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Abstract 
Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons 
(quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent 
energy transduction among different physical systems down to single quantum level. Here we 
report a dynamical phase-field model that allows simulating the coupled dynamics of the 
electromagnetic waves, magnetization, and strain in 3D multiphase systems. As examples of 
application, we computationally demonstrate the excitation of hybrid magnon-photon modes 
(magnon polaritons), Floquet-induced magnonic Aulter-Townes splitting, dynamical energy 
exchange (Rabi oscillation) and relative phase control (Ramsey interference) between the two 
magnon polariton modes. The simulation results are consistent with analytical calculations based 
on Floquet Hamiltonian theory. Simulations are also performed to design a cavity electro-magno-
mechanical system that enables the triple phonon-magnon-photon resonance, where the resonant 
excitation of a chiral, fundamental (n=1) transverse acoustic phonon mode by magnon polaritons 
is demonstrated. With the capability to predict coupling strength, dissipation rates, and temporal 
evolution of photon/magnon/phonon mode profiles using fundamental materials parameters as the 
inputs, the present dynamical phase-field model represents a valuable computational tool to guide 
the fabrication of the cavity electromagnonic system and the design of operating conditions for 
applications in quantum sensing, transduction, and communication. 
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Introduction 
One main goal of the cavity electromagnonics is to realize strong and dynamically tunable 

coupling between magnons (quanta of spin waves) and cavity photons (quanta of confined 
electromagnetic waves)1–3, with application potential in quantum storage 4,5, quantum 
transduction6,7 and quantum sensing8. The strong coupling between the Kittel mode magnon 
(spatially uniform precession of magnetization) and the cavity photon was theoretically predicted 
by Soykal and Flatté9,10 and experimentally observed in hybrid systems that involve a yttrium iron 
garnet (YIG) bulk crystal slab11,12, permalloy thin-film stripe13, YIG film14,15 mounted on a 
coplanar microwave resonator, or YIG bulk crystal sphere(s)/slab inside a three-dimensional (3D) 
microwave cavity4,16–25. One key feature of such strong coupling is the mode frequency splitting 
with an avoided crossing in the frequency spectrum, which indicates the hybridization of magnon 
and photon into a new quasiparticle called magnon polariton19,26,27. In the time-domain, the energy 
of magnon polaritons is constantly exchanged between the magnon and the photon system with 
100% conversion efficiency.  

To realize practical quantum operation such as mode swapping and storage28, it is necessary 
to dynamically control the exchange process between the two hybrid modes of magnon polaritons 
upon the completion of transferring a single quantum of excitation29. For example, Floquet 
engineering30 — which herein refers to the simultaneous application of a periodic driving magnetic 
field —  has been successfully implemented to in situ control the transition between the two hybrid 
modes and even induce further splitting of each mode into two energy levels associated with 
different Floquet modes21, analogous to the Autler-Townes splitting in atomic physics. 

In addition to the studies on magnon-photon resonance, tripartite coupling among the photons, 
magnons, and phonons have also been demonstrated experimentally in a cavity electromagnonic 
system15,22–25, which can also be called a cavity electro-magno-mechanical system in this case. For 
example, Zhang et al reported a resonant coupling among the Kittel mode magnons, cavity photons, 
and high-overtone bulk acoustic phonons — all having the same frequency of a few gigahertz 
(GHz) — in a Gd3Ga5O12(GGG, substrate)/YIG(film, 200-nm-thick) mounted on a split-ring 
resonator15. In a 0.25-mm-diameter YIG sphere placed in a 3D photon cavity, Zhang et al 22 
demonstrated a coherent coupling between a GHz magnon polariton (with a frequency w+ or w-) 
and a megahertz (MHz) acoustic phonon (frequency: wp) by parametrically driving the cavity with 
a strong microwave signal at a frequency wd, with wd-w-=-wp or wd-w+=wp.  

The main objective of this article is to report a 3D dynamical phase-field model that enables 
simulating and predicting the coupled dynamics of photons, magnons, and acoustic phonons in a 
cavity electromagnonic system comprised of a magnon/phonon resonator placed in a bulk 3D 
photon cavity, which is one of the most used structures in experiments4,16–25.  In contrast to the fact 
that Hamiltonian-based theoretical analyses (e.g., 21,31) need to take the mode coupling strength as 
the input and are therefore not predictive, the present dynamic phase-field model allows for 
predicting the spatiotemporal evolution of coupled modes in 3D photon cavity and magnon 
resonators of arbitrary size and geometry under various operation conditions, using only the 
fundamental materials parameters as the input. Therefore, it can be used to guide the design of 
cavity structure and control conditions for realizing desirable quantum operation. 

The dynamically evolving physical parameters in a cavity electromagnonic system include the 
magnetic-field component (HEM) of the electromagnetic (EM) wave in the microwave cavity, the 
magnetization (M) and elastic strain (e) of the magnon resonator (e.g., YIG). The propagation of 
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HEM is governed by the Maxwell’s equations, while dynamical evolution of M and e, which 
represent the magnon and phonon subsystem, are usually described by the Landau-Lifshitz-Gilbert 
(LLG) equation and elastodynamic equation, respectively. Crucially, the dynamics of M is 
modulated by the HEM via the Zeeman torque, while the M and e are coupled via the magnetoelastic 
interaction32. Therefore, a complete, direct numerical simulation of the dynamical processes in a 
cavity electromagnonic system requires the simultaneous solution of the coupled LLG, 
elastodynamic, and Maxwell’s equations. 

Thus far, there are only a few advanced computational models that include coupled dynamics 
of M and EM wave33–36 but excludes either the exchange coupling field (i.e., macrospin 
approximation) in the LLG equation33,35,36 or the displacement current in the Maxwell’s 
equations34. Recently, models that include coupled dynamics of e, M, and EM wave have also 
appeared37–41, but these models are limited to 1D38–40 or 2D41 system or employ the Newton’s 
equation37  as a simplification of the elastodynamic equation. Furthermore, these models37–41 have 
not yet been applied to a cavity electromagnonic system. The present dynamical phase-field model 
addresses the coupled dynamics of e, M, and EM wave in a 3D cavity electromagnonic system by 
solving the coupled LLG, elastodynamic, and Maxwell’s equations (see Methods). All numerical 
solvers are accelerated by graphics processing unit (GPU) to increase the computation throughput. 
As examples of application, we use the dynamical phase-field model to simulate the dynamics of 
excitation and control of magnon polariton modes in a cavity electromagnonic system comprised 
of a YIG magnon resonator placed in a 3D photon cavity. Typical coherent gate operations 
including Rabi oscillation and Ramsey interference are computationally demonstrated. 
Furthermore, we design a cavity electro-magno-mechanical system, which contains a bilayer 
YIG/SiN membrane placed in a 3D photon cavity and permits a resonant interaction between the 
magnon polaritons and the acoustic phonons. We then use the dynamical phase-field model to 
simulate the coupled mode dynamics under such triple phonon-magnon-photon resonance 
condition. 
 
