward, exposing the rigid sensor to penetrate the stalk.
This spring loading is critical, since the stalk is further aligned
by the V-sliding-block before the sensor makes contact. Without
the spring loaded compliance, the sensor would often initially
prod the stalk off-center, at which point further alignment by the
V-sliding-block would not re-align the sensor leading to failed
insertions.

C. Sensor Deployment

To measure the nutrient content in cornstalks, we utilize the
custom nitrate sensor developed by Ali et al. [13]. The sensor
relies on the electrochemical reaction from the solution applied
on the surface of the printed circuit board (PCB) to generate
voltage across the two electrode pads. This solution on the
surface of the PCB can wear and tear during the stalk penetration
process. To prevent this sensor damage, the sensor is fitted inside
a 3D printed sensor sleeve from PLA material, which protects
the membrane, as shown in Fig. 2(a).

The sensor sleeve is positioned on a T-slot rail on the V-
sliding-block, which restricts the sleeve motion laterally, as
shown in Fig. 4. During the actuator extension process, the
solid backend of the T-rail holds the sensor in place. During
the actuator retraction process, the arrowhead grips to the stalk,
providing sufficient force to pull the sensor out from the T-rail.
The T-rail tolerance is balanced to provide sufficient friction
to hold the sensor in place during motion while allowing the
needed tolerance to easily slide in and out during insertion (and
reloading a new sensor).

V. INSERTION MOTION

A. Arm Configuration

The xArm is mounted in an inverted configuration, aligned
to the center of the mobile platform and towards the front,
so that stalks on either side can be targeted as shown in Fig. 3, and
the arm can be easily accessed for reloading nitrate sensors in

Fig. 7. Arm placement validation conducted through simulation by checking
the motion range needed for insertion.

testing. In order to validate that the robot is able to kinematically
reach targeted stalks in both rows, motion tests were performed
with the robot platform in the Gazebo simulator by moving from
the arm’s initial position to various possible stalk X,Y,Z posi-
tions. As the stalks have no collision properties in simulation,
the RRT* trajectory planner provided in MoveIt returns feasible
trajectories that allow the arm to reach targeted stalks, as shown
in Fig. 7.

B. Insertion Motion Sequence

The software for the insertion motion sequence is built on a
ROS SMACH task-level state machine [27]. The finite state ma-
chine (FSM) enables modular development of each task. Fig. 6
shows the flow diagram of the insertion sequence, including the
xArm motion primitives, stalk detection, sensor insertion, and
data logger deployment.

The sequence starts with the robot arm in a stowed position,
and the operator teleoperates the mobile base to a general region
in the cornfield. Given an insert command, the robot arm moves
out of the stowed position to a scan position in order to visually
detect cornstalks. As later discussed in Section VI, a detect
request to the detection pipeline returns either a reposition
response–in which case the robot halts the motion sequence due
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Fig. 8. Mock cornfield setup for indoor evaluation: (a) xArm configuration
emulated for field condition; (b) Mock field with synthetic and real corn;
(c) Greenhouse created to grow corn plant samples for insertion.

to lack of visible stalks–or a stalk insertion position. This inser-
tion position never exceeds the xArm’s kinematic workspace.
Given a valid stalk pose, the gripper approaches the stalk with a
predetermined sequence of actions using a combination of joint
and Cartesian space commands. In order to align the stalk with
the sensor inside the funnel, the arm makes intentional contact
with the stalk to guide it into position and locally align the sensor
as discussed in Fig. 5. Once aligned, a serial communication to
the Arduino inside the gripper triggers the two-channel relay
to extend and retract the linear actuator, ramming the sensor
into the stalk. As the actuator retracts, the arrow-hook in the
sensor grips into the stalk causing the sensor to slide out of the
T-slot rail as it retracts. Finally, to deploy a datalogging unit that
stores sensor measurements over the plant growth cycle, a serial
communication to a separate Arduino inside the deployment box
opens one of the five available datalogging units to be released.

Although the robot is operating in a highly cluttered area, the
motion sequence does not do 3D scene mapping to explicitly
plan for collision-free trajectories. Instead, the motions are a
heuristically determined sequence of open-loop trajectories to
align the stalk inside the gripper based on the given insertion
pose. Since most contacts occur with compliant leaves and
plants, this implementation decision does not lead to critical
collisions. By not handling external collision avoidance, the
motion sequence is fast and lightweight. Furthermore, in the
few instances of collision with the ground, the arm safely stops
using current limits on all arm joints.

