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A B S T R A C T

In the foreseeable future, the coexistence of Connected and Automated Vehicles (CAVs) and
Human-Driven Vehicles (HVs) will continue to be a feature of the traffic landscape for an
extended period. The accurate estimation of mixed traffic conditions becomes essential for
effectively managing traffic flow and ensuring road safety. In this research, we introduce a
discrete, macroscopic, and second-order traffic flow model designed to capture the complexities
of the mixed traffic environment. Our approach builds upon a microscopic traffic model and
considers the interactions between CAVs and HVs, as well as the distinctive driving behaviors
exhibited by each vehicle type. In particular, acknowledging that CAVs behave differently
from HVs, we conduct a thorough analysis of the car-following and lane-changing behaviors
of HVs in the presence of CAVs. To evaluate the effectiveness of our proposed model, we
carried out extensive numerical simulations on a freeway segment with variable speed controls.
The simulation results highlight two key findings: First, the proposed model achieves accurate
estimations of mixed traffic states, including both flow and speed parameters. Second, there is a
marked improvement in performance with increasing differences in speed control between CAVs
and HVs. Our research contributes to the advancement of traffic management strategies and fa-
cilitates improved traffic flow in mixed traffic conditions. Additionally, the proposed model has
significant potential to aid in the design and implementation of future transportation systems
that incorporate connected automated vehicles while seamlessly accommodating human-driven
vehicles.

1. Introduction

Through the exchange of real-time information between vehicles and infrastructures, applications involving Connected and
Automated Vehicles (CAVs) have shown promising advantages in enhancing transportation safety (Papadoulis et al., 2019) and
mobility (Kavas-Torris et al., 2021). Meanwhile, CAV technology has demonstrated significant potential in mitigating traffic
congestion and enhancing the efficiency of transportation systems (He et al., 2022; Peng et al., 2021; Huang et al., 2018). To
capitalize on these potential benefits, numerous researchers have delved into the applications of CAV technology in various traffic
control areas (Jin and Orosz, 2016; Du et al., 2020; Zhou et al., 2021). Such endeavors aid traffic agencies in effectively implementing
CAV applications in real-world scenarios.

However, due to ongoing technological limitations, it is expected that CAVs will need to coexist with human-driven vehicles
(HVs) and share the road network in the near future. In this mixed traffic environment, it is crucial to develop a traffic estimation
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model that accurately captures the dynamics of CAV and HV interactions, which is essential for supporting research and applications
in traffic operations (Chanut and Buisson, 2003; Bose and Ioannou, 2003; Hegyi et al., 2005; Lo and Hsu, 2010; Yang and Jin, 2014).
Yet, conventional macroscopic traffic state models (Yuan et al., 2021) often fall short in reflecting the impact of controlled CAVs
on the overall state of freeway traffic in most CAV applications. For instance, if CAVs are operated at a speed lower than the traffic
flow under speed harmonization control, they may compel the HVs following them to either match their reduced speed or initiate
lane changes to overtake.

While there is an abundance of literature on mixed traffic environments comprising both CAVs and HVs (Qin and Wang, 2019;
Tajdari and Roncoli, 2021; Li et al., 2023), current models primarily focus on deriving new fundamental diagrams (Seraj et al.,
2020; Guo and Ban, 2020; Zhou and Zhu, 2020; Tajdari and Roncoli, 2021; Halakoo and Yang, 2021; Shi and Li, 2021; Zhang et al.,
2022) and only a few studies have concentrated on the microscopic modeling of mixed traffic dynamics, specifically by formulating
a dynamic traffic model within the spatial domain (An et al., 2022). Zhang et al. (2023) is one of the first studies on the modeling of
interactive gaming among multiple vehicles, introducing a tentative yet unyielding driving strategy. Wang et al. (2023) identified a
negative quadratic transformation rule transitioning from the conventional temporal domain to the spatial domain, firstly presenting
the longitudinal and lateral coupled planning method within the spatial domain. However, there remains a significant gap in fully
capturing the intricate interactions between CAVs and HVs in the macroscopic traffic flow models. Crucial aspects such as the
dynamics of CAVs operating under variable speed trajectory control, and their influence on the behavior of following HVs, remain
inadequately addressed. Moreover, the relationship between sudden speed reductions in vehicles and subsequent lane-changing
behavior in trailing vehicles has not been extensively explored, despite its potential significance in influencing overall traffic patterns.

In summary, the research gap in understanding mixed traffic dynamics is threefold: First, there is a pressing need for a
macroscopic traffic flow model that accurately incorporates lane-changing and car-following behaviors of HVs, to provide a more
comprehensive representation of CAV and HV interactions. Second, existing models (Yang et al., 2015) lack the capability to
effectively manage variable speed limit (VSL) control for both CAVs and HVs in mixed traffic scenarios, a key component in
optimizing traffic flow. Lastly, the influence of factors such as the penetration rate of CAVs and driver compliance rates on
freeway traffic dynamics warrants further investigation to understand their roles in shaping traffic behavior in mixed environments.
Addressing these critical areas is essential for advancing our understanding of mixed traffic dynamics and paving the way for more
efficient and safer transportation systems that integrate CAVs and HVs seamlessly.

This study addresses the highlighted challenges by introducing a novel second-order, multi-class macroscopic traffic state
model, adept at capturing the complex dynamics between CAVs and HVs as distinct entities. This model, emerging from an
extensive kinematic analysis of both vehicle types, effectively overcomes the limitations inherent in existing methodologies. We
have developed this macroscopic model based on its microscopic counterpart, integrating critical aspects such as the lane-changing
behavior of HV drivers and their responses to variable speed limit (VSL) controls. This integration not only enhances the model’s
realism but also ensures a more faithful representation of real-world mixed traffic conditions. By distinctly categorizing CAVs and
HVs within the model, it facilitates a deeper understanding of their unique driving behaviors and their subsequent impact on traffic
dynamics. The multi-class nature of the model is particularly beneficial, allowing for an in-depth study of the behavior patterns of
CAVs and HVs separately. Such an approach provides a holistic understanding of their interactions and their collective influence on
traffic flow, offering valuable insights for the development of more efficient and safer transportation systems.