Results 
Simulation system set-up 

Figure 1a schematically shows the cavity electromagonic system. YIG, which has been widely 
used in hybrid magnonic systems16–18,42–47 due to its ultralow magnetic damping, is used as the 
magnon resonator. The 3D microwave cavity has a dimension of 45×9×21 mm3, which supports 
the TE101 mode of the standing EM waves with a frequency wc/2p=7.875 GHz. To excite the 
TE101 cavity mode, a point charge current pulse Jc(t) in the form of a Gaussian function 𝑡𝑒!"! #$"!⁄  
is applied along the y axis (i.e., only the 𝐽&'  component is nonzero) at the position (22.5mm, 1.5mm, 
10.5mm) of the cavity, where σ0 is a free parameter that controls the pulse duration and chosen to 
be 70 ps so that the frequency window of the pulse covers the wc. The simulated HEM has a vortex-
like distribution in the xz plane, as shown in Fig. 1a. The YIG resonator is placed at 1.5 mm below 
the top surface center of the cavity, where the magnitude of HEM is relatively large. At the initial 
equilibrium state, the magnetization in the YIG m0 is along +z ([001]) due to a bias magnetic field 
Hbias=(0,0,Hzbias) applied along the same direction. Note that energy dissipation of both the cavity 
photon (arising from the imaginary component of the relative dielectric permittivity tensor εr) and 
magnon (arising from the effective magnetic damping) are both set to be zero to study the magnon-
photon coupling under the most ideal situation. 
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The entire system is discretized into three-dimensional (3D) computational cells with a cell 
size ∆x=∆y=∆z=2 nm. Numerically, a nm-scale computational cell is necessary to ensure spatial 
uniformity of the magnetization (i.e., the formation of Kittel mode magnon) via the Hexch 
(proportional to |∇m|2) between neighboring spins. Moreover, a basis for any micromagnetic 
simulation is that the cell size needs to be smaller than the exchange length lex=%Aex (0.5µ0Ms

2)⁄ , 
which is about 16.3 nm for YIG with an exchange coupling coefficient 𝐴-. of 3.26 pJ/m and Ms= 
140 kA/m48. However, discretization of a 45×9×21 mm3 system using a cell size of ∆x=∆y=∆z=2 
nm would lead to a total of about 1021 cells, which is computationally unaffordable. To address 
the issue, the εr is tuned to scale down the EM wavelength and hence the size of the microwave 
cavity. For example, in the case of 1×1×1 mm3 YIG cube, we set all three diagonal components of 
the εr to be 6.25×1010 for both the YIG cube and the microwave cavity, thus the EM wavelength 
is scaled down by 2.5×105 (=√εr) times. Accordingly, the size of the microwave cavity can be 
reduced from 45×9×21 mm3 to 180×36×84 nm3 (i.e., 68,040 cells) without changing the spatial 
profile and the frequency of the TE101 mode EM wave. Meanwhile, the size of the 1×1×1 mm3 
YIG cube should be scaled down to 4×4×4 nm3 to maintain a constant volume ratio of the YIG 
cube to microwave cavity. Although such size down-scaling makes it not possible to simulate the 
high-order magnon modes (spatially non-uniform precession of local magnetization) that may 
occur in a mm-scale YIG, it would not influence the present work on the interaction between Kittel 
mode magnon and cavity photon. Importantly, although the larger εr leads to a smaller EEM, the 
magnitude of HEM, which interacts with the magnetization, remains constant (see Eqs. (6-7) in 
Methods). As a result, the simulated coupled magnon-photon dynamics remains the same as that 
in the original mm-scale system. Furthermore, the use of a larger εr allows using a larger time step 
which significantly reduces the computation time in long-term dynamics simulation (see Methods). 
Magnon-photon coupling 

To demonstrate the validity and high numerical accuracy of our computational model, we first 
simulate the formation of the commonly observed k=0 mode magnon polariton (k is wavenumber), 
which features the hybridization between the k=0 (Kittel) mode magnon m1 and k»0 mode cavity 
photon c2. As illustrated in Fig. 1a, the HEM, which is perpendicular to the initial equilibrium 
magnetization m0 (see Fig. 1a), drives the magnetization precession. Due to the exchange coupling, 
all local magnetization vectors m in the YIG precess in phase, resulting in the excitation of the 
desirable Kittel mode magnon. Since HEM is largely uniform around the YIG cube (i.e., 
wavenumber k»0) and the magnon-photon interaction time is sufficiently long in the present 3D 
cavity, the k=0 mode magnon polariton should form if the angular frequency of the Kittel mode 
magnon wm, or the ferromagnetic resonance (FMR) frequency, can be magnetically tuned to match 
the angular frequency of the cavity wc. Specifically, for an initial equilibrium magnetization along 
[001], one has wm/2p=γ(Hzbias-

1
3
Ms +

2K1
μ0Ms
)38, where γ=27.86 GHz/T is the gyromagnetic ratio and 

K1=620 J/m3 is the magnetocrystalline anisotropy coefficient of the YIG. Accordingly, Hbias=(0, 0, 
0.291 T) is applied to have wm/2p=wc/2p=7.875 GHz. 

Figure 1b shows the dynamics of the Kittel magnon mode and the photon, where Dt=0 refer 
to the moment at 20 ns after the injection of the Gaussian-shaped current pulse Jc(t) at t=0 ns. 
Typical behavior of coherent beating oscillation similar to a two-level system39,49 is observed. 
Specifically, the peak amplitudes of the two modes (indicated by the trend lines) show a Rabi-like 
oscillation17 with a period of ~6.9 ns (frequency ~ 145 MHz), suggesting a back-and-forth energy 
transfer between the YIG and the microwave cavity. Note that we focus on the peak amplitudes 
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rather than the instantaneous values of ∆𝑚/ and 𝐸&01, because the energy of the magnon mode is 
swapped instantaneously between ∆𝑚/ and ∆𝑚& while the energy of the cavity photon mode is 
swapped instantaneously between 𝐸&01  and 𝐻/01 . For clearer illustration, Fig. 1c shows the 
simulated magnon state and spatial distribution of the radiation electric field EEM(t) at a few 
representative moments. As shown in the left panel, when the EEM reaches its peak amplitude, the 
magnetization m aligns almost along its initial direction [001], indicating an almost zero free 
energy change in the YIG. As the energy is being transferred from the cavity to the YIG, the 
amplitude of EEM in the cavity decreases while the amplitude of the precessing magnetization (or 

|Δm|=8(∆𝑚/)# + 9∆𝑚&:
# increases, as shown in the middle panel. After a half period of the 

energy transfer (3.45 ns = 6.9 ns/2), almost all the EM wave energy is absorbed by the YIG, which 
is indicated by the negligibly small EEM in the cavity and relatively large |Δm|, as shown in the 
right panel of Fig. 1c. Figure 1d shows the frequency spectrum of the temporal waveform Δmx(t) 
in Fig. 1b, which reveals two peak frequencies at 7.8 GHz and 7.945 GHz, respectively. The two 
peak frequencies are symmetric with respect to the wm/2p=wc/2p=7.875 GHz with a frequency gap 
of 145 MHz, indicating the formation of magnon polariton with two different hybrid modes d;+ and 
d;-. The frequency gap (denoted as 𝛿2) is consistent with the frequency of the Rabi-like oscillation 
and defines a magnon-photon coupling strength gcm=δD/2=2p´72.5 MHz. It is worth remarking 
that the magnon subsystem of the YIG is also coupled to the phonon subsystem, because the 
precessing m generates dynamical strain via the magnetoelastic feedback (Eq. 2) and the 
dynamical strain in turn modulates the dynamics of m via the Hmel (Eq. 1). Moreover, the stiffness 
damping coefficient β in the elastodynamic equation creates an additional channel for energy 
dissipation. However, in the present system, the energy exchange between magnon and phonon 
subsystems is negligible because the magnitude of the dynamical strain is negligibly small (~10-7) 
due to the relatively small magnetoelastic coupling constant of the YIG. 

