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A B S T R A C T

Traffic flow modeling relies heavily on fundamental diagrams. However, deterministic fun-
damental diagrams, such as single or multi-regime models, cannot capture the underlying
uncertainty in traffic flow. To address this limitation, this study proposes a non-parametric Gaus-
sian process model to formulate the stochastic fundamental diagram. Unlike parametric models,
the non-parametric approach is insensitive to parameters, flexible, and widely applicable. The
computational complexity and high memory requirements of Gaussian process regression are
also mitigated by introducing sparse Gaussian process regression. This study also examines
the impact of incorporating empirical knowledge into the prior of the stochastic fundamental
diagram model and assesses whether such knowledge can enhance the model’s robustness and
accuracy. By using several well-known single-regime fundamental diagram models as priors
and testing the model’s performance with different sampling methods on real-world data, this
study finds that empirical knowledge benefits the model only when small inducing samples are
used with a relatively clean and large dataset. In other cases, a purely data-driven approach is
sufficient to estimate and describe the density–speed relationship pattern.

1. Introduction

The traffic fundamental diagram is a crucial concept that provides a quantitative framework for understanding and estimating
traffic behavior in different scenarios. Its application is widespread, including traffic flow theory, highway capacity analysis, and the
design of intelligent transportation systems. Therefore, it plays a vital role in the planning and operating of efficient transportation
networks.

The fundamental diagram is used to describe the following relationship:

q = � × v (1)

where q, �, and v represent flow, density, and space mean speed. Based on Ni (2015), it can also be regarded as an equilibrium
traffic flow model since the fundamental diagram represents a steady-state or equilibrium relationship between flow, density, and
speed. In this paper, the density–speed relationship is the primary focus. Given this relationship, the other two relationships can
be determined using Eq. (1). Traditional density–speed fundamental diagram models can be classified into single-regime and multi-
regime models, as shown in Fig. 1. Single-regime models usually describe the relationship between traffic density and speed using a
linear or nonlinear function. However, single-regime models may not always fit well in all density ranges. This is why multi-regime
models use piecewise functions to represent the density–speed relationship across the entire range of densities.
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Fig. 1. Single-regime and multi-regime models.1

Almost all traditional single and multi-regime fundamental density–speed diagram models are shown in a deterministic form,
which can be briefly represented by:

v = f (�) (2)

In real-life traffic situations, it is difficult to find a steady-state condition. Therefore, when a traffic density � is given, the actual
observed speed is more likely to fall within a specific range instead of a fixed value. Adopting the idea presented in Ni (2015), the
stochastic fundamental diagram model operates on the principle that the density–speed relationship is not a function of density but
a function of density and its distribution. This relationship is expressed mathematically in Eq. (3), where w(�) indicates the density
distribution.

v = f (�,w(�)) (3)

Fig. 2 shows the stochastic fundamental diagram, where a certain speed distribution corresponds to a given density �. In numerous
studies on network-level control, such as Gupta et al. (2023) and Li et al. (2024), the fundamental diagram is utilized to depict the
traffic patterns of a route, section, or zone. Many of these studies focus on maximizing flow through signal control or route guidance
strategies. In a deterministic fundamental diagram model, the target density after control is a constant value since the deterministic
fundamental diagram models a curve. In the stochastic fundamental diagram model, the maximum mean flow will associate with
a distribution indicating all possibilities, and it may have a wide confidence interval, indicating that it could lead to a very high
maximum flow and a very low minimum flow. Therefore, the stochastic fundamental diagram model provides insight into the robust
network-level control, suggesting that it is necessary to simultaneously consideration of both the mean and variance of the flow,
rather than focusing solely on the mean, and it is better to steer the network toward a traffic density with a relatively high mean
flow but a narrow confidence interval.

Stochastic and deterministic fundamental diagram models are essentially regression models. Assuming some data has been
collected, which can be expressed as ò = {(x1, y1),& , (xn, yn)}, a regression model is a model that used to describe the relationship
between ė and Ė that can be written as:

ė = f (Ė,ā) + � (4)

where ā is a vector of k parameters, � denotes an error term whose distribution may or may not be Gaussian, and f (ç) is a function
that delineates the relationship between ė and Ė.

Most existing stochastic or deterministic fundamental diagram models are parametric regression models. For a parametric
regression model, the ā in Eq. (4) is a vector in finite-dimensional space, and f (Ė,ā) need to be known functions and distribution of
� is known prior for the inference (Mahmoud, 2019). However, for a non-parametric regression model, the ā in Eq. (4) is a subset
of an infinite-dimensional vector of vector spaces, and f (Ė,ā) is an unknown function.

The flexibility of parametric models is limited by their fixed functional form and assumptions on error distributions, making
it challenging to capture complex relationships. Non-parametric models, however, are better suited for modeling complex,
nonlinear relationships. Gaussian process regression (GPR) is a powerful non-parametric model for the stochastic density–speed
relationship (Yuan et al., 2021a,b). Nonetheless, handling extensive datasets presents a challenge for Gaussian Process Regression
(GPR), as it demands significant computational resources. Specifically, for a dataset comprising n samples, GPR’s computational
complexity scales cubically, with a time complexity of ý(n3). Meanwhile, its space complexity, which indicates the amount of

1 Both models are calibrated based on a dataset collected on the Georgia State Route 400 and weighted least square method proposed in Qu et al. (2015).
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Fig. 2. Representation of the stochastic fundamental diagram.

memory needed, grows quadratically, marked by ý(n2). This makes GPR less feasible for very large datasets without employing
variational techniques or approximation methods. To overcome this issue, a sparse Gaussian process regression (SGPR) is used to
approximate the full GPR using a subset of data points, for example, m(m ≪ n), and the time complexity will fall into ý(mn2). Although
the accuracy of SGPR is generally considered lower than GPR, it can still be a viable solution for deterministic fundamental diagram
models. In the majority of cases, deterministic models are parametric in nature. Consequently, employing the complete dataset for
their calibration does not pose significant challenges because its time complexity is generally considered as ý(c2n) (Li, 1996), where
c is the total number of features, c ≪ m in practical. This observation leads to an insightful proposition: calibrating deterministic
models initially and subsequently utilizing them as priors over the unknown function may offer a viable strategy. Such an approach
potentially facilitates the incorporation of empirical knowledge derived from the entire dataset without incurring additional time
and space complexities associated with Sparse Gaussian Process Regression (SGPR).

The objective of this paper is twofold. Firstly, inspired by Wang et al. (2013), Qu et al. (2017), and Cheng et al. (2021), it
aims to develop a non-parametric model for the density–speed relationship. This model will reflect the equilibrium density–speed
relationship based on the mean function curve (the navy curve on the z = 0 plane in Fig. 2) and traffic patterns based on different
speed distributions. Secondly, the paper will explore the possibility of bridging the gap between previous deterministic and stochastic
models. Specifically, it will investigate the feasibility of incorporating empirical models as a prior or direct empirical model term into
the loss function of the stochastic model. The paper will answer the following questions: Is it possible to merge empirical knowledge
from deterministic models into the stochastic model? If so, how can it be done? And, is this empirical knowledge really helpful
for the stochastic model?

In this paper, our contribution can be concluded as follows:

• A sparse non-parametric regression framework is proposed to model the stochastic density–speed relationship. The mean
function of the generated Gaussian process can be regarded as the density–speed relationship under the equilibrium state,
and the different Gaussian distributions distributed at every single density point represent the overall traffic pattern.
• This paper describes how to model empirical knowledge into a stochastic model but also highlights the limitations caused by
deterministic model parameters, which require clean data for calibration.
• In the first time, to the best of our knowledge, this paper shows that even taking an extremely well-calibrated empirical model
as the prior, when the size of inducing samples is over a certain range, the advantages embedded in it may not exist.

The structure can be organized as follows: Section 2 will review deterministic fundamental diagram models and stochastic
fundamental diagram models; Section 3 will introduce how deterministic models are calibrated and demonstrate the non-parametric
technique that will be used for sparse regression and briefly discuss the sampling algorithms that will be used to select inducing
variables for making the approximation; Section 4 will discuss the potential influence of empirical models.

2. Literature review

2.1. Deterministic fundamental diagram models

Most well-known single and multi-regime fundamental diagram models are deterministic models. The density–speed relationship
is represented by a linear or nonlinear function, which can be considered to reflect the density–speed relationship under equilibrium.
Given a certain density �, the corresponding speed is fixed. Based on the modeling methods of the density–speed relationship
corresponding to different traffic conditions, the deterministic fundamental diagram models can be classified into single-regime
models and multi-regime models.
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Table 1
Some single-regime traffic flow model.