The following sections of this paper are structured as: Literature review is conducted in Section 2. Then, Section 3 presents
the methodology based on kinematic analysis and mathematics modeling. Section 4 describes the design of numerical experiment,
followed by the discussion on the effectiveness of the traffic model proposed in this research in Section 5. Lastly, the conclusion is
presented in the final section.

2. Literature review

Scholars have devoted considerable time and effort to the examination of mixed traffic flow models over a long time. The nascent
mixed traffic flow models that emerged in the early stages of research were originally formulated for general vehicular systems,
with a primary emphasis on the car-following kinematic theory. Subsequently, macroscopic models were developed by drawing
inspiration from physical paradigms, exemplified by the utilization of the kinematic wave model (Zhang and Jin, 2002) and the
anisotropic continuum model (Tang et al., 2007). Simultaneously, with a focus on extant traffic elements, scholars have introduced
traffic models tailored to diverse mixed traffic scenarios, such as mixed buses and cars system (Koshy and Arasan, 2005; Yang
et al., 2012), auto-rickshaws and heavy vehicles system (Asaithambi et al., 2018), motorized vehicles and non-motorized vehicles
system (Hu et al., 2012), and motorcycles and cars system (Meng et al., 2007).

The burgeoning advancements in information technology have incited a pronounced upswing in scholarly attention devoted
to the field of automated transportation systems. Nevertheless, due to inherent technological constraints, the realization of a fully
autonomous environment remains a protracted endeavor. Consequently, the imminent cohabitation of automated vehicles and HVs
is anticipated. As a result, researchers have progressively redirected their scholarly endeavors toward the development of traffic
models tailored to address the intricate dynamics inherent in a heterogeneous automated traffic system (Yuan et al., 2009; Ngoduy
et al., 2009; Guo et al., 2021).

In order to address the issue of traffic flow modeling within a heterogeneous automated environment, scholars commenced
their investigations by focusing on the context of the ACC-HV mixed environment (Yuan et al., 2009; Ngoduy et al., 2009). Then,
researchers switched to developing models for the AV-HV mixed traffic environment. With an emphasis on addressing this issue at
the link level, Levin and Boyles (2016) initiated the development of this field by introducing a multi-class cell transmission model
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Table 1
List of mixed traffic flow model.

Research Vehicle type Model Scope LC

Zhang and Jin (2002) HVs Kinematic Wave Model Macro No
Tang et al. (2007) HVs Anisotropic Continuum Model Macro No
Zhao et al. (2022) HVs Comfortable Driving Model Micro 2 lanes
Yuan et al. (2009) ACC Vehicles and HVs Cellular Automaton, Constant Time Headway Micro No
Ngoduy et al. (2009) ACC Vehicles and HVs Multi-class Gas-kinetic Theory Macro No
Levin and Boyles (2016) AVs and HVs Multiclass Cell Transmission Link-level No
Wang et al. (2017) AVs and HVs Second-order Cell Transmission Macro No
Zhu and Zhang (2018) AVs and HVs Bando’s Model Micro No
Zheng et al. (2020) AVs and HVs Newell’s Model Micro No
Shi and Li (2021) AVs and HVs Fundamental Diagram Macro No
Guo et al. (2023) AVs and HVs Cellular Automata Micro No
Zhang et al. (2018) CAVs and HVs Virtual Internal-External Forces Macro No
Yao et al. (2019) CAVs and HVs Fundamental Diagram Macro No
Zhou and Zhu (2020) CAVs and HVs Fundamental Diagram Macro No
Lu et al. (2020) CAVs and HVs Generalized Additive Model (GAM) Macro No
Guo et al. (2021) CAVs and HVs Link Transmission Model Link-level No
Yao et al. (2022) CAVs and HVs Fundamental Diagram Macro No
Wang and Wu (2023) CAVs and HVs Fundamental Diagram Macro No
Ma et al. (2023) CAVs and HVs Intelligent Driver Model Micro No
Li et al. (2023) CAVs and HVs Cellular Automata Micro 2 lanes
Yao et al. (2023) CAVs and HVs Markov Chain Micro No

designed for road networks shared by human-driven vehicles and autonomous vehicles. The cell transmission model was also used
by Wang et al. (2017) to develop a second-order macroscopic traffic flow model for AV-HV mixed environment. In addition to
link-level and macroscopic models, researchers have also developed microscopic models (Zhu and Zhang, 2018; Zheng et al., 2020;
Guo et al., 2023) and fundamental diagram models (Shi and Li, 2021).

In recent years, scholarly investigations have directed their focus toward the modeling of mixed CAV-HV environments. The
majority of these research endeavors predominantly undertake the development of microscopic-scale models, as evidenced by the
works of Ma et al. (2023), Li et al. (2023), and Yao et al. (2023), among others. Furthermore, some scholars have delved into
link-level modeling (Guo et al., 2021), while others have advanced the field through the proposal of macroscopic traffic flow
models (Zhang et al., 2018) as well as fundamental diagram models (Yao et al., 2019; Zhou and Zhu, 2020; Lu et al., 2020; Yao
et al., 2022; Wang and Wu, 2023).

Additionally, scholars have observed that lane-changing behaviors exert a discernible influence on the dynamics of traffic flow.
The lane-changing behaviors exhibited by motorcycles (Meng et al., 2007), and non-motorized vehicles (Hu et al., 2012), possess
the potential to exert an influence on the driving dynamics of automobiles. The proposed microscopic mixed traffic flow models,
which take into account lane-changing behaviors, have been proposed for mixed-length vehicle environments (Zhao et al., 2022)
and mixed CAV-HV environments (Li et al., 2023) (see Table 1).

In summary, the researchers have addressed the mixed traffic flow modeling problem by meticulous consideration of the
distinctive characteristics inherent to each category of vehicular entities. The extant CAV-HV mixed traffic models presently available
in the literature predominantly emanate from microscopic car-following models. These models expound upon the distinctive
behaviors exhibited by CAVs and HVs, while making the simplifying assumption of no lane-changing within the system. Only
a limited number of recent studies have incorporated lane-changing behaviors into their investigations. Furthermore, among the
mixed traffic flow models that have addressed lane-changing behaviors, the predominant focus has been on microscopic models,
with researchers typically restricting their analysis to lane-changing behaviors involving only two lanes, as opposed to encompassing
multiple lanes.

