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Abstract

Robust Markov decision processes (MDPs) aim to find a policy that optimizes the
worst-case performance over an uncertainty set of MDPs. Existing studies mostly have
focused on the robust MDPs under the discounted reward criterion, leaving the ones under
the average-reward criterion largely unexplored. In this paper, we develop the first compre-
hensive and systematic study of robust average-reward MDPs, where the goal is to optimize
the long-term average performance under the worst case. Our contributions are four-folds:
(1) we prove the uniform convergence of the robust discounted value function to the ro-
bust average-reward function as the discount factor γ goes to 1; (2) we derive the robust
average-reward Bellman equation, characterize the structure of its solution set, and prove
the equivalence between solving the robust Bellman equation and finding the optimal robust
policy; (3) we design robust dynamic programming algorithms, and theoretically charac-
terize their convergence to the optimal policy; and (4) we design two model-free algorithms
unitizing the multi-level Monte-Carlo approach, and prove their asymptotic convergence.

1. Introduction

The Markov decision process (MDP) is an effective mathematical tool for modeling sequen-
tial decision-making problems in stochastic environments (Derman, 1970; Puterman, 1994).
Solving an MDP problem entails finding an optimal policy that maximizes a cumulative
reward according to a given criterion. However, due to reasons including non-stationarity
of the environment, modeling error, exogenous perturbation, partial observability, and ad-
versarial attacks, a model mismatch exists between the assumed MDP model and the un-
derlying environment and can result in solution policies with poor performance. To solve
this issue, a framework of robust MDPs, e.g., (Bagnell et al., 2001; Nilim & El Ghaoui,
2004; Iyengar, 2005), has been proposed. Rather than adopting a fixed MDP model, in
robust MDP, one seeks to optimize the worst-case performance over an uncertainty set of
possible MDP models. The solution provides performance guarantees for all MDP models
in the uncertainty set, and is thus robust to the model mismatch.

Robust MDPs falling under different reward optimality criteria are fundamentally differ-
ent. In robust discounted MDPs, the goal is to find a policy that maximizes the cumulative
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discounted reward in the worst case, where the reward received diminishes exponentially
over time. Much of the prior work in the robust setting has focused on the discounted
reward criterion (see Sec. 1.2). Although discounted MDPs induce an elegant contractive
Bellman operator which is mathematically convenient, the policy obtained may have a poor
long-term performance when a system operates for an extended period of time. When the
discount factor is close to 1, the agent may prefer to compare policies on the basis of their
average expected reward instead of their expected total discounted reward, e.g., queue-
ing control, inventory management in supply chains, scheduling automatic guided vehicles
and applications in communication networks (Kober et al., 2013). Therefore, it is of great
importance to optimize the long-term average performance of a system, especially in the
present of environment uncertainty or model mismatch.

Nevertheless, robust MDPs under the average-reward criterion are largely understudied.
Compared to the discounted reward, the average-reward depends on the limiting behavior
of the underlying stochastic process and is markedly more intricate. A recognized instance
of such intricacy concerns the one-to-one correspondence between the stationary policies
and the limit points of state-action frequencies, which while true for discounted MDPs,
breaks down under the average-reward criterion even in the non-robust setting except in
some very special cases (Puterman, 1994; Atia et al., 2021). This is largely due to the
dependence on the necessary conditions for establishing a contraction in average-reward
settings on the graph structure of the MDP, versus the discounted-reward setting where
it simply suffices to have a discount factor that is strictly less than one (Kazemi, Perez,
Somenzi, Soudjani, Trivedi, & Velasquez, 2022). Heretofore, only a handful of studies
have considered average-reward MDPs in the robust setting. The first work by (Tewari
& Bartlett, 2007) considers robust average-reward MDPs under a specific finite interval
uncertainty set, but their method is not easily applicable to other uncertainty sets. More
recently, (Lim et al., 2013) proposed an algorithm for robust average-reward MDPs under
the ℓ1 uncertainty set, and in (Grand-Clément & Petrik, 2023), a characterization of the
similarity between the optimal robust policy for average-reward and discounted reward
MDPs is studied for a class of uncertainty models. Beyond these works, however, obtaining
fundamental characterizations of the problem and convergence guarantees remains elusive.

On the other hand, model-free approaches for robust MDPs, even for the discounted
reward setting, are still far from well-established. Recent work (Roy et al., 2017) developed
the first model-free algorithm for robust discounted RL, where they develop a relaxation
to the uncertainty set which can be over-pessimistic due to the deviation from the nominal
kernel. Moreover, a strong assumption is made on the discount factor in order to guarantee
the convergence. To solve these issues, recent works (Wang & Zou, 2021; Liu et al., 2022;
Liang et al., 2023; Wang et al., 2023) developed robust Q-learning algorithm for various
uncertainty sets with convergence guarantee and sample complexity analyses. However,
these approaches are for the discounted reward setting, and there is still a gap in developing
model-free approaches for the average-reward setting.

1.1 Challenges and Contributions

In this paper, we derive characterizations of robust average-reward MDPs with general
uncertainty sets, and develop model-based and model-free approaches with provable the-
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oretical guarantees. Our approach is fundamentally different from prior work on robust
discounted MDPs, and robust and non-robust average-reward MDPs. In particular, the key
challenges and the main contributions are summarized below.

We characterize the limiting behavior of robust discounted value function
as the discount factor γ → 1. For the standard non-robust MDP and for a fixed
transition kernel, the discounted non-robust value function converges to the average-reward
non-robust value function as γ → 1 (Puterman, 1994). However, in the robust setting, we
need to consider the worst-case limiting behavior under all possible transition kernels in
the uncertainty set. Hence, the previous point-wise convergence result (Puterman, 1994)
cannot be directly applied. In (Tewari & Bartlett, 2007), a finite interval uncertainty set
is studied, where due to its special structure, the number of possible worst-case transition
kernels of robust discounted MDPs is finite, and hence the order of min (over transition
kernel) and limγ→1 can be exchanged, and therefore, the robust discounted value function
converges to the robust average-reward value function. This result, however, does not
hold for general uncertainty sets investigated in this paper. We first prove the uniform
convergence of discounted non-robust value function to average-reward w.r.t. the transition
kernels and policies. Based on this uniform convergence, we show the convergence of the
robust discounted value function to the robust average-reward. This uniform convergence
result is the first in the literature and is of key importance to motivate our algorithm design
and to guarantee convergence to the optimal robust policy in the average-reward setting.

We design algorithms for robust policy evaluation and optimal control based
on the limit method. Based on the uniform convergence, we then use robust discounted
MDPs to approximate robust average-reward MDPs. We show that when γ is large, any
optimal policy of the robust discounted MDP is also an optimal policy of the robust average-
reward, and hence solves the robust optimal control problem in the average-reward setting.
This result is similar to the Blackwell optimality (Blackwell, 1962; Hordijk & Yushkevich,
2002) for the non-robust setting. However, our proof is fundamentally different. Technically,
the proof in (Blackwell, 1962; Hordijk & Yushkevich, 2002) is based on the fact that the
difference between the discounted value functions of two policies is a rational function of
the discount factor, which has a finite number of zeros. However, in the robust setting
with a general uncertainty set, the difference is no longer a rational function due to the
min over the transition kernel. We construct a novel proof based on the limiting behavior
of robust discounted MDPs, and show that the (optimal) robust discounted value function
converges to the (optimal) robust average-reward as γ → 1. Motivated by these insights, we
then design our algorithms by applying a sequence of robust discounted Bellman operators
with an increasing discount factor. We prove that our method can (i) evaluate the robust
average-reward for a given policy and (ii) find the optimal robust value function and, in
turn, the optimal robust policy for general uncertainty sets.

We derive the robust average-reward Bellman equation and design a direct
model-based algorithm with convergence guarantee. The fundamental structure of
MDPs is usually characterized by a bootstrap-type equation, namely, the Bellman equation,
which reveals the relation among the value function, reward function, and the transition
kernels. It is of great importance in value-based approaches, since finding the optimal policy
and solving the Bellman equation are equivalent. We derive a robust Bellman equation for
robust average-reward MDPs, and show that the pair of robust relative value functions
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and robust average-reward is a solution to the robust Bellman equation under the average-
reward setting. We further prove the equivalence between finding its solution and optimizing
the robust average-reward. We then design a robust value iteration method that provably
converges to the solution of the robust Bellman equation, i.e., solves the optimal policy for
the robust average-reward MDP problem.

We design model-free algorithms for robust policy evaluation and optimal
control. We then design model-free algorithms for robust average-reward RL. The major
challenges are two-fold: 1) Constructing an unbiased estimator of the robust Bellman opera-
tor that captures the worst-case performance using the samples from the nominal transition
kernel; and 2) Deriving the convergence of the stochastic algorithms. Regarding the first
problem, one plausible approach is to define the estimator using the empirical transition
kernel. However, due to the non-linear dependence of the robust Bellman operator on the
nominal transition kernel, this plug-in estimator is biased. We hence employ the multi-
level Monte-Carlo method (Blanchet & Glynn, 2015) and construct unbiased estimators.
We then utilize them to design robust RVI TD and Q-learning algorithms. We leverage
the stochastic approximation approach and the characterization of the Bellman equation
to show the global asymptotic stability of our algorithms and further derive the conver-
gence of our stochastic algorithms. Specifically, robust RVI TD converges to the worst-case
average-reward; and for the robust RVI Q-learning, the greedy policy w.r.t. the Q-function
converges to an optimal robust policy.

1.2 Related Work

Robust discounted MDPs. Model-based methods for robust discounted MDPs were
studied in (Iyengar, 2005; Nilim & El Ghaoui, 2004; Bagnell et al., 2001; Satia & Lave Jr,
1973; Wiesemann et al., 2013; Lim & Autef, 2019; Xu & Mannor, 2010; Yu & Xu, 2015;
Lim et al., 2013; Tamar et al., 2014), where the uncertainty set is assumed to be known,
and the problem can be solved using robust dynamic programming. Later, the studies were
generalized to the model-free setting where stochastic samples from the nominal MDP of the
uncertainty set are available in an online fashion (Roy et al., 2017; Badrinath & Kalathil,
2021; Wang & Zou, 2021, 2022; Tessler et al., 2019) and an offline fashion (Zhou et al., 2021;
Yang et al., 2022; Panaganti & Kalathil, 2022; Goyal & Grand-Clement, 2018; Kaufman
& Schaefer, 2013; Ho et al., 2018, 2021; Si et al., 2020). There are also empirical studies
on robust RL, e.g., (Vinitsky et al., 2020; Pinto et al., 2017; Abdullah et al., 2019; Hou
et al., 2020; Rajeswaran et al., 2017; Huang et al., 2017; Kos & Song, 2017; Lin et al., 2017;
Pattanaik et al., 2018; Mandlekar et al., 2017). For discounted MDPs, the robust Bellman
operator is a contraction, based on which robust dynamic programming and value-based
methods can be designed. In this paper, we focus on robust average-reward MDPs, where
the robust Bellman operator for average-reward MDPs is not a contraction, and its fixed
point may not be unique. Moreover, the average-reward setting depends on the limiting
behavior of the underlying stochastic process, which is thus more intricate.

Robust average-reward MDPs. Studies on robust average-reward MDPs are quite lim-
ited in the literature. Robust average-reward MDPs under a specific finite interval uncer-
tainty set was studied in (Tewari & Bartlett, 2007), where the authors showed the existence
of a robust Blackwell optimality constant, i.e., there exists some δ ∈ [0, 1), such that the
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optimal robust policy for the robust average-reward MDP exists and remains unchanged for
the robust discounted reward ones with any discount factor γ ∈ [δ, 1). However, this result
depends on the structure of the uncertainty set, where the number of possible worst-case
transition kernels is assumed finite. Under the similar assumptions, a recent work (Grand-
Clément & Petrik, 2023) derived a lower bound on the robust Blackwell optimality constant
δ; Under a similar polytopic assumption, (Chatterjee et al., 2023) design a policy iteration
algorithm with convergence and computational complexity analysis. For more general un-
certainty sets, the studies of robust average-reward MDPs, are not well-explored. Another
work (Lim et al., 2013) designed a model-free algorithm for a specific ℓ1-norm uncertainty
set and characterized its regret bound. However, their method also relies on the structure
of the ℓ1-norm uncertainty set, and may not be generalizable to other types of uncertainty
sets. In this paper, our results can be applied to various types of uncertainty sets, and thus
is more general.

Non-robust average-reward MDPs. Early contributions to non-robust average-reward
MDPs include a fundamental characterization of the problem and model-based methods
(Puterman, 1994; Bertsekas, 2011). Model-free methods in the tabular setting, e.g., RVI
Q-learning (Abounadi et al., 2001) and differential Q-learning (Wan et al., 2021; Wan &
Sutton, 2022), were developed recently and are both shown to converge to the optimal
average-reward. There is also work on average-reward RL with function approximation,
e.g., (Zhang et al., 2021b; Tsitsiklis & Van Roy, 1999; Zhang et al., 2021a; Yu & Bertsekas,
2009). In this paper, we focus on the robust setting, where the key challenge lies in the
non-linearity of the robust average-reward Bellman equation, whereas it is linear in the
non-robust setting.

2. Preliminaries and Problem Model

In this section, we introduce some preliminaries on discounted MDPs, average-reward
MDPs, and robust MDPs.

Discounted MDPs. A discounted MDP (S,A,P, r, γ) is specified by: a finite state space
S, a finite action space A, a transition kernel P = {pas ∈ ∆(S), a ∈ A, s ∈ S}1, where pas
is the distribution of the next state over S upon taking action a in state s (with pas,s′
denoting the probability of transitioning to s′), a reward function r : S × A → [0, 1], and
a discount factor γ ∈ [0, 1). At each time step t, the agent at state st takes an action at,
the environment then transitions to the next state st+1 according to patst , and produces a
reward signal r(st, at) ∈ [0, 1] to the agent. In this paper, we also write rt = r(st, at) for
convenience.

A stationary policy2 π : S → ∆(A) is a distribution over A for any given state s, and
the agent takes action a at state s with probability π(a|s). The discounted value function of
a stationary policy π starting from s ∈ S is defined as the expected discounted cumulative
reward by following policy π: V π

P,γ(s) ≜ Eπ,P

[∑∞
t=0 γ

trt|S0 = s
]
.

Average-Reward MDPs. Different from discounted MDPs, average-reward MDPs do
not discount the reward over time, and consider the behavior of the underlying Markov

1. ∆(S): the (|S| − 1)-dimensional probability simplex on S.
2. In this paper, we focus on the stationary policies. The studies under the history-dependent policies are

left for future exploration.
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process under the steady-state distribution. More specifically, under a specific transition
kernel P, the average-reward of a policy π starting from s ∈ S is defined as

gπP(s) ≜ lim
n→∞

Eπ,P

[
1

n

n−1∑
t=0

rt|S0 = s

]
, (1)

which we also refer to in this paper as the average-reward value function for convenience.
The average-reward value function can also be equivalently written as follows: gπP =

limn→∞
1
n

∑n−1
t=0 (P

π)trπ ≜ Pπ
∗rπ, where (P

π)s,s′ ≜
∑

a π(a|s)pas,s′ and rπ(s) ≜
∑

a π(a|s)r(s, a)
are the transition matrix and reward function induced by π, and Pπ

∗ ≜ limn→∞
1
n

∑n−1
t=0 (P

π)t

is the limit matrix of Pπ.
In the average-reward setting, we also define the following relative value function

V π
P (s) ≜ Eπ,P

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
, (2)

which is the cumulative difference over time between the reward and the average value gπP.
It has been shown that (Puterman, 1994): V π

P = Hπ
Prπ, where H

π
P ≜ (I−Pπ+Pπ

∗ )
−1(I−Pπ

∗ )
is defined as the deviation matrix of Pπ.

The relationship between the average-reward and the relative value functions can be
characterized by the following Bellman equation (Puterman, 1994):

V π
P (s) = Eπ

[
r(s,A)− gπP(s) +

∑
s′∈S

pAs,s′V
π
P (s′)

]
. (3)

Robust discounted and average-reward MDPs. For robust MDPs, the transition
kernel is not fixed but belongs to some uncertainty set P. After the agent takes an action,
the environment transits to the next state according to an arbitrary transition kernel P ∈ P .
In this paper, we focus on the (s, a)-rectangular uncertainty set (Nilim & El Ghaoui, 2004;
Iyengar, 2005), i.e., P =

⊗
s,a Pa

s , where Pa
s ⊆ ∆(S). We note that there are also studies

on relaxing the (s, a)-rectangular uncertainty set to s-rectangular uncertainty set, which is
not the focus of this paper.

Under the robust setting, we consider the worst-case performance over the uncertainty
set of MDPs. More specifically, the robust discounted value function of a policy π for a
discounted MDP is defined as

V π
P,γ(s) ≜ min

P∈P
Eπ,P

[ ∞∑
t=0

γtrt|S0 = s

]
. (4)

In this paper, we focus on the following worst-case average-reward for a policy π:

gπP(s) ≜ min
P∈P

lim
n→∞

Eπ,P

[
1

n

n−1∑
t=0

rt|S0 = s

]
, (5)

to which, for convenience, we refer as the robust average-reward value function3.

3. Here we consider the worst case performance among the stationary model, i.e., the transition kernels are
identical at each time step. However, as shown later in this paper, the worst case performance under
the dynamic uncertain model is the same as the one under the stationary model. Hence it is sufficient
to consider the stationary model.
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For robust discounted MDPs, it has been shown that the robust discounted value func-
tion is the unique fixed-point of the robust discounted Bellman operator (Nilim & El Ghaoui,
2004; Iyengar, 2005; Puterman, 1994):

TπV (s) ≜
∑
a∈A

π(a|s)
(
r(s, a) + γσPa

s
(V )

)
, (6)

where σPa
s
(V ) ≜ minp∈Pa

s
p⊤V is the support function of V on Pa

s . Based on the contrac-
tion of Tπ, robust dynamic programming approaches, e.g., robust value iteration, can be
designed (Nilim & El Ghaoui, 2004; Iyengar, 2005) (see Appendix B for a review of these
methods). However, there is no such contraction result for robust average-reward MDPs.
In this paper, our goal is to find a policy that optimizes the robust average-reward value
function:

max
π∈Π

gπP(s), for any s ∈ S, (7)

where Π is the set of all stationary policies, and we denote by g∗P(s) ≜ maxπ g
π
P(s) the

optimal robust average-reward.

3. Limit Approach

We first take a limit approach to solve the problem of robust average-reward MDPs in (7).
It is known that under the non-robust setting, for any fixed π and P, the discounted value
function converges to the average-reward value function as the discount factor γ approaches
1 (Puterman, 1994), i.e.,

lim
γ→1

(1− γ)V π
P,γ = gπP. (8)

Note that the term (1 − γ) is necessary to ensure the finiteness of the limit, otherwise
V π
P,γ →∞ if γ → 1.
We take a similar idea, and show that the same result holds in the robust case: limγ→1(1−

γ)V π
P,γ = gπP under a mild assumption. This result further enables us to draw numerous char-

acterizations of the fundamental structure of the robust MDPs under the average-reward
setting. Moreover, we design algorithms (Algorithms 1 and 2) to solve robust MDPs under
the average-reward criterion based on this result, and further prove its convergence and
optimality.

3.1 Uniform Convergence of Robust Discounted Value Functions

In this section, we first show that the convergence limγ→1(1 − γ)V π
P,γ = gπP is uniform on

the set Π×P . In studies of average-reward MDPs, it is usually the case that a certain class
of MDPs is considered, e.g., unichain and communicating (Wei et al., 2020; Zhang & Ross,
2021; Chen et al., 2022; Wan et al., 2021). In this paper, we focus on the unichain setting
to highlight the major technical novelty to achieve robustness.

Assumption 1. For any s ∈ S, a ∈ A, the uncertainty set Pa
s is a compact subset of ∆(S).

And for any π ∈ Π,P ∈ P, the induced MDP is a unichain.
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The first part of Assumption 1 amounts to assuming that the uncertainty set is closed.
We remark that many standard uncertainty sets satisfy this assumption, e.g., those defined
by ϵ-contamination (Huber, 1965), finite interval (Tewari & Bartlett, 2007), total-variation
(Rahimian et al., 2022) and KL-divergence (Hu & Hong, 2013). The unichain assumption
is also widely used in studies of average-reward MDPs, e.g., (Puterman, 1994; Wan et al.,
2021; Zhang & Ross, 2021; Lan, 2020; Zhang et al., 2021b). Also, it is worth noting that
under the unichain assumption, the average-reward is identical for every starting state, i.e.,
gπP(s1) = gπP(s2), ∀s1, s2 ∈ S (Bertsekas, 2011).

Remark 1. The results in this section actually only require the uniform boundedness of
∥Hπ

P∥, ∀π ∈ Π,P ∈ P (Lemma 4 in the appendix). Assumption 1 is one sufficient condition.

In (Puterman, 1994), the convergence limγ→1(1 − γ)V π
P,γ = gπP for a fixed policy π

and a fixed transition kernel P (non-robust setting) is point-wise. However, such point-
wise convergence does not provide any convergence guarantee on the robust discounted
value function, as the robust value function measures the worst-case performance over the
uncertainty set and the order of lim and min may not be exchangeable in general. In the
following theorem, we prove the uniform convergence of the discounted value function under
the foregoing assumption.

Theorem 1 (Uniform convergence). Under Assumption 1, the discounted value function
converges uniformly to the average-reward value function on Π× P as γ → 1, i.e.,

lim
γ→1

(1− γ)V π
P,γ = gπP uniformly on Π× P . (9)

With uniform convergence in Theorem 1, the order of the limit γ → 1 and minP can be
interchanged. Then, the following convergence of the robust discounted value function can
be established.4

Theorem 2. The robust discounted value function in (4) converges to the robust average-
reward uniformly on Π:

lim
γ→1

(1− γ)V π
P,γ = gπP uniformly on Π. (10)

We note that the convergence can also be derived under some other assumptions or for
specific uncertainty sets. For example, a similar convergence result is shown in (Tewari &
Bartlett, 2007) for a special uncertainty set of finite interval type. This result is further
generalized in (Grand-Clément & Petrik, 2023; Goyal & Grand-Clement, 2018), where
the convergence is obtained under the assumption that the number of the possible worst-
case transition kernels is finite, i.e., {P ∈ P : gπP = gπP} is a finite set for any policy π.
Besides the finite interval uncertainty set, it is shown that the uncertainty sets defined by
lp-norm (Grand-Clément & Petrik, 2023; Goyal & Grand-Clement, 2018) also satisfy this
assumption. Under this assumption, the lim and max are interchangeable and hence the
convergence can be obtained. Our Theorem 2 holds for general compact uncertainty sets.
Moreover, it is worth highlighting that our proof technique is fundamentally different from

4. During the preparation of our manuscript, a recent work (Grand-Clement, Petrik, & Vieille, 2023)
develops a similar result without the unichian assumption.
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the one in (Tewari & Bartlett, 2007; Grand-Clément & Petrik, 2023), where the worst-case
transition kernels are from a finite set, i.e., V π

P,γ = minP∈M V π
P,γ for a finite set M ⊆ P .

This hence implies the interchangeability of lim and min. However, for general uncertainty
sets, the number of worst-case transition kernels may not be finite. We demonstrate the
interchangeability via our uniform convergence result in Theorem 1.

The preceding uniform convergence result enables us to exchange the order of the op-
erators limγ→1, minP∈P and maxπ∈Π. This connects robust MDPs under the discounted
reward with average-reward settings. In the following theorem, we show that we can also
restrict ourselves to deterministic polices when optimizing the robust MDPs under the
average-reward criterion.