Model Relationship equation Parameters

Greenshields et al. (1935) v = vf

(
1 −

�

�j

)
vf , �j

Greenberg (1959) v = vcritical log

(
�j

�

)
vcritical , �j

Underwood (1961) v = vf exp

(
−

�

�critical

)
vf , �critical

Newell (1961) v = vf

{
1 − exp

[
−

�

vf
(
1

�
−

1

�j
)

]}
vf , �j , �

Drake et al. (1965) v = vf exp

(
−(

�

�critical
)2
)

vf , �critical

Pipes (1966) v = vf

(
1 −

�

�j

)n

vf , �j , n

Drew (1968) v = vf

[
1 −

(
�

�j

)m1
]m2

vf , �j , m1 , m2

Papageorgiou et al. (1989) v = vf exp

[
−
1

�

(
�

�j

)�]
vf , �j , �

Kerner and Konhäuser (1994) v = vf

⎡
⎢⎢⎢⎢⎣

1

1 + exp

(
�

�critical
−0.25

0.06

)
− 372 × 10−8

⎤
⎥⎥⎥⎥⎦

vf , �critical

Del Castillo and Benitez (1995) v = vf

{
1 − exp[

vj

vf
(1 −

�j

�
)]

}
vf , �j , vj

Jayakrishnan et al. (1995) v = vmin + (vf − vmin)(1 −
�

�j
) vf , vmin , �j

Ardekani and Ghandehari (2008) v = vcritical log(
�j + �min

� + �min
) vcritical , �j , �min

MacNicholas (2011) v = vf

(
�n
j
− �n

�n
j
+ m�n

)
vf , �j , n, m

Wang et al. (2011)
v = vcritical +

vf − vcritical{
1 + exp[

�−�critical

�1
]
}�2 vf , vcritical , �critical , �1 , �2

Cheng et al. (2021) v =
vf

[1 + (
�

�critical
)m]

2

m

, 1 d m d 8.53
vf , �critical , m

2.1.1. Single-regime models
In 1935, Greenshields et al. (1935) proposed the first fundamental traffic flow diagram. This diagram established a linear

relationship between speed and density. Since then, a lot of research has been done to enhance both the accuracy and interpretability
of this relationship, such as Greenberg’s model (Greenberg, 1959), Underwood’s model (Underwood, 1961), Newell’s model (Newell,
1961), Drake’s model (Drake et al., 1965) and Drew’s model (Drew, 1968).

There are different types of fundamental diagrams that are classified based on the functional forms of the speed–density
relationship. These diagrams can be categorized into three main groups — exponential function-related models, logarithmic function-
related models, and polynomial function-related models along with their variants. Exponential function-related models include the
models proposed by Newell (1961), Drake et al. (1965), Kerner and Konhäuser (1994), Del Castillo and Benitez (1995), and Wang
et al. (2011). On the other hand, Ni et al. (2016) proposed logarithmic function-related models. Polynomial function-related models
and their variants are proposed by Pipes (1966), Drew (1968), Jayakrishnan et al. (1995), MacNicholas (2011), and Cheng et al.
(2021).

According to the Ni (2015), it has been observed that none of the early single-regime models are capable of fitting the empirical
data reasonably well over the entire density range. Each model is only suitable for a specific density range. Due to this limitation,
researchers started exploring the idea of fitting the data in a piecewise manner using multiple equations, which resulted in the
development of multi-regime models.

2.1.2. Multi-regime models
Multi-regime models incorporate a series of piecewise functions. Common multi-regime models (Edie, 1961; Drake et al., 1965;

May, 1990; Sun and Zhou, 2005) include two-regime or three-regime models. Recent studies have adopted non-parametric regression
frameworks. For instance, Sun et al. (2014) adopted a B-spline non-parametric regression structure. An incomplete list of multi-
regime models is shown in Table 2. The basic idea of multi-regime models is to divide density into two or three groups and then
use different functions to fit corresponding empirical data located in different density ranges. Drawing on the findings of Ni (2015),
it is evident that the multi-regime model exhibited limited efficacy in accurately fitting the empirical data. Moreover, these models
often present issues of discontinuity and lack of differentiability.
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Table 2
Some multi-regime traffic flow modela.

Model Free flow Transitional Congested

Edie model v = 54.9e−
�

163.9 , � d 50 – v = 26.8 ln
162.5

�
, � > 50

Two-regime model v = 60.9 − 0.515�, � d 65 – v = 40 − 0.265�, � > 65

Modified Greenberg model v = 48, � d 35 – v = 32 ln
145.5

�
, � > 35

Three-regime model v = 50 − 0.098�, � d 40 v = 81.4 − 0.913�, 40 < � d 65 v = 40 − 0.265�, � > 65

a The speed of vehicles is measured in miles per hour, while traffic density is quantified as vehicle per mile.

There has been significant progress in improving the accuracy of both single and multi-regime models. With various attempts and
exploration of both parametric and non-parametric regression structures, recent deterministic models have already shown a good fit
for empirical data in all density ranges. Therefore, accuracy is no longer the greatest weakness of these models. The deterministic
approach has an inherent deficiency in reflecting the density–speed relationship under different states rather than a steady state.

2.2. Stochastic fundamental diagram models

In the 1970s, Soyster and Wilson (1973) proposed an SFD model that utilized a probabilistic density distribution to describe
specific flow rates based on a birth-and-death stochastic process. This model, however, relied on highly restrictive assumptions,
including the notion that vehicle arrivals followed a Poisson process. Building upon this, Kerner (1998) expanded the framework
by offering speed ranges for various densities through three-phase traffic flow models. Further advancements came from Alperovich
and Sopasakis (2008), who developed a multi-lane stochastic traffic flow model grounded in microscopic dynamics. Nevertheless,
this model did not specify an explicit SFD functional form, omitting a crucial noise or error term. Wang et al. (2013) later introduced
a macroscopic stochastic method to depict the speed-flow equilibrium relationship, employing Karhunen–Loeve expansion for
estimating variance and mean, yet it lacked explicit stochastic speed–density relationships.

Subsequent research efforts, including those by MacNicholas (2011), Fan and Seibold (2013), Jabari et al. (2014), Qu et al.
(2017), and Wang et al. (2021), succeeded in generating distributions for speed or flow as functions of density, achieving relations
based on percentiles. However, the models proposed by the first three studies were limited to specific traffic flow scenarios, which
restricted their general applicability in broader traffic flow stochasticity contexts. Specifically, MacNicholas (2011) introduced a
probabilistic graphical approach to the fundamental traffic diagram based on the triangular deterministic model. Fan and Seibold
(2013) incorporated a novel variable, the empty-road velocity, to capture randomness within the ARZ model. Jabari et al. (2014)
crafted a probabilistic stationary speed–density relation using Newell’s simplified car-following model.

Further, Qu et al. (2017) proposed a percentile-based SFD calibration method, delving into the continuity, differentiability,
and convexity of their model. Wang et al. (2021) extended this percentile-based SFD, proposing a comprehensive model capable
of coordinating a family of speed–density curves. This model transformed a convex but nondifferentiable model into a linear
programming model that was efficiently solvable with advanced solvers. Exploring other aspects, Laval and Chilukuri (2014) utilized
a stochastic triangular fundamental diagram to examine kinematic wave models, while Siqueira et al. (2016) analyzed the SFD model
from a mesoscopic perspective, focusing on vehicle speed transitions. Building on the triangular fundamental diagram concept, Zhang
et al. (2018) established an SFD model that primarily captured the distributions of shockwave speeds.

More recent studies, such as Ni et al. (2018), investigated the SFD through a stochastic process inspired by the Maxwell–
Boltzmann distribution, aiming to encapsulate the scattering features in the fundamental diagram. Zhou and Zhu (2020) applied
a Gaussian mixture model to depict a triangular fundamental diagram, introducing stochasticity primarily through stochastic
headways in a mixed human-driven and automated environment. Ahmed et al. (2021) developed a multimodal SFD model for
heterogeneous and undisciplined traffic flows, leveraging unmanned aerial vehicle data from Pakistan. Addressing the uncertainty
of speed heterogeneity and rainfall intensity, Bai et al. (2021) proposed an SFD model to uncover both observable and unobservable
heterogeneities in traffic flows. Most recently, Cheng et al. (2024) tackled the limitations of deterministic models in highway traffic
flow theory by introducing two stochastic fundamental diagram (SFD) models that employ lognormal and skew-normal distributions.
These models aim to accurately represent traffic state variations through stochasticity in free-flow speeds and critical density speeds.
Validated with real-world loop detector data, these innovative models effectively replicate empirical data scatterings, demonstrating
significant potential in analyzing freeway capacities and identifying sources of stochasticity. However, a stochastic model holds both
a stochastic form to reflect the overall traffic pattern and a deterministic form to represent the equilibrium state is needed.