The primary research objective addressed within the scope of this paper is the formulation and development of a macroscopic
traffic flow model specifically tailored to mixed environments accommodating both CAVs and HVs. This model endeavors to account
for the intricate dynamics associated with car-following behaviors and lane-changing behaviors in multi-lane roadways, where the
number of lanes exceeds or is equal to three.

3. Problem statement

In this paper, the scenario we want to focus on is a multi-lane highway with a mixed-traffic environment, and two types of
vehicles coexist: CAVs and HVs. The speed control information, VSL, is posted on the roadside variable message boards for human
drivers in HVs and dispatched from the central system for CAVs. The acceleration and speed of vehicles are affected by the VSL
control and the moving of surrounding vehicles. Human drivers are capable of changing lanes to adjacent lanes in the mixed-traffic
environment (see Fig. 1).

When the VSL control is triggered, the CAV will strictly follow the VSL control, while the HVs have more random and complicated
behaviors because they are controlled by humans. Even though the VSLs are posted and most drivers would obey the speed limit
(Compliant Human-driven Vehicles, CHVs), it is also possible that some drivers would not follow the control speed and have a higher
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Fig. 1. The CAV-HV mixed traffic environment with VSL.

desire speed (Uncompliant Human-driven Vehicles, UHVs). Besides that, being surrounded and pushed by speed-decreased vehicles,
some HV drivers could change lanes to adjacent lanes if possible (Lane-changing Human-driven Vehicles, LCHV). In summary, there
are 4 classes of vehicles including CAV, CHV, UHV, and LCHV in the mixed-traffic environment.

This paper aims to propose a discrete macroscopic traffic model to estimate the traffic status in the mixed traffic environment.
Based on the current traffic flow status information including current speed, density, CAV penetration rate, etc., the proposed model
shall accurately estimate the traffic flow status in each highway segment for the next time interval.

3.1. Assumptions

To build model for a general mixed traffic flow environment, following assumptions are considered:

1. The road geometry will not affect the driver’s behavior and vehicle movement.
2. The weather condition is assumed to be fine and will not affect the driver’s behaviors and vehicle movements.
3. The driver’s characteristics and personalities are the same and will not affect the driver’s behavior and vehicle movement.
4. Different vehicles (CAV, Compliant HV, Uncompliant HV, Lane-changing HV) are evenly distributed on the road.
5. Vehicles of the same type have the same movement criteria and will not affect the driver’s behavior and vehicle movement.
6. The human drivers are greedy, if the lane-changing conditions are satisfied, they will change the lane.

3.2. Notifications

The notifications used in this paper are listed in Table 2.

4. Model formulation

In this section, we aim to estimate the traffic status in a mixed traffic environment governed by variable speed limit control. To
achieve this, we propose a discrete macroscopic model, which is developed through a detailed analysis of each vehicle category.
This model originates from a microscopic perspective, incorporating both car-following and lane-changing models to describe the
movement of different classes of vehicles. The macroscopic model is then formulated by extrapolating the microscopic behaviors
of each vehicle class, providing a more comprehensive view of the traffic dynamics. Finally, we introduce a second-order discrete
macroscopic traffic model specifically tailored for highway segments. This model integrates the behaviors of individual component
vehicles, thus offering a nuanced and accurate representation of mixed traffic conditions on highways (see Fig. 2).

4.1. Microscopic models

4.1.1. Car-following behavior
The car-following behavior could be described by microscopic car-following models. Based on the full velocity difference model

(FVDM, Jiang et al. (2001)), the car-following acceleration function over time for vehicles with VSL could be described as:

𝑣̇𝑚(𝑡) =
𝑉 𝑜𝑝𝑡(𝑠(𝑡)) − 𝑣𝑚(𝑡)

𝜏
− 𝛾(𝑣𝑚(𝑡) − 𝑣𝑚+1(𝑡)) (1)

𝑉 𝑜𝑝𝑡 =

{
𝑉 𝑉 𝑆𝐿 Under Control

𝑉 𝑓𝑟𝑒𝑒 Otherwise
(2)

When a vehicle is unaffected by Variable Speed Limits (VSL), its optimal speed function, denoted as 𝑉 𝑜𝑝𝑡, corresponds to the
free-flow speed. However, when the vehicle enters a VSL-controlled area, 𝑉 𝑜𝑝𝑡 adjusts to match the VSL speed designated for that
specific road segment. Although the car-following model functions remain consistent across CHVs, CAVs, and UHVs, the distinct
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Table 2
Notifications used in this paper.

Notification Meaning

𝑣𝑒ℎ Vehicle type set in this system, {1 = 𝐶𝐴𝑉 , 2 = 𝐶𝐻𝑉 , 3 = 𝑈𝐻𝑉 , 4 = 𝐿𝐶𝐻𝑉 }

𝐶𝐹𝑉 Vehicle type set of car-following vehicles in this system, {1 = 𝐶𝐴𝑉 , 2 = 𝐶𝐻𝑉 , 3 = 𝑈𝐻𝑉 }

𝐼 Road segment set, 𝐼 = {1, 2,… , 𝑖,…}

𝐽 Lane number set, 𝐽 = {1, 2,… , 𝑗,…}

𝐾 Time interval set, 𝐾 = {1, 2,… , 𝑘,…}

𝑀 Vehicle sequence set, 𝑀 = {1, 2,… , 𝑚,…}

𝑃𝑖,𝑗 (𝑘) Vehicle proportion matrix for road segment 𝑖 and lane 𝑗 at time interval 𝑘,
𝑃𝑖,𝑗 (𝑘) = [𝑃 𝐶𝐴𝑉

𝑖,𝑗
(𝑘), 𝑃 𝐶𝐻𝑉

𝑖,𝑗
(𝑘), 𝑃 𝑈𝐻𝑉

𝑖,𝑗
(𝑘), 𝑃 𝐿𝐶𝐻𝑉

𝑖,𝑗
(𝑘)]