Theorem 3. (Deterministic Optimality) There exists a deterministic optimal robust policy,
i.e., ∃π ∈ ΠD, such that gπP = g∗P .

The uniform convergence result in Theorem 2 motivates the use of robust discounted
MDPs with γ → 1 to approximate robust average-reward MDPs, which we refer to as
the limit method. As discussed in (Blackwell, 1962; Hordijk & Yushkevich, 2002), the
average-reward criterion is insensitive and under selective since it is only interested in the
performance under the steady-state distribution. For example, two policies providing re-
wards: 100 + 0 + 0 + · · · and 0 + 0 + 0 + · · · are equally good/bad. For the non-robust
setting, a more sensitive term of optimality was introduced by Blackwell (Blackwell, 1962).
More specifically, a policy is said to be Blackwell optimal if it optimizes the discounted
value function for any discount factor γ ∈ (δ, 1) for some δ ∈ (0, 1). Together with (8),
the optimal policy obtained by taking γ → 1 is optimal not only for the average-reward
criterion, but also for the discounted criterion with large γ. Intuitively, it is optimal under
the average-reward setting, and is sensitive to early rewards.

Following a similar idea, we justify that the optimal robust policy for the robust average-
reward MDPs is also sensitive to early rewards. Denote by Π∗

D the set of all the de-
terministic optimal policies for robust average-reward (proved to exist in Lemma 9), i.e.
Π∗

D = {π ∈ ΠD : gπP = g∗P} .

Theorem 4 (Blackwell optimality). There exists 0 < δ < 1, such that for any γ > δ, the
deterministic optimal robust policy for robust discounted value function V ∗

P,γ is also optimal
under the average-reward criterion. Moreover, when Π∗

D is a singleton, there exists a unique
Blackwell optimal policy.

This result implies that the optimal robust policy for average-reward MDPs has an
additional advantage that the policy it finds not only optimizes the average-reward in steady
state, but also is sensitive to early rewards.

It is worth highlighting the distinction of our results from the technique used in the
proof of Blackwell optimality (Blackwell, 1962). In the non-robust setting, the existence
of a stationary Blackwell optimal policy is proved via contradiction, where a difference
function of two policies π and ν: fπ,ν(γ) ≜ V π

P,γ − V ν
P,γ is used in the proof. It was shown

by contradiction that f has infinitely many zeros, which however contradicts with the fact
that f is a rational function of γ with a finite number of zeros. A similar technique was
also used in (Tewari & Bartlett, 2007) for the finite interval uncertainty set. Specifically, in
(Tewari & Bartlett, 2007), it was shown that the worst-case transition kernels for any π, γ
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are from a finite set M, hence fπ,ν(γ) ≜ minP∈M V π
P,γ − minP∈M V ν

P,γ can also be shown
to be a rational function with a finite number of zeroes. For a general uncertainty set P,
the difference function fπ,ν(γ), however, may not be rational. This makes the method in
(Blackwell, 1962; Tewari & Bartlett, 2007) inapplicable to our problem.

3.2 Limit Method: Robust Value Iteration

Results in Section 3.1 play a fundamental role in developing the limit method for robust
average-reward MDPs, and are of key importance to motivate the design of the following two
algorithms. The basic idea is to apply a sequence of robust discounted Bellman operators
on an arbitrary initialization while increasing the discount factor at a certain rate.

We first consider the robust policy evaluation problem, which aims to estimate the robust
average-reward gπP for a fixed policy π. This problem for robust discounted MDPs is well
studied in the literature. However, results for robust average-reward MDPs are quite limited
except for the one in (Tewari & Bartlett, 2007; Goyal & Grand-Clement, 2018) for specific
uncertainty sets. We present a robust value iteration (robust VI) algorithm for evaluating
the robust average-reward with general uncertainty sets in Algorithm 1. At each time step

Algorithm 1 Robust VI: Policy Evaluation

Input: π, V0(s) = 0, ∀s, T
1: for t = 0, 1, ..., T − 1 do
2: γt ← t+1

t+2
3: for all s ∈ S do
4: Vt+1(s)← Eπ[(1− γt)r(s,A) + γtσPA

s
(Vt)] = Eπ[(1− γt)r(s,A) + γtminP∈PA

s
(PVt)]

5: end for
6: end for
7: return VT

t, the discount factor γt is set to be t+1
t+2 , which converges to 1 as t → ∞. Subsequently,

a robust Bellman operator w.r.t discount factor γt is applied on the current estimate Vt of
the robust discounted value function (1 − γt)V

π
P,γt

. As the discount factor approaches 1,
the estimated robust discounted value function converges to the robust average-reward gπP
by Theorem 2. The following result shows that the output of Algorithm 1 converges to the
robust average-reward.

Theorem 5. Algorithm 1 converges to the robust average-reward, i.e., limT→∞ VT = gπP .

Besides the robust policy evaluation problem, it is also of great practical importance
to find an optimal policy that maximizes the worst-case average-reward, i.e., to solve (7).
Based on a similar idea as the one of Algorithm 1, we extend our limit approach to solve
the robust optimal control problem in Algorithm 2.

728



Robust Average-Reward Reinforcement Learning

Algorithm 2 Robust VI: Optimal Control

Input: V0(s) = 0, ∀s, T
1: for t = 0, 1, ..., T − 1 do
2: γt ← t+1

t+2
3: for all s ∈ S do
4: Vt+1(s)← max

a∈A

{
(1− γt)r(s, a) + γtσPa

s
(Vt)

}
5: end for
6: end for
7: for s ∈ S do
8: πT (s)← argmaxa∈A

{
(1− γt)r(s, a) + γtσPa

s
(VT )

}
9: end for

10: return VT , πT

The discount factor γt is set similarly as in Algorithm 1, and a one-step robust discounted
Bellman operator (for optimal control) w.r.t. γt is applied to the current estimate Vt. The
following theorem establishes that VT in Algorithm 2 converges to the optimal robust value
function, and hence can find the optimal robust policy.

Theorem 6. The output VT in Algorithm 2 converges to the optimal robust average-reward
g∗P , i.e., VT → g∗P as T →∞.

4. Direct Approach

The limit approach in Section 3 is based on the uniform convergence of the robust discounted
value function, and uses discounted MDPs to approximate average-reward MDPs. In this
section, we develop a direct approach to solving the robust average-reward MDPs that does
not adopt discounted MDPs as intermediate steps.

4.1 Robust Bellman Equation

One of the most important results which enable the dynamic programming approach for
solving MDPs is the Bellman equation. Such results have been generalized to robust dis-
counted MDPs (Nilim & El Ghaoui, 2004; Iyengar, 2005), and we develop an analog result
for robust average-reward MDPs as follows.

We first generalize the relative value function in (2) to the robust relative value func-
tion. The robust relative value function measures the difference between the worst-case
cumulative reward and the worst-case average-reward for a policy π.

Definition 1. The robust relative value function is defined as

V π
P (s) ≜ min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
, (11)

where gπP is the worst-case average-reward defined in (5).

We further introduce several notations. For V ∈ R|S|, denote by PV (s, a) ≜ argminp∈Pa
s
pV

and let PV = {PV (s, a), s ∈ S, a ∈ A}. Moreover, denote the set of the worst-case transition
kernels by Ωπ

g , i.e., Ω
π
g = {P ∈ P : gπP = gπP}.
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Theorem 7. For any π, (V π
P , gπP) is a solution to the following robust Bellman equation:

V (s) + g =
∑
a

π(a|s)
(
r(s, a) + σPa

s
(V )

)
, ∀s. (12)

Moreover, if (g, V ) is a solution to it, then

• 1) g = gπP ;

• 2) PV ∈ Ωπ
g ;

• 3) V = V π
PV

+ ce for some c ∈ R, where e denotes the vector (1, 1, ..., 1) ∈ R|S|.

It can be seen that the robust Bellman equation for average-reward MDPs has a similar
structure to the one for discounted MDPs in (6) except for a discount factor. This actually
reveals a fundamental difference between the robust Bellman operator of the discounted
MDPs and the average-reward ones. For a discounted MDP, its robust Bellman operator
is a contraction with constant γ (Nilim & El Ghaoui, 2004; Iyengar, 2005), and hence the
fixed point is unique. Based on this, the robust value function can be found by recursively
applying the robust Bellman operator (see Appendix B for a review). In sharp contrast,
in the average-reward setting, the robust Bellman operator is not necessarily a contraction,
and the fixed point may not be unique. Therefore, repeatedly applying the robust Bellman
operator in the average-reward setting may not even converge, which underscores that the
two problem settings are fundamentally different.

The second part of Theorem 7 provides a characterization of the solutions to the Bellman
equation, where we show that for any solution (g, V ) to (12), the transition kernel PV ∈ Ωπ

g ,
i.e., it is a worst-case transition kernel for gπP . This result also distinguishes the structure
of the robust Bellman equation from the non-robust one. Under the non-robust setting, the
solution set to the Bellman equation can be written as {(gπP, V π

P +ce) : c ∈ R}. The solution
is uniquely determined by the transition kernel (up to some constant vector ce). In contrast,
in the robust setting, the robust Bellman equation is no longer linear. Any solution V to
(12) is a relative value function w.r.t. some worst-case transition kernel P ∈ Ωπ

g (up to some
additive constant vector), i.e., V ∈ {V π

P + ce : P ∈ Ωπ
g , c ∈ R}. A natural question that

arises is whether, for any P ∈ Ωπ
g , (g

π
P , V

π
P ) is a solution to (12)? Lemma 1 refutes this.

Lemma 1. There exists a robust MDP such that for some P ∈ Ωπ
g , (gπP , V

π
P ) is not a

solution to (12).

Lemma 1 implies that the solution set to (12) is a subset of {V π
P + ce,P ∈ Ωπ

g , c ∈ R}.
Note that an explicit characterization of the solution set to (12) is challenging due to its
non-linear structure; however, result 3 in Theorem 7 suffices to establish the convergence of
our model-free algorithms (shown later in Section 5).

Theorem 7 characterizes the robust average-reward for a fixed policy π, which plays an
essential role in policy evaluation problems, i.e., to estimate the robust average-reward for π.
To find the optimal robust policy, we similarly derive the following optimality condition for
robust average-reward MDPs. It is generally useful to consider the action-value functions
in optimal control problems, hence we consider a Q-function Q : S × A → R, and define
VQ(s) = maxaQ(s, a), ∀s ∈ S.
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Theorem 8 (Optimal robust Bellman equation). If (g,Q) is a solution to the optimal
robust Bellman equation

Q(s, a) = r(s, a)− g + σPa
s
(VQ), ∀s, a, (13)

then

• 1) g = g∗P ;

• 2) the greedy policy w.r.t. Q: πQ(s) = argmaxaQ(s, a) is an optimal robust policy;

• 3) VQ = V
πQ

P + ce for some P ∈ Ω
πQ
g , c ∈ R.

Note that the theorem is presented using the action-value function Q; Similar results
can be easily adapted using the V function as follows.

Corollary 1. For any (g, V ) that is a solution to

max
a

{
r(s, a)− g + σPa

s
(V )− V (s)

}
= 0, ∀s, (14)

g = g∗P . If we further set

π∗(s) = argmax
a

{
r(s, a) + σPa

s
(V )

}
, ∀s ∈ S, (15)

then π∗ is an optimal robust policy.

According to Theorem 8, finding a solution to (13) is sufficient to get the optimal robust
average-reward and to derive the optimal robust policy. Similarly to Theorem 7, we omit
the explicated study and characterization of the solution set to (13), but the above results
are sufficient for the convergence proof of our direct methods and algorithms.

Results in this section provide a comprehensive characterization of the fundamental
structure of robust MDPs under the average-reward criterion, and indicates the equivalence
between solving them and find the solutions to the robust Bellman equations. However, as
discussed, the solution set to the robust Bellman equations can be complicated, and are not
straightforward to solve. In the next section, we develop a model-based algorithm to solve
the equations and find the optimal robust policy.

4.2 Direct Method: Robust Relative Value Iteration

In the following, we generalize the RVI approach to the robust setting, and design a robust
RVI algorithm in Algorithm 3. We will further show that the output of this algorithm
converges to a solution to (14), and further the optimal policy could be obtained by (15).

Here, sp denotes the span semi-norm: sp(w) = maxsw(s)−minsw(s), and f : R|S| → R
is an offset function introduced to stabilize the algorithm updating. We adopt the following
assumption from (Puterman, 1994).

Assumption 2. f : R|S| → R is Lf -Lipschitz and satisfies f(e) = 1, f(x + ce) = f(x) +
c, f(cx) = cf(x), ∀c ∈ R.
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Algorithm 3 Robust RVI

Input: V0, ϵ

1: w0 ← V0 − f(V0)
2: while sp(wt − wt+1) ≥ ϵ do
3: for all s ∈ S do
4: Vt+1(s)← maxa(r(s, a) + σPa

s
(wt))

5: wt+1(s)← Vt+1(s)− f(Vt+1)
6: end for
7: end while
8: return wt, Vt

Assumption 2 can be easily satisfied, e.g., f(V ) = V (s0) for some reference state s0 ∈ S,
or f(V ) =

∑
s V (s)
|S| (Abounadi et al., 2001). Compared with the discounted setting, f is

critical here. As we discussed above, in the average-reward setting, the solution to the
Bellman equation V + ce can be arbitrarily large because c can be any real number. This
may lead to a non-convergent sequence Vn (see, e.g., Example 8.5.2 of (Puterman, 1994)).
Hence, a function f is introduced to ”offset” Vn and keep the iterates stable.

Different from Algorithm 2, in Algorithm 3, we do not apply the robust discounted
Bellman operator. The method directly solves the robust optimal control problem for
average-reward robust MDPs. We note that in the previous studies of non-robust average-
reward, a stronger assumption is made to guarantee the convergence of the non-robust
relative value iteration (see, e.g., (Puterman, 1994)). However, it can be weakened using
the aperiodic transform technique. In this paper, we further generalize such technique to
the robust setting, and show the convergence of our robust RVI under Assumption 1.

In the following theorem, we show that our Algorithm 3 converges to a solution of (14).
Then according to Theorem 8, the optimal robust policy can be obtained by setting π
according to (15) from the limit of the algorithm.

Theorem 9. (wt, Vt) converges to a solution (w, V ) to (14) as ϵ→ 0.

Remark 2. In this section, we present the robust RVI algorithm for the robust optimal
control problem, and its asymptotic convergence and optimality guarantee. A robust RVI
algorithm for robust policy evaluation can be similarly designed by replacing the max in line
4, Algorithm 3 with an expectation w.r.t. π. The convergence results in Theorem 9 can
also be similarly derived. Our algorithms are expected to converge linearly, as we show in
Theorem 9 that it is a multi-step contraction. However, the exact number of steps and the
contraction coefficients are involved dependent on the underlying MDP, and hence we leave
the exact characterization of its convergence rate as a future research interest.

5. Model-Free Approaches for Robust Average-Reward MDPs

In the previous sections, we developed the fundamental characterizations of the robust
average-reward MDPs and designed two algorithms under the model-based setting, where
we assume full knowledge of the uncertainty set P. However, in practice the learner may
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not know exactly the nominal MDP and thus the uncertainty set, instead, it can obtain
samples from the nominal MDP.

A natural idea for the model-free setting is to replace the robust Bellman operators in
Algorithms 2 and 3 using some estimators obtained from the samples. However, such an
extension is not straightforward due to two reasons: 1) The convergence results above are not
guaranteed with stochastic estimators; 2) the construction of an unbiased estimator can be
difficult, due to the distribution shift between the nominal kernel and the worst-case kernel.
In this section, we first construct unbiased estimators of the robust Bellman operator for five
uncertainty set models, including the contamination model, the total variation model, the
Chi-square model, the KL-divergence model, and the Wasserstein distance model. We then
design stochastic algorithms using these unbiased estimators and show their convergence.

5.1 Robust RVI TD for Policy Evaluation

In this section, we first study the problem of robust policy evaluation, which aims to estimate
the robust average-reward gπP for a fixed policy π.

For technical convenience, we make the following assumption to guarantee that the
average-reward is independent of the initial state (Abounadi et al., 2001; Wan et al., 2021;
Zhang et al., 2021a; Zhang & Ross, 2021; Chen et al., 2022).

Assumption 3. The Markov chain induced by π is a unichain for all P ∈ P.

Note that this assumption is weaker than Assumption 1, which is because the policy
evaluation problem only considers a fixed policy. In general, the average-reward depends
on the initial state. For example, imagine a policy that induces a multichain in an MDP
with two closed communicating classes. A learning algorithm would be able to learn the
average-reward for each communicating class; however, the average-rewards for the two
classes may be different. To remove this complexity, it is common and convenient to rule
out this possibility. Under Assumption 3, the average-reward w.r.t. any P ∈ P is identical
for any start state, i.e., gπP(s) = gπP(s

′), ∀s, s′ ∈ S.
Motivated by the robust Bellman equation in (12), we propose a model-free robust RVI

TD algorithm in Algorithm 4, where T̂ is some estimator of the robust Bellman operator
and will be discussed later.

Algorithm 4 Robust RVI TD

Input: V0, αn, n = 0, 1, ..., N − 1

1: for n = 0, 1, ..., N − 1 do
2: for all s ∈ S do
3: Vn+1(s)← Vn(s) + αn(T̂Vn(s)− f(Vn)− Vn(s))
4: end for
5: end for

Note that (12) can be written as V = TV −g, where T is the robust average-reward Bell-
man operator. Since in the model-free setting P is unknown, in Algorithm 4, we construct
T̂V as an estimate of TV satisfying

E[T̂V ] = TV, Var[T̂V (s)] ≤ C(1 + ∥V ∥2), (16)
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for some constant C > 0. In this paper, if not specified, ∥ · ∥ denotes the infinity norm
∥ · ∥∞.

It is challenging to construct such T̂ as T is non-linear in the nominal transition kernel
from which samples are generated. In Section 5.3, we will present in detail how to construct
such T̂ for various uncertainty set models.

We then assume the Robbins-Monro condition on the stepsize, and further show the
convergence of robust RVI TD.

Assumption 4. The stepsize {αn}∞n=0 satisfies the Robbins-Monro condition, i.e.,
∑∞

n=0 αn =
∞,
∑∞

n=0 α
2
n <∞.

Theorem 10 (Convergence of robust RVI TD). Under Assumptions 2, 3, 4, and if T̂
satisfies (16), then almost surely, (f(Vn), Vn) converges to a solution to (12) which may
depend on the initialization.

The result implies that f(Vn) → gπP a.s., which means our robust RVI TD converges
to the worst-case average-reward for the given policy π. Our robust RVI TD algorithm is
hence shown to converge to a solution to (12), which solves the problem under the model-free
setting.

To show the convergence of the stochastic model-free algorithm, we utilize the stochas-
tic approximation approach. We study the associated ODE of the algorithm, tackle the
stochastic noise and show the algorithm converge to the equilibrium of the ODE. As we
discussed after Theorem 7, result 3 of Theorem 7 is crucial to the convergence proof of
Theorem 10. Specifically, it is necessary in order to characterize the equilibrium of the
associated ODE, and thus the limit of the iterates f(Vn)→ gπP .

Remark 3. Although our algorithm is presented in a synchronous fashion, the similar
convergence result is also expected to hold for asynchronous version of algorithm, under
the assumption that all state-action pairs are visited for infinite number of times. Such an
extension is standard, see, e.g., (Wan et al., 2021).

5.2 Robust RVI Q-Learning for Control

In this section, we aim to find the optimal robust policy under the model-free setting, i.e.,
find π∗ = argmaxπ g

π
P .

Inspired by the model-based methods and the previous section, We hence present the
following model-free robust RVI Q-learning algorithm.

Algorithm 5 Robust RVI Q-learning

Input: Q0, αn

1: for n = 0, ..., N − 1 do
2: for all s ∈ S, a ∈ A do
3: Qn+1(s, a)← Qn(s, a) + αn

(
ĤQn(s, a)− f(Qn)−Qn(s, a)

)
4: end for
5: end for

Similar to the robust RVI TD algorithm, denote the optimal robust Bellman operator
by HQ(s, a) ≜ r(s, a) + σPa

s
(VQ), and we construct an estimate Ĥ such that for some finite
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constant C,

E[ĤQ] = HQ, Var[ĤQ(s, a)] ≤ C(1 + ∥Q∥2). (17)

In Section 5.3, we will present in detail how to construct such Ĥ for various uncertainty set
models.

The following theorem shows the convergence of the robust RVI Q-learning to the opti-
mal robust average-reward g∗P and the optimal robust policy π∗.

Theorem 11 (Convergence of robust RVI Q-learning). Under Assumptions 1, 2, 4, and
if Ĥ satisfies (17), then almost surely, (f(Qn), Qn) converges to a solution to (13), i.e.,
f(Qn) converges to g∗P , and the greedy policy πQn(s) ≜ argmaxaQn(s, a) converges to an
optimal robust average-reward π∗.

The above results imply that our robust RVI Q-learning algorithm finds the optimal
robust average-reward function and the optimal robust policy, under the model-free setting.
The proof technique is similar to the one of Theorem 10, where we first characterize the
equilibrium of the associated ODE, and prove the global stability and convergence of our
algorithm.

5.3 Construction of Estimated Operator: Case Studies

In the previous two sections, we showed that if an unbiased estimator with bounded variance
is available for the robust Bellman operator, then both robust algorithms proposed converge
to the optimum. In this section, we present the design of these estimators for various
uncertainty set models.

The major challenge in designing the estimated operators satisfying (16) and (17) lies in
estimating the support function σPa

s
(V ) using samples from the nominal transition kernel

Pa
s , which in general is different from the worst-case transition kernel. The function σPa

s
(V )

is non-linear in the nominal kernel, which makes it challenging to construct such an estima-
tor. For instance, the most widely-used MLE plugging-in estimator is shown to be biased.
If we use the empirical transition kernel P̂ as the centroid to construct an uncertainty set
P̂, then the estimator is biased: E[σP̂a

s
(V )] ̸= σPa

s
(V ).

To solve this issue, we hence utilize the multi-level Monte-Carlo approach (Blanchet
& Glynn, 2015), and construct an unbiased estimator for several widely-used non-linear
uncertainty models including the total variation model, the Chi-square model, the KL-
divergence model, and the Wasserstein distance model. We show that our estimators are
unbiased and have bounded variance in the following theorem. We will present the design
in later sections.

Theorem 12. For each uncertainty set, denote its corresponding estimators by T̂ and Ĥ
as in Sections 5.3.1 and 5.3.2. Then, there exists some constant C, such that (16) and (17)
hold.

In the following sections, we construct an operator σ̂Pa
s
to estimate the support function

σPa
s
, ∀s ∈ S, a ∈ A for each uncertainty set. We further define the estimated robust Bellman

operators as T̂V (s) ≜
∑

a π(a|s)(r(s, a) + σ̂Pa
s
(V )) and ĤQ(s, a) ≜ r(s, a) + σ̂Pa

s
(VQ).
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5.3.1 Linear Model: Contamination Uncertainty Set

The ζ-contamination uncertainty set is Pa
s = {(1−ζ)Pa

s+ζq : q ∈ ζ(S)}, where 0 < ζ < 1 is
the radius. Under this uncertainty set, the support function can be computed as σPa

s
(V ) =

(1− ζ)Pa
sV + ζmins V (s), and this is linear in the nominal transition kernel Pa

s . We hence
use the transition to the subsequent state to construct our estimator:

σ̂Pa
s
(V ) ≜ (1− ζ)γV (s′) + ζmin

x
V (x), (18)

where s′ is a subsequent state sample after (s, a).