Contrary to the majority of macroscopic traffic models, which often use first or second-order approaches and are typically
formulated through partial differential equations (PDEs) — much like numerous models in physics, the deterministic models
explored in this study do not adhere to a PDE-based framework. Moreover, these models are functions with physics and non-physics
parameters, introducing a significant challenge: the imperative for high-quality data to calibrate these empirical models accurately.
In the absence of such data, the effectiveness of these models is at risk. Although it is possible to incorporate empirical models into
the loss function, doing so will fall into a modeling dilemma and will not necessarily enhance the model’s robustness. A robust model
can provide accurate estimations and predictions even when the input data is noisy. However, to obtain a robust model, clean data
are needed to establish the entire loss function in our case. Once clean data has been identified and processed, using noisy data as
input is pointless. The successful enhancement of model robustness through this integration is contingent upon the availability of
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pristine data. This research proposes the empirical models into the prior as the mean function in sparse Gaussian process regression
(SGPR), with the aim of improving the model’s precision rather than its robustness. Most deterministic fundamental models can
be directly utilized as this mean function. Further into the text, an examination is conducted on whether this inclusion effectively
elevates the performance of the model and offsets the limitations of sparse approximation. The primary objective is to facilitate
non-parametric models in extracting more valuable insights from the empirical prior — derived from the entire dataset, even when
they are trained on only a subset of this data due to significant computational demands. This strategy seeks to enhance the accuracy
of non-parametric regression models by making full use of the empirical data, which cannot be done if only rely on non-parametric
regression. The primary goal of utilizing empirical models as the mean function is to enhance the precision of non-parametric
models when fitting the empirical data. While this approach shares similarities with methods employed in physics-informed machine
learning, it is important to note that this research does not classify as physics-informed machine learning.

3. Methodology

In this section, we will discuss how to generate the non-parametric stochastic fundamental diagram model. The basic method-
ology consists of three main parts: calibration of the empirical deterministic model, non-parametric stochastic modeling, and
integration of empirical prior.

3.1. Empirical deterministic model

In our overall modeling framework, the empirical deterministic model plays a very important role in bridging the traditional
deterministic models and the statistics model. As the prior of the statistics model, we need to ensure that all empirical deterministic
models must be well-calibrated. The least square method (LSM) has been widely used to calibrate regression-based models in
transportation research areas, such as Sun et al. (2003) and Meng and Qu (2013). When calibrating the single-regime fundamental
diagram model, the LSM may encounter many drawbacks. The real-world data used to calibrate the single-regime fundamental
diagram model is unbalanced distributed, and most density–speed pairs are located in the low-traffic density area. As a result, the
fitted model based on LSM will be well fitted in high-density areas but skewed in low-density areas and may not be able to reflect
the accurate real pattern of the density–speed relations. Therefore, following Qu et al. (2015), a weighted least square (WLSM)
method is adopted to calibrate all the single-regime and multi-regime fundamental diagram models in this paper. Considering a
density–speed pairs dataset ò, ò =

{
(�1, v1), (�2, v2),& , (�m, vm)

}
and a function v = f (�, �), the LSM is aiming to minimize the sum

of squared errors as shown in Eq. (5), due to the continuously differentiable assumption of this unconstrained optimization problem,
its first-order optimality condition can be expressed as Eq. (6). Unlike LSM, WLSM minimizes Eq. (7), whose first-order optimality
condition can now be written as Eq. (8).

minú(�) =
n1
i=1

(vi − f (�i, �))
2 (5)

)ú(�)
)�j

= −2

n1
i=1

[vi − f (�i, �)]
)f (�i, �)

)�j
= 0, j = 1,& , n (6)

minú(�) =
n1
i=1

$i(yi − f (xi, �))
2 (7)

)ú(�)
)�j

= −2

n1
i=1

$i[vi − f (�i, �)]
)f (�i, �)

)�j
= 0, j = 1,& , n (8)

In our paper, all the single-regime fundamental diagram models will be calibrated through WLSM proposed by Qu et al. (2015),
and the calibration2 will be done by an optimizer in Virtanen et al. (2020).

Several classic and recent single-regime traffic flow models have been listed in Table 1. The calibrated parameters of each model
are presented in Table 3. However, the jam density of MacNicholas’s Model (MacNicholas, 2011) has lost its physical meaning.
Therefore, only a portion of the calibrated models are shown in Figs. 4(a) to 4(l).

3.2. Non-parametric stochastic modeling

In the section, we will introduce the non-parametric method that we used to generate our stochastic model. Sparse Gaussian
process regression (SGPR), as a powerful non-parametric regression tool, has been selected to archive stochastic modeling.

Before formally introducing the SGPR, let us quickly review the Gaussian process regression. Following Williams and Rasmussen
(2006), the Gaussian process (GP) is employed to depict a distribution over functions, allowing GP to serve as a powerful analysis
method from a function-space perspective. Formally:

Definition 1 (Gaussian Process). A Gaussian process is a collection of random variables, any finite number of which have a Gaussian
distribution.

2 The calibration code is shown in https://github.com/YuanzhengLei/Weighted-the-least-square-method-for-single-regime-fundamental-diagram-models.
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Table 3
Parameters of single-regime traffic flow model after calibration.

Model Parametersa

Greenshields et al. (1935) vf = 52.12 �j = 76.68

Greenberg (1959) vcritical = 22.06 �j = 92.49

Newell (1961) vf = 69.69 �j = 25.000 � = 1209.02

Drake et al. (1965) vf = 80.50 �critical = 50.01

Underwood (1961) vf = 80.51 �critical = 92.49

Papageorgiou et al. (1989) vf = 79.49 �j = 24.83 � = 1.02

Kerner and Konhäuser (1994) vf = 60.17 �critical = 106.27

Del Castillo and Benitez (1995) vf = 69.69 �j = 108.41 vj = 11.15

Jayakrishnan et al. (1995) vf = 52.1198 vmin = 35.0052 �j = 25.1779

Ardekani and Ghandehari (2008) vcritical = 40.41 �j = 56.84 �min = 0.01

MacNicholas (2011) vf = 70.17 �j = 2410.54 n = 2.00 m = 13730.07

Pipes (1966) vf = 76.05 �j = 51.00 n = 1.22

Wang et al. (2011) vf = 65.23 vcritical = 6.02 �critical = 9.73 �1 = 1.53 �2 = 0.10

Cheng et al. (2021) vf = 68.70 �critical = 20.02 m = 2.21

a The speed of vehicles is measured in miles per hour (mph), while traffic density is quantified
as vehicle per mile.

For any Gaussian process, it can be specified by its mean function m(Ė) and covariance function k(Ė, Ė2). This function is commonly
called the kernel of the Gaussian process (Jäkel et al., 2007), and a prevalent choice of a kernel function is the radial basis function

kernel, which is defined as k(Ė, Ė2) = �2e
−

‖Ė−Ė2‖2
2�2 , � and � are hyper-parameters, which will decide the shape of the kernel function.

The mean function and the covariance function of a real process f (Ė) can be defined as:

m(Ė) = E[f (Ė)] (9)

k(Ė, Ė2) = E[(f (Ė) − m(Ė))(f (Ė2) − m(Ė2))] (10)

and the Gaussian process can be expressed as:

f (Ė) < õþ(m(Ė), k(Ė, Ė2)) (11)

Typically, the mean function is assumed to be zero. Consequently, in subsequent sections of this study, for a pure Gaussian
process regression (GPR) model, its mean function m(�) = 0, for other empirical prior Gaussian process regression (EPGPR) models,
because they are based some deterministic fundamental diagram model f (�), their mean function m(�) = f (�).

Based on Wang (2023), if points xi and xj are considered similar by the covariance function, their corresponding function
outputs, f (xi) and f (xj ), are expected to be similar too. The Gaussian process regression is illustrated as: given observed data
(Ėi, fi|i = 1, 2, 3,& , n) and a mean function Ą estimated from the observed data, to predict at new points Ė∗ as Ą∗. The joint distribution
of Ą and Ą∗ is actually a multivariate Gaussian/normal distribution, which can be expressed as:[

Ą

Ą∗

]
< ü

([
m(Ė)

m(Ė∗)

]
,

[
ćnn ćn∗

ć∗n ć∗∗

])
(12)

where ćnn = ć(Ė, Ė),3 ćn∗ = ć(Ė, Ė∗),4 ć∗∗ = ć(Ė∗, Ė∗),5 Eq. (13) gives the joint probability distribution of Ą , Ą∗|Ė, Ė∗ over Ą and Ą∗.
However, in a regression problem, what we really need is the conditional distribution Ą∗|Ą , Ė, Ė∗ over Ą∗, which can be written as6:

Ą∗|Ą , Ė, Ė∗ < ü (ć∗nć
−1
nn
Ą ,ć∗∗ −ć∗nć

−1
nn
ć∗n) (13)

However, in a more realistic modeling scenarios, Ą itself is intractable. The tractable one is the noisy version expressed as
ė = f (Ė) + �. Assuming � is an additive independent and identically distributed Gaussian noise, � < ü (0, �2

�
), then the prior on

3 If there are n training points, ć(Ė, Ė) =

⎡⎢⎢⎢⎢⎣

k(x1 , x1) k(x1 , x2) k(x1 , x3) ď k(x1 , xn)

k(x2 , x1) k(x2 , x2) k(x2 , x3) ď k(x2 , xn)

ď ď ď ď ď

k(xn , x1) k(xn , x2) k(xn , x3) ď k(xn , xn)

⎤
⎥⎥⎥⎥⎦
.