𝑉𝑖,𝑗 (𝑘) Vehicle velocity matrix for road segment 𝑖 and lane 𝑗 at time interval 𝑘,
𝑉𝑖,𝑗 (𝑘) = [𝑉 𝐶𝐴𝑉

𝑖,𝑗
(𝑘), 𝑉 𝐶𝐻𝑉

𝑖,𝑗
(𝑘), 𝑉 𝑈𝐻𝑉

𝑖,𝑗
(𝑘), 𝑉 𝐿𝐶𝐻𝑉

𝑖,𝑗
(𝑘)]

𝑣𝑖,𝑗 (𝑘) Traffic speed for road segment 𝑖 and lane 𝑗 at time interval 𝑘
𝑑𝑖,𝑗 (𝑘) Traffic density for road segment 𝑖 and lane 𝑗 at time interval 𝑘
𝑞𝑖,𝑗 (𝑘) Traffic flow for road segment 𝑖 and lane 𝑗 at time interval 𝑘
𝛥𝑇 The discrete time interval
𝑣̇(𝑡) The acceleration function over time
𝑣̇𝐿𝐶𝐻𝑉 (𝑡,𝑁) The acceleration function of LCHV following a 𝑁-vehicle platoon
𝑣(𝑡) The speed function over time
𝑉 𝑜𝑝𝑡 The optimal velocity function
𝜏 Sensitivity for speed differences between current speed and optimal velocity
𝛾 Sensitivity for speed differences between current speed and leading vehicle’s speed
𝑉 𝑓𝑟𝑒𝑒 The optimal velocity function with free flow speed as desired speed
𝑉 𝑉 𝑆𝐿 The optimal velocity function with VSL speed as desired speed
𝑆𝑠𝑎𝑓𝑒 Lane-changing safe distance
𝑆𝑎𝑑𝑣 Lane-changing advantage distance
𝑠0 The minimum acceptable following distance
𝑠𝑓 The car-following distance on the current lane
𝑇 The steady-state time gap
𝛥𝑎 The lane-changing threshold acceleration
𝑎𝑏𝑖𝑎𝑠 The asymmetry term related to driver’s lane-changing preference
𝑏𝑠𝑎𝑓𝑒 The safe deceleration for drivers
𝑣𝐿𝐶 The speed of the lane-changing vehicle
𝑣𝑙 The speed of the leading vehicle in the current lane
𝑣𝑓 The speed of following vehicle on the target lane
𝑣𝑙 The speed of leading vehicle on the target lane
𝜏𝑖 Sensitivity for speed differences between current speed and optimal velocity
𝐿𝑖 Sensitivity for speed differences between current speed and optimal velocity
𝑣
𝑜𝑝𝑡

𝑖,𝑗
Optimal speed for vehicles on road segment 𝑖 and lane 𝑗

𝑣𝑉 𝑆𝐿
𝑖,𝑗

VSL speed on road segment 𝑖 and lane 𝑗

𝑣
𝑓𝑟𝑒𝑒

𝑖,𝑗
Free flow speed on road segment 𝑖 and lane 𝑗

𝑎𝑖,𝑗 The speed exponent term of segment 𝑖 and lane 𝑗

𝛼𝑖,𝑗 (𝑘) The CAV penetration rate on road segment 𝑖 and lane 𝑗 at time interval 𝑘
𝛽𝑖,𝑗 (𝑘) The CHV rate on road segment 𝑖 and lane 𝑗 at time interval 𝑘
𝜈𝑖 The parameters in the dynamic speed equations of segment 𝑖
𝑛𝑖,𝑗,𝑗+1 The number of LCHV from lane𝑗 to 𝑗 + 1 on road segment 𝑖
𝜔𝑖,𝑗,𝑗+1(𝑘) The LCHV rate from lane𝑗 to 𝑗 + 1 on road segment 𝑖 at time interval 𝑘
𝜃 The proportion of VSL-compliant vehicles
𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗

The car-following distance before lane-changing on lane 𝑗.

𝑠
𝑓𝑖𝑛𝑎𝑙

𝑗
The car-following distance after lane-changing on lane 𝑗

𝑆 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗,𝑗+1

The minimum threshold car-following distance on lane 𝑗 + 1 for vehicles could change lanes from lane 𝑗

𝑆
𝑓𝑖𝑛𝑎𝑙

𝑗,𝑗+1
The maximum threshold car-following distance on lane 𝑗 + 1 for vehicles could not change lanes from lane 𝑗

behaviors in car-following among these categories can be delineated accordingly due to the varied desired speeds among them.
For CHVs and CAVs, their 𝑉 𝑜𝑝𝑡 transitions to 𝑉 𝑉 𝑆𝐿 upon entering an activated VSL area, whereas for UHVs, 𝑉 𝑜𝑝𝑡 remains constant
regardless of the area traversed.

4.1.2. Lane-changing behavior

In the context of FVDM, there are generally two conditions under which lane-changing occurs (Treiber and Kesting, 2013). Fig. 3
depicts the decision-making process that human drivers undergo when considering a lane change. When both of these lane-changing
conditions are met, an HV may decide to change lanes in order to maintain or achieve a higher driving speed.

The lane-changing conditions could be described as:

1. The distance between the new following vehicle on the target lane should be larger than the safe distance.

𝑆𝑠𝑎𝑓𝑒 = 𝑠0 + 𝑇

[
𝑣𝑓 − 𝜏𝑏𝑠𝑎𝑓𝑒 + 𝛾𝜏(𝑣𝑓 − 𝑣𝐿𝐶 )

]
(3)
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Fig. 2. Model structure.

Fig. 3. Lane-changing scenario for LCHV.

2. The distance between the new previous vehicle on the target lane should be larger than the advantage distance.

𝑆𝑎𝑑𝑣 = 𝑠𝑓 + 𝑇 𝜏[𝛥𝑎 + 𝑎𝑏𝑖𝑎𝑠 + 𝛾(𝑣𝑙 − 𝑣𝑙)] (4)

4.2. Macroscopic models for different vehicles

In accordance with the discussion in Section 3, the mixed traffic environment comprises four distinct classes of vehicles, including
CAV, CHV, UHV, and LCHV. When there is no VSL control implemented on a particular road segment, all vehicles will operate at
the free flow speed, which is considered the optimal velocity under those conditions.