Figure 1e shows the numerically simulated mode frequencies (indicated by hollow circles) 
as functions of the bias magnetic field in three different hybrid systems where the sizes of the YIG 
cube are 0.4×0.4×0.4 mm3, 1×1×1 mm3 and 2×2×2 mm3, respectively, and the cavity size remains 
to be 45×9×21 mm3. The goal of these simulations is to computationally verify the theoretical 
relation of gcm = 𝑔3√N (Ref. 16), where 𝑔3 is the coupling strength of a single Bohr magneton to 
the cavity; N is the total spin number in the YIG and increases linearly with its size. The presence 
of avoided crossings in all three systems indicate the formation of magnon polaritons. The 
corresponding magnon-photon coupling strength gcm can be extracted from the frequency gap 
under on-resonance m1  and c2 modes (where ΔHbias=0), which are 2p´18.3 MHz, 2p´72.5 MHz, 
and 2p´182.2 MHz, respectively. One can evaluate that the gcm is largely proportional to the square 
root of the cube size and hence the √N. The gcm in the case of 2×2×2 mm3 is smaller than the value 
of 2p´204.6 MHz obtained from linear extrapolation due to the <100% spatial mode profile 
overlapping, which is consistent with experimental observation17. Based on the extracted gcm, we 

fit the simulations results via the expression 𝜔±=
1
2
(𝜔m+𝜔c)±

1
28(𝜔m-𝜔c)

2+4gcm
2 , which describe 

the angular frequencies of the two hybrid modes (d;+ and d;-) in a two-level system50. The excellent 
fitting indicates the validity of our model set-up and high numerical accuracy of our dynamical 
phase-field model.  

Floquet-induced magnonic Autler-Townes splitting 
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Based on the cavity electromagnonic system with a YIG resonator of 1×1×1 mm3, a 
periodic dynamical magnetic field hD(t) is applied along the same axis (z) with the Hbias to 
implement Floquet engineering. The hD(t)=|hD|sin(wDt) is applied uniformly on the YIG resonator, 
where |hD| and wD are the amplitude and the angular frequency of the Floquet drive, respectively. 
Figure 2a shows the frequency spectra of the Δmx(t) simulated under a fixed |hD| of 2000 A/m but 
different wD/2π varying from 0 to 400 MHz. A static bias magnetic field of 0.2315 MA/m (~0.291 
T) is applied to have the magnon mode on resonance with the cavity photon and generate two 
magnon polariton modes 𝑑A+  and 𝑑A- , which have frequencies of 7.945 GHz and 7.8 GHz, 
respectively. Each polariton mode has several sidebands created by the Floquet drive. The 
frequencies of these sidebands either increase or decrease as the wD increases. When wD is equal 
to the (cavity and magnon) mode splitting frequency (=2gcm=2p´145 MHz), the first inner 
sideband of the magnon polariton mode 𝑑A+  (𝑑A- ) resonantly interact with the other magnon 
polariton mode 𝑑A- (𝑑A+). As a result, the two energy levels corresponding to the 𝑑A+ and 𝑑A- modes 
split into four energy levels associated with different Floquet modes (as illustrated in the inset), 
where the frequency gap between the two newly split energy levels is denoted as ΔwAT, with 
ΔwAT/2p=34.8 MHz. Such magnonic Autler-Townes splitting51 and the onset of avoided crossing 
indicate the realization of strong coupling between the two hybrid modes of the magnon polaritons 
by Floquet drive. 

To gain further insights on the simulated spectrum, we analytically calculate the absorption 
spectrum of the magnon mode based on Floquet theory described in Ref. 51, using the numerically 
simulated on-resonance frequency w0 (=wm=wc) and the magnon-photon coupling strength gcm as 
the inputs. As shown in Fig. 2b, the main structure of the calculated spectrum (shown in Fig. 2b) 
reproduces the simulation results. The calculated spectrum can be understood by writing the 
Floquet Hamiltonian as following (details of derivation are in Ref. 51), 

𝐻B
ℏ = 𝜔4𝑑A4

4
𝑑A4 + 𝜔!𝑑A!

4
𝑑A! + 𝑔'5 D 𝐽6(

Ω
𝜔2
)

67899

F𝑑A4
4
𝑑A!𝑒𝐢(6<#") + 𝑑A4𝑑A!

4
𝑒!𝐢(6<#")G . (1) 

Here 𝜔± = 𝜔3 ± 𝑔'5, Ω = 𝛾|𝐡2|, and ℏ is the reduced Planck’s constant. A list of symbols for 
various modes and related quantities is provided in Supplemental Material 1. The Floquet drive 
creates a series of sidebands of the 𝑑A± modes at frequencies 𝜔± ± 𝑛𝜔2, where n is the sideband 
order. The last term on the right-hand side of Eq. (1) describes the interactions between different 
sidebands, where 𝐽6 is the 𝑛th Bessel function of the first kind. From Eq. (1), one can determine 
that the coupling strength between the first inner sideband of 𝑑A!  and the 𝑑A4  mode (i.e., the 
magnonic Autler-Townes splitting ΔwAT) is approximated as Δw?@ ≈ 2𝑔'5𝐽A(Ω 𝜔2⁄ ). Plugging 
in the numbers yields a theoretically predicted value of Δw?@/2π ~ 34.1 MHz, which is in good 
agreement with the simulated value of 34.8 MHz. Moreover, since the sum in Eq. (1) only involves 
odd terms, some of the sidebands (e.g., the first inner sideband of 𝑑A4  and 𝑑A!  modes) are not 
directly coupled, which is revealed by the crossing in both the simulated and calculated spectrum. 
Detailed discussion on this point can be found in Ref. 51. 

As |𝐡2| increases, ΔwAT varies in an oscillatory fashion but always remain nonzero (see 
Fig. S1a in Supplemental Material 2). This trend cannot be explained by the analytical 
approximation Δw?@ ≈ 2𝑔'5𝐽A(Ω 𝜔2⁄ ), which is only valid when |𝐡2| is relatively small. At 
large |𝐡2| , the |𝐡2| -dependent ΔwAT can be better quantified by the following analytical 
expression (see detailed derivation in Supplemental Material 3),  



 7 

Δw?@ = 2𝑔'5 Q1 − 𝐽3 S
Ω
𝜔2
TU,																																																									(2) 

which predicts a repeated occurrence of Δw?@ = 2𝑔'5 at 𝐽3 = 0 and the presence of a Floquet 
ultrastrong coupling regime 51 where Δw?@ > 2𝑔'5 and 𝐽3 < 0. Both features are shown in the 
frequency spectrum of the magnon polaritons (Fig. S1a) obtained by dynamical phase-field 
simulations. 

Our dynamical phase-field simulation results in Fig. 2c further shows the temporal profile 
of the Δmx(t) and 𝐸&01(t) for wD/2π = 300 MHz. According to the frequency spectra in Fig. 2a, the 
magnon polariton is still dominated by the intrinsic hybrid modes 𝑑A+ and 𝑑A- with no magnonic 
Autler-Townes splitting. Correspondingly, the amplitudes of both the ∆mx(t) and 𝐸&01(t) display a 
Rabi-like oscillation with a period of 6.9 ns, which is the same as in Fig. 1b. By comparison, for 
wD/2π=145 MHz where the magnonic Autler-Townes splitting is prominent, the corresponding 
temporal profiles of ∆mx(t) and 𝐸&01(t), as shown in Fig. 2d, are clearly composed of components 
of more than two frequencies. Specifically, there are four major frequency components at 
𝜔4+0.5Δw?@,	𝜔4-0.5Δw?@, 𝜔!+0.5Δw?@, and 𝜔!-0.5Δw?@, respectively, corresponding to the 
four split energy levels as shown in Fig. 2a. Despite the more complex temporal profile, the 
evolution of the peak amplitudes of ∆mx(t) and 𝐸&01(t) are still complementary, indicating that the 
back-and-forth energy exchange still occurs between the Kittel magnon mode m1  and the cavity 
photon mode c2. The beam-splitter type coupling between the 𝑑A+ (𝑑A-) and the first inner sideband 
of the 𝑑A-  (𝑑A+ ) mode (Fig. 2a) can also be interpreted as the energy exchange (i.e., Rabi-like 
oscillation) between the two energy levels (i.e., the hybridized modes 𝑑A+  and 𝑑A-) through the 
frequency matching provided by the Floquet drive, i.e., 𝜔4 = 𝜔! + 𝜔2. Similar Floquet-driven 
Rabi-like oscillation between two hybridized modes has also been demonstrated experimentally in 
a two-level photonic system28. 
Dynamical control of the energy exchange rate between two magnon polariton modes 