4 If there are n testing points, ć(Ė, Ė∗) =

⎡⎢⎢⎢⎢⎣

k(x1 , x
∗
1
) k(x1 , x

∗
2
) k(x1 , x

∗
3
) ď k(x1 , x

∗
n
)

k(x2 , x
∗
1
) k(x2 , x

∗
2
) k(x2 , x

∗
3
) ď k(x2 , x

∗
n
)

ď ď ď ď ď

k(xn , x
∗
1
) k(xn , x

∗
2
) k(xn , x

∗
3
) ď k(xn , x

∗
n
)

⎤
⎥⎥⎥⎥⎦
.

5 If there are n training and testing points, ć(Ė∗ , Ė∗) =

⎡
⎢⎢⎢⎢⎣

k(x∗
1
, x∗

1
) k(x∗

1
, x∗

2
) k(x∗

1
, x∗

3
) ď k(x∗

1
, x∗

n
)

k(x∗
2
, x∗

1
) k(x∗

2
, x∗

2
) k(x∗

2
, x∗

3
) ď k(x∗

2
, x∗

n
)

ď ď ď ď ď

k(x∗
n
, x∗

1
) k(x∗

n
, x∗

2
) k(x∗

n
, x∗

3
) ď k(x∗

n
, x∗

n
)

⎤
⎥⎥⎥⎥⎦
.

6 Details of how to obtain Ą∗|Ą , Ė, Ė∗ can be found in Bishop (2006) and Williams and Rasmussen (2006).
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the noisy observations becomes: and Eq. (12) can be rewritten as:
[
ė

Ą∗

]
< ü

([
m(Ė)

m(Ė∗)

]
,

[
ćnn + �2

�
ą ćn∗

ć∗n ć∗∗

])
(14)

By deriving the conditional distribution, the predictive equations for Gaussian process regression will be expressed as:

Ą∗|ė, Ė, Ė∗ < ü (Ą∗, cov(Ą∗)) (15)

where Ą∗ and cov(Ą∗) can be further expressed as:

Ą∗ = ć∗n[ćnn + �2
�
ą]−1ė (16)

cov(Ą∗) = ć∗∗ −ć∗n[ćnn + �2
�
ą]−1ćn∗ (17)

Similarly, the prediction of the output ė∗, ė∗ = Ą∗ + � is described by (Titsias, 2009a):

ė∗|ė, Ė, Ė∗ < ü (ė∗|ć∗n[ćnn + �2
�
ą]−1ė,ć∗∗ −ć∗n[ćnn + �2

�
ą]−1ćn∗) (18)

The posterior GP also depends on the values of the hyper-parameters � = (�, �) (Shown in kernel function), which are determined
by maximizing the log marginal likelihood as follows:

�∗ = argmax
�

log (ė|Ė, �) = argmax
�

log [ü (ė|m(Ė),ćnn + �2ą)] (19)

However, although GP is a compelling and popular non-parametric method and has been shown to perform well on various
tasks (Walder et al., 2008), the application of GP models in large datasets is still tricky (Titsias, 2009a) due to the time complexity
as ý(n3) and the storage as ý(n2), where n is the size of samples. Many approximate or sparse methods (Williams and Seeger, 2000;
Smola and Bartlett, 2000; Csató and Opper, 2002; Lawrence et al., 2002; Seeger et al., 2003; Schwaighofer and Tresp, 2002; Snelson
and Ghahramani, 2005; Quinonero-Candela and Rasmussen, 2005; Titsias, 2009a) have been proposed to solve this dilemma. The
core idea of those studies is to employ a small set with m inducing variables to form a reduction of the time complexity from
ý(n3) 0 ý(m2n).

In this paper, we adopted the variational framework proposed in Titsias (2009a). Suppose m inducing variables are selected to
conduct the sparse approximation, which can be expressed as Ąm = {fm

1
, fm

2
,& , fm

m
} that are latent function values evaluated at

input points Ėm, Ėm = (xm
1
, xm

2
,& , xm

m
). For the posterior GP, it can be written by:

p(Ą∗|ė) = + p(Ą∗|Ą )p(Ą |ė)dĄ = + p(Ą∗|Ąm, Ą )p(Ą |Ąm, ė)p(Ąm|ė)dĄdĄm (20)

where Ą∗ is the predict function values at new inputs Ė∗. Referring to Tiao (2020) and Krasser (2020), then p(Ą∗|ė) can be further
written as an approximate posterior (For detailed derivatives, please refer to Lemma 1):

q(Ą∗) = + p(Ą∗|Ąm)�(Ąm)dĄm (21)

where �(Ąm) is an approximation to p(Ąm|ė), which is intractable and can be further written as:
�(Ąm) = ü (Ąm|�m,ým) (22)

The mean and covariance matrix of the Gaussian approximate posterior q(Ą∗) can be further defined as:

q(Ą∗) = ü (Ą∗|�q
∗,Σ

q
∗) (23)

�
q
∗ = ć∗mć

−1
mm

�m (24)

Σ
q
∗ = ć∗∗ −ć∗mć

−1
mm

ćm∗ +ć∗mć
−1
mm

ýmć
−1
mm

ćm∗ (25)

Then, by minimizing the Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951) between the approximate q(Ą ) and the exact
posterior p(Ą |ė), which is relevant to minimize the KL divergence between the augmented variational posterior q(Ą , Ąm|ė) and the
augmented true posterior p(Ą , Ąm|ė). Based on Titsias (2009a,b), the minimization is equivalently expressed as the maximization of
the following variational lower bound of the true log marginal likelihood (Please check the detailed derivative in Lemma 2):

FV (Ėm, �) = + p(Ą |Ąm)�(Ąm) log
p(Ą |ė)p(Ąm)

�(Ąm)
dĄdĄm (26)

And we can finally have the optimal values of �m and ým as (Please check the detailed derivative in Lemmas 3 and 4):

�m =
1

�2
ćmmΣćmnė (27)

ým = ćmmΣćmm (28)
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whereΣ = (ćmm+�
−2ćmnćnm)

−1, and after substituted �m and ým into Eqs. (25) and (26), we can compute the approximate posterior
q(Ą∗) at new inputs Ė∗.

As mentioned in the preceding section, sparse Gaussian Process Regression (SGPR) requires m inducing variables to approximate
the exact GP model closely. Thus, in the paper, four sampling methods, including simple random sampling, systematic sampling,
cluster sampling, and weighted random sampling, are used to choose inducing variables from the entire dataset to conduct
comparison studies, and details of sampling methods can be found in the Appendix A.

3.3. Empirical prior integration

In this section, the methodology for integrating an empirical prior into a non-parametric model is explored. As previously
delineated in Section 3, a Gaussian Process (GP) is defined by its mean function m(Ė) and covariance function k(Ė, Ė2). Given a
regression model ė = f (Ė) + �, the mean function m(Ė) encapsulates prior knowledge regarding the unknown function f (Ė). In
most cases, the prior is assumed to be zero, and integrating an empirical prior into a non-parametric model essentially replaces the
prior with empirical functions about the speed–density relationship. After the change in the assumption on the prior, the variation
distribution �(Ąm) shown in Eq. (23) becomes (Please check the detailed derivative in Lemma 5):

�(Ąm) = ü (Ąm|�∗,�∗) (29)

�∗ =

(
ć−1

mm
+

1

�2
ć−1

mm
ćmnćnmćmm

)−1

(30)

�∗ = m(Ėm) +Σ∗

(
1

�2
ć−1

mm
ćnm(ė − m(Ė))

)
(31)

The q(Ą∗) now becomes(Please check the detailed derivative in Lemma 6):

q(Ą∗) = ü (m(Ė∗)) +ć∗mć
−1
mm

(�∗ − m(Ėm),ć∗∗ −ć∗mć
−1
mm

ćm∗ +ć∗mć
−1
mm

�∗ć
−1
mm

ćm∗) (32)

Predominantly, deterministic models are parametric, devoid of partial derivatives, and describe the equilibrium speed–density
relationship. Consequently, these models can be seamlessly employed as the mean function within SGPR. Namely, the mean function
m(Ĕ) = 0 will be replaced by m(Ĕ) = f (�), f (�) is a deterministic fundamental diagram model. For example, if Greenshield’s
model (Greenshields et al., 1935), Greenberg’s model (Greenberg, 1959), and Newell’s model (Newell, 1961) will be used as the
prior, then the corresponding mean function of the corresponding SGPR will be set as:

m1(v) = vf

(
1 −

�

�j

)
(33)

m2(v) = vcritical log

(
�j

�

)
(34)

m3(v) = vf

{
1 − exp

[
−

�

vf
(
1

�
−

1

�j
)

]}
(35)

The diagram in Fig. 3 summarizes the process of integrating an empirical prior into a non-parametric model. Modules highlighted
with green backgrounds utilize the entire dataset, whereas those with blue backgrounds only employ a subset of the dataset. Owing
to the computationally intensive nature of Gaussian processes, a subset of the dataset is used for sparse modeling to manage
computational demands. In contrast, the calibration of deterministic models exploits the full dataset. By employing calibrated
empirical models as the prior, we aim to mitigate the accuracy loss inherent in the variational approximation.

