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Abstract

Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons
(quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent
energy transduction among different physical systems down to single quantum level. Here we
report a dynamical phase-field model that allows simulating the coupled dynamics of the
electromagnetic waves, magnetization, and strain in 3D multiphase systems. As examples of
application, we computationally demonstrate the excitation of hybrid magnon-photon modes
(magnon polaritons), Floquet-induced magnonic Aulter-Townes splitting, dynamical energy
exchange (Rabi oscillation) and relative phase control (Ramsey interference) between the two
magnon polariton modes. The simulation results are consistent with analytical calculations based
on Floquet Hamiltonian theory. Simulations are also performed to design a cavity electro-magno-
mechanical system that enables the triple phonon-magnon-photon resonance, where the resonant
excitation of a chiral, fundamental (n=1) transverse acoustic phonon mode by magnon polaritons
is demonstrated. With the capability to predict coupling strength, dissipation rates, and temporal
evolution of photon/magnon/phonon mode profiles using fundamental materials parameters as the
inputs, the present dynamical phase-field model represents a valuable computational tool to guide
the fabrication of the cavity electromagnonic system and the design of operating conditions for
applications in quantum sensing, transduction, and communication.
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Introduction

One main goal of the cavity electromagnonics is to realize strong and dynamically tunable
coupling between magnons (quanta of spin waves) and cavity photons (quanta of confined
electromagnetic waves)', with application potential in quantum storage *°, quantum
transduction®” and quantum sensing®. The strong coupling between the Kittel mode magnon
(spatially uniform precession of magnetization) and the cavity photon was theoretically predicted
by Soykal and Flatté®!? and experimentally observed in hybrid systems that involve a yttrium iron
garnet (YIG) bulk crystal slab'’!'2 permalloy thin-film stripe'?, YIG film'*!> mounted on a
coplanar microwave resonator, or YIG bulk crystal sphere(s)/slab inside a three-dimensional (3D)
microwave cavity*!%, One key feature of such strong coupling is the mode frequency splitting
with an avoided crossing in the frequency spectrum, which indicates the hybridization of magnon
and photon into a new quasiparticle called magnon polariton!'®2%?7, In the time-domain, the energy
of magnon polaritons is constantly exchanged between the magnon and the photon system with
100% conversion efficiency.

To realize practical quantum operation such as mode swapping and storage?, it is necessary
to dynamically control the exchange process between the two hybrid modes of magnon polaritons
upon the completion of transferring a single quantum of excitation®”. For example, Floquet
engineering*® — which herein refers to the simultaneous application of a periodic driving magnetic
field — has been successfully implemented to in situ control the transition between the two hybrid
modes and even induce further splitting of each mode into two energy levels associated with
different Floquet modes?!, analogous to the Autler-Townes splitting in atomic physics.

In addition to the studies on magnon-photon resonance, tripartite coupling among the photons,
magnons, and phonons have also been demonstrated experimentally in a cavity electromagnonic
system!>22-2% which can also be called a cavity electro-magno-mechanical system in this case. For
example, Zhang et al reported a resonant coupling among the Kittel mode magnons, cavity photons,
and high-overtone bulk acoustic phonons — all having the same frequency of a few gigahertz
(GHz) — in a Gd3GasO012(GGG, substrate)/YIG(film, 200-nm-thick) mounted on a split-ring
resonator’®, In a 0.25-mm-diameter YIG sphere placed in a 3D photon cavity, Zhang et al 2
demonstrated a coherent coupling between a GHz magnon polariton (with a frequency @+ or @.)
and a megahertz (MHz) acoustic phonon (frequency: ay) by parametrically driving the cavity with
a strong microwave signal at a frequency wad, with @4-@-=- @, or wy-w=awy.

The main objective of this article is to report a 3D dynamical phase-field model that enables
simulating and predicting the coupled dynamics of photons, magnons, and acoustic phonons in a
cavity electromagnonic system comprised of a magnon/phonon resonator placed in a bulk 3D
photon cavity, which is one of the most used structures in experiments*!-2° In contrast to the fact
that Hamiltonian-based theoretical analyses (e.g., 2!*!) need to take the mode coupling strength as
the input and are therefore not predictive, the present dynamic phase-field model allows for
predicting the spatiotemporal evolution of coupled modes in 3D photon cavity and magnon
resonators of arbitrary size and geometry under various operation conditions, using only the
fundamental materials parameters as the input. Therefore, it can be used to guide the design of
cavity structure and control conditions for realizing desirable quantum operation.

The dynamically evolving physical parameters in a cavity electromagnonic system include the
magnetic-field component (HEM) of the electromagnetic (EM) wave in the microwave cavity, the
magnetization (M) and elastic strain (€) of the magnon resonator (e.g., YIG). The propagation of



HM is governed by the Maxwell’s equations, while dynamical evolution of M and €, which
represent the magnon and phonon subsystem, are usually described by the Landau-Lifshitz-Gilbert
(LLG) equation and elastodynamic equation, respectively. Crucially, the dynamics of M is
modulated by the HEM via the Zeeman torque, while the M and & are coupled via the magnetoelastic
interaction®?. Therefore, a complete, direct numerical simulation of the dynamical processes in a
cavity electromagnonic system requires the simultaneous solution of the coupled LLG,
elastodynamic, and Maxwell’s equations.

Thus far, there are only a few advanced computational models that include coupled dynamics
of M and EM wave®*=3¢ but excludes either the exchange coupling field (i.e., macrospin
approximation) in the LLG equation®-%>3¢ or the displacement current in the Maxwell’s
equations**. Recently, models that include coupled dynamics of &, M, and EM wave have also
appeared®”*!, but these models are limited to 1D3*4° or 2D*! system or employ the Newton’s
equation®” as a simplification of the elastodynamic equation. Furthermore, these models®*’*! have
not yet been applied to a cavity electromagnonic system. The present dynamical phase-field model
addresses the coupled dynamics of €, M, and EM wave in a 3D cavity electromagnonic system by
solving the coupled LLG, elastodynamic, and Maxwell’s equations (see Methods). All numerical
solvers are accelerated by graphics processing unit (GPU) to increase the computation throughput.
As examples of application, we use the dynamical phase-field model to simulate the dynamics of
excitation and control of magnon polariton modes in a cavity electromagnonic system comprised
of a YIG magnon resonator placed in a 3D photon cavity. Typical coherent gate operations
including Rabi oscillation and Ramsey interference are computationally demonstrated.
Furthermore, we design a cavity electro-magno-mechanical system, which contains a bilayer
YIG/SiN membrane placed in a 3D photon cavity and permits a resonant interaction between the
magnon polaritons and the acoustic phonons. We then use the dynamical phase-field model to
simulate the coupled mode dynamics under such triple phonon-magnon-photon resonance
condition.