The Rabi-like oscillation between the two magnon polariton modes ( 𝑑A+  and 𝑑A- ) 
corresponds to a rotation along the real axis of a Bloch sphere, as illustrated in Fig. 3a inset. Here, 
we model this process in the time domain and computationally demonstrate the dynamical control 
of the energy exchange rate between the 𝑑A+ and 𝑑A- modes (namely, Rabi flopping frequency) by 
dynamically varying the amplitude |hD| of the Floque drive. To this end, the system is initialized 
by pumping a 15-cycle sinusoidal charge current pulse Jc(t)=J0sin(wt) at w=2π×7.945 GHz along 
the y axis (i.e., only the 𝐽&'  component is nonzero) to populate (excite) the 𝑑A+ mode. A continuous 
Floquet drive hD(t) at the cavity-magnon mode splitting frequency (wD/2π=δD/2π=145 MHz) is 
then applied to the system. Figure 3a shows the temporal evolution of the magnetization amplitude 
of the 𝑑A+ mode magnon polariton (denoted as |∆𝐦|BC+) with |hD|=5000 A/m. Here	|∆𝐦|BC+(t) is 
obtained by first extracting the temporal evolution of ∆𝑚/(t) and ∆𝑚&(t) by performing inverse 
Fourier transform for 7.945-GHz (±50 MHz) peak in their frequency spectra and then calculating 

its magnetization amplitude via 8(∆𝑚/)# + 9∆𝑚&:
# . The |∆𝐦|BC+ (t) display a Rabi-like 

oscillation with a period of 11.6 ns, corresponding to a flopping frequency of 86.2 MHz. We note 
that the 𝑑A- mode magnon polariton (at 7.8 GHz) was also excited after the initial current pulse 
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injection, and the dynamics of |∆𝐦|BC- (t) complements the |∆𝐦|BC+ (t), as shown by Fig. S2 in 
Supplemental Material 4, suggesting a dynamical energy exchange between the 𝑑A+ and 𝑑A- modes.  

Figure 3b further summarizes the |∆𝐦|BC+(t) simulated under different |hD| varying from 
1000 to 5000 A/m. As shown, the period of Rabi-like oscillation decreases as |hD| increases, 
leading to an increase in the corresponding Rabi flopping frequency (fRabi). By analytically solving 
the Heisenberg equation of the 𝑑A+ and 𝑑A- modes under the rotating wave approximation (RWA), 
we obtain the mode square [𝑑A+(𝑡)[

#
= cos# _D

E
𝑡`  (see Supplemental Material 5), yielding 

fRabi=Ω/2=𝛾|𝐡F|/2, which is only valid when wD=2gcm=2π×145 MHz. It is worth noting that Figure 
3a shows a nonzero offset, which differs from the RWA-based prediction and may be due to the 
existence of other magnon modes. As shown in the inset of Fig. 3b, the analytically calculated fRabi 
agrees well with the values extracted from the simulated |∆𝐦|BC+(t) with only small deviation at 
larger |𝐡F| values, where the system’s behavior deviates from the RWA. 

As |𝐡F| further increases, it is no longer possible to numerically extract the |∆𝐦|BC+(t) and 
hence the fRabi because multiple magnon modes coexist at 7.945 GHz. However, it is expected that 
that the variation trend of fRabi with |𝐡F| would deviates significantly from the RWA-predicted 
linear relation. Specifically, it is reasonable to speculate that the fRabi»	Δw?@/2π because the present 
Rabi oscillation is based on beam-splitter type coupling between the 𝑑A+ (𝑑A-) and the first inner 
sideband of the 𝑑A- (𝑑A+) mode, as discussed above. In this regard, the |𝐡F|-dependent fRabi should 
follow the |𝐡F|-dependent Δw?@, which is oscillatory at large |𝐡F| as shown in Fig. S1a.  
Dynamical control of the relative phase between two magnon polariton modes 

Experimentally, it has also been shown that driving the transition between two hybridized 
modes of a two-level photonic system with detuned pulses enables a dynamical control over the 
relative phase of the two hybrid modes28. By analogy to the protocols described in Ref. 28, here we 
computationally demonstrate the dynamical control of the relative phase between 𝑑A+ and 𝑑A- mode 
magnon polariton modes (namely, magnonic Ramsey interference). We first excite the system to 
the 𝑑A+ mode by injecting a 15-cycle sinusoidal Jc(t) at 7.945 GHz. A π/2 pulse of the Floquet drive 
field hD(t) with a frequency of ωD=δD+∆ω is then applied to create excitations in a superposition 
of both the 𝑑A+ and 𝑑A- modes, which is illustrated by State ‘I’ on the equator of the Bloch sphere 
(see Fig. 4a). Here, the duration	of the π/2 pulse is 1/4th of the Rabi-like oscillation period under 
the field amplitude |hD|=5000 A/m, i.e.,t0=1/(4fRabi)=2.9 ns. After the first π/2 pulse is turned off 
(hD(t) = 0), the excitation as superposition of 𝑑A+ and 𝑑A- modes would start to precess along the 
equator of the Bloch sphere (i.e., free evolution) with a precession frequency determined by the 
detuning amplitude ∆ω. Upon the completion of the free evolution period, a second π/2 pulse is 
applied to project the excitations (State ‘II’ in the Bloch sphere) into the 𝑑A- mode. The amplitude 
of the 𝑑A- mode after the completion of second π/2 pulse is determined by the relative phase between 
the two modes. The relative phase difference is proportional to both the frequency detuning ∆ω 
and the duration of free evolution t. To computationally demonstrate this principle, we record the 
magnetization amplitude of the 𝑑A- mode (|∆𝐦|BC-) after the completion of the second π/2 pulse, as 
a function of the free evolution duration τ under ∆ω/2π =10,15 and 20 MHz. As shown in Fig. 4b, 
the frequency for the variation of the |∆𝐦|BC- with the duration t is exactly equal to ∆ω. The result 
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matches the analytical expression, [𝑑A!(𝑡)[
#
= |I|!

#
sin# _∆<

#
𝜏`  (see Supplemental Material 6), 

where 𝛼	is the initial mode amplitude in 𝑑A+. 
Coupled mode dynamics under the triple phonon-magnon-photon resonance condition 

To simulate the coupled mode dynamics under the triple resonance condition, we design 
an electro-magno-mechanical system which contains a YIG/SiN bilayer membrane placed in a 3D 
photon cavity, as shown in Fig. 5a. The cavity hosts a nominal TE100 mode photon (i.e., the EM 
wave has a half-wavelength profile along the x axis while is spatially uniform along y and z), which 
is a smaller portion of a larger-scale TE101 mode cavity. Details of the system design and simulation 
set-up are shown in the Methods section. The resonant frequency of the cavity photon (~ 9.1 GHz) 
is the same as the frequency of the Kittel mode magnon to enable the formation of magnon 
polaritons. In the present set-up, the frequencies of the two magnon polariton modes are found to 
be 9.028 GHz (𝑑A-) and 9.14 GHz (𝑑A+), respectively. Based on the magnetoelastic backaction, the 
dynamically processing magnetization of the Kittel mode magnon in the YIG layer will generate 
chiral transverse acoustic (TA) phonons that has a wavevector along the thickness direction (y) of 
the bilayer, as has been demonstrated experimentally in a similar YIG/GGG bilayer52. To obtain a 
large profile overlap between phonons and magnons, the layer thicknesses of the YIG (10 nm)/SiN 
(270 nm) bilayer membrane are designed to host a fundamental (n=1) TA phonon of 9.13 GHz. 
Because this frequency is close enough to the frequency of the 𝑑A+  mode magnon polariton, 
resonant interaction between the chiral TA phonon and the 𝑑A+ mode magnon polariton can be 
enabled. Such triple resonance among the fundamental TA phonon, the Kittel mode magnon, and 
the k»0 mode photon is similar to the experiment by Zhang et al.15 where the TA phonon of a 
much higher order (n=2960) interacts with the Kittel mode magnon, resulting in a smaller mode 
profile overlap and hence a lower magnon-phonon coupling strength than the present design. 