Furthermore, kernel functions play a crucial role in SGPR. After evaluating various kernel functions such as the Squared
Exponential Kernel, Rational Quadratic Kernel, Matérn kernels, and the Exponential Kernel, it was determined that the Exponential
Kernel demonstrated the highest accuracy across all sampling methodologies. Therefore, this kernel function has been selected for
implementation, as shown below:

k(Ė, Ė2) = �2e
−

‖Ė−Ė2‖
2 (36)

4. Case study

4.1. Data description

In this case study, data collected from loop detectors across 76 stations on the Georgia State Route 400 serve as the empirical
dataset (Denotes as GA400). This data has been extensively utilized within the research community for developing fundamental
diagram models, as evident by studies such as Wang et al. (2011, 2013) and Qu et al. (2015, 2017). The GA400 dataset comprises
44,787 pairs of density–speed observations, indicating a dataset size of n = 44, 787. The choice of m = 288, where 288 ≪ 44,787,
is justified by the data collection frequency: with a pair recorded every 5 min, a single day yields 24×60

5
= 288 data pairs. This

parameterization comprehensively represents daily traffic patterns within a manageable computational framework.
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Fig. 3. Empirical prior integration.

4.2. Model validation

Figs. 5(a) through 5(m) illustrate the speed–density relationships in a two-dimensional depiction based on prior assumptions. The
estimation curve represents the posterior mean function curve, which embodies the speed–density relationship with the maximum
likelihood. This means that for any given density value, the speed value situated along this curve has the highest likelihood of
occurrence in empirical scenarios.

The stochastic fundamental diagram model proposed in this study is essentially a Gaussian process. Its domain of definition
includes an infinite one-dimensional Gaussian distribution looking towards the y-axis direction. The confidence intervals of 90%,
95%, and 99% have been specified, and within the 95% confidence interval, for any given density, the stochastic model believes
the corresponding speed has a 95% likelihood of falling within this specified range.

Furthermore, Figs. 6(a) through 6(m) show the corresponding three-dimensional depiction of the speed–density relationships,
informed by various prior assumptions, referring to Fig. 2. These figures illustrate the different probability densities of traffic speed
given any traffic density. Therefore in this paper, the distribution of traffic speed, denoted as w(v), is considered as a function of
traffic density, denoted as f (�). This is different from the conventional deterministic models, where the traffic speed is solely a
function of traffic density (i.e., v = f (�)). Here, we take into account the fact that the distribution of traffic speed is a function of
traffic density (i.e., w(v) = f (�)). w(v) = f (�) depicts the overall traffic pattern of the density–speed relationship under all situations,
and the generated posterior mean function curve v = m(�) can be regarded as a deterministic representation of the equilibrium
density–speed relationship under a steady state.

Two metrics, Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE), are employed to evaluate the
accuracy of fitting models to empirical data. The formulas for these metrics are as follows:

Ďĉďā =

√√√√1

n

n1
i=1

(vo
i
− ve

i
)2 (37)

ĉýČā =
1

n

n1
i=1

|||||
vo
i
− ve

i

vo
i

|||||
× 100% (38)

where vo
i
denotes the observed speed corresponding to the observation density �o

i
, and ve

i
represents the estimated speed for the

same observation density. These metrics provide insights into the comparative performance of different models.
Table 4 shows the comparison of the results of different empirical models. Table 5 compares the estimation accuracy of various

empirical prior Gaussian regression models with the pure Gaussian process regression model across different sampling techniques.
Table 6 shows the percentage of the empirical data points that fall within the 95% confidence interval. Here, Āā, āā, ñā, and
ąĀā denote simple random sampling, systematic sampling, cluster sampling, and weighted random sampling, respectively. We
also used the I-80 detector dataset from NGSIM for testing, and all results are shown in the appendix from Tables 7 to 9.

First, it is observed that among empirical models, the most precise one is Cheng’s model (Cheng et al., 2021). However, the Full
Gaussian Process (GP) Model surpasses these empirical models in terms of accuracy. The Pure GP Model’s superior performance is
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Fig. 4. Single-regime traffic flow models after calibration.

achieved with only 288 data pairs as opposed to the 44,787 utilized by the empirical models; also, from Table 6, all models are
well-fitted because they all capture the distribution of the empirical data under sparse approximation. Also, we should notice that
model performances are nearly the same under all sampling methods for all models, which indicates that all sampling methods in
our paper are suitable choices for the SGPR modeling.

Secondly, to figure out whether the sparse regression successfully captures the stochastic of the density–speed relationship. The
percentage density–speed points that fall within the 95% confidence interval (PWCI) have been tested. The percentage of points
that fall within the 95% confidence interval (PWCI) of all models is higher than 94%. The superior performance of sparse Gaussian
process regression methods in accurately modeling the stochastic density–speed relationship is convincingly illustrated by the above
facts.

Thirdly, the results shown in Table 5 unequivocally indicate that the Pure GP Model is more accurate compared to other
models across all sampling methods employed. This leads to the inference that an accurate prior mean function may not sufficiently
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Fig. 5. 2D Visualization of speed–density relationships based on different priors.

compensate for the limitations inherent in sparse approximations when seeking to enhance estimation accuracy. A purely data-driven

approach may yield more accurate results in situations with a relatively small amount of quality data. Notably, the same results

are also shown in the I-80 dataset, shown in Tables 7 to 9. Such findings imply that even a training dataset with a modest size

can contain sufficient information for effective model training. Consequently, these insights prompt further questions: ‘‘What is the

minimal size of a dataset that remains effective? How much data is necessary to counterbalance the advantages of employing an

empirical prior?’’
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Fig. 6. 3D Visualization of speed–density relationships based on different priors.

Therefore, a series of experiments have been conducted to find the fitting accuracy of both empirical prior Sparse Gaussian
process regression model (EPGPR) and pure Sparse Gaussian process regression model under increasing training dataset size. As
shown in Figs. 7(a) to 7(k) and 8(a) to 8(k), a comparison has been made to discover both RSME and MAPE between the pure GPR
model and different EPGPR models with the increase of the training dataset size. Our findings indicated no significant improvement
in accuracy after the training dataset size exceeded 300 for all the models. It is worth noting that all results shown in Figs. 7(a) to 8(k)
are based on weighted random sampling. Experimental results based on other sampling methods are shown in the supplementary
materials. The warm color area indicates the ESME or MPAE of the relevant proposed EPGPR model exceeds that of the pure
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Table 4
Comparison of the result of different empirical models.

Model Speed RMSE (mph) Speed MAPE

Original Greenshields’ Model 15.43 26.80%
Original Greenberg’s Model 68.59 116.52%
Original Underwood’s Model 15.58 34.82%
Original Newell’s Model 14.23 29.33%
Original Pipes’ Model 4.25 7.41%
Original Papageorgiou’s Model 5.52 8.77%
Original Kerner–Konhause’s Model 6.73 12.49%
Original Del Castillo–Benitez’s Model 12.14 18.97%
Original Jayakrishnan’s Model 15.43 26.80%
Original Cheng’s Model 3.81 5.64%
Original Wang’s Model 3.39 4.48%

Table 5
Comparison of the result of different EPNR models with Exponential kernel function (m = 288).