C. Validation on Mock Cornfield

Crucial gripper design decisions, such as the force required
to penetrate a cornstalk and optimal dimensions for a funnel,
are best determined from real corn plant samples. However, as
there are no cornfields available before the summer, cornstalks
were grown indoors using a greenhouse. The mock field setup
in the lab (Fig. 8) enabled the integration of the arm motion
sequence and detection pipeline discussed in Section VI prior to
field testing. This included validating the in-hand calibration so
that the gripper could grasp the targeted stalk given its detected
position from the camera.

VI. VISUAL DETECTION

Sunlight induces strong interference with common active IR
RGB-D cameras. We therefore utilize a stereo-based RGB-D
camera on the robot gripper, which provides accurate 3D data
at close ranges. The perception pipeline’s purpose is to reliably
determine a sensor insertion point in 3D space, optimally in the

Fig. 9. Stalk detection pipeline: (a) Input image from the in-hand camera;
(b) Mask segmentation and the extracted 2D feature points; (c) 3D feature points
and fitted lines along the stalks; (d) Extraction of the best stalk for insertion based
on scoring metrics from mask and stalk features.

pith region (the first node) of a stalk, which is generally the
bottom 2–10 cm of the plant protruding from the ground, based
on stalk maturity. The insertion point’s z-coordinate is therefore
set as a tuned hyperparameter, since the insertion height varies
across fields and vision-based ground plane height estimations
proved to be inaccurate due to uneven terrain.

The input to the pipeline is a sequence of RGB-D frames
and the output is a stalk 3D position relative to the robot. In
each frame, 2D masks of stalks are segmented and the best
stalk is determined from 3D stalk attributes extracted from the
pointcloud. After all frames are processed, the best insertion
position is determined by a consensus among frames.

A. Creating the Stalk Detection Dataset

Variations in lighting, time of day, plant maturity, and field
conditions at test-time necessitate a diverse image dataset for
training a deep segmentation model. Due to limited access to the
cornfield with the robot, the dataset images are collected from
videos captured on an iPhone 13 in various regions and sunlight
conditions (at 10 AM and 5 PM) at the Curtiss Farm. During
recording, the phone is positioned to emulate the viewpoint of
the camera on the robot arm–approximately 15 cm above the
ground.

First, one frame per second is taken from the video files
while removing extraneous images, resulting in a collection of
2667 RGB images. These images are then manually labeled
using Meta’s Segment Anything model [28], which efficiently
assists the interactive annotation process. Masks are specifically
applied to stalks in the foreground, with each mask extending
from the bottom of the visible stalk up to the point of occlusion
by the plant’s leaves. The labeling process resulted in 7681 stalk
instance annotations. The dataset is then split randomly into 80%
training, 10% validation, and 10% testing data. To our knowl-
edge, this is the largest corn stalk dataset with segmentation
annotation (3.5x the size of the dataset used in [10] and 7.4x
that of [29]).

B. Stalk Detection

Given an RGB image as input, the segmentation model out-
puts 2D masks of all stalks in the foreground. The segmentation
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method is based on the Mask-R-CNN architecture [30] with
the ResNet-50 backbone and Feature Pyramid Networks for
segmentation. A pretrained Mask R-CNN model is fine-tuned on
our training data for 40,000 iterations, with a maximum learning
rate of 2.5e-4 and a batch size of 4. Training took 6.7 hours
on an NVIDIA GeForce RTX 3060. Quantitative evaluation is
discussed in Section VII-A.

C. Stalk Pose Estimation

From the 2D segmentation mask, corresponding depth values
along the center points of the mask are used to project to 3D.
However, since these masks may be occluded by nearby leaves,
it is important to note that the bottom of the mask does not
necessarily correspond to the ground. Thus, L number of points
along the stalk is fitted to a single line. This is done by using
RANSAC followed by Least Squares refinement along the stalk
in 3D space. The line is then extended to the ground plane, under
the assumption that the robot coordinate’s ground plane is at zero
height. Representing the stalk as a line allows us to deduce the
insertion height from the ground as shown in Fig. 9(c). The fitted
line, which robust to partial occlusion, is used to determine the
insertion point at the specified z-height.