5.3.2 Non-Linear Models

Unlike the contamination model, most uncertainty sets result in a non-linear support func-
tion of the nominal transition kernel. We will employ the approach of multi-level Monte-
Carlo which is widely used in quantile estimation under stochastic environments (Blanchet
& Glynn, 2015; Blanchet et al., 2019; Wang & Wang, 2022) to construct an unbiased
estimator with bounded variance.

For any s, a, we first generate N according to a geometric distribution with parameter
Ψ ∈ (0, 1). Then, we take action a at state s for 2N+1 times, and observe r(s, a) and
the subsequent state {s′i}, i = 1, ..., 2N+1. We divide these 2N+1 samples into two groups:
samples with odd indices, and samples with even indices. We then individually calculate
the empirical distribution of s′ using the even-index samples, odd-index ones, all the sam-

ples, and the first sample: P̂a,E
s,N+1 = 1

2N

∑2N

i=1 1s′2i , P̂a,O
s,N+1 = 1

2N

∑2N

i=1 1s′2i−1
, P̂a

s,N+1 =

1
2N+1

∑2N+1

i=1 1s′i , P̂a,1
s,N+1 = 1s′1 . Then, we use these estimated transition kernels as nomi-

nal kernels to construct four estimated uncertainty sets P̂a,E
s,N+1, P̂

a,O
s,N+1, P̂a

s,N+1, P̂
a,1
s,N+1. The

multi-level estimator is then defined as

σ̂Pa
s
(V ) ≜ σP̂a,1

s,N+1
(V ) +

∆N (V )

pN
, (19)

where pN = Ψ(1−Ψ)N and

∆N (V ) ≜ σP̂a
s,N+1

(V )−
σP̂a,E

s,N+1
(V ) + σP̂a,O

s,N+1
(V )

2
.

We note that in previous results of the multi-level Monte-Carlo estimator (Blanchet &
Glynn, 2015; Blanchet et al., 2019; Wang & Wang, 2022), several assumptions are needed
to show that the estimator is unbiased. These assumptions, however, do not hold in our
cases. For example, the function σP(V ) is not continuously differentiable. Hence, their
analysis cannot be directly applied here.

We then present four examples of non-linear uncertainty sets. Under each example, a
solution to the support function σP(V ) is given, and by plugging it into (19) the unbiased
estimator can then be constructed. More details can be found in Section H and Section I.

Total Variation Uncertainty Set. The total variation uncertainty set is Pa
s = {q ∈

∆(|S|) : 1
2∥q−Pa

s∥1 ≤ ζ}, and the support function can be computed using its dual function
(Iyengar, 2005):

σPa
s
(V ) = max

µ≥0

(
Pa
s(V − µ)− ζSpan(V − µ)

)
. (20)
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Chi-square Uncertainty Set. The Chi-square uncertainty set is Pa
s = {q ∈ ∆(|S|) :

dc(P
a
s , q) ≤ ζ}, where dc(q, p) =

∑
s
(p(s)−q(s))2

p(s) . Its support function can be computed using

its dual function (Iyengar, 2005):

σPa
s
(V ) = max

µ≥0

(
Pa
s(V − µ)−

√
ζVarPa

s
(V − µ)

)
. (21)

Kullback–Leibler (KL) Divergence Uncertainty Set. The KL-divergence between

two distributions p, q is defined as DKL(q||p) =
∑

s q(s) log
q(s)
p(s) , and the uncertainty set

defined via KL divergence is

Pa
s = {q : DKL(q||Pa

s) ≤ ζ} , ∀s ∈ S, a ∈ A. (22)

Its support function can be efficiently solved using the duality result in (Hu & Hong, 2013):

σPa
s
(V ) = −min

α≥0

(
ζα+ α log

(
EPa

s

[
e

−V
α
]))

. (23)

The above estimator for the KL-divergence uncertainty set has also been developed in
(Liu et al., 2022) for robust discounted MDPs. Its extension to our average-reward setting
is similar.

Wasserstein Distance Uncertainty Sets. Consider the metric space (S, d) by
defining some distance metric d. For some parameter l ∈ [1,∞) and two distributions
p, q ∈ ∆(S), define the l-Wasserstein distance between them as Wl(q, p) = infµ∈Γ(p,q) ∥d∥µ,l,
where Γ(p, q) denotes the distributions over S × S with marginal distributions p, q, and

∥d∥µ,l =
(
E(X,Y )∼µ

[
d(X,Y )l

])1/l
. The Wasserstein distance uncertainty set is then defined

as

Pa
s = {q ∈ ∆(|S|) : Wl(P

a
s , q) ≤ ζ} . (24)

To solve the support function w.r.t. the Wasserstein distance set, we first prove the following
duality lemma.

Lemma 2. It holds that

σPa
s
(V ) = sup

λ≥0

(
−λζ l + EPa

s

[
inf
y

(
V (y) + λd(S, y)l

)])
. (25)

Thus, the support function can be solved using its dual form, and the estimator can
then be constructed following (19).

Remark 4. We note that in the construction of MLMC estimators for the non-linear
uncertainty sets, we do not need to estimate and store any transition models. When updating
asynchronously, we only need a memory space of |S| × |A| to store the nominal kernel of
the specific state-action pair, instead of the whole model. From this aspect, we refer to our
algorithms with MLMC estimators as model-free approaches. It is left for further exploration
of model-free algorithms with less memory space.
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6. Numerical Results

In this section, we numerically verify our theoretical results. We aim to verify two aspects
of our methods: the convergence of the algorithms, and the robustness of them. Additional
experiments can be found in Appendix A.

6.1 Convergence of Robust RVI TD and Q-Learning

We first verify the convergence of our robust RVI TD and Q-learning algorithms under a
Garnet problem G(30, 20) (Archibald et al., 1995). The problem can be characterized as a
MDP (30, 20,P, r), where there are 30 states and 20 actions. The nominal transition kernel
P = {Pa

s , s ∈ S, a ∈ A} is randomly generated by a normal distribution: Pa
s ∼ N (1, σa

s ) and
then normalized. The reward function r(s, a) ∼ N (1, µa

s), where µa
s , σ

a
s ∼ Uniform[0, 100].

We set the radius of the uncertainty set ζ = 0.4, αn = 0.01, f(V ) =
∑

s V (s)
|S| and f(Q) =∑

s,a Q(s,a)

|S||A| . We show the results under the Chi-square and Wasserstein Distance models.
The results under the other three uncertainty sets are presented in Appendix A.

For policy evaluation, we evaluate the robust average-reward of the uniform policy
π(a|s) = 1

|A| . We implement our robust RVI TD algorithm under different uncertainty
models. We run the algorithm independently for 30 times and plot the average value of
f(V ) over all 30 trajectories. We also plot the 95th and 5th percentiles of the 30 curves as
the upper and lower envelopes of the curves. To compare, we plot the true robust average-
reward computed using the model-based robust value iteration method. It can be seen from
the results in Figure 1 that our robust RVI TD algorithm converges to the true robust
average-reward value.

Figure 1: Robust RVI TD Algorithm.

We then consider policy optimization. We run our robust RVI Q-learning independently
for 30 times. The curves in Figure 2 show the average value of f(Q) over 30 trajectories,
and the upper/lower envelopes are the 95/5 percentiles. We also plot the optimal robust
average-reward g∗P computed by the model-based RVI method. Our robust RVI Q-learning
converges to the optimal robust average-reward g∗P under each uncertainty set, which verifies
our theoretical results.
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Figure 2: Robust RVI Q-Learning Algorithm.

6.2 Robustness of Our Robust Approaches

In this section, we aim to demonstrate the robustness of our approaches, including both
model-based and model-free ones. We first compare our model-based approaches with the
non-robust model-based ones under the Garnet problem (Archibald et al., 1995). Then we
verify the robustness of our model-free robust RVI Q-learning under two problems, namely,
the Recycling Robot and the inventory control problem.

6.2.1 Robustness of Model-Based Approaches

We study several commonly used uncertainty set models, including contamination model,
Kullback-Lerbler (KL) divergence, and total-variation defined model. As can be observed
from Algorithm 1, 2, and 3 for different uncertainty sets, the only difference lies in how the
support function σPa

s
(V ) is calculated. In the sequel, we discuss how to efficiently calculate

the support function for various uncertainty sets.

We numerically compare our robust (relative) value iteration v.s. non-robust (relative)
value iteration methods on different uncertainty sets. Our experiments are based on the
same Garnet problem G(20, 40) considered in 6.1, with the same nominal transition kernel,
reward functions, and uncertainty set structures. We run different algorithms, i.e., (robust)
value iteration and (robust) relative value iteration, and obtain the greedy policies at each
time step. Then, we use robust average-reward policy evaluation (Algorithm 1) to evaluate
the robust average-reward of these policies. We plot the robust average-reward against the
number of iterations.

Contamination model. Our experimental results under the contamination model are
shown in Figure 3.

Total variation. Our experimental results under the total variation model are shown in
Figure 4.

Kullback-Lerbler (KL) divergence. Our experimental results under the KL-divergence
model are shown in Figure 5.

It can be seen that our robust methods can obtain policies that achieve higher worst-
case rewards. Also, both our limit-based robust value iteration and our direct method of
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Figure 3: Comparison on contamination model with R = 0.4.

Figure 4: Comparison on total variation model with R = 0.6.

robust relative value iteration converge to the optimal robust policies, which validates our
theoretical results.

6.2.2 Robustness of Model-Free Approach: Recycling Robot

We first consider the recycling robot problem (Example 3.3 (Sutton & Barto, 2018)). A
mobile robot running on a rechargeable battery aims to collect empty soda cans. It has
2 battery levels: S = {low and high}. The robot can either 1) search for empty cans; 2)
remain stationary and wait for someone to bring it a can; or 3) go back to its home base
to recharge, i.e., A = {wait, search, recharge}. Under low (high) battery level, the robot
finds an empty can with probabilities α (β), and remains at the same battery level. If the
robot goes out to search but finds nothing, it will run out of its battery and can only be
carried back by humans. The reward of finding a can is set to be +5, the reward of finding
nothing and running out of battery is −5, and r = 0 for waiting. More details can be found
in (Sutton & Barto, 2018).

In this experiment, the uncertainty lies in the probabilities α, β of finding an empty can
if the robot chooses the action ‘search’. We set ζ = 0.4 and implement our algorithms and
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Figure 5: Comparison on KL-divergence model with R = 0.8.

vanilla Q-learning under the nominal environment (α = β = 0.5) with stepsize 0.01. To
show the difference among the policies that the algorithms learned, we plot the difference
of Q values at low battery level in Figure 6a. The results showed the average value of the
difference between the Q-function among 10 independent experiments. In the low battery
level, the robust algorithms find conservative policies that choose to wait instead of search,
whereas the vanilla Q-learning finds a policy that chooses to search.

To test the robustness of the obtained policies, we evaluate the average reward of the
learned policies in perturbed environments. Specifically, let x denote the amplitude of the
perturbation. Then, we calculate the exact robust average reward functions of the two
policies over the testing uncertainty set (0.5 − x, 0.5 + x) using the model-based approach
Alg 1, and plot them in Figure 6b. It can be seen that when the perturbation is small, the
true worst-case kernels (w.r.t. ζ during training) are far from the testing environment, and
hence the vanilla Q-learning has a higher reward; however, as the perturbation level becomes
larger, the testing environment gets closer to the worst-case kernels, and then our robust
algorithms perform better. It can be seen that the performance of Q-learning decreases
rapidly while our robust algorithm is stable and outperforms the non-robust Q-learning.
This implies that our algorithm is robust to the model uncertainty.

6.2.3 Robustness of Model-Free Approach: Inventory Control Problem

We now consider the supply chain problem (Giannoccaro & Pontrandolfo, 2002; Kemmer
et al., 2018; Liu et al., 2022). At the beginning of each month, the manager of a warehouse
inspects the current inventory of a product. Based on the current stock, the manager
decides whether or not to order additional stock from a supplier. During this month, if
the customer demand is satisfied, the warehouse can make a sale and obtain profits; but if
not, the warehouse will obtain a penalty associated with being unable to satisfy customer
demand for the product. The warehouse also needs to pay the holding cost for the remaining
stock and new items ordered. The goal is to maximize the average profit.

We let st denote the inventory at the beginning of the t-th month, Dt be a random
demand during this month, and at be the number of units ordered by the manager. We
assume that Dt follows some distribution and is independent over time. When the agent
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(a) Q(low,wait)-Q(low,search) (b) Perturbed environment

Figure 6: Recycling Robot.

takes action at, the order cost is at, and the holding cost is 3 · (st + at). If the demand
Dt ≤ st+at, then selling the item brings 5 ·Dt in total; but if the demand Dt > st+at, then
there will not be any sale and a penalty of −15 will be received. We set S = {0, 1, ..., 16}
and A = {0, ..., 8}.

We first set ζ = 0.4 and αt = 0.01, and implement our algorithms and vanilla Q-learning
under the nominal environment where Dt ∼ Uniform(0, 16) is generated following the
uniform distribution. To verify the robustness, we test the obtained policies under different
perturbed environments. More specifically, we perturb the distribution of the demand to
Dt ∼ U(m,b), where

U(m,b)(x) =

{
1
|S| + b |S|−2

2|S| , if x ∈ {m,m+ 1},
1−b
|S| , else.

The results are plotted in Figure 7. We first fix m = 0 and plot the performance under
different values of b in Figure 7a, then we fix b = 0.25 and plot the performance under
different values of m in Figure 7b.

As the results show, when b is small, i.e., the perturbation of the environment is small,
the non-robust Q-learning obtains higher reward than our robust methods; as b becomes
larger, the performance of the non-robust method decreases rapidly, while our robust meth-
ods are more robust and outperform the non-robust one. When b is fixed, our robust
methods outperform the non-robust Q-learning, which also demonstrates the robustness of
our methods.

7. Conclusion

In this paper, we investigated the problem of robust MDPs under the average-reward cri-
terion. We first developed the fundamental characterization of their structures using two
approaches: the limit approach and the direct one. We first established uniform conver-
gence of the discounted value function to average-reward and showed the common properties
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(a) m = 0 (b) b = 0.25

Figure 7: Inventory Control.

shared by robust MDPs under both reward criteria. We then designed a direct approach
for robust average-reward MDPs, where we derived the robust Bellman equation for robust
average-reward MDPs. Based on these results, we further designed two model-based algo-
rithms, robust VI and robust RVI, with convergence and robustness guarantees. We then
generalized such approaches to the model-free setting, where we constructed an unbiased
estimator of the robust Bellman operator and proposed robust RVI TD and Q-learning
algorithms, and further theoretically proved their convergence and optimality.
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Appendix A. Additional Experiments

In this section, we first show the additional experiments on the Garnet problem in Section
6.1. Then, we further verify our theoretical results using some additional experiments.

A.1 Garnet Problem

We first verify the convergence of our robust RVI TD and robust RVI Q-learning under the
Garnet problem with the same setting as in Section 6.1. Our results show that both our al-
gorithms converge to the (optimal) robust average-reward under the other three uncertainty
sets.

Figure 8: Robust RVI TD Algorithm under Garnet Problem.

Figure 9: Robust RVI Q-Learning Algorithm under Garnet Problem.
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A.2 Frozen-Lake Problem

We first verify our robust RVI TD algorithm and robust RVI Q-learning under the Frozen-
Lake environment of OpenAI (Brockman et al., 2016). We set the uncertainty radius
ζ = 0.4, αn = 0.01 and plot the (optimal) robust average-reward computed using model-
based methods as the baseline. We evaluate the uniform policy for the policy evaluation
problem, plot the average value of f(Vt) of 30 trajectories and plot the 95/5 percentile as
the upper/lower envelope. For the optimal control problem, we plot the average value of
f(Qt) of 30 trajectories and plot the 95/5 percentile as the upper/lower envelope. The
results show that both algorithms converge to the (optimal) robust average-reward.

Figure 10: Robust RVI TD Algorithm under Frozen-Lake environment.

Figure 11: Robust RVI Q-learning Algorithm under Frozen-Lake environment.
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A.3 Robustness of Robust RVI Q-Learning

We further use the simple, yet widely-used problem, referred to as the one-loop task problem
(Panaganti & Kalathil, 2022), to verify the robustness of our robust RVI Q-learning. This
environment is widely used to demonstrate that robust methods can learn different optimal
polices from the non-robust methods, which are more robust to model uncertainty. The
one-loop MDP contains 2 states s1, s2, and 2 actions al, ar indicating going left or right.

The nominal environment is shown in the left of Figure 12, where at state s1, going left
and right will result in a transition to s1 or s2; and at s2, going left and right will result in
a transition to s1 or s2.

s1 s2

al, 0

ar,−2al, 0

ar, 1

s1 s2

al, 0

ar,−2al, 0

ar, 1

Figure 12: One-Loop Task.

We implement our robust RVI Q-learning and vanilla non-robust Q-learning as the
baseline in this environment. At each time step t, we plot the difference between Qt(s1, al)
and Qt(s1, ar) in Figure 13a. If Qt(s1, al)−Qt(s1, ar) < 0, the greedy policy will be going
right; and if Qt(s1, al) − Qt(s1, ar) > 0, the policy will be going left. As the results show,
the vanilla Q-learning will finally learn a policy π(s1) = ar, while our algorithms learn a
policy π(s1) = al.

To verify the robustness of our method, we test the learned policies under a perturbed
testing environment, shown on the right of Figure 12. We plot the average-reward of policies
πt under this perturbed environment. The results are shown in Figure 13b.

(a) Q(s1, al)−Q(s2, ar) (b) Average-Reward under Testing MDP

Figure 13: One-Loop Task.
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As the results show, our robust RVI Q-learning learns a more robust policy under the
nominal environment, which obtains a higher reward in the perturbed environment; whereas
the non-robust Q-learning learns a policy that is optimal w.r.t. the nominal environment,
but less robust when the environment is perturbed. This verifies that our algorithm is more
robust than the vanilla method.

Appendix B. Review of Robust Discounted MDPs

In this section, we provide a brief review on the existing methods and results for robust
discounted MDPs.

B.1 Robust Policy Evaluation

We first consider the robust policy evaluation problem, where we aim to estimate the robust
value function V π

P,γ for any policy π. It has been shown that the robust Bellman operator
Tπ is a γ-contraction, and the robust value function V π

P,γ is its unique fixed-point. Hence by
recursively applying the robust Bellman operator, we can find the robust discounted value
function (Nilim & El Ghaoui, 2004; Iyengar, 2005).

Algorithm 6 Policy evaluation for robust discounted MDPs

Input: π, V0, T

1: for t = 0, 1, ..., T − 1 do
2: for all s ∈ S do
3: Vt+1(s)← Eπ[r(s,A) + γσPA

s
(Vt)]

4: end for
5: end for
6: return VT

B.2 Robust Optimal Control

Another important problem in robust MDP is finding the optimal policy that maximizes
the robust discounted value function:

π∗ = argmax
π

V π
P,γ . (26)

A robust value iteration approach is developed in (Nilim & El Ghaoui, 2004; Iyengar, 2005)
as follows.

Algorithm 7 Optimal Control for robust discounted MDPs

Input: V0, T

1: for t = 0, 1, ..., T − 1 do
2: for all s ∈ S do
3: Vt+1(s)← maxa

{
r(s, a) + γσPa

s
(Vt)

}
4: end for
5: end for
6: π∗(s)← argmaxa

{
r(s, a) + γσPa

s
(VT )

}
, ∀s

7: return π∗
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Appendix C. Equivalence between Time-Varying and Stationary Models

We first provide an equivalence result between time-varying and stationary transition kernel
models under stationary policies, which is an analog result to the one for robust discounted
MDPs (Iyengar, 2005; Nilim & El Ghaoui, 2004). This result will be used in our following
proofs.

Recall the definitions of the robust discounted value function and worst-case average-
reward in (4),(5), the worst-case is taken w.r.t. κ = (P0,P1...) ∈

⊗
t≥0 P, therefore, the

transition kernel at each time step could be different. This model is referred to as the
time-varying transition kernel model (as in (Iyengar, 2005; Nilim & El Ghaoui, 2004)).
Another commonly used setting is that the transition kernels at different time steps are
the same, which is referred to as the stationary model (Iyengar, 2005; Nilim & El Ghaoui,
2004). In this paper, we use the following notations to distinguish the two models. By
EP[·], we denote the expectation when the transition kernels at all time steps are the same,

P, i.e., the stationary model. We also denote by gπP(s) ≜ limn→∞ EP,π

[
1
n

∑n−1
t=0 rt

∣∣S0 = s
]

and V π
P,γ(s) ≜ EP,π

[∑∞
t=0 γ

trt
∣∣S0 = s

]
being the expected average-reward and expected

discounted value function under the stationary model P. By Eκ[·], we denote the expectation
when the transition kernel at time t is Pt, i.e., the time-varying model.

For the discounted setting, it has been shown in (Nilim & El Ghaoui, 2004) that for a
stationary policy π, any γ ∈ [0, 1), and any s ∈ S,

V π
P,γ(s) = min

κ∈
⊗

t≥0 P
Eπ,κ

[ ∞∑
t=0

γtrt|S0 = s

]

= min
P∈P

Eπ,P

[ ∞∑
t=0

γtrt|S0 = s

]
. (27)

In the following theorem, we prove an analog of (27) for robust average-reward MDPs
that if we consider stationary policies, then the robust average-reward problem with the
time-varying model can be equivalently solved by a stationary model.

Specifically, we define the worst-case average-reward for the stationary transition kernel
model as follows:

min
P∈P

lim
n→∞

Eπ,P

[
1

n

n−1∑
t=0

rt
∣∣S0 = s

]
. (28)

Recall the worst-case average-reward for the time-varying model in (5). We will show that
for any stationary policy, (5) can be equivalently solved by solving (28).

Theorem 13. Consider an arbitrary stationary policy π. Then, the worst-case average-
reward under the time-varying model is the same as the one under the stationary model:

gπP(s) ≜ min
κ∈

⊗
t≥0 P

lim
n→∞

Eκ,π

[
1

n

n−1∑
t=0

rt|S0 = s

]

= min
P∈P

lim
n→∞

EP,π

[
1

n

n−1∑
t=0

rt
∣∣S0 = s

]
. (29)

748



Robust Average-Reward Reinforcement Learning

Similar result also holds for the robust relative value function:

V π
P (s) ≜ min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]

= min
P∈P

EP,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
. (30)

Proof. From the robust Bellman equation in Theorem 7 5, we have that

V π
P (s) + gπP =

∑
a

π(a|s)
(
r(s, a) + σPa

s
(V π

P )
)
. (31)

Denote by argminp∈Pa
s
(p)⊤V π

P ≜ pas
6, and denote by Pπ ≜ {pas : s ∈ S, a ∈ A}. It then

follows that

V π
P (s) =

∑
a

π(a|s)
(
r(s, a)− gπP + σPa

s
(V π

P )
)

=
∑
a

π(a|s)(r(s, a)− gπP) +
∑
a

π(a|s)EPπ [V π
P (S1)|S0 = s,A0 = a]

=
∑
a

π(a|s)(r(s, a)− gπP) + EPπ ,π[V
π
P (S1)|S0 = s]

=
∑
a

π(a|s)(r(s, a)− gπP) + EPπ ,π

[∑
a

π(a|S1)(r(S1, a)− gπP)|S0 = s

]
+ EPπ ,π

[∑
a

π(a|S1)σPa
S1
(V π

P )|S0 = s

]
=
∑
a

π(a|s)(r(s, a)− gπP) + EPπ ,π [r1 − gπP |S0 = s] + EPπ ,π

[
σPA1

S1

(V π
P )|S0 = s

]
=
∑
a

π(a|s)(r(s, a)− gπP) + EPπ ,π

[
r1 − gπP

∣∣S0 = s

]
+ EPπ ,π

[
(pA1

S1
)⊤V π

P |S0 = s

]
= EPπ ,π

[
r0 − gπP + r1 − gπP |S0 = s

]
+ EPπ ,π[V

π
P (S2)|S0 = s]

......