EPNR model Speed RMSE (mph) Speed MAPE

Āā āā ñā ąĀā Āā āā ñā ąĀā
Pure GP 3.31 3.32 3.31 3.31 4.43% 4.43% 4.43% 4.43%
Cheng’s 3.32 3.32 3.32 3.32 4.43% 4.43% 4.43% 4.43%
Wang’s 3.32 3.32 3.32 3.32 4.44% 4.44% 4.44% 4.43%
Greenshields’s 3.32 3.32 3.32 3.32 4.44% 4.44% 4.43% 4.43%
Greenberg’s 3.31 3.32 3.32 3.32 4.43% 4.43% 4.43% 4.43%
Underwood’s 3.32 3.32 3.32 3.32 4.43% 4.43% 4.43% 4.43%
Newell’s 3.32 3.32 3.32 3.32 4.43% 4.43% 4.43% 4.43%
Pipes’s 3.32 3.32 3.32 3.32 4.43% 4.43% 4.43% 4.43%
Papageorgiou’s 3.32 3.32 3.32 3.32 4.43% 4.43% 4.43% 4.43%
Kerner’s 3.32 3.32 3.32 3.32 4.43% 4.43% 4.43% 4.43%
Del-Castillo’s 3.32 3.32 3.32 3.32 4.44% 4.44% 4.43% 4.43%
Jayakrishnan’s 3.32 3.32 3.32 3.32 4.44% 4.44% 4.43% 4.43%

Table 6
Comparison of the result of percentages of points falling within the 95% confidence interval.

EPNR model PWCI

Āā āā ñā ąĀā
Pure GP 94.27% 94.27% 94.29% 94.26%
Cheng’s 94.22% 94.21% 94.23% 94.21%
Wang’s 94.22% 94.22% 94.22% 94.22%
Greenshields’s 94.26% 94.25% 94.25% 94.26%
Greenberg’s 94.26% 94.26% 94.25% 94.26%
Underwood’s 94.25% 94.26% 94.25% 94.26%
Newell’s 94.23% 94.23% 94.22% 94.23%
Pipes’s 94.24% 94.23% 94.23% 94.24%
Papageorgiou’s 94.21% 94.21% 94.22% 94.23%
Kerner’s 94.23% 94.23% 94.24% 94.24%
Del-Castillo’s 94.22% 94.23% 94.23% 94.22%
Jayakrishnan’s 94.25% 94.25% 94.25% 94.26%

SGPR model. Conversely, the cold color area indicates the ESME or MPAE of the relevant proposed EPGPR model is lower than

the pure SGPR model. Drawing insights from the above pictures, only when well-fitted empirical models are utilized as the mean

function, and notably, this improvement is largely confined to scenarios involving small training datasets. Despite the potential

benefits offered by well-calibrated priors, such as those proposed in Wang’s model (Wang et al., 2011), Cheng’s model (Cheng

et al., 2021), Papageorgiou’s model (Papageorgiou et al., 1989), Kerner’s model (Kerner and Konhäuser, 1994), and Del-Castillo’s

model (Del Castillo and Benitez, 1995), the empirical advantage diminishes as the size of the training dataset expands. Considering

RSME and MAPE simultaneously, only the prior based on Cheng’s and Kerner’s models can benefit the EPGPR under a very small

training dataset. Employing a judicious sampling strategy for choosing inducing variables, a training dataset comprising merely 30

density–speed pairs suffices for a purely data-driven model to outperform a model incorporating a well-fitted empirical prior for the

GA 400 dataset. The findings of this study suggest that the speed–density relationship may not exhibit a complex nonlinear nature.

Applying highly specific prior may lead to overfitting of the entire model. Consequently, selecting a suitable sampling method,

coupled with the advantage of relatively clean and ample datasets, indicates that data-driven modeling could emerge as a more

effective approach for developing stochastic fundamental diagram models.
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Fig. 7. RSME comparison between pure GPR and EPGPR model under different training dataset size.

5. Conclusion

This research employs a sparse Gaussian process regression framework to analyze the stochastic fundamental diagram model.
SGPR, a non-parametric regression technique, counters its intrinsic high computational requirements with a sparse approximation
strategy, thereby enhancing fitting accuracy beyond that of all empirical models discussed herein. The Gaussian process distinguishes
itself from other non-parametric regressions by its inherent stochastic nature, which is well-suited for modeling the speed distribution
at a given traffic density.

The integration of the empirical model into the prior demonstrates that empirical models, derived and calibrated from
comprehensive datasets, improve fitting performance over fully data-driven non-parametric regression models only when applied
to smaller training datasets. It is noteworthy that the precision of an empirical model does not invariably translate to superior
performance in fitting empirical data. The findings suggest that a moderately sized training dataset of relatively clean data suffices
for the pure GPR model to represent the stochastic relationship between speed and density accurately.

Looking ahead, future investigations could incorporate methodologies from information theory and statistics to enhance the
selection of the input-inducing variables that convey greater informational content about the data. Instead of solely encoding
empirical knowledge into the mean function, as explored in this study, it may prove beneficial to embed such knowledge within
the kernel function, potentially improving the precision and robustness of non-parametric regression models.

Model source code

The source code of the proposed model is available for readers to download via the following link: https://github.com/
YuanzhengLei/Unraveling-stochastic-fundamental-diagrams-considering-empirical-knowledge.
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Fig. 8. MAPE comparison between pure GPR and EPGPR model under different training dataset size.
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Appendix A

Lemma 1.

q(Ą∗) H p(Ą∗|ė), q(Ą∗) = + p(Ą∗|Ąm)�(Ąm)dĄm (39)
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Table 7
Parameters of single-regime traffic flow model after calibrationa.

Model Parameters

Greenshields et al. (1935) vf = 18.22 �j = −111232.99

Greenberg (1959) vcritical = −29357.73 �j = −29083.32

Newell (1961) vf = 44.66 �j = 107.05 � = 3063.25

Underwood (1961) vf = 49.35 �critical = −29083.32

Drake et al. (1965) vf = 49.35 �critical = 214.11

Papageorgiou et al. (1989) vf = 47.92 �j = 102.13 � = 1.09

Kerner and Konhäuser (1994) vf = 41.34 �critical = 391.92

Del Castillo and Benitez (1995) vf = 44.66 �j = 485.62 vj = 6.31

Jayakrishnan et al. (1995) vf = 33.72 vmin = 37.35 �j = 27.30

Ardekani and Ghandehari (2008) vcritical = 46.64 �j = 52.24 �min = 0.38

MacNicholas (2011) vf = 45.22 �j = 10544.64 n = 1.95 m = 12412.20

Pipes (1966) vf = 46.89 �j = 132.87 n = 0.69

Wang et al. (2011) vf = 42.72 vcritical = 6.64 �critical = 40.97 �1 = 3.50 �2 = 0.08

Cheng et al. (2021) vf = 44.42 �critical = 80.09 m = 2.21

a Parameters are calibrated based on I-80 detector data (Station id:1).

Table 8
Comparison of the result of different EPNR models with Exponential kernel function (I-80).

EPNR model Speed RMSE (mph) Speed MAPE

Āā āā ñā ąĀā Āā āā ñā ąĀā
Pure GP 5.27 5.27 5.26 5.27 12.74% 12.74% 12.73% 12.74%
Cheng’s 5.27 5.27 5.27 5.27 12.76% 12.76% 12.75% 12.75%
Wang’s 5.27 5.27 5.27 5.27 12.75% 12.75% 12.75% 12.75%
Newell’s 5.27 5.27 5.27 5.27 12.76% 12.76% 12.74% 12.75%
Papageorgiou’s 5.27 5.26 5.27 5.27 12.76% 12.76% 12.75% 12.75%
Kerner’s 5.27 5.27 5.27 5.27 12.75% 12.75% 12.75% 12.75%
Del-Castillo’s 5.27 5.27 5.27 5.27 12.76% 12.75% 12.75% 12.75%
Jayakrishnan’s 5.27 5.27 5.27 5.27 12.76% 12.76% 12.75% 12.75%

Table 9
Comparison of the result of percentages of points falling within the 95% confidence interval.

EPNR model PWCI

Āā āā ñā ąĀā
Pure GP 95.79% 95.78% 95.77% 95.80%
Cheng’s 95.80% 95.80% 95.78% 95.80%
Wang’s 95.79% 95.79% 95.79% 95.79%
Newell’s 95.79% 95.79% 95.78% 95.80%
Papageorgiou’s 95.78% 86.55% 95.78% 95.79%
Kerner’s 95.79% 95.79% 95.80% 95.79%
Del-Castillo’s 95.79% 95.80% 95.79% 95.80%
Jayakrishnan’s 95.78% 95.78% 95.77% 95.78%

Proof.

p(Ą∗|ė) = + p(Ą∗|Ą )p(Ą |ė)dĄ

= + p(Ą∗|Ąm, Ą )p(Ą |Ąm, ė)p(Ąm|ė)dĄdĄm

Since Ąm is independent from Ą and ė = Ą + �, so Ąm is also independent from ė, thus, p(Ą∗|Ąm) = p(Ą∗|Ąm, Ą ), p(Ą |Ąm) = p(Ą |Ąm, ė), thus,
we can have:

p(Ą∗|ė) = + p(Ą∗|Ąm)p(Ą |Ąm)p(Ąm|ė)dĄdĄm

And since + p(Ą |Ąm)dĄ = 1, �(Ąm) = p(Ąm|ė), thus:

p(Ą∗|ė) = + p(Ą∗|Ąm)p(Ąm|ė)dĄm
= + p(Ą∗|Ąm)�(Ąm)dĄm
= q(Ą∗) ¦
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Lemma 2. Minimize KL(q(Ą , Ąm)Gp(Ą , Ąm|ė)) is equivalent to maximize:

FV (Ėm, �) = + p(Ą |Ąm)�(Ąm) log
p(Ą |ė)p(Ąm)

�(Ąm)
dĄdĄm (40)

Proof.