For N detected stalks S[(x, y, z)1, . . ., (x, y, z)L]i=1,...,N , in
order to select the best stalk S∗ in which to insert a sensor, the
detection pipeline uses a simple yet effective heuristic weighting
function to spatially reason and reject candidates that pose
difficulties for the robot arm. First, a binary function R(x, y)
called inRange rejects stalks that are outside the manipulator’s
workspace based on predetermined boundaries. Second, a binary
function G(y) called Graspable eliminates stalks that are posi-
tioned too close together, such that the gripper’s width prevents
it from reaching the targeted stalk. From the remaining valid
candidates, S∗ is selected to be one that has the highest score in
the equation:

score = argmax(R(x, y)×G(y)

× c2 × w × 3
√
h× (1− d)) (1)

R(x, y) =

⎧⎨
⎩
1 if xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

0 else
(2)

G(y) =

{
1 if Δyi,j ≤ GripperWidth
0 else (3)

where c is the segmentation confidence score (0 ≤ c ≤ 1), w
is the segmentation mask’s width, h is the mask’s height, and
d is the mask’s horizontal distance from the center of the
image frame. Thus, preference is given to larger stalks with
higher confidence which are closer to the center of the image.
The powers on the c and h term are selected from empirical
testing.

To evaluate how each function has an affect on scoring for
S∗, we conduct an ablation study where individual terms are
removed from (1). Evaluating on the 48 stalks in the recorded
field data, we compare the success rate of choosing S∗ after
removal of each term. Ground truth forS∗ is visually determined
by a human, and success is when the ablated scoring function
yields the same stalk as the ground truth. As summarized in
Table I, we observe that Graspable function G(y) has the most
impact on the heuristic weighting score.

TABLE I
ABLATION BY REMOVING EACH TERM FOR BEST STALK SCORING

Fig. 10. Segmentation success and failure cases: (a) Successfully segmenting
stalks around leaf occlusions; (b) Successfully segmenting stalks with highly
varying width; (c) missing a stalk due to shadows in poor lighting conditions;
(d) Missing multiple stalks due to occlusion.

TABLE II
EVALUATION OF INSTANCE SEGMENTATION MODELS

Finally, to reduce the effect of noise and faulty detection, this
pipeline is repeated for five frames and the best stalk among all
frames is determined by clustering the stalk lines and selecting
the representative from the largest cluster.

VII. EXPERIMENTAL RESULTS

To evaluate our platform’s ability to insert sensors into corn-
stalks, we deployed the robot at Curtiss Farm in Iowa during
July, in an approximately 40x15 m region of the cornfield with
V8 stalks (about 66 cm tall).

A. Stalk Detection Evaluation

Our 2D segmentation model shows accurate stalk segmen-
tation resulting in 69% average precision (AP) at Intersection
over Union (IoU) of 0.5 (and 49% at IoU 0.75) on the test
dataset. Failure cases are mostly attributed to high amounts of
clutter and shadows over the foreground stalks by the robot.
Examples of results on challenging scenes are shown in Fig. 10.
Occlusions by leaves (which are often mis-segmented by the
model as part of the stalk) lead to lower average precision
especially at high IoU. To investigate how these failure cases
could be improved, after completing the field deployment, we
evaluated recent segmentation models such as CenterMask [31]
and Mask2Former [32] against our detection pipeline utilizing
Mask R-CNN with a ResNet50 backbone. As shown in Table II,
Mask2Former segmentation model showed a higher AP, indi-
cating improved detection capabilities for future works.
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Fig. 11. Overall platform evaluation from 48 insertion trials. We measure 5
criteria in increasing complexity for insertion success.

B. Field Evaluation

We conduct insertion trials on 48 unique cornstalks to assess
performance, which is 3x more evaluation samples than in a
similar work for stalk grasping [20]. For each trial, the operator
manually drove to a new region every couple meters where the
robot would then select a target stalk to insert a sensor into. On
average, each trial takes two minutes including the driving and
sensor reloading time.

The result for each trial is categorized into five criteria for
evaluation, as shown in Fig. 11.

The stalk detection pipeline achieves 94% success rate, re-
turning 3 missed detections out of 48 trials when valid stalks are
within the field of view. It is important to note that the cameras
used during the training of the segmentation network (iPhone
13) and testing (Realsense D405) are different. Nonetheless, the
pretrained Mask R-CNN model is robust in distinguishing the
learned features of stalks.