Results
Simulation system set-up

Figure 1a schematically shows the cavity electromagonic system. YIG, which has been widely
used in hybrid magnonic systems!61842-47 due to its ultralow magnetic damping, is used as the
magnon resonator. The 3D microwave cavity has a dimension of 45x9x21 mm?, which supports
the TE101 mode of the standing EM waves with a frequency @./2n=7.875 GHz. To excite the
TE101 cavity mode, a point charge current pulse J°(¢) in the form of a Gaussian function te~t*/29%
is applied along the y axis (i.e., only the J;; component is nonzero) at the position (22.5mm, 1.5mm,
10.5mm) of the cavity, where oy is a free parameter that controls the pulse duration and chosen to
be 70 ps so that the frequency window of the pulse covers the @.. The simulated H*M has a vortex-
like distribution in the xz plane, as shown in Fig. 1a. The YIG resonator is placed at 1.5 mm below
the top surface center of the cavity, where the magnitude of HEM is relatively large. At the initial
equilibrium state, the magnetization in the YIG m° is along +z ([001]) due to a bias magnetic field
HPi2=(0,0,H>*) applied along the same direction. Note that energy dissipation of both the cavity
photon (arising from the imaginary component of the relative dielectric permittivity tensor ¢,) and
magnon (arising from the effective magnetic damping) are both set to be zero to study the magnon-
photon coupling under the most ideal situation.



The entire system is discretized into three-dimensional (3D) computational cells with a cell
size Ax=Ay=Az=2 nm. Numerically, a nm-scale computational cell is necessary to ensure spatial
uniformity of the magnetization (i.e., the formation of Kittel mode magnon) via the Heh
(proportional to |Vm|?) between neighboring spins. Moreover, a basis for any micromagnetic

simulation is that the cell size needs to be smaller than the exchange length lex=\/ Aoy /(0.5 1y M?),
which is about 16.3 nm for YIG with an exchange coupling coefficient Ay 0of 3.26 pJ/m and M=
140 kA/m*. However, discretization of a 45x9x21 mm? system using a cell size of Ax=Ay=Az=2
nm would lead to a total of about 10?! cells, which is computationally unaffordable. To address
the issue, the & is tuned to scale down the EM wavelength and hence the size of the microwave
cavity. For example, in the case of 1x1x1 mm?® YIG cube, we set all three diagonal components of
the & to be 6.25x10!° for both the YIG cube and the microwave cavity, thus the EM wavelength
is scaled down by 2.5x10° (=y/e,) times. Accordingly, the size of the microwave cavity can be
reduced from 45x9x21 mm? to 180x36x84 nm? (i.e., 68,040 cells) without changing the spatial
profile and the frequency of the TEip1 mode EM wave. Meanwhile, the size of the 1x1x1 mm?
YIG cube should be scaled down to 4x4x4 nm? to maintain a constant volume ratio of the YIG
cube to microwave cavity. Although such size down-scaling makes it not possible to simulate the
high-order magnon modes (spatially non-uniform precession of local magnetization) that may
occur in a mm-scale YIG, it would not influence the present work on the interaction between Kittel
mode magnon and cavity photon. Importantly, although the larger & leads to a smaller EEM, the
magnitude of H®M, which interacts with the magnetization, remains constant (see Egs. (6-7) in
Methods). As a result, the simulated coupled magnon-photon dynamics remains the same as that
in the original mm-scale system. Furthermore, the use of a larger ¢ allows using a larger time step
which significantly reduces the computation time in long-term dynamics simulation (see Methods).
Magnon-photon coupling

To demonstrate the validity and high numerical accuracy of our computational model, we first
simulate the formation of the commonly observed £&~0 mode magnon polariton (k is wavenumber),
which features the hybridization between the £=0 (Kittel) mode magnon i and k~0 mode cavity
photon ¢. As illustrated in Fig. 1a, the HE™, which is perpendicular to the initial equilibrium
magnetization m° (see Fig. 1a), drives the magnetization precession. Due to the exchange coupling,
all local magnetization vectors m in the YIG precess in phase, resulting in the excitation of the
desirable Kittel mode magnon. Since HEM is largely uniform around the YIG cube (i.e.,
wavenumber £~0) and the magnon-photon interaction time is sufficiently long in the present 3D
cavity, the k=0 mode magnon polariton should form if the angular frequency of the Kittel mode
magnon @m, or the ferromagnetic resonance (FMR) frequency, can be magnetically tuned to match
the angular frequency of the cavity ac. Specifically, for an initial equilibrium magnetization along

[001], one has anw/2m=p(H™ M, + %

0Ms
K1=620 J/m? is the magnetocrystalline anisotropy coefficient of the YIG. Accordingly, H*#=(0, 0,
0.291 T) is applied to have wm/2n=w./2n=7.875 GHz.

)8, where y=27.86 GHz/T is the gyromagnetic ratio and

Figure 1b shows the dynamics of the Kittel magnon mode and the photon, where Ar=0 refer
to the moment at 20 ns after the injection of the Gaussian-shaped current pulse J(¢) at =0 ns.
Typical behavior of coherent beating oscillation similar to a two-level system**# is observed.
Specifically, the peak amplitudes of the two modes (indicated by the trend lines) show a Rabi-like
oscillation!” with a period of ~6.9 ns (frequency ~ 145 MHz), suggesting a back-and-forth energy
transfer between the YIG and the microwave cavity. Note that we focus on the peak amplitudes



rather than the instantaneous values of Am, and E;™, because the energy of the magnon mode is
swapped instantaneously between Am,, and Am,, while the energy of the cavity photon mode is
swapped instantaneously between E;M and HyM. For clearer illustration, Fig. lc shows the
simulated magnon state and spatial distribution of the radiation electric field EEM(7) at a few
representative moments. As shown in the left panel, when the EEM reaches its peak amplitude, the
magnetization m aligns almost along its initial direction [001], indicating an almost zero free
energy change in the YIG. As the energy is being transferred from the cavity to the YIG, the
amplitude of EEM in the cavity decreases while the amplitude of the precessing magnetization (or

|Am|= \/ (Am,)? + (Amy)2 increases, as shown in the middle panel. After a half period of the

energy transfer (3.45 ns = 6.9 ns/2), almost all the EM wave energy is absorbed by the YIG, which
is indicated by the negligibly small EEM in the cavity and relatively large |Am|, as shown in the
right panel of Fig. 1c. Figure 1d shows the frequency spectrum of the temporal waveform Am,(¢)
in Fig. 1b, which reveals two peak frequencies at 7.8 GHz and 7.945 GHz, respectively. The two
peak frequencies are symmetric with respect to the wm/2n=aw/21=7.875 GHz with a frequency gap
of 145 MHz, indicating the formation of magnon polariton with two different hybrid modes d+ and
d.. The frequency gap (denoted as &p) is consistent with the frequency of the Rabi-like oscillation
and defines a magnon-photon coupling strength gem=0p/2=2nx72.5 MHz. It is worth remarking
that the magnon subsystem of the YIG is also coupled to the phonon subsystem, because the
precessing m generates dynamical strain via the magnetoelastic feedback (Eq. 2) and the
dynamical strain in turn modulates the dynamics of m via the H™! (Eq. 1). Moreover, the stiffness
damping coefficient f in the elastodynamic equation creates an additional channel for energy
dissipation. However, in the present system, the energy exchange between magnon and phonon
subsystems is negligible because the magnitude of the dynamical strain is negligibly small (~107)
due to the relatively small magnetoelastic coupling constant of the YIG.