KL(q(Ą , Ąm)Gp(Ą , Ąm|ė)) = Eq�(Ą ,Ąm )
[log

q�(Ą ,Ąm)

p(Ą , Ąm|ė) ]

= Eq�(Ą ,Ąm )
[log

q�(Ą ,Ąm)
p(ė)

p(Ą , Ąm|ė)p(ė) ]

= Eq�(Ą ,Ąm )
[log

q�(Ą ,Ąm)
p(ė)

p(Ą , Ąm, ė)
]

= log p(ė) + Eq�(Ą ,Ąm )
[log

q�(Ą ,Ąm)

p(Ą , Ąm, ė)
]

= log p(ė) − Eq�(Ą ,Ąm )
[log

p(Ą , Ąm, ė)

q�(Ą ,Ąm)
]

= log p(ė) − + q(Ą , Ąm) log

(
p(Ą , Ąm, ė)

q(Ą , Ąm)

)
dĄ dĄm

= log p(ė) − + p(Ą |Ąm)p(Ąm) log
(
p(ė|Ą )p(Ą |Ąm)p(Ąm)

q(Ą , Ąm)

)
dĄ dĄm

From Eqs. (20) and (21), q(Ą∗) is an approximation to p(Ąm|ė), i.e. q(Ą∗) = p(Ą∗|ė), also, �(Ąm) = p(Ąm|ė), therefore, we know that
q(Ą , Ąm) = p(Ą , Ąm|ė) = p(Ą |Ąm)p(Ąm|ė) = p(Ą |Ąm)�(Ąm), therefore:

KL(q(Ą , Ąm)Gp(Ą , Ąm|ė)) = log p(ė) − + p(Ą |Ąm)�(Ąm) log
(
p(ė|Ą )p(Ą |Ąm)p(Ąm)

p(Ą |Ąm)�(Ąm)
)
dĄ dĄm

= log p(ė) − + p(Ą |Ąm)�(Ąm) log
p(Ą |ė)p(Ąm)

�(Ąm)
dĄdĄm

And since KL divergence e 0, the lemma proved. ¦

Lemma 3. The variation lower bound after taking the optimal choice of the variation distribution �∗ is:

FV (Ėm, �∗) = log[ü (ė|ÿ, �2ą +čnn)] −
1

2�2
T r(ćnn −čnn) (41)

where čnn = ćnmć
−1
mm

ćmn.

Proof.

FV (Ėm, �) = + p(Ą |Ąm)�(Ąm) log
p(Ą |ė)p(Ąm)

�(Ąm)
dĄdĄm

= + �(Ąm)

{
+ p(Ą |Ąm) log p(ė|Ą )dĄ + log

p(Ąm)

�(Ąm)

}
dĄm

The integral in the brace has two parts, only the first part involving Ą , which can be computed as:

logG(Ąm, ė) = + p(Ą |Ąm) log p(ė|Ą )dĄ (42)

Since ė = Ą + �, where � < ü (ÿ, �2ą), therefore, p(ė|Ą ) < ü (Ą , �2ą). ó

logG(Ąm, ė) = + p(Ą |Ąm)
{
−
n

2
log(2��2) −

1

2�2
(ė − Ą )T (ė − Ą )

}
dĄ

= + p(Ą |Ąm)
{
−
n

2
log(2��2) −

1

2�2
(ėT ė − 2ėT Ą + ĄT Ą )

}
dĄ

= + p(Ą |Ąm)
{
−
n

2
log(2��2) −

1

2�2
T r(ėėT − 2ėĄT + Ą ĄT )

}
dĄ

Since + p(Ą |Ąm)dĄ = 1, and ėėT does not involve Ą , therefore, let us focus on the last two integrals.

−+ p(Ą |Ąm)2ėĄT dĄ = −E[2ėĄ |Ąm] = −2ėE[Ą |Ąm] (43)

+ p(Ą |Ąm)Ą ĄT dĄ = E[Ą ĄT |Ąm] = Cov(Ą |Ąm) + E[Ą |Ąm]E[Ą |Ąm]T (44)
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From Williams and Rasmussen (2006), we know that, given:
[
Ĕ

ĕ

]
< ü

([
�Ĕ
�ĕ

]
,

[
ΣĔĔ ΣĔĕ

ΣĕĔ Σĕĕ

])
(45)

The conditional expectation and covariance are calculated by:

E[Ĕ|ĕ] = �Ĕ + �Ĕĕ�
−1
ĕĕ

(ĕ − �ĕ) (46)

Cov[Ĕ|ĕ] = �ĔĔ − �Ĕĕ�
−1
ĕĕ

�ĕĔ (47)

In our case:[
Ą

Ąm

]
< ü

([
ÿ

ÿ

]
,

[
ćnn ćnm

ćmn ćmm

])
(48)

Therefore:

−2ėE[Ą |Ąm] = −2ėćnmć
−1
mm

Ąm (49)

E[Ą ĄT |Ąm] = Cov(Ą |Ąm) + E[Ą |Ąm]E[Ą |Ąm]T = ćnn −ćnmć
−1
mm

ćmn +ćnmć
−1
mm

Ąm
(
ćnmć

−1
mm

Ąm
)T

(50)

Therefore, logG(Ąm, ė) can be written as:

logG(Ąm, ė) = −
n

2
log(2��2) −

1

2�2
T r(ėėT − 2ė�T + ��T +ćnn −čnn)

= log[ü (ė|�, �2ą)] − 1

2�2
T r(ćnn −čnn)

where � = ćnmć
−1
mm

Ąm, čnn = ćnmć
−1
mm

ćmn. Therefore, FV (Ėm, �) can be written as:

FV (Ėm, �) = + �(Ąm) log
ü (ė|�, �2ą)

�(Ąm)
dĄm −

1

2�2
T r(ćnn −čnn) (51)

Based on Jensen’s inequality (Jensen, 1906), '(E[Ĕ]) = E['(Ĕ)](' is a convex function), taking the log function outside the above
integral, we can have:

FV (Ėm, �) = log+ �(Ąm)
ü (ė|�, �2ą)

�(Ąm)
dĄm −

1

2�2
T r(ćnn −čnn)

= log+ ü (ė|�, �2ą)dĄm −
1

2�2
T r(ćnn −čnn)

= logü (ė|ÿ, �2ą +čnn) −
1

2�2
T r(ćnn −čnn) ¦

Lemma 4.

�(Ąm) = ü (Ąm|�m,ým) (52)

where:

�m =
1

�2
ćmmΣćmnė (53)

ým = ćmmΣćmm (54)

Σ = (ćmm + �−2ćmnćnm)
−1 (55)

Proof. Based on Lemma 2 and Titsias (2009b), achieving the optimal bound occurs when equality holds in Jensen’s inequality.
i.e. :

�∗(Ąm) ? ü (ė|�, �2)p(Ąm)
? p(Ą |Ąm)p(Ąm)
? exp(log p(Ą |Ąm) + log p(Ąm))

Since p(Ą |Ąm) = ü (ė|�, �2), p(Ąm) = ü (ė|ÿ,ćmm), �
∗(Ąm) can be further written as:

�∗(Ąm) = exp

{
− log

(
(2�)

n

2 |�2|
1
2

)
−

1

2
(ė − �)T

1

�2
(ė − �) − log

(
(2�)

n

2 |ćmm|
1
2

)
−

1

2
ĄT
m
ć−1

mm
Ąm

}

= c exp

{
−

1

2�2
(ė −ćnmć

−1
mm

Ąm)
T (ė −ćnmć

−1
mm

Ąm) −
1

2
ĄT
m
ć−1

mm
Ąm

}
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= c exp

{
−

1

2�2
ėT ė −

1

2
ĄT
m
(ć−1

mm
+

1

�2
ć−1

mm
ćmnćnmć

−1
mm

)Ąm +
1

�2
ėTćnmć

−1
mm

Ąm

}

= ü (Ąm|
(
ć−1

mm
+

1

�2
ć−1

mm
ćmnćnmć

−1
mm

)−1
1

�2
ćmnė,

(
ć−1

mm
+

1

�2
ć−1

mm
ćmnćnmć

−1
mm

)−1

)