However, when the VSL system is activated, specifically when CAVs and CHVs are passing through the controlled segments, their
optimal velocities will be adjusted to match the prescribed VSL speed. In contrast, the optimal velocities of UHVs and LCHVs will
remain at the free flow speed. This is because the drivers of these vehicle classes typically prefer to maintain a higher speed, even
when VSL control is in effect.

4.2.1. Macroscopic model for car-following vehicles
The macroscopic discrete velocity function of each category of car-following vehicles in road segment 𝑖 and lane 𝑗 at time interval

𝑘 + 1 could be derived based on the microscopic function.
From FVDM, the car following function could be written as Eq. (5).

𝑣̇𝑖(𝑡) =
𝑉 𝑜𝑝𝑡(𝑠(𝑡)) − 𝑣𝑖(𝑡)

𝜏
− 𝛾(𝑣𝑖(𝑡) − 𝑣𝑖+1(𝑡)) (5)

Then, the velocity function in discrete time 𝛥𝑇 could be written as:

𝑣𝑖(𝑡 + 𝛥𝑇 ) − 𝑣𝑖(𝑡) =
𝛥𝑇

𝜏

[
𝑉 𝑜𝑝𝑡(𝑑(𝑡)) − 𝑣𝑖(𝑡)

]
− 𝛥𝑇 𝛾

[
𝑣𝑖(𝑡) − 𝑣𝑖+1(𝑡)

]
(6)

When the traffic flow is under an equilibrium condition, all vehicles in segment 𝑖 has the same velocity, so, the speed function for
road segment 𝑖 and lane 𝑗 at time interval 𝑘 + 1 could be written as:

𝑣𝑖,𝑗 (𝑘 + 1) = 𝑣𝑖,𝑗 (𝑘) +
𝛥𝑇

𝜏

[
𝑉 𝑜𝑝𝑡(𝑑(𝑘)) − 𝑣𝑖,𝑗 (𝑘)

]
− 𝛥𝑇 𝛾

[
𝑣𝑖,𝑗 (𝑘) − 𝑣𝑖+1,𝑗 (𝑘)

]
(7)
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Considering the impact of traffic density on the traffic speed, we could get the model for road segment 𝑖 and lane 𝑗 at time
interval 𝑘 + 1, which is the METANET model (Messmer and Papageorgiou, 1990) speed function.

𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘 + 1) = 𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘) +
𝛥𝑇

𝜏𝑖

[
𝑉 𝑣𝑒ℎ
𝑖,𝑗

(𝑑𝑖,𝑗 (𝑘)) − 𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘)
]
+

𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘)𝛥𝑇

𝐿𝑖

[
𝑣𝐶𝐹𝑉
𝑖−1,𝑗

(𝑘) − 𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘)
]

−
𝑣𝑖𝛥𝑇

𝜏𝑖𝐿𝑖

[𝑑𝑖+1,𝑗 (𝑘) − 𝑑𝑖,𝑗 (𝑘)]

[𝑑𝑖,𝑗 (𝑘)]

(8)

𝑉 𝑣𝑒ℎ
𝑖,𝑗

(𝑑𝑖,𝑗 (𝑘)) = 𝑣
𝑜𝑝𝑡

𝑖,𝑗
𝑒𝑥𝑝

[
−

1

𝑎𝑖,𝑗
(
𝑑𝑖,𝑗 (𝑘)

𝑑𝑐𝑟
)𝑎𝑖,𝑗

]
(9)

METANET is a widely used second-order discrete macroscopic traffic model. It has been used to describe the multi-class traffic
situation (Liu et al., 2014, 2016).

In Eq. (8), 𝑘 denotes the time step presently in the calculation. 𝑑𝑖,𝑗 (𝑘) denotes traffic density for road segment 𝑖 and lane 𝑗 at
time interval 𝑘, 𝑣𝐶𝐹𝑉

𝑖,𝑗
denotes traffic speed for road segment 𝑖 and lane 𝑗 for car-following vehicles belonging to 𝐶𝐹𝑉 set. 𝛥𝑇 is the

macroscopic simulation time step, and 𝐿𝑖 denotes the length of road segment 𝑖. 𝑉
𝑣𝑒ℎ
𝑖,𝑗

represents the fundamental diagram function for
vehicles within the 𝐶𝐹𝑉 set, encompassing CAVs, CHVs, and UHVs. This function, denoted as Eq. (9), was introduced by Messmer
and Papageorgiou (1990).

The primary distinction among CHVs, CAVs, and UHVs lies in their car-following behaviors, specifically in their adherence to
required speeds, a difference reflected in the varying desired velocities outlined in Eq. (10) and Eq. (11).

For CHVs and CAVs, 𝑉 𝑜𝑝𝑡 transitions to 𝑉 𝑉 𝑆𝐿 upon entering an activated VSL area:

𝑣
𝑜𝑝𝑡

𝑖,𝑗
=

{
𝑣𝑉 𝑆𝐿
𝑖,𝑗

Under VSL Control

𝑣
𝑓𝑟𝑒𝑒

𝑖,𝑗
Otherwise

(10)

For UHVs, 𝑉 𝑜𝑝𝑡 remains constant regardless of the area traversed:

𝑣
𝑜𝑝𝑡

𝑖,𝑗
= 𝑣

𝑓𝑟𝑒𝑒

𝑖,𝑗
(11)

4.2.2. Macroscopic model for lane-changing human-driven vehicles
Microscopic lane-changing behaviors could also affect the macroscopic traffic flow status (Laval and Leclercq, 2008; Jin, 2010;

Rahman et al., 2013). Thus, it is necessary to analyze the dynamic of lane-changing vehicles in the mixed-traffic environment.
In the discrete macroscopic traffic flow model, the time period is generally set as 10–15 min (Kotsialos et al., 2002), in

which the maneuver of lane-changing human-driven vehicles (LCHVs) could be divided into two parts: lane-changing and car-
following after lane-changing. The insignificance of lane-changing’s short-term impact is apparent, given that it consumes a mere
1–2 s (Ahmed, 1999), in stark contrast to the considerably lengthier temporal interval spanning 10–15 min. Consequently, this
research predominantly directs its attention toward the car-following behavior of LCHV subsequent to lane-changing.