The vectors in Fig. 5a show the direction and the magnitude of the local HEM in the cavity. 
The hybridization of the Kittel mode magnons and cavity photons alters the local EM fields in the 
vicinity of the YIG resonator, as shown more clearly in Fig. 5b. Figure 5c shows the spatial profile 
of the fundamental TA phonon across the YIG/SiN bilayer. The right-handed phonon chirality is 
shown in Fig. 5d. Figure 5e,g,i show the evolution of the 𝐻L01 in the cavity, the ∆𝑚/ in the YIG, 
and the local 𝜀/& in the SiN, and their frequency spectra are shown in Fig. 5f,h,j, respectively. As 
shown, the precessing magnetization of both the 𝑑A- and 𝑑A+ mode magnon polaritons will generate 
chiral TA phonons of the same frequencies at 9.028 GHz and 9.14 GHz, respectively. The 
populations of the 𝑑A- and 𝑑A+ modes are similar, as indicated by the similar spectral amplitudes of 
these two peaks in the frequency spectra of photons and magnons (see Figs. 5f,h). However, the 
population of the 9.14 GHz phonon, due to its proximity to the intrinsic phonon resonance 
frequency of 9.13 GHz, is significantly larger than that of the 9.028 GHz phonon (see Fig. 5j). 
Interestingly, there exists a strong peak at 9.13 GHz in the phonon frequency spectrum, even 
though the population of the driving 𝑑A+  mode magnon polariton is low at 9.13 GHz. More 
interestingly, there exist small peaks at 9.13 GHz in the frequency spectra of both the 𝐻L01 and the 
∆𝑚/, indicating an energy backflow from the magnetically excited 9.13 GHz phonon mode to both 
the magnon and photon systems. This energy backflow, which becomes pronounced in this case 
mainly because the damping terms for all three systems are turned off (i.e., no energy dissipation), 
is clear evidence of the triple phonon-magnon-photon resonance. As a control simulation (see Fig. 
S3 in Supplemental Material 7), we found that turning on the elastic damping for the YIG and SiN 
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leads to a significantly lower population for the magnetically existed 9.13 GHz phonon mode, and 
that there are no additional peaks at 9.13 GHz in the spectra of magnon and photons.  

Discussion 
We have developed a 3D dynamical phase-field model that incorporates the coupled 

dynamics of strain, magnetization, and EM wave in a cavity electromagnonic system, which 
integrate magnon/phonon resonator(s) in a bulk 3D photon cavity. By solving the coupled 
equations of motion for these quantities under appropriate magnetic, mechanical, and EM 
boundary conditions, our computational model allows predicting the spatiotemporal evolution of 
strain, magnetization, and EM fields under various operating conditions directly from the 
fundamental material parameters. As examples, time-domain dynamics of relevant modes in 
typical coherent gate operations (Rabi oscillation and Ramsey interference) are simulated. The 
physical validity and high numerical accuracy of the solvers for coupled magnon-photon dynamics 
in our dynamical phase-field model were demonstrated by understanding the simulation results 
with analytical fitting and rigorous Hamiltonian-based Floquet theory. We have also applied the 
dynamical phase-field model to design a cavity electro-magno-mechanical system that enables the 
triple phonon-magnon-photon resonance, and computationally demonstrate the resonant excitation 
of a chiral, fundamental (n=1) TA phonon mode by magnon polaritons under such triple resonance 
condition. 

In combination with the high throughput resulting from the GPU acceleration, the present 
3D dynamical phase-field model can be used to guide the experimental design of the microwave 
photon cavity, magnon and phonon resonator(s) as well as the operating condition for the discovery 
of new physical phenomena as well as the optimization of key device features such as the coupling 
strength, mode swapping rate (e.g., Rabi flopping frequency), and cooperativity. The present 
dynamic phase-field model can also be extended to design and simulate cavity electromagnonic, 
magnomechanical, and electro-magno-mechanical systems with more complex structures, such as 
the on-chip systems integrating a coplanar microwave resonator and a magnon resonator11–14, by 
implementing a more detailed treatment of the current dynamics in the normal/superconducting 
metal components (e.g., see a relevant recent modeling work57). 

 
Methods 
Part 1: Description of the 3D dynamical phase-field model incorporating coupled dynamics of 
strain, magnetization, and EM waves in multiphase systems. 

A phase-field model leverages the symmetry-consistent use of continuum physical order 
parameters and their gradients to describe the total free energy of a spatially inhomogeneous 
system. The functional derivative of the total free energy (𝐹M8M) with respect to a specific order 
parameter yields the thermodynamic driving force that drives the evolution of the order parameter. 
For example, the effective magnetic field that drives the evolution of M is calculated as 𝐇-NN =
− A
O"

PQ%&%
P𝐌
, where 𝜇3  is vacuum permeability. In a dynamical phase-field model, equations of 

motion for all key order parameters are typically solved in their exact forms38,39,58. This is different 
from conventional phase-field model, where faster-evolving order parameters are often assumed 
to reach steady or equilibrium state instantaneously59. A dynamical phase-field model is 
particularly necessary for hybrid systems featuring bidirectional dynamical energy exchange and 
conversion between different physical subsystems, as in cavity electromagnonic systems.  
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As an example, we consider a commonly used system that contains a bulk magnon resonator 
in a 3D microwave cavity. The evolution of the normalized magnetization m= M/Ms in the magnon 
resonator, where Ms is the saturation magnetization, is governed by the LLG equation, i.e., 

∂m
∂t =−

γ
1+𝛼-NN#

m×Heff −
𝛼-NNγ
1+𝛼-NN#

m×9m×Heff:,																																										(2) 

where γ  is the gyromagnetic ratio; 𝛼-NN  is the effective magnetic damping coefficient; 
Heff=Happ+Hanis+Hexch+Hmel+Hd+HEM is the total effective magnetic field, where the externally 
applied magnetic field Happ(t) includes both the static bias magnetic field Hbias and a dynamic 
Floquet driving magnetic field hD(t); Hanis and Hexch are the effective magnetic field resulting from 
the functional derivatives of the magnetocrystalline anisotropy energy and exchange coupling 
energy with respect to m, respectively, and their expressions are provided in our previous work38; 
Hmel is the effective magnetoelastic field, Hd is the demagnetization field, and HEM is the magnetic 
field of the cavity electromagnetic wave. Hmel is calculated as 𝐇5-S = − A

O"

TU'()*
T𝐌

. Here the elastic 

free energy density 𝑓-SVW =
A
#
𝑐XYZ[(𝜀Z[ − 𝜀Z[3 )9𝜀XY − 𝜀XY3 :, with i, j = x, y, z. Here the 𝑐XYZ[  is the 

elastic stiffness tensor; for magnets of cubic symmetry, the stress-free strain 𝜀XX3 =
\
#
𝜆A33 _𝑚X

# − A
\
` 

and 𝜀XY3 =
\
#
𝜆AAA𝑚X𝑚Y , where 𝜆A33  and 𝜆AAA  are magnetostriction coefficients. The local total 

strain 𝜀XY can be written as 𝜀XY(𝑡) = 𝜀XY
-] + ∆𝜀XY(𝑡), where the 𝜀XY

-] is the total strain at the initial 
equilibrium state and can be obtained by solving the mechanical equilibrium equation 
∇∙𝜎XY