= EPπ ,π

[ ∞∑
t=0

(rt − gπP)|s
]
. (32)

By the definition, the following always hold:

min
κ∈

⊗
t≥0 P

Eκ,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
≤ min

P∈P
EP,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
. (33)

5. The proof of Theorem 7 is independent of Theorem 13 and does not rely on the results to be shown here.
6. We pick one arbitrarily if there are multiple minimizers.
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This hence implies that a stationary transition kernel sequence κ = (Pπ,Pπ, ...) is one of
the worst-case transition kernels for V π

P . Therefore, (30) can be proved.
Consider the transition kernel Pπ. We denote its non-robust average-reward and the

non-robust relative value function by gπPπ and V π
Pπ . By the non-robust Bellman equation

(Sutton & Barto, 2018), we have that

V π
Pπ(s) =

∑
a

π(a|s)(r(s, a)− gπPπ) + EPπ ,π[V
π
Pπ(S1)|s]. (34)

On the other hand, the robust Bellman equation shows that

V π
P (s) = V π

Pπ(s) =
∑
a

π(a|s)(r(s, a)− gπP) + EPπ ,π[V
π
Pπ(S1)|s]. (35)

These two equations imply that gπP = gπPπ , and hence the stationary kernel (Pπ,Pπ, ...) is
also a worst-case kernel of robust average-reward in the time-varying setting. This proves
(29).

Appendix D. Limit Approach

D.1 Proof of Theorem 1

In the proof, unless otherwise specified, we denote by ∥v∥ the l∞ norm of a vector v, and for a

matrix A, we denote by ∥A∥ its matrix norm induced by l∞ norm, i.e., ∥A∥ = supx∈Rd
∥Ax∥∞
∥x∥∞ .

Lemma 3. [Theorem 8.2.3 in (Puterman, 1994)] For any P, γ, π,

V π
P,γ =

1

1− γ
gπP + hπP + fπ

P (γ), (36)

where hπP = Hπ
Prπ, and fπ

P (γ) =
1
γ

∑∞
n=1(−1)n

(
1−γ
γ

)n
(Hπ

P)
n+1rπ.

Following Proposition 8.4.6 in (Puterman, 1994), we can show the following lemma.

Lemma 4. Hπ
P is continuous on Π × P. If Π and P are compact, ∥Hπ

P∥ is uniformly
bounded on Π× P, i.e., there exists a constant h, such that ∥Hπ

P∥ ≤ h for any π,P.

For simplicity, denote by

Sπ
∞(P, γ) ≜

1

γ

∞∑
n=1

(−1)n
(
1− γ

γ

)n

(Hπ
P)

n+1rπ,

Sπ
N (P, γ) ≜

1

γ

N∑
n=1

(−1)n
(
1− γ

γ

)n

(Hπ
P)

n+1rπ. (37)

Clearly Sπ
∞(P, γ) = fπ

P (γ) and limN→∞ Sπ
N (P, γ) = Sπ

∞(P, γ) for any specific π,P.

Lemma 5. There exists δ ∈ (0, 1), such that

lim
N→∞

Sπ
N (P, γ) = Sπ

∞(P, γ) (38)

uniformly on Π× P × [δ, 1].

750



Robust Average-Reward Reinforcement Learning

Proof. Note that ∥Hπ
P∥ ≤ h, hence there exists δ, s.t.

1− δ

δ
h ≤ k < 1 (39)

for some constant k. Then for any γ ≥ δ,

1− γ

γ
h ≤ 1− δ

δ
h ≤ k. (40)

Moreover, note that∥∥∥∥1γ (−1)n
(
1− γ

γ

)n

(Hπ
P)

n+1r

∥∥∥∥ ≤ 1

γ

(
1− γ

γ

)n

hn+1 ≤ hkn

δ
≜ Mn, (41)

which is because ∥A+B∥ ≤ ∥A∥+∥B∥ for induced l∞ norm, ∥Ax∥ ≤ ∥A∥∥x∥ and ∥rπ∥∞ ≤ 1.

Note that

∞∑
n=1

Mn =
h

δ

k

1− k
, (42)

hence by Weierstrass M -test (Rudin, 2022), Sπ
N (P, γ) uniformly converges to Sπ

∞(P, γ) on
Π× P × [δ, 1].

Lemma 6. There exists a uniform constant L, such that

∥Sπ
N (P, γ1)− Sπ

N (P, γ2)∥ ≤ L|γ1 − γ2|, (43)

for any N , π, P, γ1, γ2 ∈ [δ, 1].

Proof. We first show that γSπ
N (P, γ) =

∑N
n=1(−1)n

(
1−γ
γ

)n
(Hπ

P)
n+1rπ ≜ T π

N (P, γ) is uni-

formly Lipschitz w.r.t. the l∞ norm, i.e.,

∥T π
N (P, γ1)− T π

N (P, γ2)∥ ≤ l|γ1 − γ2|, (44)

for any N , π, P, γ1, γ2 ∈ [δ, 1] and some constant l.

Clearly, it can be shown by verifying ∇T π
N (P, γ) is uniformly bounded for any π,N,P

or γ.

First, it can be shown that

∇T π
N (P, γ) =

N∑
n=1

(−1)nn
(
1− γ

γ

)n−1 −1
γ2

(Hπ
P)

n+1rπ, (45)

and moreover

∥∇T π
N (P, γ)∥ ≤

N∑
n=1

n

(
1− γ

γ

)n−1 1

γ2
hn+1 ≜ lN (γ). (46)
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Note that

h
1− γ

γ
lN (γ) =

N∑
n=1

n

(
1− γ

γ

)n 1

γ2
hn+2, (47)

then, we can show that(
1− h

1− γ

γ

)
lN (γ)

=
N∑

n=1

n

(
1− γ

γ

)n−1 1

γ2
hn+1 −

N∑
n=1

n

(
1− γ

γ

)n 1

γ2
hn+2

=
1

γ2
h2 −N

(
1− γ

γ

)N 1

γ2
hN+2 +

N∑
n=2

(
1− γ

γ

)n−1 1

γ2
hn+1

≤ 1

γ2
h2 +

h2

γ2
1− γ

γ
h

1

1− 1−γ
γ h

=
h2

γ2
+

h2

γ2
1− γ

γ
h

1

1− 1−γ
γ h

. (48)

Hence, we have that

∥∇T π
N (P, γ)∥ ≤ lN (γ) ≤ 1

1− h1−γ
γ

(
h2

γ2
+

h2

γ2
1− γ

γ
h

1

1− 1−γ
γ h

)

≤ 1

1− k

(
h2

δ2
+

h2

δ2
k

1− k

)
, (49)

which implies a uniform bound on ∥∇T π
N (P, γ)∥.

Now, we have that

|Sπ
N (P, γ1)− Sπ

N (P, γ2)|

≤ |γ2 − γ1|
γ1γ2

∥T π
N (P, γ1)∥+

∥T π
N (P, γ1)− T π

N (P, γ2)∥
γ2

. (50)

To show ∥T π
N (P, γ)∥ is uniformly bounded, we have that

∥T π
N (P, γ)∥ ≤

N∑
n=1

∥∥∥∥(1− γ

γ

)n

(Hπ
P)

n+1r

∥∥∥∥
≤

N∑
n=1

(
1− γ

γ

)n

hn+1

≤
N∑

n=1

knh

≤ h
k

1− k
. (51)
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Then, it follows that

∥Sπ
N (P, γ1)− Sπ

N (P, γ2)∥

=

∥∥∥∥γ2 − γ1
γ1γ2

T π
N (P, γ1) +

T π
N (P, γ1)− T π

N (P, γ2)

γ2

∥∥∥∥
≤
(

1

δ2
h

k

1− k
+

1

δ

1

1− k

(
h2

δ2
+

h2

δ2
k

1− k

))
|γ1 − γ2|

≜ L|γ1 − γ2|, (52)

where L =
(

1
δ2
h k
1−k + 1

δ
1

1−k

(
h2

δ2
+ h2

δ2
k

1−k

))
is a universal constant that does not depend

on N,P, π or γ.

Lemma 7. Sπ
∞(P, γ) uniformly converges as γ → 1 on Π×P. Also, Sπ

∞(P, γ) is L-Lipschitz
for any γ > δ: for any π,P and any γ1, γ2 ∈ (δ, 1].

∥Sπ
∞(P, γ1)− Sπ

∞(P, γ2)∥ ≤ L|γ1 − γ2|. (53)

Proof. From Lemma 5, for any ϵ, there exists Nϵ, such that for any n ≥ Nϵ, π,P, γ > δ,

∥Sπ
∞(P, γ)− Sπ

n(P, γ)∥ < ϵ. (54)

Thus for any γ1, γ2 ∈ (δ, 1],

∥Sπ
∞(P, γ1)− Sπ

∞(P, γ2)∥
≤ ∥Sπ

∞(P, γ1)− Sπ
n(P, γ1)∥+ ∥Sπ

n(P, γ1)− Sπ
n(P, γ2)∥+ ∥Sπ

n(P, γ2)− Sπ
∞(P, γ2)∥

≤ 2ϵ+ ∥Sπ
n(P, γ1)− Sπ

n(P, γ2)∥
≤ 2ϵ+ L|γ1 − γ2|, (55)

where the last step is from Lemma 6.
Thus, for any ϵ, there exists ω = max {δ, 1− ϵ}, such that for any γ1, γ2 > ω,

∥Sπ
∞(P, γ1)− Sπ

∞(P, γ2)∥ < (2 + L)ϵ, (56)

and hence by Cauchy’s criterion we conclude that Sπ
∞(P, γ) converges uniformly on Π×P .

On the other hand, since (55) holds for any ϵ, it implies that

∥Sπ
∞(P, γ1)− Sπ

∞(P, γ2)∥ ≤ L|γ1 − γ2|, (57)

which completes the proof.

We now prove Theorem 1. For any P, π, we have that

V π
P,γ =

1

1− γ
gπP + hπP + fπ

P (γ). (58)

It then follows that

(1− γ)V π
P,γ = gπP + (1− γ)hπP + (1− γ)fπ

P (γ). (59)
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Clearly (1 − γ)hπP → 0 uniformly on Π × P because ∥hπP∥ = ∥Hπ
Prπ∥ ≤ h is uniformly

bounded. Then,

∥(1− γ1)f
π
P (γ1)− (1− γ2)f

π
P (γ2)∥

≤ ∥(1− γ1)f
π
P (γ1)− (1− γ1)f

π
P (γ2)∥+ ∥(1− γ1)f

π
P (γ2)− (1− γ2)f

π
P (γ2)∥

≤ (1− γ1)L|γ1 − γ2|+ ∥fπ
P (γ2)∥|γ1 − γ2|. (60)

For any π,P, γ > δ,

∥fπ
P (γ)∥ =

∥∥∥∥1γ
∞∑
n=1

(−1)n
(
1− γ

γ

)n

(Hπ
P)

n+1rπ

∥∥∥∥
≤
∣∣∣∣1γ

∞∑
n=1

(
1− γ

γ

)n

hn+1

∣∣∣∣
≤ h

δ

1− γ

γ
h

1

1− 1−γ
γ h

≤ h

δ

k

1− k

≜ cf . (61)

Hence, (1 − γ)fπ
P (γ) → 0 uniformly on Π × P due to the fact that ∥fπ

P (γ)∥ is uniformly
bounded for any π, γ > δ,P.

Then we have that limγ→1(1 − γ)V π
P,γ = gπP uniformly on P × Π. This completes the

proof of Theorem 1.

D.2 Proof of Theorem 2

We first show a lemma which allows us to interchange the order of lim and max.

Lemma 8. If a function f(x, y) converges uniformly to F (x) on X as y → y0, then

max
x

lim
y→y0

f(x, y) = lim
y→y0

max
x

f(x, y). (62)

Proof. For each f(x, y), denote by argmaxx f(x, y) = xy, and hence f(xy, y) ≥ f(x, y) for
any x, y. Also denote by argmaxx F (x) = x′. Now because f(x, y) uniformly converges to
F (x), then for any ϵ, there exists δ′, such that ∀|y − y0| < δ′,

|f(x, y)− F (x)| ≤ ϵ (63)

for any x. Now consider |f(xy, y)− F (x′)| for |y − y0| < δ′. If f(xy, y)− F (x′) > 0, then

|f(xy, y)− F (x′)| = f(xy, y)− F (x′) = f(xy, y)− F (xy) + F (xy)− F (x′) ≤ ϵ; (64)

On the other hand if f(xy, y)− F (x′) < 0, then

|f(xy, y)− F (x′)| = F (x′)− f(xy, y) = F (x′)− f(x′, y) + f(x′, y)− f(xy, y) ≤ ϵ. (65)
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Hence, we showed that for any ϵ, there exists δ′, such that ∀|y − y0| < δ′,

|f(xy, y)− F (x′)| = |max
x

f(x, y)−max
x

F (x)| ≤ ϵ, (66)

and hence

lim
y→y0

max
x

f(x, y) = max
x

F (x) = max
x

lim
y→y0

f(x, y), (67)

and this completes the proof.

Then, we show that the robust discounted value function converges uniformly to the
robust average-reward as the discounted factor approaches 1.

Theorem 14 (Restatement of Theorem 2). The robust discounted value function converges
uniformly to the robust average-reward on Π:

lim
γ→1

(1− γ)V π
P,γ = gπP . (68)

Proof. Due to Theorem 13, for any stationary policy π, gπP(s) = minP∈P gπP(s) under the
stationary model. Hence from the uniform convergence in Theorem 1, we first show the
following:

gπP = min
P∈P

gπP

= min
P∈P

lim
γ→1

(1− γ)V π
P,γ

(a)
= lim

γ→1
min
P∈P

(1− γ)V π
P,γ

= lim
γ→1

(1− γ)V π
P,γ , (69)

where (a) is because Lemma 8. Moreover, note that limγ→1(1 − γ)V π
P,γ = gπP uniformly on

Π×P , hence the convergence in (69) is also uniform on Π. Thus, we complete the proof.

D.3 Proof of Theorem 5

Theorem 15 (Restatement of Theorem 5). VT generated by Algorithm 1 converges to the
robust average-reward gπP as T →∞.

Proof. From discounted robust Bellman equation (Nilim & El Ghaoui, 2004), it can be
shown that

(1− γt)V
π
P,γt = (1− γt)

∑
a

π(a|s)(r(s, a) + γtσPa
s
(V π

P,γt)). (70)
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Then we can show that for any s ∈ S,

|Vt+1(s)− (1− γt+1)V
π
P,γt+1

(s)|
= |Vt+1(s)− (1− γt)V

π
P,γt(s) + (1− γt)V

π
P,γt(s)− (1− γt+1)V

π
P,γt+1

(s)| (71)

≤ |(1− γt)V
π
P,γt(s)− (1− γt+1)V

π
P,γt+1

(s)|+ |Vt+1(s)− (1− γt)V
π
P,γt(s)|

= |(1− γt)V
π
P,γt(s)− (1− γt+1)V

π
P,γt+1

(s)|

+

∣∣∣∣∑
a

π(a|s)
(
(1− γt)r(s, a) + γtσPa

s
(Vt)− ((1− γt)r(s, a) + γtσPa

s
((1− γt)V

π
P,γt))

)∣∣∣∣
= |(1− γt)V

π
P,γt(s)− (1− γt+1)V

π
P,γt+1

(s)|+
∣∣∣∣∑

a

π(a|s)
(
γtσPa

s
(Vt)− γtσPa

s
((1− γt)V

π
P,γt)

)∣∣∣∣
= |(1− γt)V

π
P,γt(s)− (1− γt+1)V

π
P,γt+1

(s)|+ γt

∣∣∣∣∑
a

π(a|s)
(
σPa

s
(Vt)− σPa

s
((1− γt)V

π
P,γt)

)∣∣∣∣.
(72)

If we denote by ∆t ≜ ∥Vt − (1− γt)V
π
P,γt
∥∞, then

∆t+1 (73)

≤ ∥(1− γt)V
π
P,γt − (1− γt+1)V

π
P,γt+1

∥∞ + γtmax
s

{∑
a

π(a|s)
∣∣∣∣σPa

s
(Vt)− σPa

s
((1− γt)V

π
P,γt)

∣∣∣∣}.
It can be easily verified that σPa

s
(V ) is a 1-Lipschitz function, thus the second term in

(73) can be further bounded as∑
a

π(a|s)
∣∣∣∣σPa

s
(Vt)− σPa

s
((1− γt)V

π
P,γt)

∣∣∣∣
≤
∑
a

π(a|s)∥Vt − (1− γt)V
π
P,γt∥∞

= ∥Vt − (1− γt)V
π
P,γt∥∞, (74)

and hence

∆t+1 ≤ ∥(1− γt)V
π
P,γt − (1− γt+1)V

π
P,γt+1

∥∞ + γt∆t. (75)

Recall that

(1− γt)V
π
P,γt = (1− γt)min

P
V π
P,γt . (76)

Let s∗t ≜ argmaxs |(1− γt)V
π
P,γt

(s)− (1− γt+1)V
π
P,γt+1

(s)|. Then it follows that

∥(1− γt)V
π
P,γt − (1− γt+1)V

π
P,γt+1

∥∞ = |(1− γt)V
π
P,γt(s

∗
t )− (1− γt+1)V

π
P,γt+1

(s∗t )|. (77)

Note that from (Nilim & El Ghaoui, 2004; Iyengar, 2005), for any stationary policy

π, there exists a stationary model P such that V π
P,γ(s) = EP,π

[∑∞
t=0 γ

trt|S0 = s

]
≜ V π

P,γ .
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Hence in the following, for each γt, we denote the worst-case transition kernel of V π
P,γt

by
Pt.

If (1− γt)V
π
P,γt

(s∗t ) ≥ (1− γt+1)V
π
P,γt+1

(s∗t ), then

|(1− γt)V
π
P,γt(s

∗
t )− (1− γt+1)V

π
P,γt+1

(s∗t )|
= min

P
(1− γt)V

π
P,γt(s

∗
t )−min

P
(1− γt+1)V

π
P,γt+1

(s∗t )

= (1− γt)V
π
Pt,γt(s

∗
t )− (1− γt+1)V

π
Pt+1,γt+1

(s∗t )

= (1− γt)V
π
Pt,γt(s

∗
t )− (1− γt)V

π
Pt+1,γt(s

∗
t ) + (1− γt)V

π
Pt+1,γt(s

∗
t )− (1− γt+1)V

π
Pt+1,γt+1

(s∗t )

(a)

≤ (1− γt)V
π
Pt+1,γt(s

∗
t )− (1− γt+1)V

π
Pt+1,γt+1

(s∗t )

≤ ∥(1− γt)V
π
Pt+1,γt − (1− γt+1)V

π
Pt+1,γt+1

∥∞, (78)

where (a) is due to (1− γt)V
π
Pt,γt

(s∗t ) = minP(1− γt)V
π
P,γt

(s∗t ) ≤ (1− γt)V
π
Pt+1,γt

(s∗t ).
Now, according to Lemma 3,

(1− γt)V
π
Pt+1,γt = gπPt+1

+ (1− γt)h
π
Pt+1

+ (1− γt)f
π
Pt+1

(γt), (79)

(1− γt+1)V
π
Pt+1,γt+1

= gπPt+1
+ (1− γt+1)h

π
Pt+1

+ (1− γt+1)f
π
Pt+1

(γt+1). (80)

Hence, for any γt > δ, (78) can be further bounded as

∥(1− γt)V
π
Pt+1,γt − (1− γt+1)V

π
Pt+1,γt+1

∥∞
= ∥(γt+1 − γt)h

π
Pt+1

+ (1− γt)f
π
Pt+1

(γt)− (1− γt+1)f
π
Pt+1

(γt+1)∥∞
≤ (γt+1 − γt)∥hπPt+1

∥∞ + ∥fπ
Pt+1

(γt)− fπ
Pt+1

(γt+1)∥∞ + ∥γt+1f
π
Pt+1

(γt+1)− γtf
π
Pt+1

(γt)∥∞
(a)

≤ h(γt+1 − γt) + L(γt+1 − γt) + ∥γt+1f
π
Pt+1

(γt+1)− γtf
π
Pt+1

(γt)∥∞
≤ h(γt+1 − γt) + L(γt+1 − γt) + ∥γt+1f

π
Pt+1

(γt+1)− γt+1f
π
Pt+1

(γt)∥∞
+ ∥γt+1f

π
Pt+1

(γt)− γtf
π
Pt+1

(γt)∥∞
≤ h(γt+1 − γt) + L(γt+1 − γt) + γt+1∥fπ

Pt+1
(γt+1)− fπ

Pt+1
(γt)∥∞ + ∥fπ

Pt+1
(γt)∥∞(γt+1 − γt)

(b)

≤ (h+ L+ γt+1L+ sup
π,P,γ

∥fπ
P (γ)∥∞)(γt+1 − γt)

≤ K(γt+1 − γt), (81)

where (a) is from Lemma 7 for any γt > δ, cf is defined in (61) and K ≜ h + 2L + cf is a
uniform constant; And (b) is from Lemma 7.

Similarly, the inequality also holds for the case when (1−γt)V π
P,γt

(s∗t ) ≤ (1−γt+1)V
π
P,γt+1

(s∗t ).
Thus we have that for any t such that γt > δ,

∆t+1 ≤ K(γt+1 − γt) + γt∆t, (82)

where K is a uniform constant.
Following Lemma 8 from (Tewari & Bartlett, 2007), we have that ∆t → 0. Note that

∥Vt − gπP∥∞ ≤ ∥Vt − (1− γt)V
π
P,γt∥∞ + ∥(1− γt)V

π
P,γt − gπP∥∞ = ∆t + ∥(1− γt)V

π
P,γt − gπP∥∞.

(83)
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Together with Theorem 2, we further have that

lim
t→∞
∥Vt − gπP∥∞ = 0, (84)

which completes the proof.

D.4 Proof of Theorem 6

Note that the optimal robust average-reward is defined as

g∗P(s) ≜ max
π

gπP(s). (85)

We further define

V ∗
P,γ(s) ≜ max

π
V π
P,γ(s). (86)

Theorem 16 (Restatement of Theorem 6). VT generated by Algorithm 2 converges to the
optimal robust average-reward g∗P as T →∞.