Figure 1e shows the numerically simulated mode frequencies (indicated by hollow circles)
as functions of the bias magnetic field in three different hybrid systems where the sizes of the YIG
cube are 0.4x0.4x0.4 mm?, 1x1x1 mm?®and 2x2x2 mm?, respectively, and the cavity size remains
to be 45x9x21 mm?. The goal of these simulations is to computationally verify the theoretical
relation of gem = goVN (Ref. '©), where g, is the coupling strength of a single Bohr magneton to
the cavity; N is the total spin number in the YIG and increases linearly with its size. The presence
of avoided crossings in all three systems indicate the formation of magnon polaritons. The
corresponding magnon-photon coupling strength gem can be extracted from the frequency gap
under on-resonance 7 and ¢ modes (where AHP*=0), which are 2nx18.3 MHz, 2nx72.5 MHz,
and 2mx182.2 MHz, respectively. One can evaluate that the gemis largely proportional to the square
root of the cube size and hence the v/N. The gem in the case of 2x2x2 mm?® is smaller than the value
of 2nx204.6 MHz obtained from linear extrapolation due to the <100% spatial mode profile
overlapping, which is consistent with experimental observation'’. Based on the extracted gem, we
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fit the simulations results via the expression w,=> (a)m+wc)i5 \/ (wy-w)*+4g? , which describe

the angular frequencies of the two hybrid modes (d+ and d.) in a two-level system®. The excellent
fitting indicates the validity of our model set-up and high numerical accuracy of our dynamical
phase-field model.

Floquet-induced magnonic Autler-Townes splitting



Based on the cavity electromagnonic system with a YIG resonator of 1x1x1 mm?, a
periodic dynamical magnetic field hp(7) is applied along the same axis (z) with the H"® to
implement Floquet engineering. The hp(#)=|hp|sin(wp?) is applied uniformly on the YIG resonator,
where |hp| and wp are the amplitude and the angular frequency of the Floquet drive, respectively.
Figure 2a shows the frequency spectra of the Am,(f) simulated under a fixed |hp| of 2000 A/m but
different wp/2xn varying from 0 to 400 MHz. A static bias magnetic field of 0.2315 MA/m (~0.291
T) is applied to have the magnon mode on resonance with the cavity photon and generate two
magnon polariton modes d, and d_, which have frequencies of 7.945 GHz and 7.8 GHz,
respectively. Each polariton mode has several sidebands created by the Floquet drive. The
frequencies of these sidebands either increase or decrease as the wp increases. When wp is equal
to the (cavity and magnon) mode splitting frequency (=2gecm=2mx145 MHz), the first inner
sideband of the magnon polariton mode d. (d.) resonantly interact with the other magnon
polariton mode d_ (d.). As a result, the two energy levels corresponding to the d. and d. modes
split into four energy levels associated with different Floquet modes (as illustrated in the inset),
where the frequency gap between the two newly split energy levels is denoted as Awar, with
Awat/27=34.8 MHz. Such magnonic Autler-Townes splitting>! and the onset of avoided crossing
indicate the realization of strong coupling between the two hybrid modes of the magnon polaritons
by Floquet drive.

To gain further insights on the simulated spectrum, we analytically calculate the absorption
spectrum of the magnon mode based on Floquet theory described in Ref. !, using the numerically
simulated on-resonance frequency o (=@wm=a@c) and the magnon-photon coupling strength gcm as
the inputs. As shown in Fig. 2b, the main structure of the calculated spectrum (shown in Fig. 2b)
reproduces the simulation results. The calculated spectrum can be understood by writing the
Floquet Hamiltonian as following (details of derivation are in Ref. ),
= w+a++a+ +w.d "d + Yem ]n(_) d—ei(nth) + d+d_+e—i(nth)] (1)

n=odd

| T

Here wy = wg £ gem, Q@ = y|hp|, and £ is the reduced Planck’s constant. A list of symbols for
various modes and related quantities is provided in Supplemental Material 1. The Floquet drive
creates a series of sidebands of the di modes at frequencies w, + nwp, where n is the sideband
order. The last term on the right-hand side of Eq. (1) describes the interactions between different
sidebands, where J,, is the nth Bessel function of the first kind. From Eq. (1), one can determine
that the coupling strength between the first inner sideband of d_ and the d, mode (i.., the
magnonic Autler-Townes splitting Awar) is approximated as Awpr = 2gem/1 (2/wp). Plugging
in the numbers yields a theoretically predicted value of Awpr/2n ~ 34.1 MHz, which is in good
agreement with the simulated value of 34.8 MHz. Moreover, since the sum in Eq. (1) only involves
odd terms, some of the sidebands (e.g., the first inner sideband of d, and d_ modes) are not
directly coupled, which is revealed by the crossing in both the simulated and calculated spectrum.
Detailed discussion on this point can be found in Ref. 3!

As |hp| increases, Awar varies in an oscillatory fashion but always remain nonzero (see
Fig. Sla in Supplemental Material 2). This trend cannot be explained by the analytical
approximation Awpr = 2gcm/1(/wp), which is only valid when |hp]| is relatively small. At
large |hp|, the |hp|-dependent Awar can be better quantified by the following analytical
expression (see detailed derivation in Supplemental Material 3),
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Aot = 2gem (1 ~Jo (—)) @
Wp

which predicts a repeated occurrence of Awar = 29, at Jo = 0 and the presence of a Floquet

ultrastrong coupling regime >! where Awpr > 29y and J; < 0. Both features are shown in the

frequency spectrum of the magnon polaritons (Fig. Sla) obtained by dynamical phase-field

simulations.

Our dynamical phase-field simulation results in Fig. 2c further shows the temporal profile
of the Am(7) and E;™(¢) for wp/2n =300 MHz. According to the frequency spectra in Fig. 2a, the
magnon polariton is still dominated by the intrinsic hybrid modes d, and d_ with no magnonic
Autler-Townes splitting. Correspondingly, the amplitudes of both the Am.(¢) and E;;:M(t) display a
Rabi-like oscillation with a period of 6.9 ns, which is the same as in Fig. 1b. By comparison, for
wp/2n=145 MHz where the magnonic Autler-Townes splitting is prominent, the corresponding
temporal profiles of Am,(¢) and E;:M(t), as shown in Fig. 2d, are clearly composed of components
of more than two frequencies. Specifically, there are four major frequency components at
w,1t0.5AwpT, W4 -0.5A0pT, W_+0.5AwpT, and w_-0.5Aw, T, respectively, corresponding to the
four split energy levels as shown in Fig. 2a. Despite the more complex temporal profile, the
evolution of the peak amplitudes of Am.(¢) and E;:M(t) are still complementary, indicating that the
back-and-forth energy exchange still occurs between the Kittel magnon mode 7 and the cavity
photon mode &. The beam-splitter type coupling between the d.. (d.) and the first inner sideband
of the d_ (d,) mode (Fig. 2a) can also be interpreted as the energy exchange (i.e., Rabi-like
oscillation) between the two energy levels (i.e., the hybridized modes d. and d_) through the
frequency matching provided by the Floquet drive, i.e., w, = w_ + wp. Similar Floquet-driven
Rabi-like oscillation between two hybridized modes has also been demonstrated experimentally in
a two-level photonic system?3.