Following the lane-changing maneuver, the LCHV will proceed to trial and establish alignment behind the leading vehicles
within the target lane. These leading vehicles encompass both VSL-compliant vehicles, including CAVs and CHVs, as well as VSL-
uncompliant vehicles, denoted as UHVs. The subsequent car-following behavior of LCHV on the target lane is contingent upon the
behavior of the vehicles it follows.

When the VSL control is activated, vehicles that obey the VSL, including CAVs and CHVs, will adjust their optimal speed to adhere
to the prescribed VSL speed. Consequently, this adjustment leads to a gradual reduction in their velocity as they pass a designated
VSL control zone. When the VSL is triggered in the equilibrium status, the velocity of VSL-compliant vehicles is either equivalent
to that of their preceding vehicle, provided it is a CAV or CHV, or lower, in the event their preceding vehicle is a UHV. Then, the
optimal velocity model (OVM, Bando et al. (1995)) may aptly characterize their car-following behaviors, as speed differences exert
negligible influence on their acceleration function.

𝑣̇𝑚(𝑡) =
𝑉 𝑉 𝑆𝐿(𝑠(𝑡)) − 𝑣𝑚(𝑡)

𝜏
(12)

For VSL-uncompliant vehicles, their optimal speed remains unaffected by the lower VSL speed. Nonetheless, if the preceding
vehicle reduces its speed, the non-compliant VSL vehicle will experience a deceleration due to the widening speed differential. This
dynamic can be expressed through an acceleration function as follows:

𝑣̇𝑚(𝑡) =
𝑉 𝑓𝑟𝑒𝑒(𝑠(𝑡)) − 𝑣𝑚(𝑡)

𝜏
− 𝛾(𝑣𝑚(𝑡) − 𝑣𝑚+1(𝑡)) (13)

With the VSL control, The distance between the VSL-compliant vehicle and the preceding vehicle will progressively increase after
it approaches a VSL control spot, while the car-following distance of the VSL-uncompliant vehicle will not increase. As a result, the
VSL-compliant vehicle can be considered the leader of a platoon, consisting of several UHVs that desire a higher speed but are also
influenced by the deceleration of the VSL-affected vehicle, along with the LCHV itself.

Lemma 1: (Proved in Appendix B.1) In a given road segment, a higher proportion of VSL-affected vehicles leads to a shorter
platoon length. Lemma 2: (Proved in Appendix B.2) The further a CAV or a CHV is from the LCHV, the later the LCHV will decelerate
its speed.

Considering the influence of the ratio of VSL-compliant vehicles, the car-following model of LCHV could be derived. If there are
𝑁 vehicles before the LCHV, the first vehicle is a VSL-compliant vehicle, and the other following vehicles are UHVs (see Fig. 4).
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Fig. 4. LCHV following 𝑁-vehicle platoon after lane-changing.

Theorem 1 (Proved in Appendix C).: The car-following acceleration function of the LCHV following a 𝑁 vehicle platoon after the
lane-changing is:

𝑣̇𝐿𝐶𝐻𝑉 (𝑡,𝑁) =

𝑁∑
𝑛=1

[
𝛥𝑡

𝐿

𝑛−1
(
𝑉 (𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)

𝜏
−

𝑣𝑛(𝑡)(𝑣𝑛(𝑡) − 𝑣𝑛+1(𝑡))

𝐿

)𝑁−1∏
𝑛=1

𝑣𝑛(𝑡)

]
(14)

The penetration rate of CAVs is 𝛼 on a freeway segment, and the proportion of CHVs is 𝛽, thus, the proportion of VSL-compliant vehicles
in the traffic flow is 𝜃 = 𝛼 + 𝛽. Therefore, the probability of following an N-vehicle platoon is 𝜃(1 − 𝜃)𝑁−1. Generally, by summarizing all
possible situations together, the acceleration function for the LCHV is Eq. (15):

𝑣̇𝐿𝐶𝐻𝑉 (𝑡) =

∞∑
𝑁=1

𝜃(1 − 𝜃)𝑁−1

𝑁∑
𝑛=1

((
𝛥𝑡

𝐿

)𝑛−1
(
𝑉 (𝑡) − 𝑣𝑛(𝑡)

𝜏
−

𝑣𝑛(𝑡)(𝑣𝑛(𝑡) − 𝑣𝑛+1(𝑡))

𝐿

)𝑁−1∏
𝑛=1

𝑣𝑛(𝑡)

)
(15)

This equation exhibits convergence. Because as 𝑁 goes to infinity, 𝜃(1 − 𝜃)𝑁−1 converges to 0. Then, the summary of 𝜃(1 −

𝜃)𝑁−1𝑣𝐿𝐶𝐻𝑉 (𝑡,𝑁) converges to a certain value.
Having the acceleration function and considering the density as Section 4.2.1, the discrete macroscopic traffic flow model of LCHV in

road segment 𝑖 and lane 𝑗 at time interval 𝑘 + 1 could be written as:

𝑣𝐿𝐶𝐻𝑉
𝑖,𝑗

(𝑘 + 1) =

𝛥𝑇

[
∞∑

𝑁=1

𝜃𝑖,𝑗 (𝑘)(1 − 𝜃𝑖,𝑗 (𝑘))
𝑁−1

𝑁∑
𝑛=1

((
𝛥𝑡

𝐿𝑖

)𝑛−1
(
𝑉 (𝑑𝑖,𝑗 (𝑘)) − 𝑣𝑖,𝑗 (𝑘)

𝜏𝑖
+

𝑣𝑖,𝑗 (𝑘)(𝑣𝑖−1,𝑗 (𝑘) − 𝑣𝐿𝐶𝐻𝑉
𝑖,𝑗

(𝑘))

𝐿𝑖

)
𝑁−1∏
𝑛=1

𝑣𝑛(𝑘)

)]

+ 𝑣𝐿𝐶𝐻𝑉
𝑖,𝑗

(𝑘) −
𝜈𝑖𝛥𝑇

𝜏𝑖𝐿𝑖

[
𝑑𝑖+1,𝑗 (𝑘) − 𝑑𝑖,𝑗 (𝑘)

𝑑𝑖,𝑗 (𝑘)

]
(16)

4.3. Discrete macroscopic multi-class traffic model

4.3.1. Ratio analysis
In the mixed traffic environment, the proportion of each category of vehicle could also impact the traffic flow estimation. The

penetration rate shows the proportion of CAV, while 𝛽 shows the proportion of CHVs. The proportion of LCHVs should still be
analyzed.