Proof. Firstly, from the uniform convergence in Theorem 2, it can be shown that

lim
t→∞

(1− γt)V
∗
P,γt = g∗P . (87)

We then show that for any s ∈ S,

|Vt+1(s)− (1− γt+1)V
∗
P,γt+1

(s)|
≤ |Vt+1(s)− (1− γt)V

∗
P,γt(s)|+ |(1− γt)V

∗
P,γt(s)− (1− γt+1)V

∗
P,γt+1

(s)|
(a)
= |(1− γt)V

∗
P,γt(s)− (1− γt+1)V

∗
P,γt+1

(s)|

+

∣∣∣∣max
a

(
(1− γt)r(s, a) + γtσPa

s
(Vt)

)
−max

a

(
((1− γt)r(s, a) + γtσPa

s
((1− γt)V

∗
P,γt))

)∣∣∣∣
≤ |(1− γt)V

∗
P,γt(s)− (1− γt+1)V

∗
P,γt+1

(s)|

+max
a

∣∣∣∣(1− γt)r(s, a) + γtσPa
s
(Vt)− ((1− γt)r(s, a) + γtσPa

s
((1− γt)V

∗
P,γt))

∣∣∣∣, (88)

where (a) is because the optimal robust Bellman equation, and the last inequality is from
the fact that |maxx f(x)−maxx g(x)| ≤ maxx |f(x)− g(x)|.

Hence (88) can be further bounded as

|Vt+1(s)− (1− γt+1)V
∗
P,γt+1

(s)|

≤ |(1− γt)V
∗
P,γt(s)− (1− γt+1)V

∗
P,γt+1

(s)|+ γtmax
a

∣∣∣∣σPa
s
(Vt)− σPa

s
((1− γt)V

∗
P,γt)

∣∣∣∣. (89)

If we denote by ∆t ≜ ∥Vt − (1− γt)V
∗
P,γt
∥∞, then

∆t+1 ≤ ∥(1− γt)V
∗
P,γt − (1− γt+1)V

∗
P,γt+1

∥∞ + γtmax
s.a

∣∣∣∣σPa
s
(Vt)− σPa

s
((1− γt)V

∗
P,γt)

∣∣∣∣.
(90)
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Since the support function σPa
s
(V ) is 1-Lipschitz, then it can be shown that for any s, a,∣∣∣∣σPa

s
(Vt)− σPa

s
((1− γt)V

∗
P,γt)

∣∣∣∣ ≤ ∥Vt − (1− γt)V
∗
P,γt∥∞. (91)

Hence

∆t+1 ≤ ∥(1− γt)V
∗
P,γt − (1− γt+1)V

∗
P,γt+1

∥∞ + γt∆t. (92)

Similar to (81) in Theorem 5, we can show that

∥(1− γt)V
∗
P,γt − (1− γt+1)V

∗
P,γt+1

∥∞ ≤ K|γt − γt+1|, (93)

and similar to Lemma 8 from (Tewari & Bartlett, 2007),

lim
t→∞

∆t = 0. (94)

Moreover, note that

∥Vt − g∗P∥∞
≤ ∥Vt − (1− γt)V

∗
P,γt∥∞ + ∥(1− γt)V

∗
P,γt − g∗P∥∞

= ∆t + ∥(1− γt)V
∗
P,γt − g∗P∥∞, (95)

which together with (87) implies that

∥Vt − g∗P∥∞ → 0, (96)

and hence it completes the proof.

Lemma 9. There exists a deterministic optimal policy, i.e., ∃π∗ ∈ ΠD, s.t. gπ
∗

P = g∗P =
maxπ∈Π gπP .

D.5 Proof of Lemma 9

Lemma 10. (Restatement of Lemma 9). There exists a deterministic optimal policy, i.e.,
∃π∗ ∈ ΠD, s.t. gπ

∗
P = g∗P = maxπ∈Π gπP .

Proof. Assume that there is no deterministic optimal robust policy, i.e., there exists a
strictly random policy πr ∈ Π, such that for any deterministic policy π ∈ ΠD,

gπr
P > gπP . (97)

According to Theorem 2, we have that

lim
γ→1

(1− γ)V πr
P,γ = gπr

P , (98)

lim
γ→1

(1− γ)V π
P,γ = gπP , ∀π ∈ ΠD. (99)
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Since there are only finite number of deterministic policies, there exists δ < 1, such that for
any γ > δ,

V πr
P,γ > V π

P,γ , ∀π ∈ ΠD. (100)

This implies that for γ > δ, the random policy πr is better than all the deterministic policies,
i.e.,

V πr
P,γ > max

π∈ΠD

V π
P,γ . (101)

However, Theorem 3.1 of (Iyengar, 2005) implies that there exists deterministic optimal
robust policy, i.e.,

max
π∈ΠD

V π
P,γ = max

π∈Π
V π
P,γ ≥ V πr

P,γ , (102)

which contradicts to (101). Hence it implies that there exists a deterministic optimal robust
policy, and completes the proof.

D.6 Proof of Theorem 4

Theorem 17 (Restatement of Theorem 4). There exists 0 < δ < 1, such that for any
γ > δ, a deterministic optimal robust policy for robust discounted value function V ∗

P,γ is
also an optimal policy for robust average-reward, i.e.,

V π∗
P,γ = V ∗

P,γ . (103)

Moreover, when argmaxπ∈ΠD gπP is a singleton, there exists a unique Blackwell optimal
policy.

Proof. According to Lemma 9, there exists π∗ ∈ ΠD such that

g∗P = gπ
∗

P . (104)

Assume the robust average-reward of all deterministic policies are sorted in a descending
order:

g∗P = g
π∗
1

P = g
π∗
2

P = ... = g
π∗
m

P > gπ1
P ≥ ... ≥ gπn

P (105)

for all π∗
i , πi ∈ ΠD, and we define Π∗ = {π∗

i : i = 1, ...,m}. Denote by d = g
π∗
i

P − gπ1
P .

From Theorem 2, we know that for any π ∈ ΠD,

lim
γ→1

(1− γ)V π
P,γ = gπP . (106)

Because the set ΠD is finite, for any ϵ < d
2 , there exists δ′ < 1, such that for any γ > δ′, π∗

i

and πj ,

|(1− γ)V
π∗
i

P,γ − g∗P | < ϵ, (107)

|(1− γ)V
πj

P,γ − g
πj

P | < ϵ. (108)
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It hence implies that

(1− γ)V
π∗
i

P,γ ≥ (d− 2ϵ) + (1− γ)V
πj

P,γ > (1− γ)V
πj

P,γ , (109)

and

V
π∗
i

P,γ > V
πj

P,γ . (110)

Note that from Theorem 3.1 in (Iyengar, 2005), i.e., maxπ∈ΠD V π
P,γ = V ∗

P,γ , we have that

for any γ, there exists a deterministic policy π ∈ ΠD, such that V ∗
P,γ = V π

P,γ . Together with
(110), it implies that all the possible optimal robust polices of V π

P,γ belong to {π∗
1, ...π

∗
m},

i.e., the set Π∗. Hence, there exists π∗
j ∈ Π∗, such that

V
π∗
j

P,γ = max
π∈ΠD

V π
P,γ = V ∗

P,γ . (111)

For the second part, when the optimal robust policy of robust average-reward is unique,
i.e., Π∗ = {π∗}. Then from the results above, there exists δ′, such that for any γ > δ′,
V π∗
P,γ > V π

P,γ for any π∗ ̸= π ∈ ΠD, and hence π∗ is the optimal policy for discounted robust
MDPs, which is the unique Blackwell optimal policy.

Appendix E. Direct Approach

Recall that

V π
P (s) ≜ min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)
∣∣S0 = s

]
, (112)

where

gπP = min
κ∈

⊗
t≥0 P

lim
n→∞

Eκ,π

[
1

n

n−1∑
t=0

rt|S0 = s

]
. (113)

We first show that the robust relative function is always finite.

Lemma 11. For any π, V π
P is finite.

Proof. According to Theorem 13, V π
P = minP∈P V π

P = minP∈P EP,π

[∑∞
t=0(rt − gπP)

]
. Note

that V π
P can be rewritten as

V π
P = min

P∈P
EP,π

[ ∞∑
t=0

(rt − gπP)

]

= min
P∈P

EP,π

[
lim
n→∞

n∑
t=0

(rt − gπP)

]

= min
P∈P

EP,π

[
lim
n→∞

n∑
t=0

(rt − gπP + gπP − gπP)

]
= min

P∈P
EP,π

[
lim
n→∞

(Rn − ngπP + ngπP − ngπP)

]
, (114)
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where Rn =
∑n

t=0 rt. Note that for any P ∈ P and n, ngπP ≥ ngπP , hence

lim
n→∞

(Rn − ngπP + ngπP − ngπP) ≥ lim
n→∞

(Rn − ngπP), (115)

and thus the lower bound of V π
P can be derived as follows,

V π
P ≥ min

P∈P
EP,π

[ ∞∑
t=0

(rt − gπP)

]
= min

P∈P
V π
P

= min
P∈P

Hπ
Prπ. (116)

which is finite due to the fact that Hπ
P is continuous on the compact set P.

From Theorem 13, we denote the stationary worst-case transition kernel of gπP by Pg.
Then the upper bound of V π

P can be bounded by noting that

V π
P = min

P∈P
EP,π

[ ∞∑
t=0

(rt − gπPg
)

]

≤ EPg ,π

[ ∞∑
t=0

(rt − gπPg
)

]
= V π

Pg
, (117)

which is also finite and Pg denotes the worst-case transition kernel of gπP . Hence we show
that V π

P is finite for any π and hence complete the proof.

After showing that the robust relative value function is well-defined, we show the fol-
lowing robust Bellman equation for average-reward robust MDPs.

Theorem 18 (Restatement of Theorem 7). For any s and π, (V π
P , gπP) is a solution to the

following robust Bellman equation:

V (s) + g =
∑
a

π(a|s)
(
r(s, a) + σPa

s
(V )

)
. (118)

And if (g, V ) is a solution to the robust Bellman equation

V (s) =
∑
a

π(a|s)(r(s, a)− g + σPa
s
(V )), ∀s, (119)

then 1) g = gπP ; 2) PV ∈ Ωπ
g ; 3) V = V π

PV
+ ce for some c ∈ R.

Proof. We first show the first part. From the definition,

V π
P (s) = min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)
∣∣S0 = s

]
, (120)
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hence

V π
P (s) = min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)
∣∣S0 = s

]

= min
κ∈

⊗
t≥0 P

Eκ,π

[
(r0 − gπP) +

∞∑
t=1

(rt − gπP)
∣∣S0 = s

]

= min
κ∈

⊗
t≥0 P

{∑
a

π(a|s)r(s, a)− gπP + Eκ,π

[ ∞∑
t=1

(rt − gπP)
∣∣S0 = s

]}

=
∑
a

π(a|s) (r(s, a)− gπP) + min
κ∈

⊗
t≥0 P

∑
a,s′

π(a|s)Pa
s,s′Eκ,π

[ ∞∑
t=1

(rt − gπP)|S1 = s′
]

=
∑
a

π(a|s) (r(s, a)− gπP)

+ min
P0∈P

min
κ=(P1,...)∈

⊗
t≥1 P

∑
a,s′

π(a|s)(P0)
a
s,s′Eκ,π

[ ∞∑
t=1

(rt − gπP)|S1 = s′
]

=
∑
a

π(a|s) (r(s, a)− gπP)

+ min
P0∈P

∑
a,s′

π(a|s)(P0)
a
s,s′ min

κ=(P1,...)∈
⊗

t≥1 P

{
Eκ,π

[ ∞∑
t=1

(rt − gπP)|S1 = s′
]}

=
∑
a

π(a|s) (r(s, a)− gπP) +
∑
a

π(a|s)
∑
s′

min
pa
s,s′∈P

a
s

pas,s′V
π
P (s′)

=
∑
a

π(a|s) (r(s, a)− gπP) +
∑
a

π(a|s)σPa
s
(V π

P )

=
∑
a

π(a|s)
(
r(s, a)− gπP + σPa

s
(V π

P )
)
. (121)

This hence completes the proof.

We then show the second part. 1). The robust Bellman equation in (119) can be
rewritten as

g + V (s)− rπ(s) = σPs(V ), ∀s ∈ S. (122)

From the definition, it follows that

σPs(V ) =
∑
a

π(a|s) min
Pa
s∈Pa

s

Pa
sV. (123)

Hence, for any transition kernel P = (Pa
s) ∈

⊗
s,a Pa

s ,

g + V (s)− rπ(s)−
∑
a

π(a|s)Pa
sV ≤ 0, ∀s. (124)
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It can be further rewritten in matrix form as:

ge ≤ rπ + (Pπ − I)V, (125)

where Pπ is the state transition matrix induced by π and P, i.e., the s-th row of Pπ is∑
a

π(a|s)Pa
s . (126)

Note that Pπ has non-negative components since it is a transition matrix. Multiplying by
Pπ on both sides, we have that

Pπge = ge ≤ Pπrπ + Pπ(Pπ − I)V,

ge ≤ (Pπ)2rπ + (Pπ)2(Pπ − I)V,

...

ge ≤ (Pπ)n−1rπ + (Pπ)n−1(Pπ − I)V. (127)

Now, by summing up all these inequalities in (125) and (127), we have that

nge ≤
n−1∑
i=0

(Pπ)irπ + ((Pπ)n − I)V, (128)

and hence,

ge ≤
∑n−1

i=0 (P
π)irπ

n
+

((Pπ)n − I)V

n
. (129)

Let n→∞, and we have that

ge ≤ lim
n→∞

∑n−1
i=0 (P

π)irπ
n

+ lim
n→∞

((Pπ)n − I)V

n
= gπPe, (130)

where the last inequality is from the definition of gπP and the fact that limn→∞
((Pπ)n−I)V

n =
0. Hence, g ≤ gπP for any P ∈

⊗
s,a Pa

s .
Consider the worst-case transition kernel PV of V . The robust Bellman equation can

be equivalently rewritten as

ge = rπ − V + Pπ
V V. (131)

This means that (g, V ) is a solution to the non-robust Bellman equation for transition kernel
PV and policy π:

xe = rπ − Y + Pπ
V Y. (132)

Thus, by Thm 8.2.6 from (Puterman, 1994),

g = gπPV
, (133)

V = V π
PV

+ ce, for some c ∈ R. (134)
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However, note that

gπPV
= g ≤ gπP = min

P∈P
gπP ≤ gπPV

, (135)

thus,

gπPV
= g = gπP . (136)

2). From (136),

gπPV
= gπP . (137)

It then follows from the definition of Ωπ
g that PV ∈ Ωπ

g .
3). Since (g, V ) is a solution to the non-robust Bellman equation

xe = rπ − Y + Pπ
V Y, (138)

the claim then follows from Theorem 8.2.6 in (Puterman, 1994).

Theorem 19. [Restatement of Theorem 8] If (g,Q) is a solution to the optimal robust
Bellman equation

Q(s, a) = r(s, a)− g + σPa
s
(VQ), ∀s, a, (139)

then 1) g = g∗P ; 2) the greedy policy w.r.t. Q: πQ(s) = argmaxaQ(s, a) is an optimal robust
policy; 3) VQ = V

πQ

P + ce for some P ∈ Ω
πQ
g , c ∈ R.

Proof. In this proof, for two vectors v, w ∈ Rn, v ≥ w denotes that v(s) ≥ w(s) entry-wise.
Taking the maximum on both sides of (139) w.r.t. a, we have that

max
a

Q(s, a) = max
a
{r(s, a)− g + σPa

s
(VQ)}, ∀s ∈ S. (140)

This is equivalent to

VQ(s) = max
a
{r(s, a)− g + σPa

s
(VQ)}, ∀s ∈ S, (141)

and hence (g, VQ) is a solution to (141). We hence only need to show the conclusion for any
solution (g, V ) to (141).

Let B(g, V )(s) ≜ maxa
{
r(s, a)− g + σPa

s
(V )− V (s)

}
. Since (g, V ) is a solution to (14),

hence for any a ∈ A and any s ∈ S,

r(s, a)− g + σPa
s
(V )− V (s) ≤ 0, (142)

from which it follows that for any policy π,

g(s) ≥ rπ(s) +
∑
a

π(a|s)σPa
s
(V )− V (s) ≜ rπ(s) +

∑
a

π(a|s)(pas)⊤V − V (s), (143)

where rπ(s) ≜
∑

a π(a|s)r(s, a), pas ≜ argminp∈Pa
s
p⊤V , and PV = {pas : s ∈ S, a ∈ A}. We

also denotes the state transition matrix induced by π and PV by Pπ
V .
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Using these notations, and rewrite (143), we have that

g1 ≥ rπ + (Pπ
V − I)V. (144)

Since the inequality in (144) holds entry-wise, all entries of Pπ
V are positive, then by

multiplying both sides of (144) by Pπ
V , we have that

g1 = gPπ
V 1 ≥ Pπ

V rπ + Pπ
V (P

π
V − I)V. (145)

Multiplying the both sides of (145) by Pπ
V , and repeatedly doing that, we have that

g1 ≥ (Pπ
V )

2rπ + (Pπ
V )

2(Pπ
V − I)V, (146)

...
... (147)

g1 ≥ (Pπ
V )

n−1rπ + (Pπ
V )

n−1(Pπ
V − I)V. (148)

Summing up these inequalities from (144) to (148), we have that

ng1 ≥ (I + Pπ
V + ...+ (Pπ

V )
n−1)rπ + (I + Pπ

V + ...+ (Pπ
V )

n−1)(Pπ
V − I)V, (149)

and from which, it follows that

g1 ≥ 1

n
(I + Pπ

V + ...+ (Pπ
V )

n−1)rπ +
1

n
(I + Pπ

V + ...+ (Pπ
V )

n−1)(Pπ
V − I)V

=
1

n
(I + Pπ

V + ...+ (Pπ
V )

n−1)rπ +
1

n
((Pπ

V )
n − I)V. (150)

It can be easily verified that limn→∞
1
n((P

π
V )

n − I)V = 0, and hence it implies that

g1 ≥ lim
n→∞

1

n
(I + Pπ

V + ...+ (Pπ
V )

n−1)rπ

= lim
n→∞

1

n
EPπ

V ,π

[ n∑
t=0

rt

]
= gπPπ

V
1

≥ gπP1. (151)

Since (151) holds for any policy π, it follows that g ≥ g∗P . On the other hand, since B(g, V ) =
0, there exists a policy τ such that

g1 = rτ + (Pτ
V − I)V, (152)

where rτ ,P
τ
V are similarly defined as for π. From Theorem 13, there exists a stationary

transition kernel Pτ
ave such that gτP = gτPτ

ave
. We denote the state transition matrix induced

by τ and Pτ
ave by Pτ . Then because Pτ

V is the worst-case transition of V , it follows that

Pτ
V V ≤ PτV. (153)

Thus

g1 ≤ rτ + (Pτ − I)V. (154)
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Similarly, we have that

g1 ≤ (Pτ )j−1rτ + (Pτ )j−1(Pτ − I)V, (155)

for j = 2, ..., n. Summing these inequalities together we have that

ng1 ≤ (I + Pτ + ...+ (Pτ )n−1)rτ + (I + Pτ + ...+ (Pτ )n−1)(Pτ )n−1(Pτ − I)V

= (I + Pτ + ...+ (Pτ )n−1)rτ + ((Pτ )n − I)V. (156)

Hence

g1 ≤ lim
n→∞

1

n
EPτ

ave,τ

[ n∑
t=0

rt

]
= gτPτ

ave
1 = gτP1 ≤ g∗P1. (157)

Thus g = g∗P . This hence proves (1).
To prove (2), note that for any stationary policy π, we denote by

σPπ(V ) ≜ (
∑
a

π(a|s1)σPa
s1
(V ), ...,

∑
a

π(a|s|S|)σPa
s|S|

(V ))

being a vector in R|S|. Then (15) is equivalent to

rπ∗ + σPπ∗ (V ) = max
π
{rπ + σPπ(V )} . (158)

Hence,

rπ∗ − g + σPπ∗ (V )− V = max
π
{rπ − g + σPπ(V )− V } . (159)

Since (g, V ) is a solution to (14), it follows that

rπ∗ − g + σPπ∗ (V )− V = 0. (160)

According to the robust Bellman equation (12), (gπ
∗

P , V π∗
P ) is a solution to (160). Thus from

Theorem 19, gπ
∗

P = g∗P , and hence π∗ is an optimal robust policy.
To prove (3), recall that VQ(s) = maxaQ(s, a). It can be also written as

VQ(s) =
∑
a

πQ(a|s)Q(s, a). (161)

Here, we slightly abuse the notation of πQ, and use πQ(s) and πQ(a|s) interchangeably.
Then, the optimal robust Bellman equation in (140) can be rewritten as

Q(s, πQ(s)) = r(s, πQ(s))− g + σ
P

πQ(s)
s

(∑
a

πQ(a|·)Q(·, a)
)
. (162)

Moreover, if we denote by W (s) = Q(s, a) = Q(s, πQ(s)) = maxaQ(s, a), then the equation
above is equivalent to

W (s) =
∑
a

πQ(a|s)(r(s, a)− g + σPa
s
(W )). (163)
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Therefore, (W, g) is a solution to the robust Bellman equation for the policy πQ in Theorem
7. By Theorem 7, we have that

g = g
πQ

P , (164)

W = V
πQ

P + ce, (165)

for some P ∈ Ω
πQ
g and c ∈ R.

Combining this with the claim (1) implies that πQ is an optimal robust policy. Claims
(2) and (3) are thus proved.

Theorem 20 (Restatement of Theorem 9). (wT , Vt) in Algorithm 3 converges to a solution
of (14).

Before showing this theorem, we first present the robust aperiodic transform in the next
lemma.

Lemma 12. (Robust Aperiodic Transform) Assume a robust MDP (S,A,P, r) satisfies
Assumption 1. Construct another uncertainty set as follows:

P̃a
s = {P̃a

s = (1− τ)Pa
s + τ1s : P

a
s ∈ Pa

s },

where τ ∈ (0, 1). Then the optimal robust policies for both robust MDPs are the same.

Proof. The result can be straightforwardly derived by the following claim: for any π and
P ∈ P , gπP = gπ

P̃
.

Note that the discounted value function V π
P,γ = (I − γPπ)−1rπ. Hence we have that

V π
P̃,γ

= (I − γP̃π)−1rπ

= (I − γ((1− τ)Pπ + τI))−1rπ

= ((1− τγ)I − γ(1− τ)Pπ)−1rπ

=

(
(1− τγ)

(
I − γ(1− τ)

1− τγ
Pπ

))−1

rπ

=
1

1− τγ

(
I − γ(1− τ)

1− τγ
Pπ

)−1

rπ

=
1

1− τγ
V π

P, γ(1−τ)
1−τγ

. (166)

Moreover, by noting 1− γ(1−τ)
1−τγ = 1−γ

1−τγ , we have

(1− γ)V π
P̃,γ

=
1− γ

1− τγ
V π

P, γ(1−τ)
1−τγ

=
1− γ

1− τγ
V π

P, γ(1−τ)
1−τγ

=

(
1− γ(1− τ)

1− τγ

)
V π

P, γ(1−τ)
1−τγ

. (167)
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Now set γ → 1 on both sides, we have that

gπ
P̃
= lim

γ→1
(1− γ)V π

P̃,γ
= lim

γ→1

(
1− γ(1− τ)

1− τγ

)
V π

P, γ(1−τ)
1−τγ

= gπP, (168)

where the last equation is from the fact that γ → 1 implies γ(1−τ)
1−τγ → 1, and hence proves

the claim and the lemma.

The reason we apply such a robust aperiodic transform is that the modified transi-
tion kernel is always aperiodic (since P̃π(s|s), (P̃π)2(s|s) > 0, ∀s). Hence Assumption 1 is
equivalent to the following strong assumption:

Assumption 5. There exists a positive integer J such that for any P = {pas ∈ ∆(S)} ∈ P
and any stationary deterministic policy π, there exists κ > 0 and a state s ∈ S, such that
((Pπ)J)x,s ≥ κ, ∀x ∈ S.