-]=∇∙n𝑐XYZ[9𝜀XY
-] − 𝜀XY

3,-]:o = 0. For a stress-free magnetic material, 𝜀XY
-] = 𝜀XY

3,-]. The latter can 
be calculated based on the magnetization direction 𝑚X  at the initial equilibrium state. The 
dynamical strain ∆𝜀XY  is calculated via ∆𝜀XY =

A
#
_T∆_+
TY

+ T∆_,
TX
` , and the time-varying local 

mechanical displacement ∆u= u-ueq is obtained by solving the elastodynamic equation,  

ρ
∂2∆u
∂t2

=∇∙(∆σ+β
∂∆σ
∂t ),																																																											(3) 

where ∆σ=σ-σeq is the dynamical stress; ρ is the mass density, and β is the stiffness damping 
coefficient. Since Eq. (3) is solved for the entire system, the material parameters 𝑐XYZ[, ρ, and β 
vary in different phases, where the continuity boundary condition for u and σ60 are applied at the 
interface between the magnon resonator and the microwave cavity. In this regard, by setting the 
𝑐XYZ[  of the microwave cavity to be zero, the stress-free surface of the magnon resonator is 
automatically considered. The magnon resonator is cube-shaped, which is a computationally more 
tractable geometry because the entire simulation system is discretized by cube-shaped cells. Based 
on the coupling to the LLG equation solver, this numerical solver of the elastodynamic equation 
has previously been applied to simulate coupled magnon-phonon dynamics both the 1D38,39 and 
2D41 magnetic multilayer system. The high numerical accuracy of this elastodynamic solver have 
been demonstrated through comparison to the analytical solutions in 1D system or the 2D 
simulations performed via the commercial COMSOL MultiphysicsÒ software. Here, we 
demonstrate the numerical accuracy of this elastodynamic solver in a 3D elastically 
inhomogeneous multiphase system through the comparison to the simulation results obtained from 
the COMSOL MultiphysicsÒ (Supplemental Material 8).  
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The demagnetization (stray) field Hd can be expressed as 𝐻X9(𝑡) = 𝐻X
9,-] + ∆𝐻X9(𝑡). The 

𝐻X
9,-]  is produced by the magnetization m0=m(t=0) at the initial equilibrium state inside the 
magnon resonator, and can be obtained by solving the continuity equation for magnetic flux ∇ ∙
𝐁-] = ∇ ∙ n𝜇39𝐇9,-] +𝐦𝟎𝑀a:o = 0, which is part of the Maxwell’s equations. The magnetic 
boundary condition ¶m/¶n=0 is applied on the surfaces of the magnon resonator, where n is normal 
vector to the surface. For a cubic or spheric magnet with spatially uniform magnetization, Hd,eq =-
1
3
 Ms(mx0, my0, mz0). The dynamically changing ∆𝐻X9(𝑡), which emerges when m starts to evolve, 
does not need to be calculated separately. Rather, the magnetic-field component of the EM wave 
HEM(t), which is obtained by solving the two dynamical equations in the Maxwell’s equations via 
the finite-difference time-domain (FDTD) solver on Yee grid (to be discussed below), can 
automatically satisfy the magnetic flux continuity equation ∇ ∙ 𝐁 = 0 across the heterointerfaces62. 
Specifically, the spatiotemporal evolution of the HEM and the associated electric field component 
of the EM wave EEM are simulated by solving the Maxwell’s equations,  

∇ × HEM = ε0εr
∂EEM

∂t
+Jc , (4) 

∇ × EEM = -
∂B
∂t = -μ0 Q

∂HEM

∂t +𝑀W
∂m
∂t U .

(5) 

Equation (4-5) indicates that the HEM is produced by both the free charge current pulse Jc(t) via 
electric dipole radiation and the precessing m(t) via magnetic dipole radiation. The perfect electric 
conductor (PEC) boundary condition is applied on all surfaces of the microwave cavity for 
reflecting the EM wave without loss. Specifically, Ei = 0 and Ej = 0 on the ij surfaces of the cavity 
for PEC, with i = x, y, z, and j ≠ i. The elastic stiffness coefficients, the damping coefficient, and 
the mass density of YIG are listed in Supplemental Material 8. Other material parameters of YIG 
used in the simulations, including the magnetocrystalline anisotropy and the magnetoelastic 
coupling coefficients of YIG can be found in ref. 39. Central finite difference is used for calculating 
spatial derivatives with a midpoint derivative approximation. Conventional Yee grid and the 3D 
FDTD method62 are used to numerically discretize the EM wave and solve Eqs. (4-5). All 
dynamical equations are solved in a coupled fashion using the classical Runge-Kutta method with 
a time step ∆t = 5×10-14 s. The choice of ∆t is subjected to the Courant condition for numerical 
convergence in conventional FDTD algorithm, which requires ∆t≤l0/(√3𝑣)35, where l0 is the 
simulation cell size and 𝑣 is the EM wave velocity in the medium. Since the use of a larger εr leads 
to √εr times smaller 𝑣 compared to speed of light in vacuum, a larger ∆t can be used in this work, 
which significantly reduces the computational time in long-term dynamics simulation.  

Part 2: Detailed discussion of the size scaling method 

Under the same excitation charge current, a larger εr would also lead to an EEM that is √εr 
times smaller, because the amplitude of EEM is inversely proportional to the angular wavenumber 
𝑘  of the EM wave, with 𝑘 = 𝜔%𝜖3εrµ0 = 𝜔 𝑣⁄ . This relationship between EEM  and 𝑘  can be 
quantitatively understood by rewriting Jc(t)=¶P/¶t and then analytically solving the wave equation 
of the EEM under the plane-wave assumption (see details in 63 ).  
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Despite the smaller EEM, the amplitude of HEM would remain unchanged because the ratio 
of EEM and the B field is also related by the EM wave velocity 𝑣. For example, let us we focus on 
the 𝐵/ (𝐻/01) component, which is the main component that interacts with the magnon mode in 
the system shown in Fig. 1a. We also consider that only the dominant 𝐸&01 component is nonzero, 
which is consistent with Fig. 1c. In this case. Eq. (5) can be rewritten as,  

𝜕𝐵/
𝜕𝑡 = −Q

𝜕𝐸L01

𝜕𝑦 −
𝜕𝐸&01

𝜕𝑧 U ≈
𝜕𝐸&01

𝜕𝑧 																																								(6) 

If we further write 𝐵/ = 𝐵/3𝑒𝐢(<"!ZL)  and 𝐸&01 = 𝐸&
01,3𝑒𝐢(<"!ZL)  under the plane-wave 

assumption, Eq. (6) can be further rewritten into, 

𝐵/ = −𝐸&01
𝑘
𝜔 = −𝐸&01%ε0εrµ0.																																														(7) 

Therefore, although a larger εr reduces the 𝐸&01  by √εr  times, as shown in Eq. (7), the 
multiplication by √εr  leaves the 𝐵/  unchanged. The 𝐻/01  also remains unchanged, because (i) 
𝐵/ = 𝜇3𝐻/01 in the cavity and 𝐵/ = 𝜇3(1 + 𝜒5)𝐻/01 in the YIG resonator (M=𝛘5HEM); and (ii) 
the magnetic susceptibility tensor 𝛘5 is independent of the εr.  