Dynamical control of the energy exchange rate between two magnon polariton modes

The Rabi-like oscillation between the two magnon polariton modes (d, and d.)
corresponds to a rotation along the real axis of a Bloch sphere, as illustrated in Fig. 3a inset. Here,
we model this process in the time domain and computationally demonstrate the dynamical control

of the energy exchange rate between the d., and d. modes (namely, Rabi flopping frequency) by
dynamically varying the amplitude |hp| of the Floque drive. To this end, the system is initialized
by pumping a 15-cycle sinusoidal charge current pulse J°(¢)=Josin(wt) at ®=2nx7.945 GHz along
the y axis (i.e., only the /5 component is nonzero) to populate (excite) the d. mode. A continuous
Floquet drive hp(¢) at the cavity-magnon mode splitting frequency (@p/2n=0p/2n=145 MHz) is
then applied to the system. Figure 3a shows the temporal evolution of the magnetization amplitude
of the d, mode magnon polariton (denoted as |Aml| a,) with [hp|=5000 A/m. Here |Am|g (7) is
obtained by first extracting the temporal evolution of Am,(¢) and Am,,(¢) by performing inverse
Fourier transform for 7.945-GHz (£50 MHz) peak in their frequency spectra and then calculating

its magnetization amplitude via \/ (Am,)? + (Amy)z. The |Am|, (7) display a Rabi-like

oscillation with a period of 11.6 ns, corresponding to a flopping frequency of 86.2 MHz. We note
that the d_ mode magnon polariton (at 7.8 GHz) was also excited after the initial current pulse



injection, and the dynamics of |[Am|; (f) complements the |Am|;_(7), as shown by Fig. S2 in
Supplemental Material 4, suggesting a dynamical energy exchange between the d, and d. modes.

Figure 3b further summarizes the |Am|;, (¢) simulated under different |hp| varying from
1000 to 5000 A/m. As shown, the period of Rabi-like oscillation decreases as |hp| increases,
leading to an increase in the corresponding Rabi flopping frequency (fravi). By analytically solving
the Heisenberg equation of the d, and d. modes under the rotating wave approximation (RWA),

we obtain the mode square |c2+(t) |2 = cos? (% t) (see Supplemental Material 5), yielding
Sfrabi=Q1/2=y |hp|/2, which is only valid when @wp=2g.m=21%145 MHz. It is worth noting that Figure
3a shows a nonzero offset, which differs from the RWA-based prediction and may be due to the
existence of other magnon modes. As shown in the inset of Fig. 3b, the analytically calculated frabi
agrees well with the values extracted from the simulated |Am|4 (#) with only small deviation at

larger |hj | values, where the system’s behavior deviates from the RWA.

As [hp | further increases, it is no longer possible to numerically extract the |[Am| 4 (¢) and
hence the fravi because multiple magnon modes coexist at 7.945 GHz. However, it is expected that
that the variation trend of fravi With |hp| would deviates significantly from the RWA-predicted
linear relation. Specifically, it is reasonable to speculate that the fravix Aw, /27 because the present
Rabi oscillation is based on beam-splitter type coupling between the d, (d.) and the first inner
sideband of the d_(d.) mode, as discussed above. In this regard, the |hp|-dependent frabi should
follow the |hp|-dependent Aw,, which is oscillatory at large |hp| as shown in Fig. Sla.

Dynamical control of the relative phase between two magnon polariton modes

Experimentally, it has also been shown that driving the transition between two hybridized
modes of a two-level photonic system with detuned pulses enables a dynamical control over the
relative phase of the two hybrid modes?®. By analogy to the protocols described in Ref. 2%, here we
computationally demonstrate the dynamical control of the relative phase between d, and d. mode
magnon polariton modes (namely, magnonic Ramsey interference). We first excite the system to
the d, mode by injecting a 15-cycle sinusoidal J¢(7) at 7.945 GHz. A 7/2 pulse of the Floquet drive
field hp(7) with a frequency of wp=dp+Aw is then applied to create excitations in a superposition
of both the d. and d_modes, which is illustrated by State ‘I’ on the equator of the Bloch sphere
(see Fig. 4a). Here, the duration of the n/2 pulse is 1/4™ of the Rabi-like oscillation period under
the field amplitude |hp[=5000 A/m, i.e.,70=1/(4fravi)=2.9 ns. After the first n/2 pulse is turned off
(hp(?) = 0), the excitation as superposition of d, and d_modes would start to precess along the
equator of the Bloch sphere (i.e., free evolution) with a precession frequency determined by the
detuning amplitude Aw. Upon the completion of the free evolution period, a second m/2 pulse is
applied to project the excitations (State ‘II” in the Bloch sphere) into the d. mode. The amplitude
of the d_ mode after the completion of second m/2 pulse is determined by the relative phase between
the two modes. The relative phase difference is proportional to both the frequency detuning Aw
and the duration of free evolution 7. To computationally demonstrate this principle, we record the
magnetization amplitude of the d_ mode (|Am)|; ) after the completion of the second 7/2 pulse, as
a function of the free evolution duration 7 under Aw/2n =10,15 and 20 MHz. As shown in Fig. 4b,
the frequency for the variation of the |Am|; with the duration ris exactly equal to Aw. The result
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matches the analytical expression, |d_(1:)|2 = %sin2 (AT(UT) (see Supplemental Material 6),

where a is the initial mode amplitude in d .
Coupled mode dynamics under the triple phonon-magnon-photon resonance condition

To simulate the coupled mode dynamics under the triple resonance condition, we design
an electro-magno-mechanical system which contains a YIG/SiN bilayer membrane placed in a 3D
photon cavity, as shown in Fig. 5a. The cavity hosts a nominal TEi00 mode photon (i.e., the EM
wave has a half-wavelength profile along the x axis while is spatially uniform along y and z), which
is a smaller portion of a larger-scale TE101 mode cavity. Details of the system design and simulation
set-up are shown in the Methods section. The resonant frequency of the cavity photon (~ 9.1 GHz)
is the same as the frequency of the Kittel mode magnon to enable the formation of magnon
polaritons. In the present set-up, the frequencies of the two magnon polariton modes are found to
be 9.028 GHz (d_) and 9.14 GHz (d.), respectively. Based on the magnetoelastic backaction, the
dynamically processing magnetization of the Kittel mode magnon in the YIG layer will generate
chiral transverse acoustic (TA) phonons that has a wavevector along the thickness direction () of
the bilayer, as has been demonstrated experimentally in a similar YIG/GGG bilayer>2. To obtain a
large profile overlap between phonons and magnons, the layer thicknesses of the YIG (10 nm)/SiN
(270 nm) bilayer membrane are designed to host a fundamental (n=1) TA phonon of 9.13 GHz.
Because this frequency is close enough to the frequency of the d, mode magnon polariton,
resonant interaction between the chiral TA phonon and the d, mode magnon polariton can be
enabled. Such triple resonance among the fundamental TA phonon, the Kittel mode magnon, and
the k~0 mode photon is similar to the experiment by Zhang et al.!> where the TA phonon of a
much higher order (n=2960) interacts with the Kittel mode magnon, resulting in a smaller mode
profile overlap and hence a lower magnon-phonon coupling strength than the present design.