For two adjacent lanes, the number of lane-changing vehicles could be calculated based on traffic status (density, speed)
and lane-changing conditions (Proved in Appendix A). However, for the multi-lane scenario, the relation of lanes should still be
considered.

For the multi-lane scenario, the inner lanes have two adjacent lanes. When calculating the number of lane-changing vehicles
between an inner lane 𝑗 and one of its adjacent lanes 𝑗 − 1, the lane-changing between the inner lane 𝑗 and another adjacent lane
𝑗 + 1 could also change the traffic status on the middle lane 𝑗. Therefore, for inner lanes, the real lane-changing volume should be
adjusted from the initial lane-changing volume 𝑛𝑖,𝑗,𝑗+1 and 𝑛𝑖,𝑗,𝑗−1. For segment 𝑖 on a three-lane highway, the adjustment of middle
lanes should be conducted as:

𝑛𝑖,𝑗,𝑗+1 represents the number of lane-changing vehicles from lane 𝑗 to 𝑗 + 1 on segment 𝑖. If 𝑛𝑖,𝑗,𝑗+1 > 0, vehicles in lane 𝑗 move
to lane 𝑗 + 1, while if 𝑛𝑖,𝑗,𝑗+1 < 0, vehicles in lane 𝑗 + 1 move to lane 𝑗.

If 𝑛𝑖,𝑗,𝑗+1 > 0 and 𝑛𝑖,𝑗,𝑗−1 > 0, or 𝑛𝑖,𝑗,𝑗+1 < 0 and 𝑛𝑖,𝑗,𝑗−1 < 0, the adjustment should be conducted as:

𝑛1min{|𝑛𝑖,𝑗,𝑗+1 |,|𝑛𝑖,𝑗,𝑗−1 |}
=

min{|𝑛𝑖,𝑗,𝑗+1|, |𝑛𝑖,𝑗,𝑗−1|}
𝑛𝑖,𝑗,𝑗+1 + 𝑛𝑖,𝑗,𝑗−1

⋅min{|𝑛𝑖,𝑗,𝑗+1|, |𝑛𝑖,𝑗,𝑗−1|} (17)
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𝑛1max{|𝑛𝑖,𝑗,𝑗+1 |,|𝑛𝑖,𝑗,𝑗−1 |}
=
max{|𝑛𝑖,𝑗,𝑗+1|, |𝑛𝑖,𝑗,𝑗−1|}

𝑛𝑖,𝑗,𝑗+1 + 𝑛𝑖,𝑗,𝑗−1
⋅min{|𝑛𝑖,𝑗,𝑗+1|, |𝑛𝑖,𝑗,𝑗−1|}

+ max{|𝑛𝑖,𝑗,𝑗+1|, |𝑛𝑖,𝑗,𝑗−1|} − min{|𝑛𝑖,𝑗,𝑗+1|, |𝑛𝑖,𝑗,𝑗−1|}
(18)

Then, the proportion of the lane-changing vehicle from lane 𝑗 to 𝑗 + 1 on segment 𝑖 in time interval 𝑘 could be written as:

𝜔𝑖,𝑗,𝑗+1(𝑘) =
𝑛𝑖,𝑗,𝑗+1(𝑘)

𝑛𝑖,𝑗 (𝑘)
(19)

The proportion of the UHV in lane 𝑗 on segment 𝑖 in time interval 𝑘 could be written as:

𝑃𝑈𝐻𝑉
𝑖,𝑗

(𝑘) = 1 − 𝛼𝑖,𝑗 (𝑘) − 𝛽𝑖,𝑗 (𝑘) − 𝜔𝑖,𝑗,𝑗+1(𝑘) − 𝜔𝑖,𝑗,𝑗−1(𝑘) (20)

Thus, the final proportion matrix 𝑃𝑖,𝑗 (𝑘) of each class of vehicle on segment 𝑖 lane 𝑗 in time interval 𝑘 could be written as:

𝑃𝑖,𝑗 (𝑘) =
[
𝑃𝐶𝐴𝑉
𝑖,𝑗

(𝑘), 𝑃𝐶𝐻𝑉
𝑖,𝑗

(𝑘), 𝑃𝑈𝐻𝑉
𝑖,𝑗

(𝑘), 𝑃𝐿𝐶𝐻𝑉
𝑖,𝑗

(𝑘)
]

=
[
𝛼𝑖,𝑗 (𝑘), 𝛽𝑖,𝑗 (𝑘), 1 − 𝛼𝑖,𝑗 (𝑘) − 𝛽𝑖,𝑗 (𝑘) − 𝜔𝑖,𝑗,𝑗+1(𝑘) − 𝜔𝑖,𝑗,𝑗−1(𝑘), 𝜔𝑖,𝑗,𝑗+1(𝑘) + 𝜔𝑖,𝑗,𝑗−1(𝑘)

] (21)

4.3.2. Discrete macroscopic multi-class traffic model
Based on the kinematic analysis of CAVs, CHVs, UHVs, and LCHVs in Section 4, the second-order multi-class discrete macroscopic

traffic flow model proposed in this research could be summarized as follows:
The speed function for lane 𝑗 on segment 𝑖 in time interval 𝑘+ 1, 𝑣𝑖,𝑗 (𝑘+ 1), could be written as the summary of the products of

vehicle proportion and speed for each class.