To demonstrate the applicability of the conclusion above to cases that are more general 
than plane-wave assumption, we also scale down the size of the cavity electromagnonic system 
shown in Fig. 1a from the original size of 45×9×21 mm3 to a few different sizes, in addition to the 
180×36×84 nm3 used in the main paper (for which εr was increased from 1 to 6.25×1010). These 
additional sizes include 225×45×105 nm3, 300×60×140 nm3, and 450×90×210 nm3, where the εr 
was increased from 1 to 4×1010, 2.25×1010, and 1×1010, respectively. We then perform dynamical 
phase-field simulations to model the excitation of magnon polaritons in these three systems in a 
similar manner to those in Fig. 1. As expected, the amplitude of 𝐸&01 is √εr times smaller while 
the 𝐻/01 remains unchanged with the increasing εr, as shown by Fig. S5 in Supplemental Material 
9. By proportionally scaling down the size of the magnon resonator, the magnon-photon coupling 
strength would remain unchanged. 

The main reason for scaling down a mm-scale system to the nm scale is to ensure that the 
magnon resonator only accommodates the Kittel mode magnon due to the dominant Heisenberg 
exchange coupling at the nm-scale. An alternative approach is to use one single cell to represent 
the magnon resonator (i.e., the macrospin approximation, as in Ref. 64). We adopt this approach in 
the design of cavity electro-magno-mechanical system with triple phonon-magnon-photon 
resonance, as will be discussed below. In this approach, the Heisenberg exchange coupling does 
not need to be considered, and the spatial discretization of the system is mainly determined by the 
need to discretize an EM wave. This approach allows for simulating a large-scale photon cavity 
with a relatively small number of cells and for designing the size and shape of the cavity, but does 
not permit studying the effect of the size (e.g., as in Fig. 1e) and the shape of the magnon resonator 
on the coupled magnon-photon dynamics. If using multiple simulation cells yet turning off the 
exchange coupling, then there would be no force to lock the discrete local magnetization vectors 
into one giant spin. As time goes, what we have found for the present cavity electromagnonic 
system (Fig. 1a) is that the numerical error will accumulate (i.e., the values of mi will become more 
and more spatially nonuniform) and eventually lead to numerical divergence. Applying a stronger 
bias magnetic field would only alleviate this numerical issue by delaying, rather than preventing, 
the numerical divergence, and would also impose a constraint on the frequency range of the 
magnons that can be excited. This issue of numerical instability is even worse when the size of the 
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magnon resonator is big enough such that the cavity magnetic field inside the resonator becomes 
highly inhomogeneous. 
Part 3: Design and simulation set-up of a 3D cavity electro-magno-mechanical system enabling 
triple phonon-magnon-photon resonance 

To excite a nominal TE100 photon mode, we consider a cavity that is 16.5-mm-long (the 
half-wavelength of the 9.1 GHz EM wave at εr=1) in the x axis and apply periodic boundary 
conditions to the xy surfaces as well as the PEC boundary condition to all the other surfaces. This 
set-up is equivalent to placing an array of YIG/SiN bilayer membranes in a large cavity and then 
probing the phonon-magnon-photon coupling in one of the repeating units (see Fig. S6a in 
Supplemental Material 10 for the full-scale cavity design). To minimize the interaction between 
the neighboring YIG resonators, we chose a length of 5.5 mm along the z axis, which is sufficiently 
long to ensure that the EM field remains largely uniform in the xz plane except the region near the 
YIG, as shown by the spatial distribution of the 𝐻L01 in Fig. 5b. The simulated photon profile in 
Fig. 5a can be considered as a smaller portion of the profile of the TE101 mode photon in a larger-
scale cavity (see Fig. S6b in Supplemental Material 10). Along the y axis of the cavity, which is 
parallel to the wavevector of the acoustic phonons and the thickness direction of the YIG/SiN 
bilayer, we consider a length of 400 nm to ensure the formation of the fundamental (n=1) TA 
phonon mode at the GHz frequency. The EM field is always uniform along y because the EM 
wavelength (33 mm) is far larger than the 400 nm. Taken together, the dimensions of the 3D cavity 
are 16.5 mm (x) ´ 400 nm (y) ´ 5.5 mm (z). The size of the YIG/SiN bilayer membrane is 0.55 
mm (x) ´ 280 nm (y) ´ 0.5 mm (z), where the thicknesses of the YIG and SiN layer are 10 nm and 
270 nm, respectively. 

Simulating the GHz phonon dynamics along the y axis requires that the cell size is nm-
scale along the y axis. According to the Courant condition for the FDTD algorithm mentioned 
above, a time step ∆t on the order of 10-18 s would be required to maintain numerical convergency. 
It would be computationally prohibitive to simulate the GHz mode dynamics over a time frame 
over hundreds of ns using such a small ∆t. To address this issue, we increase the εr from 1 to 108, 
which allows for using a 104 (=√εr) times larger ∆t due to the slower EM wave velocity as 
discussed earlier. In the meantime, the EM wavelength and hence the size of the photon cavity are 
reduced by 104 (=√εr) times. Given that the original cavity is only 400-nm-long along the y axis, 
this would result in an impractical size of 0.04 nm. Alternatively, we consider (i) a 3D photon 
cavity of 1650 nm (x) ´ 400 nm (y) ´ 550 nm (z) with εr=108, where the dimensions of the cavity 
along the x and z axis were reduced by 104 times yet the dimension along the y axis is kept the 
same as the original one; and (ii) a YIG/SiN bilayer of 55 nm (x) ´ 280 nm (y) ´ 50 nm (z) in the 
simulations, where the in-plane dimensions of the bilayer were reduced by 104 times yet the 
thicknesses of the YIG (10 nm) and SiN (270 nm) layers remain unchanged. This treatment ensures 
that both the magnon-phonon and the magnon-photon coupling strength remain to be the same as 
those in the original-sized cavity for two reasons. First, the magnon-phonon coupling strength is 
determined only by the thicknesses of the YIG and SiN layer (along y) rather than their in-plane 
dimensions (x and z) because both the magnetization and strain vary only along the y axis. Second, 
the magnon-photon coupling strength is predominantly determined by the dimension ratio of the 
YIG-to-photon-cavity along the x axis because the cavity magnetic field HEM varies largely along 
the x axis only (see Fig. 5a).  
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Because our focus is on the Kittel mode magnon and we are not interested in studying the 
size and shape effect of the YIG in this application example, we use one single cuboid-shaped cell 
with a size of (∆x, ∆y, ∆z) = (55 nm, 10 nm, 50 nm) to represent the YIG (i.e., the macrospin 
approximation) and a chain of 27 cells of the same dimension aligning along the y axis to discretize 
the juxtaposed SiN layer. Cells of the same dimension are also used to discretize the reduced-sized 
photon cavity, resulting in a total number of cells (Nx, Ny, Nz)=(30, 40, 11). A planar source current 
𝐽&b(𝑡) = 𝐽&

',3𝑡𝑒!"! #$"!⁄ , which is spatially uniform along the yz plane, is injected at x=275 nm to 
excite the cavity photon, with 𝐽&

',3=1012 A/m2 and 𝜎3=7×10-11 s. The bias magnetic field Hybias is 
applied along the +y direction, causing the magnetization to precess around the y axis, as shown 
in Fig. 5a. To set up the magnon-photon resonance, we identify the Hybias that makes the FMR 
frequency 𝜔m equal the 𝜔c=9.1 GHz by numerically simulating the mode splitting spectra of the 
magnon polaritons as a function of the Hybias in the absence of coupling to phonons. A magnon-
photon coupling strength gcm of 2π×56 MHz is obtained from the mode splitting spectra (see Fig. 
S6c in Supplemental Material 10). We have found that the gcm remains unchanged when using 
other εr values to reduce the dimensions of the cavity along x and z to other values (while fixing 
the y-axis cavity dimension to 400 nm) and proportionally reducing the x-axis and z-axis dimension 
of the YIG/SiN bilayer (while fixing the y-axis dimension of the bilayer to 280 nm). The results 
are shown in Fig. S6d in Supplemental Material 10. 