The vectors in Fig. 5a show the direction and the magnitude of the local H™ in the cavity.
The hybridization of the Kittel mode magnons and cavity photons alters the local EM fields in the
vicinity of the YIG resonator, as shown more clearly in Fig. 5b. Figure 5c shows the spatial profile
of the fundamental TA phonon across the YIG/SiN bilayer. The right-handed phonon chirality is
shown in Fig. 5d. Figure 5e.g,i show the evolution of the HEM in the cavity, the Am,, in the YIG,
and the local €, in the SiN, and their frequency spectra are shown in Fig. 5f.h,j, respectively. As

shown, the precessing magnetization of both the d_ and d, mode magnon polaritons will generate
chiral TA phonons of the same frequencies at 9.028 GHz and 9.14 GHz, respectively. The
populations of the d_and d, modes are similar, as indicated by the similar spectral amplitudes of
these two peaks in the frequency spectra of photons and magnons (see Figs. 5f,h). However, the
population of the 9.14 GHz phonon, due to its proximity to the intrinsic phonon resonance
frequency of 9.13 GHz, is significantly larger than that of the 9.028 GHz phonon (see Fig. 5j).
Interestingly, there exists a strong peak at 9.13 GHz in the phonon frequency spectrum, even
though the population of the driving d, mode magnon polariton is low at 9.13 GHz. More
interestingly, there exist small peaks at 9.13 GHz in the frequency spectra of both the HEM and the
Am,, indicating an energy backflow from the magnetically excited 9.13 GHz phonon mode to both
the magnon and photon systems. This energy backflow, which becomes pronounced in this case
mainly because the damping terms for all three systems are turned off (i.e., no energy dissipation),
is clear evidence of the triple phonon-magnon-photon resonance. As a control simulation (see Fig.
S3 in Supplemental Material 7), we found that turning on the elastic damping for the YIG and SiN



leads to a significantly lower population for the magnetically existed 9.13 GHz phonon mode, and
that there are no additional peaks at 9.13 GHz in the spectra of magnon and photons.

Discussion

We have developed a 3D dynamical phase-field model that incorporates the coupled
dynamics of strain, magnetization, and EM wave in a cavity electromagnonic system, which
integrate magnon/phonon resonator(s) in a bulk 3D photon cavity. By solving the coupled
equations of motion for these quantities under appropriate magnetic, mechanical, and EM
boundary conditions, our computational model allows predicting the spatiotemporal evolution of
strain, magnetization, and EM fields under various operating conditions directly from the
fundamental material parameters. As examples, time-domain dynamics of relevant modes in
typical coherent gate operations (Rabi oscillation and Ramsey interference) are simulated. The
physical validity and high numerical accuracy of the solvers for coupled magnon-photon dynamics
in our dynamical phase-field model were demonstrated by understanding the simulation results
with analytical fitting and rigorous Hamiltonian-based Floquet theory. We have also applied the
dynamical phase-field model to design a cavity electro-magno-mechanical system that enables the
triple phonon-magnon-photon resonance, and computationally demonstrate the resonant excitation
of a chiral, fundamental (n=1) TA phonon mode by magnon polaritons under such triple resonance
condition.

In combination with the high throughput resulting from the GPU acceleration, the present
3D dynamical phase-field model can be used to guide the experimental design of the microwave
photon cavity, magnon and phonon resonator(s) as well as the operating condition for the discovery
of new physical phenomena as well as the optimization of key device features such as the coupling
strength, mode swapping rate (e.g., Rabi flopping frequency), and cooperativity. The present
dynamic phase-field model can also be extended to design and simulate cavity electromagnonic,
magnomechanical, and electro-magno-mechanical systems with more complex structures, such as
the on-chip systems integrating a coplanar microwave resonator and a magnon resonator!!~4, by
implementing a more detailed treatment of the current dynamics in the normal/superconducting
metal components (e.g., see a relevant recent modeling work>7).

Methods

Part 1: Description of the 3D dynamical phase-field model incorporating coupled dynamics of
strain, magnetization, and EM waves in multiphase systems.

A phase-field model leverages the symmetry-consistent use of continuum physical order
parameters and their gradients to describe the total free energy of a spatially inhomogeneous
system. The functional derivative of the total free energy (F,¢) With respect to a specific order
parameter yields the thermodynamic driving force that drives the evolution of the order parameter.

For example, the effective magnetic field that drives the evolution of M is calculated as Heff =
_ 1 6Fiot

Uo M
motion for all key order parameters are typically solved in their exact forms®®3%-8, This is different
from conventional phase-field model, where faster-evolving order parameters are often assumed
to reach steady or equilibrium state instantaneously®®. A dynamical phase-field model is
particularly necessary for hybrid systems featuring bidirectional dynamical energy exchange and
conversion between different physical subsystems, as in cavity electromagnonic systems.

, Where y, is vacuum permeability. In a dynamical phase-field model, equations of
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As an example, we consider a commonly used system that contains a bulk magnon resonator
in a 3D microwave cavity. The evolution of the normalized magnetization m= M/M; in the magnon
resonator, where M is the saturation magnetization, is governed by the LLG equation, i.e.,

om a
a7 > xHoT — —Effzy mX(mXHefﬁ, (2)
ot 1+l I+ass

where y is the gyromagnetic ratio; a.g is the effective magnetic damping coefficient;
HeT=H2rp+ Hanis Hexeh+ Hmelt HO+-HEM s the total effective magnetic field, where the externally
applied magnetic field H*P(f) includes both the static bias magnetic field H* and a dynamic
Floquet driving magnetic field hp(7); H*s and H*" are the effective magnetic field resulting from
the functional derivatives of the magnetocrystalline anisotropy energy and exchange coupling
energy with respect to m, respectively, and their expressions are provided in our previous work?®;
H™e!is the effective magnetoelastic field, H® is the demagnetization field, and H®M is the magnetic

. . : ] :
field of the cavity electromagnetic wave. H"'is calculated as H™®! = — f% Here the elastic
0

: 1 P .
free energy density fujas = Ecijkl(gkl - e,gl)(sij - 88-), with 7, j = x, y, z. Here the ¢;j, is the
elastic stiffness tensor; for magnets of cubic symmetry, the stress-free strain &/} = 3/1100 (ml2 — g)