Based on the Sherman–Morrison formula (Sherman and Morrison, 1950), we can have:
(
ć−1

mm
+

1

�2
ć−1

mm
ćmnćnmć

−1
mm

)−1

= ćmm

(
ćmm +

1

�2
ćmnćnm

)−1

ćmm (56)

Therefore:

�∗(Ąm) = ü (Ąm|�−2ćmmΣćmnė,ćmmΣćmm)

where Σ = (ćmm + �−2ćmnćnm)
−1, c is a constant. ¦

Lemma 5. When the prior of Ą and Ąm is not zero, then:

�(Ąm) = ü (Ąm|�∗,�∗) (57)

�∗ = (ć−1
mm

+
1

2�2
ć−1

mm
ćmnćnmć

−1
mm

)−1 (58)

�∗ = Σ∗

(
1

�2
ć−1

mm
ćnm(ė − m(Ė))

)
(59)

Proof. Since the prior of Ą and Ąm is not zero, then the joint distribution changed from:[
Ą

Ąm

]
< ü

([
ÿ

ÿ

]
,

[
ćnn ćnm

ćmn ćmm

])
(60)

to: [
Ą

Ąm

]
< ü

([
m(Ė)

m(Ėm)

]
,

[
ćnn ćnm

ćmn ćmm

])
(61)

Then Eqs. (49) and (50) will be written as:

−2ėE[Ą |Ąm] = −2ė
{
m(Ė) +ćnmć

−1
mm

(Ąm − m(Ėm))
}

(62)

E[Ą ĄT |Ąm] = ćnn −ćnmć
−1
mm

ćmn +
{
m(Ė) +ćnmć

−1
mm

(Ąm − m(Ėm))
}{

m(Ė) +ćnmć
−1
mm

(Ąm − m(Ėm))
}T

(63)

Therefore, logG(Ąm, ė) can be written as:

logG(Ąm, ė) = −
n

2
log(2��2) −

1

2�2
T r(ėėT − 2ė�T + ��T +ćnn −čnn)

= log[ü (ė|�, �2ą)] − 1

2�2
T r(ćnn −čnn)

where � = m(Ė) +ćnmć
−1
mm

(Ąm − m(Ėm)), čnn = ćnmć
−1
mm

ćmn. Therefore, FV (Ėm, �) can be written as:

FV (Ėm, �) = + �(Ąm) log
ü (ė|�, �2ą)

�(Ąm)
dĄm −

1

2�2
T r(ćnn −čnn) (64)

Similarly, based on Jensen’s inequality, taking the log function outside the above integral, we can have:

FV (Ėm, �) = log+ �(Ąm)
ü (ė|�, �2ą)

�(Ąm)
dĄm −

1

2�2
T r(ćnn −čnn)

= log+ ü (ė|�, �2ą)dĄm −
1

2�2
T r(ćnn −čnn)

= logü (ė|ÿ, �2ą +čnn) −
1

2�2
T r(ćnn −čnn)

which has the same structure as when the prior is zero, but � is different. Also, based on Lemma 4, we can recalculate �(Ąm) as:

�∗(Ąm) = exp

{
− log

(
(2�)

n

2 |�2|
1
2

)
−

1

2
(ė − �)T

1

�2
(ė − �) − log

(
(2�)

n

2 |ćmm|
1
2

)
−

1

2
(Ąm − m(Ėm))

Tć−1
mm

(Ąm − m(Ėm))

}

= c exp

{
−
1

2
(ė − �)T

1

�2
(ė − �) −

1

2
(Ąm − m(Ėm))

Tć−1
mm

(Ąm − m(Ėm))

}

= c exp{
1

2�2
(ė − m(Ė))T (ė − m(Ė)) −

1

�2
(ė − m(Ė))Tćnmć

−1
mm

(Ąm − m(Ėm))
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−
1

2
(Ąm − m(Ėm))

T

(
ć−1

mm
+

1

�2
ć−1

mm
ćmnćnmć

−1
mm

)
(Ąm − m(Ėm))}

= ü (Ąm|�∗,Σ∗)

where Σ∗ =
(
ć−1

mm
+

1

�2
ć−1

mm
ćmnćnmćmm

)−1

, �∗ = m(Ėm) +Σ∗

(
1

�2
ć−1

mm
ćnm(ė − m(Ė))

)
, c is a constant. ¦

Lemma 6. When the prior of Ą∗ and Ąm is not zero, then:

q(Ą∗) = ü (m(Ė∗)) +ć∗mć
−1
mm

(�∗ − m(Ėm),ć∗∗ −ć∗mć
−1
mm

ćm∗ +ć∗mć
−1
mm

�∗ć
−1
mm

ćm∗) (65)

Proof. Since the joint distribution is now written as:
[
Ą∗
Ąm

]
< ü

([
m(Ė∗)

m(Ėm)

]
,

[
ć∗∗ ć∗m

ćm∗ ćmm

])
(66)

Based on conditional expectation and covariance formulation shown in Eqs. (47) and (48), and q(Ą∗) = + p(Ą∗|Ąm)�(Ąm)dĄm
Ą∗|Ąm < ü (m(Ė∗)) +ć∗mć

−1
mm

(�∗ − m(Ėm),ć∗∗ −ć∗mć
−1
mm

ćm∗) (67)

q(Ą∗) = ü (m(Ė∗)) +ć∗mć
−1
mm

(�∗ − m(Ėm),ć∗∗ −ć∗mć
−1
mm

ćm∗ +ć∗mć
−1
mm

�∗ć
−1
mm

ćm∗) ¦ (68)

Definition 2 (Simple Random Sampling). Simple random sampling is the basic sampling technique where we select a group of subjects
for study from a larger group (Easton and McColl, 1997). Each individual is chosen entirely by chance, and each member of the
population has an equal chance of being included in the sample. Every possible sample of a given size has the same chance of
selection.

The simple random sampling without replacement that is adopted to do the comparison study is the famous reservoir
sampling (Vitter, 1985) shown as follows:

Algorithm 1: Reservoir sampling

Input: Input: þ[1,2,..,n],S[1,2,...,k]
1 for i * Range (1 to k+1) do
2 ā[i] = þ[i]

3 for i * Range (k+1 to n+1) do
4 j = RandomInteger(1, i)
5 if j d k then
6 ā[j] = þ[i]

Definition 3 (Systematic Sampling). Systematic sampling is a statistical method involving the selection of elements from an ordered
sampling frame. The most common form of systematic sampling is an equiprobability method, which is shown as follows: where

Algorithm 2: Systematic sampling

Input: Input: þ[1,2,..,N],ā = %,n
1 k =

N

n

2 Randomly choose an index I , I * +[1, k],
3 ā[1] = þ[I]

4 for i * Range (2 to k+1) do
5 Ā[i] = ā[+I + k ∗ (i − 1),]

N is the population size, n is the sample size. To avoid the risk that the last house chosen does not exist (I + k ∗ (n − 1) > N), the
initial index I must be located within [1, k] and should be rounded up to the next integer if it is not an integer.

Definition 4 (Cluster Sampling). Cluster sampling is a method used when mutually homogeneous yet internally heterogeneous
groupings are evident in a statistical population. Based on k-mean algorithm (MacQueen et al., 1967), the cluster sampling can
be expressed as:

Definition 5 (Weighted Random Sampling). This sampling method is motivated by Qu et al. (2015), which aims to avoid selecting
high percentage samples with a relatively low traffic density. The core idea is that first sort the ā = {(�1, v1), (�2, v2),& , (�n, vn)}

with a density ascending order. And then compute the weight w for each density–speed pair based on Qu et al. (2015). Then for
each density–speed pair (�i, vi), it will has a probability

wi1n
j=1

wj
to be selected.
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Algorithm 3: Cluster sampling algorithm

Input: Input: þ = {x1, x2, ..., xn},ñi = %, i = 1, 2, ..., k,ā = %,M
1 Randomly selecting k random observations m(1)

i
, i = 1, 2, ..., k from þ

2 for t Range(1, M+1) do
3 for xp in þ do
4 for i = Range(1,k+1) do

5 if ‖xp − m
(t)
i
‖2 d ‖xp − m

(t)
j
‖2 "1 d j d k then

6 Add xp to C
(t)
i
and remove xp from þ

7 for i = Range(1,k+1) do

8 m
(t+1)
i

=
1

|ñt
i
|
1

x*ñt
i
x

9 for i = Range(1,k+1) do
10 ā[i] = x∗, {x∗|minx∗ ∶ ‖x − mM

i
‖2,"x * ñM

i
}

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.trc.2024.104851.
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