Regarding the set-up of the phonon resonator, since the acoustic wave is spatially uniform 
in the xz plane, we use one single cell to represent the YIG/SiN bilayer along their x and z axes. 
Considering that the phonons are excited by a uniform magnetization precessing around the y axis 
and omitting the elastic damping (β=0), Eq. (3) can be written as, 

𝜌
𝜕#𝑢/
𝜕𝑡# − 𝑐EE

𝜕#𝑢/
𝜕𝑦# = −𝐵#

𝜕𝑚/𝑚&

𝜕𝑦 ,																																												(8a) 

𝜌
𝜕#𝑢&
𝜕𝑡# − 𝑐AA

𝜕#𝑢&
𝜕𝑦# = −𝐵A

𝜕𝑚&
#

𝜕𝑦 ,																																																			(8b) 

𝜌
𝜕#𝑢L
𝜕𝑡# − 𝑐EE

𝜕#𝑢L
𝜕𝑦# = −𝐵#

𝜕𝑚&𝑚L

𝜕𝑦 ,																																														(8c) 

where B1 and B2 are the magnetoelastic coupling coefficients of the YIG resonator. Equations (8a-
c) indicate that the Kittel mode magnons will excite chiral TA phonons of the same frequency 
which have a wavevector along the y axis (see Fig. 5d). Using procedures similarly to those 
described in ref. 41, we analytically derive the frequencies of the standing TA phonon frequencies 
in the YIG/SiN bilayer as a function of the YIG and SiN layer thickness (𝑑def  and 𝑑gXh), i.e.,  

𝑐EEdef

𝑣def Q1 + 𝑒
#𝐢<-

B.+/

i.+/UQ−1 + 𝑒#𝐢<-
B012
i012U +

𝑐EEgXh

𝑣gXh Q−1 + 𝑒
#𝐢<-

B.+/

i.+/UQ1 + 𝑒#j<-
B012
i012U = 0	(9) 

The first nonzero nontrivial solution of Eq. (9) yields the angular frequency of the fundamental (n 
=1) acoustic phonon mode (ωn=1), and so forth for the higher-order modes. Here 𝑣def =
%𝑐EEdef 𝜌def⁄  is the velocity of the TA phonon in YIG and likewise for the 𝑣gXh. When 𝑑def= 10 
nm and 𝑑gXh= 270 nm, the resonant acoustic frequency ωn=1/2π=9.13 GHz, which is very close to 
the frequency (9.14 GHz) of the 𝑑A+ mode magnon polariton. The elastic parameters of the YIG 
and SiN are provided in Supplemental Material 8.  
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Figure 1. a, Hybrid magnon-photonic system that contains a YIG cube (not to scale) inside a 3D microwave 
cavity. The bias magnetic field Hbias is applied along the +z direction. A Gaussian-shaped charge current 
pulse Jc(t) is injected into the cavity to excite the cavity mode of the standing EM wave. The vectors indicate 
the direction of the local microwave magnetic field HEM (TE101 mode), where the vector length is 
proportional to magnitude of the HEM. b, Dynamics of the on-resonance Kittel mode magnon, represented 
by Δmx= mx(t)-mx(t=0)) and cavity photon, represented by the microwave electric field component 𝐸!"# at 
the detection point which is at 1.5 mm above the bottom surface center of the cavity. Trend lines showing 
the evolution of the amplitudes of the two modes are added. The values of the simulated 𝐸!"# are multiplied 
by √𝜀$ to show the electric fields in the cavity of the original size. c, Spatial distribution of local microwave 
electric field EEM and the polar plot of the magnitude of the precessing magnetization component Dmx and 
Dmy at (from left to right) Dt = 2.11 ns, 4.4 ns, and 5.71 ns, respectively. The circles indicate |Dm|=0.01 
(innermost), 0.02, 0.03, and 0.04 (outermost), respectively. d, Frequency spectrum of the Δmx(t) in (c). e, 
Simulated mode splitting spectra of the magnon polaritons as a function of DHbias under different YIG sizes 
of 0.4×0.4×0.4 mm3(red circles), 1×1×1 mm3(green circles) and 2×2×2 mm3(blue circles), and their 
analytical fitting curves (lines). ΔHbias=Hbias- 𝐇%&'(), where 𝐇%&'()= 0.2315 MA/m (~0.291 T) is the bias 
magnetic field that ensures magnon-photon on-resonance (wm=wc).  
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Figure 2. a, Frequency spectrum of the magnon polariton as a function of Floquet driving frequency fD, 
obtained from a, dynamical phase-field simulations and b, Hamiltonian-based theoretical calculations of 
the absorption spectrum where square root for each data point is take to make the higher order sideband 
visible. The inset shows the energy level diagram. Evolutions of the magnon (represented by Dmx, upper 
panel) and the photon (represented by Ey, lower panel) at the detection point under c, wD/2π=300 MHz, and 
d, wD/2π=145 MHz. The magnitude of the Floquet driving field |hD|=2000 A/m in a-d. 
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Figure 3. a, Dynamics of the magnetization amplitude of the 𝑑&+ mode magnon polariton under a continuous 
Floquet driving hD(t) with |hD|=5000 A/m and wD/2π=145 MHz. Δt=0 is the moment when the application 
of hD(t) begins after the current pulse Jc(t) injection is complete. The 𝑑&+ and 𝑑&- modes swap at the frequency 
of ΔwAT/2π along the real axis of the Bloch sphere (inset). b, Dynamics of the magnetization amplitude of 
the 𝑑&+ mode magnon polariton under different |hD| but the same frequency of wD/2π=145 MHz. 
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Figure 4. a. (Top) the temporal waveform hD(t)=|hD|sin(ω∆t) when 0≤∆t≤t0 or t0+τ≤∆t≤2t+τ0, and hD(t)=0 
otherwise; (Bottom) Schematic of operation sequences for Ramsey interference on a Bloch sphere. b, The 
magnetization amplitude of the 𝑑&-  mode of the magnon polariton obtained after the completion of the 
second π/2 pulse. Each data point in b was obtained from an independent simulation, where the free 
evolution duration τ and detuning amplitude ∆ω are different in each simulation. 
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Figure 5. a, A cavity electromagnonic system that contains a YIG/SiN bilayer membrane inside a 3D 
photon cavity. The arrow indicates the direction (mostly along z) and the vector length indicates the 
magnitude of the local cavity magnetic field HEM. The schematic on the right illustrates the YIG/SiN bilayer 
membrane (not to scale), which occupies the space where xÎ{14.85 mm, 15.4 mm), yÎ{40 mm, 320 nm}, 
and zÎ{2.5 mm, 3 mm}. The bias magnetic field Hbias is applied along +y. The lower left corner of the 
cavity is defined as coordinate of the origin, i.e., (x, y, z) = (0,0,0). b, Spatial distribution of the 𝐻*"# at t=50 
ns in the xz plane of the 3D system at y=50 nm. c, Profile of the strain component 𝜀+! along the thickness 
direction (y) of the YIG/SiN bilayer membrane at t=50 ns. d, Evolution of the mechanical displacement ux 
and uz from t=50-51 ns at 50 nm above the bottom of the YIG/SiN bilayer membrane (this location is 
indicated by the filled circles in c). Under the triple phonon-magnon-photon resonance condition, evolution 
of, e, the TE100 mode cavity photon, represented by the 𝐻*"# at the point (x, y, z) = (1.65 mm, 50 nm, 3 mm), 
g, the Kittel mode magnon, represented by Δmx= mx(t)-mx(t=0), and, i, the standing chiral TA phonon mode 
at the detection point, represented by the 𝜀+!  at the point indicated by the filled circle in c.  t=0 is the moment 
the planar current pulse is injected to the cavity. f,h,j, Frequency spectra of the cavity photon, the Kittel 
mode magnon, and the chiral TA phonon, respectively. 

 