3 . .
and eioj = E/llllmimj, where 4,y9 and A;;; are magnetostriction coefficients. The local total

strain &;; can be written as &;;(t) = €1 + Ag;;(t), where the €7 is the total strain at the initial
J ) ij 9] ij

equilibrium state and can be obtained by solving the mechanical equilibrium equation

. eq__y. eq 0,eq _ . . eq __ _0,eq
Vg, ;"=V [ci jkl(ei i & )] = 0. For a stress-free magnetic material, & T The latter can

be calculated based on the magnetization direction m; at the initial equilibrium state. The
1 (dAu; |, 0Au;
E( aj | ai
mechanical displacement Au= u-u® is obtained by solving the elastodynamic equation,
&*Au
ar
where A6=0-6°! is the dynamical stress; p is the mass density, and £ is the stiffness damping
coefficient. Since Eq. (3) is solved for the entire system, the material parameters c;jy;, p, and
vary in different phases, where the continuity boundary condition for u and 6¢%° are applied at the
interface between the magnon resonator and the microwave cavity. In this regard, by setting the
Cijie of the microwave cavity to be zero, the stress-free surface of the magnon resonator is
automatically considered. The magnon resonator is cube-shaped, which is a computationally more
tractable geometry because the entire simulation system is discretized by cube-shaped cells. Based
on the coupling to the LLG equation solver, this numerical solver of the elastodynamic equation
has previously been applied to simulate coupled magnon-phonon dynamics both the 1D*®3? and
2D* magnetic multilayer system. The high numerical accuracy of this elastodynamic solver have
been demonstrated through comparison to the analytical solutions in 1D system or the 2D
simulations performed via the commercial COMSOL Multiphysics® software. Here, we
demonstrate the numerical accuracy of this elastodynamic solver in a 3D elastically
inhomogeneous multiphase system through the comparison to the simulation results obtained from
the COMSOL Multiphysics® (Supplemental Material 8).

dynamical strain Ag;; is calculated via Ag;; = ), and the time-varying local

OAc
ZV'(A‘H'IBW ), 3)
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The demagnetization (stray) field H? can be expressed as HA(t) = Hiol 9+ AHA(t). The
d

H; 9 is produced by the magnetization m°=m(¢=0) at the initial equilibrium state inside the
magnon resonator, and can be obtained by solving the continuity equation for magnetic flux V -
B¢ =V [,uO(Hd'eq + mOMS)] = 0, which is part of the Maxwell’s equations. The magnetic
boundary condition 6m/cn=0 is applied on the surfaces of the magnon resonator, where n is normal
vector to the surface. For a cubic or spheric magnet with spatially uniform magnetization, H%¢4 =-

%Ms(mg, m9, m?). The dynamically changing AHZ(t), which emerges when m starts to evolve,

does not need to be calculated separately. Rather, the magnetic-field component of the EM wave
HEM(t), which is obtained by solving the two dynamical equations in the Maxwell’s equations via
the finite-difference time-domain (FDTD) solver on Yee grid (to be discussed below), can
automatically satisfy the magnetic flux continuity equation V - B = 0 across the heterointerfaces®.
Specifically, the spatiotemporal evolution of the HEM and the associated electric field component
of the EM wave E*M are simulated by solving the Maxwell’s equations,

EM
Vx HM= +J° 4
X Eo&r ot 5 ( )
B oH™  om
EM _ _
VRS = (7“‘455) )

Equation (4-5) indicates that the H®M is produced by both the free charge current pulse J°(¢) via
electric dipole radiation and the precessing m(¢) via magnetic dipole radiation. The perfect electric
conductor (PEC) boundary condition is applied on all surfaces of the microwave cavity for
reflecting the EM wave without loss. Specifically, £; = 0 and E; = 0 on the ij surfaces of the cavity
for PEC, with i = x, y, z, and j # i. The elastic stiffness coefficients, the damping coefficient, and
the mass density of YIG are listed in Supplemental Material 8. Other material parameters of YIG
used in the simulations, including the magnetocrystalline anisotropy and the magnetoelastic
coupling coefficients of YIG can be found in ref. *°. Central finite difference is used for calculating
spatial derivatives with a midpoint derivative approximation. Conventional Yee grid and the 3D
FDTD method® are used to numerically discretize the EM wave and solve Egs. (4-5). All
dynamical equations are solved in a coupled fashion using the classical Runge-Kutta method with
a time step Az = 5x107'* s. The choice of At is subjected to the Courant condition for numerical

convergence in conventional FDTD algorithm, which requires Ar<Io/(+/3v)*, where I is the
simulation cell size and v is the EM wave velocity in the medium. Since the use of a larger & leads
to /¢, times smaller v compared to speed of light in vacuum, a larger Az can be used in this work,
which significantly reduces the computational time in long-term dynamics simulation.

Part 2: Detailed discussion of the size scaling method

Under the same excitation charge current, a larger & would also lead to an E*™ that is /¢,
times smaller, because the amplitude of E*™ is inversely proportional to the angular wavenumber
k of the EM wave, with k = w\/€ye,14p = w/v. This relationship between E*™ and k can be
quantitatively understood by rewriting J°(¢)=CP/ct and then analytically solving the wave equation
of the E*™ under the plane-wave assumption (see details in ).

12



Despite the smaller E*™, the amplitude of H*™ would remain unchanged because the ratio
of E¥™ and the B field is also related by the EM wave velocity v. For example, let us we focus on
the B, (HEM) component, which is the main component that interacts with the magnon mode in
the system shown in Fig. 1a. We also consider that only the dominant E}';:M component is nonzero,
which is consistent with Fig. 1c. In this case. Eq. (5) can be rewritten as,

0B, (aEEM aEyEM> 0EM

ot dy 0z 0z (6)

If we further write B, = Blel(@t=%2) and EEM = Ef MOpi(wt=kz) ynder the plane-wave
assumption, Eq. (6) can be further rewritten into,

k
Bx = _E}EMZ = _E)];Mwlgogr/lo. (7)

Therefore, although a larger & reduces the E}}:M by +/e, times, as shown in Eq. (7), the
multiplication by +/¢, leaves the B, unchanged. The HEM also remains unchanged, because (i)
B, = piogHEM in the cavity and B, = po(1 + xm)HEM in the YIG resonator (M=x,, H"™); and (ii)
the magnetic susceptibility tensor X, is independent of the &:.

To demonstrate the applicability of the conclusion above to cases that are more general
than plane-wave assumption, we also scale down the size of the cavity electromagnonic system
shown in Fig. 1a from the original size of 45x9x21 mm? to a few different sizes, in addition to the
180x36x84 nm? used in the main paper (for which & was increased from 1 to 6.25x10!%). These
additional sizes include 225x45x105 nm?, 300x60x140 nm?, and 450x90%210 nm?, where the &;
was increased from 1 to 4x10'°, 2.25x10%°, and 1x10', respectively. We then perform dynamical
phase-field simulations to model the excitation of magnon polaritons in these three systems in a
similar manner to those in Fig. 1. As expected, the amplitude of EJ];:M is v/e, times smaller while

the HEM remains unchanged with the increasing &, as shown by Fig. S5 in Supplemental Material
9. By proportionally scaling down the size of the magnon resonator, the magnon-photon coupling
strength would remain unchanged.