This assumption is shown to be equivalent to assuming each transition kernel in the
uncertainty set can induce a unichain and aperiodic Markov chain under any determinisit
policy (Bertsekas, 2011). Under the robust aperiodic transform, the modified uncertainty
set hence satisfy this assumption. Without loss of generality, we prove the convergence
under this assumption.

Proof. We first denote the update operator as

Lv(s) ≜ max
a

(r(s, a) + σPa
s
(v)). (169)

Now, consider sp(Lv−Lu). Denote by ś ≜ argmaxs(Lv(s)−Lu(s)) and s̀ ≜ argmins(Lv(s)−
Lu(s)). Also denote by av ≜ argmaxa(r(ś, a)+σPa

ś
(v)) and au ≜ argmaxa(r(ś, a)+σPa

ś
(u))

Then

Lv(ś)− Lu(ś) = max
a

(r(ś, a) + σPa
ś
(v))−max

a
(r(ś, a) + σPa

ś
(u))

≜ r(ś, av) + σPav
ś
(v)− (r(ś, au) + σPau

ś
(u))

≤ r(ś, av) + σPav
ś
(v)− (r(ś, av) + σPav

ś
(u))

= σPav
ś
(v)− σPav

ś
(u)

≜ (pav ,vś )⊤v − (pav ,uś )⊤u, (170)

where pav ,vś = argminp∈Pav
ś

p⊤v and pav ,uś = argminp∈Pav
ś

p⊤u. Thus (170) can be further
bounded as

Lv(ś)− Lu(ś)

≤ (pav ,vś )⊤v − (pav ,uś )⊤u

≤ (pav ,uś )⊤(v − u). (171)

Similarly,

Lv(s̀)− Lu(s̀) ≥ (pau,vs̀ )⊤(v − u). (172)
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Thus

sp(Lv − Lu) ≤ (pav ,uś )⊤(v − u)− (pau,vs̀ )⊤(v − u). (173)

Now denote by v − u ≜ (x1, x2, ..., xn), p
av ,u
ś = (p1, ..., pn) and pau,vs̀ = (q1, ..., qn). Further

denote by bi ≜ min{pi, qi} Then
n∑

i=1

pixi −
n∑

i=1

qixi

=
n∑

i=1

(pi − bi)xi −
n∑

i=1

(qi − bi)xi

≤
n∑

i=1

(pi − bi)max{xi} −
n∑

i=1

(qi − bi)min{xi}

=

n∑
i=1

(pi − bi)sp(x) +

( n∑
i=1

(pi − bi)−
n∑

i=1

(qi − bi)

)
min{xi}

=

(
1−

n∑
i=1

bi

)
sp(x). (174)

Thus we showed that

sp(Lv − Lu) ≤
(
1−

n∑
i=1

bi

)
sp(v − u). (175)

Now from Assumption 1, and following Theorem 8.5.3 from (Puterman, 1994), it can be
shown that there exists 1 > λ > 0, such that for any a, u, v,

n∑
i=1

bi ≥ λ. (176)

Further, following Theorem 8.5.2 in (Puterman, 1994), it can be shown that L is a J-step
contraction operator for some integer J , i.e.,

sp(LJv − LJu) ≤ (1− λ)sp(v − u). (177)

Then, it can be shown that the relative value iteration converges to a solution of the
optimal equation similar to the relative value iteration for non-robust MDPs under the
average-reward criterion (Theorem 8.5.7 in (Puterman, 1994), Section 1.6.4 in(Sigaud &
Buffet, 2013)), and hence (wt, Vt) converges to a solution to (14) as ϵ→ 0.

Appendix F. Robust RVI TD Method for Policy Evaluation

We define the following notation:

rπ(s) ≜
∑
a

π(a|s)r(s, a),

σPs(V ) ≜
∑
a

π(a|s)σPa
s
(V ),

σP(V ) ≜ (σPs1
(V ), σPs2

(V ), ..., σPs|S|
(V )) ∈ R|S|.
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F.1 Proof of Lemma 1

We construct the following example.

Example 1. Consider an MDP with 3 states (1,2,3) and only one action a, and set a (s, a)-
rectangular uncertainty set P = Pa

1

⊗
Pa
2

⊗
Pa
3 where Pa

1 = {Pa
11,P

a
12}, Pa

2 = {(0, 0, 1)⊤}
and Pa

3 = {(0, 1, 0)⊤}, where Pa
11 = (0, 1, 0)⊤,Pa

12 = (0, 0, 1)⊤. Hence, the uncertainty
set contains two transition kernels P = {P1,P2}. The reward of each state is set to be
r = (r1, r2, r3). The only stationary policy π in this example is π(i) = a, ∀i.

Note that this robust MDP is a unichain and hence satisfies Assumption 3 with gπP1
(1) =

gπP1
(2) = gπP1

(3), gπP2
(1) = gπP2

(2) = gπP2
(3).

Under both transition kernels P1,P2, the average-reward are identical: gπP1
= gπP2

=
0.5r2 + 0.5r3. Hence, both P1,P2 are the worst-case transition kernels.

According to Section A.5 of (Puterman, 1994), the relative value functions w.r.t. P1,P2

can be computed as

V π
P1

=

(
r1 −

1

4
r2 −

3

4
r3,

1

4
r2 −

1

4
r3,−

1

4
r2 +

1

4
r3

)⊤
,

V π
P2

=

(
r1 −

3

4
r2 −

1

4
r3,

1

4
r2 −

1

4
r3,−

1

4
r2 +

1

4
r3

)⊤
.

When r3 > r2, only V π
P1

is the solution to (12); and when r2 > r3, only V π
P2

is the solution
to (12). Hence, this proves Lemma 1 and implies that not any relative value function w.r.t.
a worst-case transition kernel is a solution to (12).

F.2 Proof of Theorem 10

Theorem 21. (Restatement of Theorem 10) Under Assumptions 3,2,4, (f(Vn), Vn) con-
verges to a (possible sample path dependent) solution to (12) a.s..

We first show the stability of the robust RVI TD algorithm in the following lemma.

Lemma 13. Algorithm 4 remains bounded during the update, i.e.,

sup
n
∥Vn∥ <∞, a.s.. (178)

Proof. Denote by

h(V ) ≜ rπ + σP(V )− f(V )e− V. (179)

Then the update of robust RVI TD can be rewritten as

Vn+1 = Vn + αn(h(Vn) +Mn+1), (180)

where Mn+1 ≜ T̂Vn − rπ − σP(V ) is the noise term.
Further, define the limit function h∞:

h∞(V ) ≜ lim
c→∞

h(cV )

c
. (181)
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Then, from σPa
s
(cV ) = cσPa

s
(V ) and f(cV ) = cf(V ), it follows that

h∞(V ) = lim
c→∞

rπ
c

+ σP(V )− f(V )e− V = σP(V )− f(V )e− V. (182)

According to Section 2.1 and Section 3.2 of (Borkar, 2009), it suffices to verify the
following assumptions:

(1). h is Lipschitz;

(2). Stepsize αn satisfies Assumption 4;

(3). Denoting by Fn the σ-algebra generated by V0,M1, ...,Mn, then E[Mn+1|Fn] = 0,
E[∥Mn+1∥2|Fn] ≤ K(1 + ∥Vn∥2) for some constant K > 0.

(4). h∞ has the origin as its unique globally asymptotically stable equilibrium.

First, note that

∥h(V1)− h(V2)∥

= max
s

∣∣∣∣∣∑
a

π(a|s)(σPa
s
(V1)− σPa

s
(V2))− (f(V1)− f(V2))− (V1(s)− V2(s))

∣∣∣∣∣
≤ max

s

{∣∣∣∣∣∑
a

π(a|s)(σPa
s
(V1)− σPa

s
(V2))

∣∣∣∣∣+ |(f(V1)− f(V2))|+ |(V1(s)− V2(s))|

}
≤ (2 + Lf )∥V1 − V2∥, (183)

where the last inequality follows from the fact that the support function σP(·) is 1-Lipschitz
and the assumptions on f in Assumption 2. Thus, h is Lipschitz, which verifies (1).

It is straightforward that (3) is satisfied if E[T̂Vn|Fn] = rπ+σP(Vn) and Var[T̂Vn|Fn] ≤
K(1+∥Vn∥2). As discussed in Section 5.1, we assume the existence of an unbiased estimator
T̂ with bounded variance here, and we will construct the estimator in Section 5.3.

Then, it suffices to verify condition (4), i.e., to show that the ODE

ẋ(t) = h∞(x(t)) (184)

has 0 as its unique globally asymptotically stable equilibrium.

Define an operator T0(V )(s) ≜
∑

a π(a|s)σPa
s
(V ). Then, any equilibrium W of (184)

satisfies

T0(W )− f(W )e−W = 0. (185)

This equation can be further rewritten as a set of equations:{
W =T0(W )− ge,

g =f(W ).
(186)

The equation in (186) is the robust Bellman equation for a zero-reward robust MDP. Hence,
from Theorem 7, any solution (g,W ) to (186) satisfies

g = gπP ,W = V π
P + ce, (187)
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where V π
P is the relative value function w.r.t. some worst-case transition kernel P (i.e.,

gπP = minP∈P gπP), and some c ∈ R.
Hence, any equilibrium of (184) satisfies

W = V π
P + ce, f(W ) = gπP . (188)

However, note that this robust Bellman equation is for a zero-reward robust MDP, hence
for any P,

gπP = lim
T→∞

EP

[
T−1∑
t=0

rt
T

]
= 0, (189)

V π
P = EP

[ ∞∑
t=0

(rt − gπP)

]
= 0, (190)

thus gπP = 0 and W = ce for some c ∈ R. From (188), it follows that f(W ) = f(ce) = 0, for
any equilibrium W . From Assumption 2, we have that f(ce) = cf(e) = c = 0. This further
implies that

W = V π
P + ce = 0. (191)

Thus, the only equilibrium of (184) is 0.
We then show that 0 is globally asymptotically stable. Recall that the zero-reward

robust Bellman operator

T0V (s) =
∑
a

π(a|s)(σPa
s
(V )). (192)

We further introduce two operators:

T′
0V ≜ T0V − f(V )e, (193)

T̃0V ≜ T0V − gπPe. (194)

Note that in the zero-reward robust MDP, gπP = 0 and T̃0 = T0, but we introduce this
notation for future use.

Consider the ODEs w.r.t. these two operators:

ẋ = T′
0x− x, (195)

ẏ = T̃0y − y. (196)

First, it can be easily shown that both T′
0 and T̃0 are Lipschitz with constants 1 + Lf and

1, respectively. Hence, both two ODEs are well-posed. Also, it can be seen that (195) is
the same as the ODE in (184).

Since the second equation (196) is a non-expansion (Lipschitz with parameter no larger
than 1), Theorem 3.1 of (Borkar & Soumyanatha, 1997) implies that any solution y(t) to
(196) converges to the set of equilibrium points, i.e.,

y(t)→
{
W : W = T̃0W

}
, a.s.. (197)
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Similar to the discussion for T0, our Theorem 7 implies that the set of equilibrium points
of (196) is {W = ce : c ∈ R}. Hence, for any solution y(t) to (196), y(t) → ce for some
constant k that may depend on the initial value of y(t).

Now, consider the solution x(t) to (195). According to Lemma 20 (note that T0 here is
a special case of T in Lemma 20 with r = 0), if the solutions x(t), y(t) have the same initial
value x(0) = y(0), then

x(t) = y(t) + r(t)e, (198)

where r(t) is a solution to ṙ(t) = −r(t) + gπP − f(y(t)), r(0) = 0.
Note that the solution r(t) with r(0) = 0 can be written as

r(t) =

∫ t

0
e−(t−s)(gπP − f(y(s)))ds (199)

by variation of constants formula (Abounadi et al., 2001). If we denote the limit of y(t) by
y∗ = ce, then limt→∞ r(t) = gπP − f(y∗) (Lemma B.4 in (Wan et al., 2021), Theorem 3.4 in
(Abounadi et al., 2001)). Hence, x(t) = y(t) + r(t)e converges to y∗ + (gπP − f(y∗))e, i.e.,

x(t)→ ce− f(ce)e = 0. (200)

Hence, any solution x(t) to (195) converges to 0, which is its unique equilibrium. This
thus implies that 0 is the unique globally asymptotically stable equilibrium. Together with
Theorem 3.7 in (Borkar, 2009), it further implies the boundedness of Vn, which completes
the proof.

We can readily prove Theorem 21.

Proof. In Lemma 13, we have shown that

sup
n
∥Vn∥ <∞, a.s.. (201)

Thus, we have verified that conditions (A1-A3) and (A5) in (Borkar, 2009) are satisfied.
Lemma 2.1 in (Borkar, 2009) thus implies that it suffices to study the solution to the ODE
ẋ(t) = h(x(t)).

For the robust Bellman operator TV = rπ + σP(V ), define

T′V ≜ TV − f(V )e, (202)

T̃V ≜ TV − gπPe. (203)

From Lemma 20, we know that if x(t), y(t) are the solutions to equations

ẋ = T′x− x, (204)

ẏ = T̃y − y, (205)

with the same initial value x(0) = y(0), then

x(t) = y(t) + r(t)e, (206)
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where r(t) satisfies

ṙ(t) = −r(t) + gπP − f(y(t)), r(0) = 0. (207)

Thus, by the variation of constants formula,

r(t) =

∫ t

0
e−(t−s)(gπP − f(y(s)))ds. (208)

Note that T̃ is also non-expansive, hence y(t) converges to some equilibrium of (205) (The-
orem 3.1 of (Borkar & Soumyanatha, 1997)). The set of equilibrium points of (205) can be
characterized as{

W : T̃W = W
}

= {W : W = TW − gπPe}

=

{
W : W (s) =

∑
a

π(a|s)(r(s, a)− gπP + σPa
s
(W )), ∀s ∈ S

}
. (209)

From Theorem 7, any equilibrium of (205) can be rewritten as

W = V π
P + ce, for some P ∈ Ωπ

g , c ∈ R. (210)

Thus, y(t) converges to an equilibrium denoted by y∗:

y(t)→ y∗ ≜ V π
P∗ + c∗e, for some P∗ ∈ Ωπ

g , c
∗ ∈ R. (211)

Similar to Lemma 13, it can be showed that r(t)→ gπP − f(y∗) (Lemma B.4 in (Wan et al.,
2021), Theorem 3.4 in (Abounadi et al., 2001)). This further implies that

x(t)→ y∗ + (gπP − f(y∗))e = V π
P∗ + (c∗ + gπP − f(y∗))e, (212)

and we denotem∗ = c∗+gπP−f(y∗). Moreover, since f is continuous (because it is Lipschitz),
we have that

f(x(t))→ f(V π
P∗ + (c∗ + gπP − f(y∗))e)

= f(V π
P∗) + c∗ + gπP − f(y∗)

= f(V π
P∗) + c∗ + gπP − f(V π

P∗ + c∗e)

= f(V π
P∗) + c∗ + gπP − f(V π

P∗)− c∗

= gπP . (213)

Hence, we show that

x(t)→ V π
P∗ +m∗e, (214)

f(x(t))→ gπP . (215)

Following Lemma 2.1 from (Borkar, 2009), we conclude that a.s.,

Vn → V π
P∗ +m∗e, (216)

f(Vn)→ gπP , (217)

which completes the proof.

775



Wang, Velasquez, Atia, Prater-Bennette, Zou

Appendix G. Robust RVI Q-Learning

G.1 Proof of Theorem 11

Lemma 14. If Ĥ satisfies that for any Q, s ∈ S, a ∈ A, E[ĤQ(s, a)] = HQ(s, a) and
Var(ĤQ(s, a)) ≤ C(1 + ∥Q∥2) for some constant C, then under Assumptions 2, 1 and 4,
Algorithm 5 remains bounded during the update almost surely, i.e.,

sup
n
∥Qn∥ <∞, a.s.. (218)

Proof. Denote by

h(Q) ≜ rπ + σP(VQ)− f(Q)e−Q. (219)

Then, the update of robust RVI Q-learning can be rewritten as

Qn+1 = Qn + αn(h(Qn) +Mn+1), (220)

where Mn+1 ≜ ĤQn − rπ − σP(VQ) is the noise term.
Further, define the limit function h∞:

h∞(Q) ≜ lim
c→∞

h(cQ)

c
. (221)

Then, note that σPa
s
(VcQ) = σPa

s
(cVQ) = cσPa

s
(VQ) for c > 0 and f(cQ) = cf(Q). It then

follows that

h∞(Q) = lim
c→∞

rπ
c

+ σP(VQ)− f(Q)e−Q = σP(VQ)− f(Q)e−Q. (222)

Similar to the proof of Theorem 13, it suffices to verify the following conditions:
(1). h is Lipschitz;
(2). Stepsize αn satisfies Assumption 4;
(3). E[Mn+1|Fn] = 0, and E[∥Mn+1∥2|Fn] ≤ K(1 + ∥Qn∥2) for some constant K.
(4). h∞ has the origin as its unique globally asymptotically stable equilibrium.
Clearly, (2) and (3) can be verified similarly to Theorem 13. We then verify (1) and (4).
Firstly, it can be shown that

|h(Q1)(s, a)− h(Q2)(s, a)|
=
∣∣σPa

s
(VQ1)− f(Q1)−Q1(s, a)− σPa

s
(VQ2)− f(Q2)−Q2(s, a)

∣∣
≤
∣∣σPa

s
(VQ1)− σPa

s
(VQ2)

∣∣+ |f(Q1)− f(Q2)|+ |Q1(s, a)−Q2(s, a)|
≤ ∥VQ1 − VQ2∥+ Lf∥Q1 −Q2∥+ ∥Q1 −Q2∥
≤ (2 + Lf )∥Q1 −Q2∥, (223)

where the last inequality is from the fact that ∥VQ1 −VQ2∥ ≤ ∥Q1−Q2∥. This implies that
h is Lipschitz.

To verify (4), note that the stability equation is

Ẋ(t) = h∞(X(t)) = σP(VX(t))− f(X(t))e−X(t), (224)
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where VX(t) is a |S|-dimensional vector with VX(t)(s) = maxaX(t)(s, a).
Any equilibrium Q of the stability equation (224) satisfies that

Q(s, a) = σPa
s
(VQ)− f(Q)e, (225)

which can be viewed as an optimal robust Bellman equation (13) with zero reward. Hence,
by Theorem 19, it implies that

f(Q) = g∗P = 0, (226)

VQ = V
πQ

P + ce for some P ∈ Ω
πQ
g , c ∈ R. (227)

In the zero-reward MDP, we have that V π
P = 0 for any π,P, thus VQ(s) = maxaQ(s, a) = c

for any s ∈ S.
Note that from (225), Q satisfies that

Q(s, a) = σPa
s
(VQ) = σPa

s
(ce) = c. (228)

Since f(Q) = 0, it implies that

f(Q) = f(ce) = c = 0. (229)

Therefore,

c = 0, (230)

Q = 0. (231)

Thus, 0 is the unique equilibrium of the stability equation.
We then show that 0 is globally asymptotically stable. Define the zero-reward optimal

robust Bellman operator

H0Q(s, a) = σPa
s
(VQ), (232)

and further introduce two operators

H′
0Q(s, a) = σPa

s
(VQ)− f(Q), (233)

H̃0Q(s, a) = σPa
s
(VQ)− g∗P . (234)

It is straightforward to verify that H̃0 is non-expansive. Hence by (Borkar & Soumyanatha,
1997), the solution y(t) to equation

ẏ = H̃0y − y (235)

converges to the set of equilibrium points

{W : W (s, a) = σPa
s
(VW )− g∗P}, a.s.. (236)

This again can be viewed as an optimal robust Bellman equation with zero-reward. Hence,
any equilibrium W of (235) satisfies

max
a

W (s, a) = c, ∀s. (237)
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This together with (236) further implies that the equilibrium W of (235) satisfies

W (s, a) = σPa
s
(VW ) = σPa

s
(ce) = c, (238)

and hence y(t) converges to {ce : c ∈ R}. We denote its limit by y∗ = c∗e.

Lemma 25 implies the solution x(t) to the ODE ẋ = H′
0(x) − x can be decomposed as

x(t) = y(t) + r(t)e, where r(t) satisfies ṙ(t) = −r(t) + g∗P − f(y(t)), r(0) = 0.

Then, similar to Lemma 13, Lemma B.4 in (Wan et al., 2021) and Theorem 3.4 in
(Abounadi et al., 2001), it can be shown that r(t)→ g∗P − f(y(t)) = −c∗. Hence,

x(t)→ 0, (239)

which proves the asymptotic stability.

Thus, we conclude that 0 is the unique globally asymptotically stable equilibrium of
the stability equation, which implies the boundedness of {Qn} together with results from
Section 2.1 and 3.2 from (Borkar, 2009).

Theorem 22 (Restatement of Theorem 11). The sequence {Qn} generated by Algorithm 5
converges to a solution Q∗ to the optimal robust Bellman equation a.s., and f(Qn) converges
to the optimal robust average-reward g∗P a.s..

Proof. According to Lemma 1 from (Borkar, 2009) and Theorem 3.5 from (Abounadi et al.,
2001), the sequence {Qn} converge to the same limit as the solution x(t) to the ODE
ẋ = H′x − x. Hence the proof can be completed by showing convergence of x(t) and
f(x(t)).

For the optimal robust Bellman operator,

HQ(s, a) = r(s, a) + σPa
s
(VQ), (240)

define two operators

H′Q ≜ HQ− f(Q)e, (241)

H̃Q ≜ HQ− g∗Pe. (242)

From Lemma 25, we know that if x(t), y(t) are the solutions to equations

ẋ = H′x− x, (243)

ẏ = H̃y − y, (244)

with the same initial value x(0) = y(0), then

x(t) = y(t) + r(t)e, (245)

where r(t) satisfies

ṙ(t) = −r(t) + g∗P − f(y(t)), r(0) = 0. (246)
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It can be easily verified that H̃ is non-expansive. Hence y(t) converges to the set of
equilibrium points of of (244) (Theorem 3.1 of (Borkar & Soumyanatha, 1997)), which can
be characterized as {

W : H̃W = W
}

= {W : W = HW − g∗Pe}
=
{
W : W (s, a) = r(s, a)− g∗P + σPa

s
(VW ), ∀s, a

}
. (247)

From Theorem 19, any equilibrium W satisfies

VW = V πW
P + ce, for some P ∈ ΩπW

g , c ∈ R, (248)

and πW is robust optimal. We denote the limit of y(t) by W ∗.
Similar to (212) to (216), it can be shown that r(t)→ g∗P − f(W ∗). This further implies

that

x(t)→W ∗ + (g∗P − f(W ∗))e ≜ W ∗ +m∗e, (249)

where m∗ = g∗P − f(W ∗). Note that W ∗ + m∗e is a solution to the optimal robust Bell-
man equation, hence x(t) converges to a solution to (13). Moreover, since f is continuous
(because it is Lipschitz), we have that

f(x(t))→ f(W ∗ +m∗e)

= f(W ∗) + g∗P − f(W ∗)

= g∗P . (250)

This completes the proof.

Appendix H. Case Studies for Robust RVI TD

In this section, we provide the proof of the first part of Theorem 12, i.e., that T̂ is unbiased
and has bounded variance under each uncertainty model.

We first show a lemma, by which the problem can be reduced to investigating whether
σ̂Pa

s
is unbiased and has bounded variance.