The robot successfully grasps 43 stalks out of the 45 detected
stalks. As the cornstalks are static targets, the open-loop insertion
motion sequence proves sufficient, with a cumulative 90% grasp
success rate. Overall, the robot autonomously deploys sensors
into 29 of the 48 trial stalks, resulting in sensor insertion success
rate of 60%.

The most frequent failure case is not penetrating the sensor
deep enough into the stalk. When a sensor is improperly inserted,
it may be knocked out of the stalk when the gripper retracts,
as shown in insertion sequence step 6 in Fig. 5. Such shallow
insertions occur either when the sensor insertion direction de-
viates too far from the surface normal at the insertion point,
or when the insertion point is offset from the vertical center
of the stalk. Contrary to our initial belief that cross-sections
of cornstalks are mostly circular, stalk cross-sections are often
elliptical in shape, and their growth orientation is stochastic in
the field, making alignment difficult. For stalks with elliptical
cross-sections, insertion positions along the minor axis achieve
far greater success than those along the major axis, due to the
less severe curvature.

We conduct post-trial evaluation after each insertion attempt
by visually inspecting that both electrode pads of the sensor are
fully covered inside the plant. We also cut open each stalk to

Fig. 12. Visual examples of successful (green box) and failure cases (red box)
of sensor insertion.

determine whether the sensor is inserted into the pith region. Of
the 29 successful insertions, inspection reveals that in 16 trials,
both sensor pads are sufficiently covered. Given the size of the
sensor and approximate dimension of the stalks, even a 2 mm
error in insertion depth often leads to an incomplete covering
of the pads, as shown in Fig. 12. All except one of these trials
have successful insertion in the pith region, which is verified by
cutting open the stalk and exposing the pith region composed of
a solid filling, as opposed to the undesired growth-region which
is composed of layers of concentric structures that grow into
leaves as shown in Fig. 12.

VIII. DISCUSSION

Having built and deployed a contact-based phenotyping robot
platform, we discuss the limitations and insights obtained from
our experience. First insight is that stalks can be surprisingly
rigid near the pith region we are interested in for sensor in-
sertion. With the aim of improving sensor insertion precision,
we designed the gripper with compliance to intentionally make
contact with the stalk and slide into the center of the gripper for
sensor-stalk alignment. While the spring-loaded V-sliding-block
worked on young and compliant stalks, the sensor alignment
was significantly worse on more mature and rigid stalks. To
address this issue, for the gripper’s future iteration, we suggest
a mechanism which can fully envelope a stalk and conform
to its shape rather than merely sliding against the stalk for
alignment.

Second, the overall insertion evaluation shown in Fig. 11
indicate that the most frequent failure case is shallow sensor
insertions. We can address this problem via improved mechan-
ical design of the sensor or with a more robust perception
algorithm. The addition of the sensor sleeve (red 3D printed
material) increases the surface area, and therefore blunts the
contact point. This can be improved with electromechanical
solutions such as stabbing the stalk with an another sharp ma-
terial before inserting the raw sensor for deeper insertions. In
addition, shallow insertions can be improved by also accounting
for stalk orientation in the perception pipeline. On the field, we
noticed stalks with highly elliptical cross-sections are common.
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However, the current detection algorithm disregards this geom-
etry and returns a single insertion position. Thus, improving the
perception pipeline to estimate the pose of a 3D ellipse would
allow the robot to align itself with the most favorable axis of the
ellipse on which the insertion position lies.

Lastly, the xArm motion sequence may be improved by clos-
ing the perception-action loop and integrating sensor feedback
to improve localization of the stalk. While the demonstrated
open-loop motion sequence with the gripper design works well,
it cannot account for high variation in stalk diameter and rigidity.
Future work includes investigating additional sensing modal-
ities, such as vibro-tactile feedback with an array of contact
microphones [33], to reduce the uncertainly of the stalk position
within the gripper.

IX. CONCLUSION

We demonstrate our robot platform’s capability of inserting
sensors into cornstalks, and share design decisions and improve-
ments needed for future research. The task of sub-centimeter-
precision sensor insertion in highly cluttered and varying
cornstalks is inherently difficult. But understanding the real
challenges in the field aids iteration on both hardware and soft-
ware design to build a research platform that can autonomously
insert sensors for phenotyping and crop management. We plan
on further improving the research platform for more scalable
deployment of sensors, as well as incorporating navigation
capabilities to achieve a fully autonomous platform.
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