The main reason for scaling down a mm-scale system to the nm scale is to ensure that the
magnon resonator only accommodates the Kittel mode magnon due to the dominant Heisenberg
exchange coupling at the nm-scale. An alternative approach is to use one single cell to represent
the magnon resonator (i.e., the macrospin approximation, as in Ref. ). We adopt this approach in
the design of cavity electro-magno-mechanical system with triple phonon-magnon-photon
resonance, as will be discussed below. In this approach, the Heisenberg exchange coupling does
not need to be considered, and the spatial discretization of the system is mainly determined by the
need to discretize an EM wave. This approach allows for simulating a large-scale photon cavity
with a relatively small number of cells and for designing the size and shape of the cavity, but does
not permit studying the effect of the size (e.g., as in Fig. 1e) and the shape of the magnon resonator
on the coupled magnon-photon dynamics. If using multiple simulation cells yet turning off the
exchange coupling, then there would be no force to lock the discrete local magnetization vectors
into one giant spin. As time goes, what we have found for the present cavity electromagnonic
system (Fig. 1a) is that the numerical error will accumulate (i.e., the values of m; will become more
and more spatially nonuniform) and eventually lead to numerical divergence. Applying a stronger
bias magnetic field would only alleviate this numerical issue by delaying, rather than preventing,
the numerical divergence, and would also impose a constraint on the frequency range of the
magnons that can be excited. This issue of numerical instability is even worse when the size of the
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magnon resonator is big enough such that the cavity magnetic field inside the resonator becomes
highly inhomogeneous.

Part 3: Design and simulation set-up of a 3D cavity electro-magno-mechanical system enabling
triple phonon-magnon-photon resonance

To excite a nominal TEo0 photon mode, we consider a cavity that is 16.5-mm-long (the
half-wavelength of the 9.1 GHz EM wave at ¢,=1) in the x axis and apply periodic boundary
conditions to the xy surfaces as well as the PEC boundary condition to all the other surfaces. This
set-up is equivalent to placing an array of YIG/SiN bilayer membranes in a large cavity and then
probing the phonon-magnon-photon coupling in one of the repeating units (see Fig. Sé6a in
Supplemental Material 10 for the full-scale cavity design). To minimize the interaction between
the neighboring YIG resonators, we chose a length of 5.5 mm along the z axis, which is sufficiently
long to ensure that the EM field remains largely uniform in the xz plane except the region near the
YIG, as shown by the spatial distribution of the HEM in Fig. 5b. The simulated photon profile in
Fig. 5a can be considered as a smaller portion of the profile of the TEio1 mode photon in a larger-
scale cavity (see Fig. S6b in Supplemental Material 10). Along the y axis of the cavity, which is
parallel to the wavevector of the acoustic phonons and the thickness direction of the YIG/SiN
bilayer, we consider a length of 400 nm to ensure the formation of the fundamental (n=1) TA
phonon mode at the GHz frequency. The EM field is always uniform along y because the EM
wavelength (33 mm) is far larger than the 400 nm. Taken together, the dimensions of the 3D cavity
are 16.5 mm (x) x 400 nm (y) x 5.5 mm (z). The size of the YIG/SiN bilayer membrane is 0.55
mm (x) x 280 nm (y) x 0.5 mm (z), where the thicknesses of the YIG and SiN layer are 10 nm and
270 nm, respectively.

Simulating the GHz phonon dynamics along the y axis requires that the cell size is nm-
scale along the y axis. According to the Courant condition for the FDTD algorithm mentioned
above, a time step Az on the order of 1078 s would be required to maintain numerical convergency.
It would be computationally prohibitive to simulate the GHz mode dynamics over a time frame
over hundreds of ns using such a small A¢. To address this issue, we increase the ¢, from 1 to 108,
which allows for using a 10* (=+/¢;) times larger A¢ due to the slower EM wave velocity as
discussed earlier. In the meantime, the EM wavelength and hence the size of the photon cavity are
reduced by 10* (=y/¢,) times. Given that the original cavity is only 400-nm-long along the y axis,
this would result in an impractical size of 0.04 nm. Alternatively, we consider (i) a 3D photon
cavity of 1650 nm (x) x 400 nm (y) x 550 nm (z) with &,=10%, where the dimensions of the cavity
along the x and z axis were reduced by 10* times yet the dimension along the y axis is kept the
same as the original one; and (ii) a YIG/SiN bilayer of 55 nm (x) x 280 nm (y) x 50 nm (z) in the
simulations, where the in-plane dimensions of the bilayer were reduced by 10* times yet the
thicknesses of the YIG (10 nm) and SiN (270 nm) layers remain unchanged. This treatment ensures
that both the magnon-phonon and the magnon-photon coupling strength remain to be the same as
those in the original-sized cavity for two reasons. First, the magnon-phonon coupling strength is
determined only by the thicknesses of the YIG and SiN layer (along y) rather than their in-plane
dimensions (x and z) because both the magnetization and strain vary only along the y axis. Second,
the magnon-photon coupling strength is predominantly determined by the dimension ratio of the
YIG-to-photon-cavity along the x axis because the cavity magnetic field HE™ varies largely along
the x axis only (see Fig. 5a).
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Because our focus is on the Kittel mode magnon and we are not interested in studying the
size and shape effect of the YIG in this application example, we use one single cuboid-shaped cell
with a size of (Ax, Ay, Az) = (55 nm, 10 nm, 50 nm) to represent the YIG (i.e., the macrospin
approximation) and a chain of 27 cells of the same dimension aligning along the y axis to discretize
the juxtaposed SiN layer. Cells of the same dimension are also used to discretize the reduced-sized
photon cavity, resulting in a total number of cells (N, N,, N2)=(30, 40, 11). A planar source current

Jy(t) = ];'Ote_tz/ 203, which is spatially uniform along the yz plane, is injected at x=275 nm to
excite the cavity photon, with ]f,‘0=1012 A/m? and 0,=7x10""'s. The bias magnetic field HE}aS is
applied along the +y direction, causing the magnetization to precess around the y axis, as shown
in Fig. 5a. To set up the magnon-photon resonance, we identify the HE,iaS that makes the FMR
frequency w,, equal the w,=9.1 GHz by numerically simulating the mode splitting spectra of the
magnon polaritons as a function of the Hﬁ’,ias in the absence of coupling to phonons. A magnon-
photon coupling strength gem of 21x56 MHz is obtained from the mode splitting spectra (see Fig.
Séc in Supplemental Material 10). We have found that the gem remains unchanged when using
other ¢, values to reduce the dimensions of the cavity along x and z to other values (while fixing
the y-axis cavity dimension to 400 nm) and proportionally reducing the x-axis and z-axis dimension
of the YIG/SIN bilayer (while fixing the y-axis dimension of the bilayer to 280 nm). The results
are shown in Fig. S6d in Supplemental Material 10.