Lemma 15. If

E[σ̂Pa
s
V ] = σPa

s
(V ), ∀s, a, (251)

and moreover, there exists a constant C, such that

Var(σ̂Pa
s
V ) ≤ C(1 + ∥V ∥2), ∀s, a, (252)

then

E[T̂V (s)] = TV (s), ∀s, (253)

and

Var(T̂V (s)) ≤ |A|C(1 + ∥V ∥2), ∀s. (254)
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Proof. From the definition, T̂V (s) =
∑

a π(a|s)(r(s, a) + σ̂Pa
s
V ). Thus,

E[T̂V (s)] = E
[∑

a

π(a|s)(r(s, a) + σ̂Pa
s
V )

]
=
∑
a

π(a|s)(r(s, a) + E[σ̂Pa
s
V ])

=
∑
a

π(a|s)(r(s, a) + σPa
s
(V )) = TV (s), (255)

which shows that T̂ is unbiased. On the other hand, we have that

Var(T̂V (s)) = E
[(∑

a

π(a|s)(r(s, a) + σ̂Pa
s
V )− E

[∑
a

π(a|s)(r(s, a) + σ̂Pa
s
V )

])2]
= E

[(∑
a

π(a|s)(r(s, a) + σ̂Pa
s
V )−

∑
a

π(a|s)(r(s, a) + E
[
σ̂Pa

s
V
])2]

= E
[(∑

a

π(a|s)(σ̂Pa
s
V )− E

[
σ̂Pa

s
V
])2]

(a)

≤ E
[∑

a

π(a|s)(σ̂Pa
s
V − E

[
σ̂Pa

s
V
]
)2
]

=
∑
a

π(a|s)E
[
(σ̂Pa

s
V − E

[
σ̂Pa

s
V 2
]
)2
]

≤
∑
a

π(a|s)Var(σ̂Pa
s
V )

≤ |A|C(1 + ∥V ∥2), (256)

where (a) is because (E[X])2 ≤ E[X2], which completes the proof.

This lemma implies that to prove Theorem 12, it suffices to show that σ̂Pa
s
is unbiased

and has bounded variance.

H.1 Contamination Uncertainty Set

Theorem 23. T̂ defined in (18) is unbiased and has bounded variance.

Proof. First, note that

Vn+1(s) = Vn(s) + αn(r(s, a) + ((1− ζ)Vn(s
′) + ζmin

x
Vn(x)− f(Vn)− Vn(s))

= Vn(s) + αn(TVn(s)− f(Vn)− Vn(s) +Mn(s)), (257)

where

Mn(s) = r(s, a) + (1− ζ)Vn(s
′) + ζmin

x
Vn(x)−TVn(s), (258)
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and

TVn(s) =
∑
a

π(a|s)
(
r(s, a) + (1− ζ)

∑
s′

Pa
s,s′Vn(s

′) + ζmin
x

Vn(x)

)
. (259)

Thus,

E[Mn(s)] = E
[
r(s, a) + (1− ζ)Vn(s

′) + ζmin
x

Vn(x)
]

−
∑
a

π(a|s)
(
r(s, a) + (1− ζ)

∑
s′

Pa
s,s′Vn(s

′) + ζmin
x

Vn(x)

)
=
∑
a

π(a|s)
(
r(s, a) + (1− ζ)

∑
s′

Pa
s,s′Vn(s

′) + ζmin
x

Vn(x)

)
−
∑
a

π(a|s)
(
r(s, a) + (1− ζ)

∑
s′

Pa
s,s′Vn(s

′) + ζmin
x

Vn(x))

)
= 0. (260)

Hence, the operator is unbiased.
We also have that

E[|Mn(s)|2] = E
[(

r(s, a) + (1− ζ)Vn(s
′) + ζmin

x
Vn(x)−TVn(s)

)2]
≤ 2E

[(
r(s, a) + (1− ζ)Vn(s

′) + ζmin
x

Vn(x)

)2]
+ 2E[(TVn(s))

2]

(a)

≤ 8 + 8∥Vn∥2

≤ 8(1 + ∥Vn∥2), (261)

where (a) is from the fact that E
[(
(1 − ζ)Vn(s

′) + ζminx Vn(x)
)2]

= E
[∣∣(1 − ζ)Vn(s

′) +

ζminx Vn(x)
∣∣2] ≤ E

[(∣∣(1 − ζ)Vn(s
′)
∣∣ + ∣∣ζminx Vn(x)

∣∣)2] ≤ E
[(
(1 − ζ)∥Vn∥ +

(
ζ∥Vn∥

)2] ≤
∥Vn∥2.

The proof is completed.

H.2 Total Variation Uncertainty Set

The estimator under the total variation uncertainty set can be written as

σ̂Pa
s
(V ) = max

µ≥0

(
P̂a,1
s,N+1(V − µ)− ζSpan(V − µ)

)
+

∆N (V )

pN
, (262)

where

∆N (V ) = max
µ≥0

(
P̂a
s,N+1(V − µ)− ζSpan(V − µ)

)
− 1

2
max
µ≥0

(
P̂a,O
s,N+1(V − µ)− ζSpan(V − µ)

)
− 1

2
max
µ≥0

(
P̂a,E
s,N+1(V − µ)− ζSpan(V − µ)

)
. (263)
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Theorem 24. The estimated operator σ̂Pa
s
defined in (262) is unbiased, i.e.,

E[σ̂Pa
s
V ] = σPa

s
(V ). (264)

Proof. First, denote the dual function (20) by g:

gVs,a(µ) = Pa
s(V − µ)− ζSpan(V − µ), (265)

and denote its optimal solution by µV
s,a:

µV
s,a = argmax

µ≥0

(
Pa
s(V − µ)− ζSpan(V − µ)

)
. (266)

Then, the support function σPa
s
(V ) = gVs,a(µ

V
s,a). Similarly, define the empirical function

gVs,a,N+1(µ) = P̂a
s,N+1(V − µ)− ζSpan(V − µ), (267)

gVs,a,N+1,O(µ) = P̂a,O
s,N+1(V − µ)− ζSpan(V − µ), (268)

gVs,a,N+1,E(µ) = P̂a,E
s,N+1(V − µ)− ζSpan(V − µ), (269)

and their optimal solutions are denoted by µV
s,a,N+1, µ

V
s,a,N+1,O, µ

V
s,a,N+1,E . We have that

E[σ̂Pa
s
V ] = E

[
max
µ≥0

(
P̂a,1
s,N+1(V − µ)− ζSpan(V − µ)

)
+

∆N (V )

pN

]
= E[gVs,a,0(µV

s,a,0)] + E
[
∆N (V )

pN

]
= E[gVs,a,0(µV

s,a,0)] +

∞∑
n=0

p(N = n)E
[
∆N (V )

pN
|N = n

]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E[∆n(V )]

= E[gVs,a,0(µV
s,a,0)]

+
∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)−

gVs,a,n+1,O(µ
V
s,a,n+1,O) + gVs,a,n+1,E(µ

V
s,a,n+1,E)

2

]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)− gVs,a,n(µ

V
s,a,n)

]
, (270)

where the last inequality is from Lemma 21. The last equation can be further rewritten as

E[σ̂Pa
s
V ] = E[gVs,a,0(µV

s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)− gVs,a,n(µ

V
s,a,n)

]
= lim

n→∞
E
[
gVs,a,n(µ

V
s,a,n)

]
. (271)

To show that σ̂Pa
s
is unbiased, it suffices to prove that

lim
n→∞

E
[
gVs,a,n(µ

V
s,a,n)

]
= gVs,a(µ

V
s,a). (272)
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For any arbitrary i.i.d. samples {Xi} and its corresponding function gVs,a,n, together with
Lemma 22, we have that

|gVs,a,n(µV
s,a,n)− gVs,a(µ

V
s,a)|

= | max
0≤µ≤V+∥V ∥e

gVs,a(µ)− max
0≤µ≤V+∥V ∥e

gVs,a,n(µ)|

≤ max
0≤µ≤V+∥V ∥e

|gVs,a(µ)− gVs,a,n(µ)|

= max
0≤µ≤V+∥V ∥e

|Pa
s(V − µ)− ζSpan(V − µ)− P̂a

s,n(V − µ) + ζSpan(V − µ)|

= max
0≤µ≤V+∥V ∥e

|Pa
s(V − µ)− P̂a

s,n(V − µ)|

≤ max
0≤µ≤V+∥V ∥e

∥V − µ∥∥Pa
s − P̂a

s,n∥1

≤ 3∥V ∥∥Pa
s − P̂a

s,n∥1. (273)

Thus, by Hoeffding’s inequality and Theorem 3.7 from (Liu et al., 2022),

E[|gVs,a,n(µV
s,a,n)− gVs,a(µ

V
s,a)|] ≤ 3∥V ∥|S|

2√π
2

n+1
2

, (274)

which implies that

lim
n→∞

E
[
gVs,a,n(µ

V
s,a,n)

]
= gVs,a(µ

V
s,a), (275)

completing the proof.

Theorem 25. The estimated operator σ̂Pa
s
defined in (262) has bounded variance, i.e., there

exists a constant C0, such that

Var(σ̂Pa
s
V ) ≤ (1 + 18(1 + 2ζ)2 + 2C0)∥V ∥2. (276)

Proof. Similar to Theorem 24, we have that

Var(σ̂Pa
s
V )

= E[(σ̂Pa
s
V )2]− σPa

s
(V )2

≤ E
[(

gVs,a,0(µ
V
s,a,0) +

∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ 2E
[(

gVs,a,0(µ
V
s,a,0)

)2]
+ 2E

[(
∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ (1 + 18(1 + 2ζ)2)∥V ∥2 + 2

∞∑
i=0

E[(∆i(V ))2]

pi
, (277)
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where the last inequality is from Lemma 22. For any n ≥ 1, we have that

E[(∆n(V ))2]

= E
[(

gVs,a,n(µ
V
s,a,n)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
= E

[(
gVs,a,n(µ

V
s,a,n)− gVs,a(µ

V
s,a) + gVs,a(µ

V
s,a)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
≤ 2E[(gVs,a,n(µV

s,a,n)− gVs,a(µ
V
s,a))

2]

+ 2E
[(

gVs,a(µ
V
s,a)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
(a)
= 2E[(gVs,a,n(µV

s,a,n)− gVs,a(µ
V
s,a))

2] + 2E[(gVs,a,n−1(µ
V
s,a,n−1)− gVs,a(µ

V
s,a))

2]

≤ 18∥V ∥2E[∥Pa
s − P̂a

s,n∥21] + 18∥V ∥2E[∥Pa
s − P̂a

s,n−1∥21], (278)

where (a) is due to Lemma 21 and the last inequality follows a similar argument to (273).
Note that pn = Ψ(1−Ψ)n for Ψ ∈ (0, 0.5), thus similar to Theorem 3.7 of (Liu et al., 2022),
we can show that there exists a constant C0, such that

∞∑
i=0

E[(∆i(V ))2]

pi
≤ C0∥V ∥2. (279)

Thus,

Var(σ̂Pa
s
V ) ≤ (1 + 18(1 + 2ζ)2)∥V ∥2 + 2C0∥V ∥2 = (1 + 18(1 + 2ζ)2 + 2C0)∥V ∥2 . (280)

H.3 Chi-Square Uncertainty Set

The estimator under the Chi-square uncertainty set can be written as

σ̂Pa
s
V = max

µ≥0

(
P̂a,1
s,N+1(V − µ)−

√
ζVarP̂a,1

s,N+1
(V − µ)

)
+

∆N (V )

pN
, (281)

where

∆N (V ) = max
µ≥0

(
EP̂a

s,N+1
[V − µ]−

√
ζVarP̂a

s,N+1
(V − µ)

)
− 1

2
max
µ≥0

(
E
P̂a,O
s,N+1

[V − µ]−
√
ζVar

P̂a,O
s,N+1

(V − µ)
)

− 1

2
max
µ≥0

(
E
P̂a,E
s,N+1

[V − µ]−
√
ζVar

P̂a,E
s,N+1

(V − µ)
)
.

Theorem 26. The estimated operator defined in (281) is unbiased, i.e.,

E[σ̂Pa
s
V ] = σPa

s
(V ). (282)
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Proof. Denote the dual function (21) by g:

gVs,a(µ) = Pa
s(V − µ)−

√
ζVarPa

s
(V − µ), (283)

and denote its optimal solution by µV
s,a:

µV
s,a = argmax

µ≥0

(
Pa
s(V − µ)−

√
ζVarPa

s
(V − µ)

)
. (284)

Then, the support function σPa
s
(V ) = gVs,a(µ

V
s,a). Similarly, define the empirical function

gVs,a,N+1(µ) = P̂a
s,N+1(V − µ)−

√
ζVarP̂a

s,N+1
(V − µ), (285)

gVs,a,N+1,O(µ) = P̂a,O
s,N+1(V − µ)−

√
ζVar

P̂a,O
s,N+1

(V − µ), (286)

gVs,a,N+1,E(µ) = P̂a,E
s,N+1(V − µ)−

√
ζVar

P̂a,E
s,N+1

(V − µ), (287)

and their optimal solutions are denoted by µV
s,a,N+1, µ

V
s,a,N+1,O, µ

V
s,a,N+1,E . We have that

E[σ̂Pa
s
V ]

= E[gVs,a,0(µV
s,a,0)] + E

[
∆N (V )

pN

]
= E[gVs,a,0(µV

s,a,0)] +
∞∑
n=0

p(N = n)E
[
∆N (V )

pN
|N = n

]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E[∆n]

= E[gVs,a,0(µV
s,a,0)]

+

∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)−

gVs,a,n+1,O(µ
V
s,a,n+1,O) + gVs,a,n+1,E(µ

V
s,a,n+1,E)

2

]

= E[gVs,a,0(µV
s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)− gVs,a,n(µ

V
s,a,n)

]
, (288)

where the last inequality is from Lemma 21. The last equation can be further rewritten as

E[σ̂Pa
s
V ] = E[gVs,a,0(µV

s,a,0)] +
∞∑
n=0

E
[
gVs,a,n+1(µ

V
s,a,n+1)− gVs,a,n(µ

V
s,a,n)

]
= lim

n→∞
E
[
gVs,a,n(µ

V
s,a,n)

]
. (289)

To show that σ̂Pa
s
is unbiased, it suffices to prove that

lim
n→∞

E
[
gVs,a,n(µ

V
s,a,n)

]
= gVs,a(µ

V
s,a). (290)
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For any arbitrary i.i.d. samples {Xi} and its corresponding function gVs,a,n, together with
Lemma 23, we have that

|gVs,a,n(µV
s,a,n)− gVs,a(µ

V
s,a)|

= | max
0≤µ≤V+∥V ∥e

gVs,a(µ)− max
0≤µ≤V+∥V ∥e

gVs,a,n(µ)|

≤ max
0≤µ≤V+∥V ∥e

|gVs,a(µ)− gVs,a,n(µ)|

= max
0≤µ≤V+∥V ∥e

∣∣∣∣Pa
s(V − µ)− P̂a

s,n(V − µ)−
(√

ζVarPa
s
(V − µ)−

√
ζVarP̂a

s,n
(V − µ)

)∣∣∣∣
≤ max

0≤µ≤V+∥V ∥e
|Pa

s(V − µ)− P̂a
s,n(V − µ)|

+ max
0≤µ≤V+∥V ∥e

∣∣∣∣(√ζVarPa
s
(V − µ)−

√
ζVarP̂a

s,n
(V − µ)

)∣∣∣∣
(a)

≤ max
0≤µ≤V+∥V ∥e

∥V − µ∥∥Pa
s − P̂a

s,n∥1

+ max
0≤µ≤V+∥V ∥e

√
|ζVarPa

s
(V − µ)− ζVarP̂a

s,n
(V − µ)|, (291)

where (a) is due to |
√
x−√y| ≤

√
|x− y|. Note that for any distribution p, q ∈ ∆(|S|) and

any random variable X,

|Varp[X]−Varq[X]| = |Ep[X
2]− Ep[X]2 − Eq[X

2] + Eq[X]2|
≤ |Ep[X

2]− Eq[X
2]|+ |(Ep[X] + Eq[X])(Ep[X]− Eq[X])|

≤ sup |X2|∥p− q∥1 + 2(sup |X|)2∥p− q∥1. (292)

Hence, √
|ζVarPa

s
(V − µ)− ζVarP̂a

s,n
(V − µ)| ≤

√
3ζ∥V − µ∥2∥Pa

s − P̂a
s,n∥1. (293)

Thus, by Hoeffding’s inequality and Theorem 3.7 from (Liu et al., 2022),

E[|gVs,a,n(µV
s,a,n)− gVs,a(µ

V
s,a)|] ≤ 3∥V ∥

(
|S|2
√
π

2
n+1
2

+

√
3ζ|S|2

√
π

2
n+1
2

)
, (294)

which implies that

lim
n→∞

E
[
gVs,a,n(µ

V
s,a,n)

]
= gVs,a(µ

V
s,a), (295)

which completes the proof.

Theorem 27. The estimated operator σ̂Pa
s
defined in (281) has bounded variance, i.e., there

exists a constant C0, such that

Var(σ̂Pa
s
V ) ≤ (1 + 18(1 +

√
2ζ)2 + 2C0)∥V ∥2. (296)
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Proof. We have that

Var(σ̂Pa
s
V )

= E[(σ̂Pa
s
V )2]− σPa

s
(V )2

≤ E
[(

gVs,a,0(µ
V
s,a,0) +

∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ 2E
[(

gVs,a,0(µ
V
s,a,0)

)2]
+ 2E

[(
∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ (1 + 18(1 +
√
2ζ)2)∥V ∥2 + 2

∞∑
i=0

E[(∆i(V ))2]

pi
, (297)

where the last inequality is from Lemma 23. For any n ≥ 1, we have that

E[(∆n(V ))2]

= E
[(

gVs,a,n(µ
V
s,a,n)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
= E

[(
gVs,a,n(µ

V
s,a,n)− gVs,a(µ

V
s,a) + gVs,a(µ

V
s,a)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
≤ 2E[(gVs,a,n(µV

s,a,n)− gVs,a(µ
V
s,a))

2]

+ 2E
[(

gVs,a(µ
V
s,a)−

gVs,a,n,E(µ
V
s,a,n,E) + gVs,a,n,O(µ

V
s,a,n,O)

2

)2]
(a)
= 2E[(gVs,a,n(µV

s,a,n)− gVs,a(µ
V
s,a))

2] + 2E[(gVs,a,n−1(µ
V
s,a,n−1)− gVs,a(µ

V
s,a))

2]

≤ 18(1 +
√

3ζ)2∥V ∥2E[∥Pa
s − P̂a

s,n∥21 + ∥Pa
s − P̂a

s,n∥1]

+ 18(1 +
√
3ζ)2∥V ∥2E[∥Pa

s − P̂a
s,n−1∥21 + ∥Pa

s − P̂a
s,n−1∥1], (298)

where (a) is due to Lemma 21 and the last inequality follows a similar argument to (291).

Note that pn = Ψ(1−Ψ)n for Ψ ∈
(
0, 1−

√
2
2

)
. Thus, similar to Theorem 3.7 of (Liu et al.,

2022), we can show that there exists a constant C0, such that

∞∑
i=0

E[(∆i(V ))2]

pi
≤ C0∥V ∥2. (299)

Thus,

Var(σ̂Pa
s
V ) ≤ (1 + 18(1 +

√
2ζ)2)∥V ∥2 + 2C0∥V ∥2 = (1 + 18(1 +

√
2ζ)2 + 2C0)∥V ∥2.

(300)

H.4 KL-Divergence Uncertainty Sets

The estimator under the KL-Divergence uncertainty set can be written as

σ̂Pa
s
V ≜ −min

α≥0

(
ζα+ α log

(
e

−V (s′1)
α

))
+

∆N (V )

pN
,
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where

∆N (V ) = −min
α≥0

(
ζα+ α log

(
EP̂a

s,N+1

[
e

−V
α
]))

+
1

2
min
α≥0

(
ζα+ α log

(
E
P̂a,O
s,N+1

[
e

−V
α
]))

+
1

2
min
α≥0

(
ζα+ α log

(
E
P̂a,E
s,N+1

[
e

−V
α
]))

. (301)

Theorem 28. (Liu et al., 2022) The estimated operator σ̂Pa
s
is unbiased and has bounded

variance, i.e., there exists a constant C0, such that Var(σ̂Pa
s
V ) ≤ C0(1 + ∥V ∥2).

H.5 Wasserstein Distance Uncertainty Sets

To study the support function w.r.t. this uncertainty model, we first introduce some nota-
tion.

Definition 2. For any function f : Z → R, λ ≥ 0 and x ∈ Z, define the regularization
operator

Φ(λ, x) ≜ inf
y∈Z

(λd(x, y)l + f(y)). (302)

The growth rate κ of function f and any distribution q over Z is defined as

κq ≜ inf

(
λ ≥ 0 :

∑
x∈Z

q(x)Φ(λ, x) > −∞
)
. (303)

Lemma 16. (Gao & Kleywegt, 2023) Consider the distributional robust optimization of a
function f :

inf
Wl(q,p)≤ζ

Ex∼q[f(x)], (304)

and define its dual problem as

sup
λ≥0

(−λζ l +
∑
x∈Z

p(x) inf
y∈Z

(f(y) + λd(x, y)l)). (305)

If κp <∞, then the strong duality holds, i.e.,

inf
Wl(q,p)≤ζ

Ex∼q[f(x)] = sup
λ≥0

(−λζ l +
∑
x∈Z

p(x) inf
y∈Z

(f(y) + λd(x, y)l)). (306)

We first verify that this strong duality holds for our support function.

Lemma 17. (Restatement of (25)) It holds that

σPa
s
(V ) = sup

λ≥0

(
− λζ l +

∑
x

Pa
s,x infy

(V (y) + λd(x, y)l)

)
. (307)
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Proof. In our case, the regularization operator is

Φ(λ, x) = inf
s∈S

(λd(s, x)l + V (s)). (308)

Note that for any λ ≥ 0,∑
x∈S

Pa
s(x)Φ(λ, x) =

∑
x∈S

Pa
s(x) inf

s∈S
(λd(s, x)l + V (s)) ≥ −∥V ∥ > −∞. (309)

Hence, the growth rate κPa
s
= 0 <∞. Thus, the strong duality holds.

Then, the estimator under the Wasserstein distance uncertainty set can be constructed
as

σ̂Pa
s
V ≜ sup

λ≥0

(
− λζ l + inf

y
(V (y) + λd(s′1, y)

l)

)
+

∆N (V )

pN
+ r(s, a), (310)

where

∆N (V )

= sup
λ≥0

(
− λζ l + EP̂a

s,N+1

[
inf
y
(V (y) + λd(S, y)l)

])
− sup

λ≥0

(
− λζ l + E

P̂a,O
s,N+1

[
inf
y
(V (y) + λd(S, y)l)

])
− sup

λ≥0

(
− λζ l + E

P̂a,E
s,N+1

[
inf
y
(V (y) + λd(S, y)l)

])
.