Regarding the set-up of the phonon resonator, since the acoustic wave is spatially uniform
in the xz plane, we use one single cell to represent the YIG/SiN bilayer along their x and z axes.
Considering that the phonons are excited by a uniform magnetization precessing around the y axis
and omitting the elastic damping ($=0), Eq. (3) can be written as,

0%u 0%u om,m

P sz — Caq ng = —B, #; (8a)
0%u 0%u om?

PT;’_Cany: —B; ayy' (8b)
0%u, 0%u, om,m,

P oz ~Cugyr = —B, oy (80)

where B and B are the magnetoelastic coupling coefficients of the YIG resonator. Equations (8a-
c) indicate that the Kittel mode magnons will excite chiral TA phonons of the same frequency
which have a wavevector along the y axis (see Fig. 5d). Using procedures similarly to those
described in ref. #!, we analytically derive the frequencies of the standing TA phonon frequencies
in the YIG/SiN bilayer as a function of the YIG and SiN layer thickness (d¥’¢ and d5V), i.e.,

CYIG dSiN aYiG CSiN dSiN aYIiG
44 2iwp—orv 2iwn—7~ 44 2iwn—r 2iwn—y7

T4+e SN[ =1 +e” 0 |+ —=| =1+e" NV |[1+e" ) =0(9)
vYIG vSLN

The first nonzero nontrivial solution of Eq. (9) yields the angular frequency of the fundamental (n
=1) acoustic phonon mode (wn-1), and so forth for the higher-order modes. Here v¥/¢ =
\€¥IG /pYIG is the velocity of the TA phonon in YIG and likewise for the vS™N. When d¥/¢= 10
nm and d®¥= 270 nm, the resonant acoustic frequency wn-1/21=9.13 GHz, which is very close to
the frequency (9.14 GHz) of the d, mode magnon polariton. The elastic parameters of the YIG
and SiN are provided in Supplemental Material 8.
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Figure 1. a, Hybrid magnon-photonic system that contains a YIG cube (not to scale) inside a 3D microwave
cavity. The bias magnetic field H"* is applied along the +z direction. A Gaussian-shaped charge current
pulse J°() is injected into the cavity to excite the cavity mode of the standing EM wave. The vectors indicate
the direction of the local microwave magnetic field H*™ (TEioi mode), where the vector length is
proportional to magnitude of the H*™. b, Dynamics of the on-resonance Kittel mode magnon, represented
by Am.= m(t)-m«(=0)) and cavity photon, represented by the microwave electric field component E;:M at
the detection point which is at 1.5 mm above the bottom surface center of the cavity. Trend lines showing
the evolution of the amplitudes of the two modes are added. The values of the simulated E;:M are multiplied
by /€, to show the electric fields in the cavity of the original size. ¢, Spatial distribution of local microwave
electric field E*™ and the polar plot of the magnitude of the precessing magnetization component Amy and
Amy at (from left to right) As = 2.11 ns, 4.4 ns, and 5.71 ns, respectively. The circles indicate |Am|=0.01
(innermost), 0.02, 0.03, and 0.04 (outermost), respectively. d, Frequency spectrum of the Am(¢) in (c). e,
Simulated mode splitting spectra of the magnon polaritons as a function of AH"™ under different YIG sizes
of 0.4x0.4x0.4 mm’(red circles), 1x1x1 mm?’(green circles) and 2x2x2 mm’(blue circles), and their
analytical fitting curves (lines). AH*™=H""- HY'@% where H5'@%= 0.2315 MA/m (~0.291 T) is the bias
magnetic field that ensures magnon-photon on-resonance (@n=ax).
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Figure 2. a, Frequency spectrum of the magnon polariton as a function of Floquet driving frequency fp,
obtained from a, dynamical phase-field simulations and b, Hamiltonian-based theoretical calculations of
the absorption spectrum where square root for each data point is take to make the higher order sideband
visible. The inset shows the energy level diagram. Evolutions of the magnon (represented by Amy, upper
panel) and the photon (represented by Ey, lower panel) at the detection point under ¢, wp/2n=300 MHz, and
d, wp/2n=145 MHz. The magnitude of the Floquet driving field |hp|=2000 A/m in a-d.
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Figure 3. a, Dynamics of the magnetization amplitude of the d, mode magnon polariton under a continuous
Floquet driving hp(#) with |hp|=5000 A/m and wp/2n=145 MHz. Ar=0 is the moment when the application
of hp(7) begins after the current pulse J(¢) injection is complete. The d. and d_ modes swap at the frequency
of Awat/2m along the real axis of the Bloch sphere (inset). b, Dynamics of the magnetization amplitude of
the d, mode magnon polariton under different |hp| but the same frequency of wp/2n=145 MHz.
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Figure 4. a. (Top) the temporal waveform hp(?)=|hp|sin(wAf) when 0<A< 5 or 7p+7<Ar<2 7+70, and hp(£)=0
otherwise; (Bottom) Schematic of operation sequences for Ramsey interference on a Bloch sphere. b, The
magnetization amplitude of the d. mode of the magnon polariton obtained after the completion of the
second 7/2 pulse. Each data point in b was obtained from an independent simulation, where the free
evolution duration 7 and detuning amplitude Aw are different in each simulation.
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Figure 5. a, A cavity electromagnonic system that contains a YIG/SiN bilayer membrane inside a 3D
photon cavity. The arrow indicates the direction (mostly along z) and the vector length indicates the
magnitude of the local cavity magnetic field H*™. The schematic on the right illustrates the YIG/SiN bilayer
membrane (not to scale), which occupies the space where xe {14.85 mm, 15.4 mm), ye {40 mm, 320 nm},
and ze {2.5 mm, 3 mm}. The bias magnetic field H"™ is applied along +y. The lower left corner of the
cavity is defined as coordinate of the origin, i.e., (x, y, z) = (0,0,0). b, Spatial distribution of the HEM at /=50
ns in the xz plane of the 3D system at y=50 nm. ¢, Profile of the strain component €, along the thickness
direction (y) of the YIG/SiN bilayer membrane at /=50 ns. d, Evolution of the mechanical displacement u,
and u. from =50-51 ns at 50 nm above the bottom of the YIG/SiN bilayer membrane (this location is
indicated by the filled circles in ¢). Under the triple phonon-magnon-photon resonance condition, evolution
of, e, the TE 9o mode cavity photon, represented by the HEM at the point (x, y, z) = (1.65 mm, 50 nm, 3 mm),
g, the Kittel mode magnon, represented by Am,= m,(f)-m.(=0), and, i, the standing chiral TA phonon mode
at the detection point, represented by the &, at the point indicated by the filled circle in ¢. #=0 is the moment
the planar current pulse is injected to the cavity. fh.j, Frequency spectra of the cavity photon, the Kittel
mode magnon, and the chiral TA phonon, respectively.
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