Theorem 29. The estimated operator defined in (310) is unbiased, i.e.,

E[σ̂Pa
s
V ] = σPa

s
(V ). (311)

Proof. Denote the dual function (25) by g:

gVs,a(λ) = −λζ l + ES∼Pa
s
[ inf
x∈S

(V (x) + λd(S, x)l)], (312)

and denote its optimal solution by λV
s,a:

λV
s,a = argmax

λ≥0

(
− λζ l + ES∼Pa

s
[ inf
x∈S

(V (x) + λd(S, x)l)]

)
. (313)

Then, the support function σPa
s
(V ) = gVs,a(λ

V
s,a). Similarly, define the empirical function

gVs,a,N+1, g
V
s,a,N+1,O, g

V
s,a,N+1,E , and denote their optimal solutions by λV

s,a,N+1, λ
V
s,a,N+1,O, λ

V
s,a,N+1,E .
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We have that

E[σ̂Pa
s
V ]

= E[gVs,a,0(λV
s,a,0)] + E

[
∆N (V )

pN

]
= E[gVs,a,0(λV

s,a,0)] +
∞∑
n=0

p(N = n)E
[
∆N (V )

pN
|N = n

]

= E[gVs,a,0(λV
s,a,0)] +

∞∑
n=0

E[∆n]

= E[gVs,a,0(λV
s,a,0)]

+
∞∑
n=0

E
[
gVs,a,n+1(λ

V
s,a,n+1)−

gVs,a,n+1,O(λ
V
s,a,n+1,O) + gVs,a,n+1,E(λ

V
s,a,n+1,E)

2

]

= E[gVs,a,0(λV
s,a,0)] +

∞∑
n=0

E
[
gVs,a,n+1(λ

V
s,a,n+1)− gVs,a,n(λ

V
s,a,n)

]
, (314)

where the last inequality is from Lemma 21. The last equation can be further rewritten as

E[σ̂Pa
s
V ] = E[gVs,a,0(λV

s,a,0)] +
∞∑
n=0

E
[
gVs,a,n+1(λ

V
s,a,n+1)− gVs,a,n(λ

V
s,a,n)

]
= lim

n→∞
E
[
gVs,a,n(λ

V
s,a,n)

]
. (315)

To show that σ̂Pa
s
is unbiased, it suffices to prove that

lim
n→∞

E
[
gVs,a,n(λ

V
s,a,n)

]
= gVs,a(λ

V
s,a). (316)

For any arbitrary i.i.d. samples {Xi} and its corresponding function gVs,a,n, together with
Lemma 24, we have that

|gVs,a,n(λV
s,a,n)− gVs,a(λ

V
s,a)|

= | max
0≤λ≤ 2∥V ∥

ζl

gVs,a(λ)− max
0≤λ≤ 2∥V ∥

ζl

gVs,a,n(λ)|

≤ max
0≤λ≤ 2∥V ∥

ζl

|gVs,a(λ)− gVs,a,n(λ)|

= max
0≤λ≤ 2∥V ∥

ζl

∣∣∣∣ES∼Pa
s
[ inf
x∈S

(V (x) + λd(S, x)l)]− ES∼P̂a
s,n

[ inf
x∈S

(V (x) + λd(S, x)l)]

∣∣∣∣
≤ max

0≤λ≤ 2∥V ∥
ζl

∥Pa
s − P̂a

s,n∥1 sup
x,S∈S

(|V (x) + λd(S, x)l|)

≤
(
1 +

2Dl

ζ l

)
∥V ∥∥Pa

s − P̂a
s,n∥1, (317)
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where the last inequality is from the bound on λ and D is the diameter of the metric space
(S, d).

By Hoeffding’s inequality and similar to the previous proofs, we have that

E[|gVs,a,n(λV
s,a,n)− gVs,a(λ

V
s,a)|] ≤

(
1 +

2Dl

ζ l

)(
|S|2
√
π

2
n+1
2

)
∥V ∥, (318)

which implies that

lim
n→∞

E
[
gVs,a,n(λ

V
s,a,n)

]
= gVs,a(λ

V
s,a). (319)

This completes the proof.

Theorem 30. The estimated operator σ̂Pa
s
defined in (310) has bounded variance, i.e., there

exists a constant C0, such that

Var(σ̂Pa
s
V ) ≤ (3 + 2C0)∥V ∥2. (320)

Proof. We first have that

Var(σ̂Pa
s
V )

= E[(σ̂Pa
s
V )2]− σPa

s
(V )2

≤ E
[(

gVs,a,0(λ
V
s,a,0) +

∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ 2E
[(

gVs,a,0(λ
V
s,a,0)

)2]
+ 2E

[(
∆N (V )

pN

)2]
+ (σPa

s
(V ))2

≤ 3∥V ∥2 + 2

∞∑
i=0

E[(∆i(V ))2]

pi
, (321)

where the last inequality is from Lemma 23. For any n ≥ 1, we have that

E[(∆n(V ))2]

= E
[(

gVs,a,n(λ
V
s,a,n)−

gVs,a,n,E(λ
V
s,a,n,E) + gVs,a,n,O(λ

V
s,a,n,O)

2

)2]
= E

[(
gVs,a,n(λ

V
s,a,n)− gVs,a(λ

V
s,a) + gVs,a(λ

V
s,a)−

gVs,a,n,E(λ
V
s,a,n,E) + gVs,a,n,O(λ

V
s,a,n,O)

2

)2]
≤ 2E[(gVs,a,n(λV

s,a,n)− gVs,a(λ
V
s,a))

2]

+ 2E
[(

gVs,a(λ
V
s,a)−

gVs,a,n,E(λ
V
s,a,n,E) + gVs,a,n,O(λ

V
s,a,n,O)

2

)2]
(a)
= 2E[(gVs,a,n(λV

s,a,n)− gVs,a(λ
V
s,a))

2] + 2E[(gVs,a,n−1(λ
V
s,a,n−1)− gVs,a(λ

V
s,a))

2]

≤ 2

(
1 +

2Dl

ζ l

)2

∥V ∥2E[∥Pa
s − P̂a

s,n∥21] + 2

(
1 +

2Dl

ζ l

)2

∥V ∥2E[∥Pa
s − P̂a

s,n−1∥21], (322)
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where (a) is due to Lemma 21 and the last inequality follows a similar argument to (318).
Note that pn = Ψ(1−Ψ)n for Ψ ∈

(
0, 0.5

)
, thus similar to Theorem 3.7 of (Liu et al., 2022),

we can show that there exists a constant C0, such that

∞∑
i=0

E[(∆i(V ))2]

pi
≤ C0∥V ∥2. (323)

Thus, we have that

Var(σ̂Pa
s
V ) ≤ 3∥V ∥2 + 2C0∥V ∥2 = (3 + 2C0)∥V ∥2. (324)

Appendix I. Case Studies for Robust RVI Q-Learning

In this section, we provide the proof of the second part of Theorem 12, i.e., Ĥ is bounded
and unbiased under each uncertainty model. We note that the proofs in this part can be
easily derived by following the ones in Section H.

We first prove a lemma necessary to the proofs in this section.

Lemma 18. It holds that

∥VQ∥ ≤ ∥Q∥. (325)

Proof. From the definition of VQ, we have that

∥VQ∥ = max
s
|VQ(s)| = max

s
|max

a
Q(s, a)| ≜ |Q(s∗, a∗)|. (326)

Clearly, |Q(s∗, a∗)| ≤ maxs,a |Q(s, a)|, hence

∥VQ∥ ≤ ∥Q∥. (327)

Similar to Section H, the propositions of Ĥ can be reduced to the ones of σ̂Pa
s
.

Lemma 19. If E[σ̂Pa
s
V ] = σPa

s
(V ), and moreover there exists a constant C, such that for

any s, a, Var(σ̂Pa
s
V ) ≤ C(1 + ∥V ∥2), then E[ĤQ(s, a)] = HQ(s, a), and Var(ĤQ(s, a)) ≤

C(1 + ∥Q∥2).

Proof. First, we have that

E[ĤQ(s, a)] = E[r(s, a) + σ̂Pa
s
VQ(s)] = r(s, a) + σPa

s
(VQ) = HQ(s, a). (328)

For boundedness, note that

Var(ĤQ(s, a)) = E
[
(ĤQ(s, a)−HQ(s, a))2

]
= E

[(
σ̂Pa

s
VQ(s)− σPa

s
(VQ)

)2]
≤ C(1 + ∥VQ∥2)
≤ C(1 + ∥Q∥2), (329)

where the last inequality is from Lemma 18.
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This implies that the problem is reduced to verifying whether σ̂Pa
s
is unbiased and has

bounded variance, which is identical to the results in Section H. We thus omit the proofs
for this part.

Appendix J. Technical Lemmas

Lemma 20. For a robust Bellman operator T, define

T′V ≜ TV − f(V )e, (330)

T̃V ≜ TV − gπPe. (331)

Assume that x(t), y(t) are the solutions to equations

ẋ = T′x− x, (332)

ẏ = T̃y − y, (333)

with the same initial value x(0) = y(0) = x0. Then,

x(t) = y(t) + r(t)e, (334)

where r(t) satisfies

ṙ(t) = −r(t) + gπP − f(y(t)). (335)

Proof. Note that T′V = T̃V + (gπP − f(V ))e, then from the variation of constants formula,
we have that

x(t) = x0e
−t +

∫ t

0
e−(t−s)T̃(x(s))ds+

(∫ t

0
e−(t−s)(gπP − f(x(s)))ds

)
e, (336)

y(t) = x0e
−t +

∫ t

0
e−(t−s)T̃(y(s))ds. (337)

Hence, the maximal and minimal components of x(t)− y(t) can be bounded as:

max
i

(xi(t)− yi(t)) ≤
∫ t

0
e−(t−s)max

i
(T̃i(x(s))− T̃i(y(s)))ds+

∫ t

0
e−(t−s)(gπP − f(x(s)))ds,

min
i
(xi(t)− yi(t)) ≥

∫ t

0
e−(t−s)min

i
(T̃i(x(s))− T̃i(y(s)))ds+

∫ t

0
e−(t−s)(gπP − f(x(s)))ds.

This hence implies that

Span(x(t)− y(t)) ≤
∫ t

0
e−(t−s)Span(T̃(x(s))− T̃(y(s)))ds

≤
∫ t

0
e−(t−s)Span(x(s)− y(s))ds, (338)

where the last inequality is because T̃ is non-expansive w.r.t. the span semi-norm.
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Gronwall’s inequality implies that Span(x(t)− y(t)) ≤ 0 ·
∫ t
0 e

−(t−s)ds = 0 for any t ≥ 0.
However, since Span is non-negative, then Span(x(t) − y(t)) = 0. Hence, we have that
x(t) = y(t) + r(t)e for some r(t) satisfying r(0) = 0.

Also note that the differential of r(t) can be written as

ṙ(t)e = ẋ(t)− ẏ(t)

= T̃x(t) + (gπP − f(x(t)))e− x(t)− T̃y(t) + y(t)

= (−r(t) + gπP − f(y(t)))e, (339)

where the last equation is because

T̃x(t) = T̃(y(t) + r(t)e) = T̃(y(t)) + r(t)e, (340)

f(x(t)) = f(y(t) + r(t)e) = f(y(t)) + r(t). (341)

This completes the proof.

Lemma 21. For any function g : ∆(|S|) → R, assume there are 2n+1 i.i.d. samples
Xi ∼ q. Denote the empirical distributions from samples {Xi : i = 1, ..., 2n+1}, {X2i−1 : i =
1, ..., 2n}, {X2i : i = 1, ..., 2n} by q̂n+1, q̂n+1,O, q̂n+1,E. Then,

E[g(q̂n+1,O)] = E[g(q̂n+1,E)] = E[g(q̂n)]. (342)

Proof. Note that

q̂n+1,O(s) =

∑2n

i=1 1X2i−1=s

2n
, (343)

hence,

E[g(q̂n+1,O)] =
∑

p=(p1,...,p|S|)∈∆(|S|)

g(p)P(q̂n+1,O = p)

=
∑

p=(p1,...,p|S|)∈∆(|S|)

P
(∑2n

i=1 1X2i−1=s1

2n
= p1, ...,

∑2n

i=1 1X2i−1=s|S|

2n
= p|S|

∣∣∣∣q)g(p),
(344)

where 2npi ∈ N and
∑|S|

i=1 pi = 1. On the other hand,

E[g(q̂n)] =
∑

p=(p1,...,p|S|)∈∆(|S|)

g(p)P(q̂n = p)

=
∑

p=(p1,...,p|S|)∈∆(|S|)

P
(∑2n

i=1 1Xi=s1

2n
= p1, ...,

∑2n

i=1 1Xi=s|S|

2n
= p|S|

∣∣∣∣q)g(p). (345)

Note that Xi are i.i.d., hence,

P
(∑2n

i=1 1Xi=s1

2n
= p1, ...,

∑2n

i=1 1Xi=s|S|

2n
= p|S|

∣∣∣∣q)
= P

(∑2n

i=1 1X2i−1=s1

2n
= p1, ...,

∑2n

i=1 1X2i−1=s|S|

2n
= p|S|

∣∣∣∣q).
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Thus,

E[g(q̂n+1,O)] = E[g(q̂n)]. (346)

Similarly, E[g(q̂n+1,E)] = E[g(q̂n)] and hence it completes the proof.

Lemma 22. Under the total variation uncertainty model, the optimal solution and optimal
value for gVs,a, g

V
s,a,N+1, g

V
s,a,N+1,E , g

V
s,a,N+1,O are bounded. Specifically,

µV
s,a, µ

V
s,a,N+1, µ

V
s,a,N+1,E , µ

V
s,a,N+1,O ≤ V + ∥V ∥e, (347)

∥µV
s,a∥, ∥µV

s,a,N+1∥, ∥µV
s,a,N+1,E∥, ∥µV

s,a,N+1,O∥ ≤ 2∥V ∥, (348)

|gVs,a(µV
s,a)|, |gVs,a,N+1(µ

V
s,a,N+1)| ≤ 3(1 + 2ζ)∥V ∥,

|gVs,a,N+1,E(µ
V
s,a,N+1,E)|, |gVs,a,N+1,O(µ

V
s,a,N+1,O)| ≤ 3(1 + 2ζ)∥V ∥. (349)

Proof. First we show the bounds on the optimal solutions. If we denote the minimal entry
of V by w: w = mins V (s), then W ≜ V − we ≥ 0. Note that,

µW
s,a = argmax

µ≥0

(
Pa
s(W − µ)− ζSpan(W − µ)

)
= argmax

µ≥0

(
− w + Pa

s(V − µ)− ζSpan(V − µ)
)
, (350)

which is because Span(V + ke) = Span(V ) and Pa
s(V + ke) = k + Pa

sV . Hence, µW
s,a = µV

s,a.

Moreover note that W ≥ 0, hence µW
s,a is bounded: µW

s,a ≤W , this further implies that

∥µV
s,a∥ = ∥µW

s,a∥ ≤ ∥W∥ ≤ 2∥V ∥. (351)

The bounds on µV
s,a,N+1, µ

V
s,a,N+1,O, µ

V
s,a,N+1,E can be similarly derived.

We then consider the optimal value. Note that,

gVs,a(µ
V
s,a) = Pa

s(V − µV
s,a)− ζSpan(V − µV

s,a)

≤ ∥V ∥+ ∥µV
s,a∥+ ζ|max

i
(V (i)− µV

s,a(i))|+ ζ|min
i
(V (i)− µV

s,a(i))|

≤ 3∥V ∥+ 2ζ(∥V ∥+ ∥µV
s,a∥)

≤ 3(1 + 2ζ)∥V ∥. (352)

On the other hand,

gVs,a(µ
V
s,a) ≥ gVs,a(0) = Pa

sV − ζSpan(V ) = Pa
sV − ζmax

i
V (i) + ζmin

i
V (i). (353)

Denote the maximal and minimal entries of V by V (M) and V (m), then we have that

Pa
sV − ζmax

i
V (i) + ζmin

i
V (i)

=
∑
x

Pa
s,xV (x)− ζV (M) + ζV (m)

≥ −∥V ∥ − 2ζ∥V ∥, (354)
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where the last inequality is from ∥V ∥ ≥ V (i) ≥ −∥V ∥ for any entry i. Thus, combining
(353) and (354) implies that

−(1 + 2ζ)∥V ∥ ≤ gVs,a(µ
V
s,a) ≤ 3(1 + 2ζ)∥V ∥. (355)

Similarly, the bounds on gVs,a,N+1(µ
V
s,a,N+1), g

V
s,a,N+1,O(µ

V
s,a,N+1,O), g

V
s,a,N+1,E(µ

V
s,a,N+1,E) can

be derived.

Lemma 23. Under the chi-square uncertainty model, the optimal solution and optimal
value for gVs,a, g

V
s,a,N+1, g

V
s,a,N+1,E , g

V
s,a,N+1,O are bounded. Specifically,

µV
s,a, µ

V
s,a,N+1, µ

V
s,a,N+1,E , µ

V
s,a,N+1,O ≤ V + ∥V ∥e, (356)

∥µV
s,a∥, ∥µV

s,a,N+1∥, ∥µV
s,a,N+1,E∥, ∥µV

s,a,N+1,O∥ ≤ 2∥V ∥, (357)

|gVs,a(µV
s,a)|, |gVs,a,N+1(µ

V
s,a,N+1)| ≤ 3(1 +

√
2ζ)∥V ∥, (358)

|gVs,a,N+1,O(µ
V
s,a,N+1,O)|, |gVs,a,N+1,E(µ

V
s,a,N+1,E)| ≤ 3(1 +

√
2ζ)∥V ∥. (359)

Proof. First, we show the bounds on the optimal solutions. If we denote the minimal entry
of V by w: w = mins V (s), then W ≜ V − we ≥ 0. Note that,

µW
s,a = arg max

W≥µ≥0

(
Pa
s(W − µ)−

√
ζVarPa

s
(W − µ)

)
= arg max

W≥µ≥0

(
− w + Pa

s(V − µ)−
√

ζVarPa
s
(V − µ)

)
, (360)

which is because VarPa
s
(V − µ− we) = VarPa

s
(V − µ) + VarPa

s
(we)− 2CovPa

s
(V − µ,we) =

VarPa
s
(V − µ). Hence µW

s,a = µV
s,a. Moreover note that W ≥ 0, hence µW

s,a is bounded:

µW
s,a ≤W , this further implies that

∥µV
s,a∥ = ∥µW

s,a∥ ≤ ∥W∥ ≤ 2∥V ∥. (361)

The bounds on µV
s,a,N+1, µ

V
s,a,N+1,O, µ

V
s,a,N+1,E can be similarly derived.

We then consider the optimal value. Note that,

|gVs,a(µV
s,a)| = |Pa

s(V − µV
s,a)−

√
ζVarPa

s
(V − µV

s,a)|

≤ ∥V ∥+ ∥µV
s,a∥+

√
2ζ∥V − µV

s,a∥2

≤ 3∥V ∥+
√
2ζ(∥V ∥+ ∥µV

s,a∥)

≤ 3(1 +
√
2ζ)∥V ∥. (362)

Similarly, the bounds on gVs,a,N+1(µ
V
s,a,N+1), g

V
s,a,N+1,O(µ

V
s,a,N+1,O), g

V
s,a,N+1,E(µ

V
s,a,N+1,E) can

be derived.

Lemma 24. Under the Wasserstein distance uncertainty model, the optimal solution and
optimal value for gVs,a, g

V
s,a,N+1, g

V
s,a,N+1,E , g

V
s,a,N+1,O are bounded. Specifically,

λV
s,a, λ

V
s,a,n, λ

V
s,a,n,O, λ

V
s,a,n,E ≤

2∥V ∥
ζ l

, (363)

|gVs,a(λV
s,a)|, |gVs,a,n(λV

s,a,n)|, |gVs,a,n,O(λV
s,a,n,O)|, |gVs,a,n,E(λV

s,a,n,E)| ≤ ∥V ∥. (364)
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Proof. First, we show the bounds on the optimal solutions. Denote the optimal solution
to maxλ≥0 g

V
s,a(λ) by λV

s,a. Moreover, for each state y ∈ S and any λ ≥ 0, denote syλ ≜
argminx∈S{λd(x, y)l + V (x)}. Hence,

gVs,a(λ) = −λζ l + ES∼Pa
s
[λd(S, sSλ)

l + V (sSλ)]. (365)

Moreover, note that gVs,a(λ
V
s,a) = maxλ≥0 g

V
s,a(λ), hence,

−λV
s,aζ

l + ES∼Pa
s
[λV

s,ad(S, s
S
λV
s,a
)l + V (sSλV

s,a
)] ≥ gVs,a(0) = ES∼Pa

s
[V (sS0 )] = min

x
V (x), (366)

where the last equation is due to the fact that sS0 = argminx∈S{V (x)} = minx V (x). Now
consider the inner problem ES∼Pa

s
[λV

s,ad(S, s
S
λV
s,a
)l + V (sS

λV
s,a
)]. Note that,

ES∼Pa
s
[λV

s,ad(S, s
S
λV
s,a
)l + V (sSλV

s,a
)]

=
∑
x

Pa
s,x

(
λV
s,ad(x, s

x
λV
s,a
)l + V (sxλV

s,a
)
)

(a)

≤
∑
x

Pa
s,x

(
λV
s,ad(x, x)

l + V (x)
)

= EPa
s
[V (S)], (367)

where (a) is because sx
λV
s,a

= argminy∈S{λV
s,ad(x, y)

l + V (y)} and hence λV
s,ad(x, s

x
λV
s,a
)l +

V (sx
λV
s,a
) ≤ λV

s,ad(x, x)
l + V (x).

Combine (366) and (367), then we further have that

min
x

V (x) ≤ −λV
s,aζ

l + ES∼Pa
s
[λV

s,ad(S, s
S
λV
s,a
)l + V (sSλV

s,a
)] ≤ −λV

s,aζ
l + EPa

s
[V (S)]. (368)

This implies that

λV
s,a ≤

EPa
s
[V (S)]−minx V (x)

ζ l
≤ 2∥V ∥

ζ l
, (369)

and hence λV
s,a is bounded.

On the other hand, note that gVs,a(λ
V
s,a) = σPa

s
[V (S)], hence,∣∣gVs,a(λV

s,a)
∣∣ ≤ ∥V ∥. (370)

Same bound can be similarly derived for

λV
s,a,n, λ

V
s,a,n,O, λ

V
s,a,n,E , g

V
s,a,n(λ

V
s,a,n), g

V
s,a,n,O(λ

V
s,a,n,O), g

V
s,a,n,E(λ

V
s,a,n,E).

Lemma 25. For an optimal robust Bellman operator: HQ(s, a) = r(s, a)+σPa
s
(VQ), define

H′Q ≜ HQ− f(Q)e, (371)

H̃Q ≜ HQ− g∗Pe. (372)
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Assume that x(t), y(t) are the solutions to equations

ẋ = H′x− x, (373)

ẏ = H̃y − y, (374)

with the same initial value x(0) = y(0). Then x(t) = y(t) + r(t)e, where r(t) satisfies
ṙ(t) = −r(t) + g∗P − f(y(t)).

Proof. The proof follows exactly that of Lemma 20 if we show that H̃ is non-expansion
w.r.t. the span semi-norm.

It can be shown that

Span(H̃(Q1)− H̃(Q2)) ≤ Span(VQ1 − VQ2). (375)

Let

s = argmax
i
{max

a
Q1(i, a)−max

a
Q2(i, a)}, (376)

t = argmin
i
{max

a
Q1(i, a)−max

a
Q2(i, a)}. (377)

Then,

Span(VQ1 − VQ2) = (max
a

Q1(s, a)−max
a

Q2(s, a))− (max
a

Q1(t, a)−max
a

Q2(t, a))

≤ Q1(s, as)−Q2(s, as)− (Q1(t, at)−Q2(t, at))

≤ max
x,b

(Q1(x, b)−Q2(x, b))−min
x,b

(Q1(x, b)−Q2(x, b))

= Span(Q1 −Q2). (378)

where as = argmaxaQ1(S, a) and at = argmaxaQ2(t, a). This completes the proof.
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