𝑣𝑖,𝑗 (𝑘 + 1) = 𝑃𝑖,𝑗 (𝑘)𝑉𝑖,𝑗 (𝑘 + 1)⊺ (22)

where the proportion matrix 𝑃𝑖,𝑗 (𝑘) and the speed matrix 𝑉𝑖,𝑗 (𝑘 + 1) be written as:

𝑃𝑖,𝑗 (𝑘) =
[
𝛼𝑖,𝑗 (𝑘), 𝛽𝑖,𝑗 (𝑘), 1 − 𝛼𝑖,𝑗 (𝑘) − 𝛽𝑖,𝑗 (𝑘) − 𝜔𝑖,𝑗,𝑗+1(𝑘) − 𝜔𝑖,𝑗,𝑗−1(𝑘), 𝜔𝑖,𝑗,𝑗+1(𝑘) + 𝜔𝑖,𝑗,𝑗−1(𝑘)

]
(23)

𝑉𝑖,𝑗 (𝑘 + 1) = [𝑣1
𝑖,𝑗
(𝑘 + 1), 𝑣2

𝑖,𝑗
(𝑘 + 1), 𝑣3

𝑖,𝑗
(𝑘 + 1), 𝑣4

𝑖,𝑗
(𝑘 + 1)] (24)

The speed function of each class of car-following vehicles, the Eq. (25) describes vehicles in set 𝐶𝐻𝑉 = {1, 2, 3}, and Eq. (26)
describes LCHVs. Accordingly, the optimal velocity function is formulated as Eq. (27) and Eq. (28).

𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘 + 1) = 𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘) +
𝛥𝑇

𝜏𝑖

[
𝑉 𝐶𝐹𝑉
𝑖,𝑗

(𝑑𝑖,𝑗 (𝑘)) − 𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘)
]
+

𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘)𝛥𝑇

𝐿𝑖

[
𝑣𝐶𝐹𝑉
𝑖−1,𝑗

(𝑘) − 𝑣𝐶𝐹𝑉
𝑖,𝑗

(𝑘)
]
−

𝜈𝑖𝛥𝑇

𝜏𝑖𝐿𝑖

[𝑑𝑖+1,𝑗 (𝑘) − 𝑑𝑖,𝑗 (𝑘)]

[𝑑𝑖,𝑗 (𝑘)]
(25)

𝑣𝐿𝐶𝐻𝑉
𝑖,𝑗

(𝑘 + 1) = 𝑣𝐿𝐶𝐻𝑉
𝑖,𝑗

(𝑘) −
𝜈𝑖𝛥𝑇

𝜏𝑖𝐿𝑖

[
𝑑𝑖+1,𝑗 (𝑘) − 𝑑𝑖,𝑗 (𝑘)

𝑑𝑖,𝑗 (𝑘)

]
+

𝛥𝑇

[
∞∑

𝑁=1

𝛼𝑖,𝑗 (𝑘)(1 − 𝛼𝑖,𝑗 (𝑘))
𝑁−1

𝑁∑
𝑛=1

((
𝛥𝑡

𝐿𝑖

)𝑛−1
(
𝑉 (𝑑𝑖,𝑗 (𝑘)) − 𝑣𝑖,𝑗 (𝑘)

𝜏𝑖
+

𝑣𝑖,𝑗 (𝑘)(𝑣𝑖−1,𝑗 (𝑘) − 𝑣𝐿𝐶𝐻𝑉
𝑖,𝑗

(𝑘))

𝐿𝑖

)
𝑁−1∏
𝑛=1

𝑣𝑖,𝑗 (𝑘)

)] (26)

𝑉 𝑣𝑒ℎ
𝑖,𝑗

(𝑑𝑖,𝑗 (𝑘)) = 𝑣
𝑜𝑝𝑡

𝑖,𝑗
𝑒𝑥𝑝

[
−

1

𝑎𝑖,𝑗
(
𝑑𝑖,𝑗 (𝑘)

𝑑𝑐𝑟
)𝑎𝑖,𝑗

]
(27)

𝑣
𝑜𝑝𝑡

𝑖,𝑗
=

⎧⎪⎨⎪⎩

=

{
𝑣𝑉 𝑆𝐿
𝑖,𝑗

Under VSL Control

𝑣
𝑓𝑟𝑒𝑒

𝑖,𝑗
Otherwise

Vehicle Type is 1 or 2

= 𝑣
𝑓𝑟𝑒𝑒

𝑖,𝑗
Vehicle Type is 3 or 4

(28)

Then, the overall density is the summary of CAV density and HV density, and the overall flow is the summary of CAV flow and
HV flow.

𝑑𝑖,𝑗 (𝑘) = 𝑑CAV
𝑖,𝑗

(𝑘) + 𝑑HV
𝑖,𝑗

(𝑘) (29)

𝑑CAV
𝑖,𝑗

(𝑘 + 1) = 𝑑CAV
𝑖,𝑗

(𝑘) +
𝛥𝑇

𝐿𝑖

[
𝑞𝐶𝐴𝑉
𝑖−1,𝑗

(𝑘) − 𝑞𝐶𝐴𝑉
𝑖,𝑗

(𝑘) + 𝑟𝐶𝐴𝑉
𝑖,𝑗

(𝑘) − 𝑠𝐶𝐴𝑉
𝑖,𝑗

(𝑘)
]

(30)

𝑑HV
𝑖,𝑗

(𝑘 + 1) = 𝑑HV
𝑖,𝑗

(𝑘) +
𝛥𝑇

𝐿𝑖

[
𝑞𝐻𝑉
𝑖−1,𝑗

(𝑘) − 𝑞𝐻𝑉
𝑖,𝑗

(𝑘) + 𝑟𝐻𝑉
𝑖,𝑗

(𝑘) − 𝑠𝐻𝑉
𝑖,𝑗

(𝑘)
]
−

𝑛𝑖,𝑗,𝑗−1(𝑘) + 𝑛𝑖,𝑗,𝑗+1(𝑘)

𝐿𝑖

(31)

𝑞𝑖,𝑗 (𝑘) = 𝑞CAV
𝑖,𝑗

(𝑘) + 𝑞HV
𝑖,𝑗

(𝑘) (32)

𝑞𝑖,𝑗 (𝑘) = 𝑑veh
𝑖,𝑗

(𝑘) ⋅ 𝑣veh
𝑖,𝑗

(𝑘) (33)
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Fig. 5. Geometry of experiment road.

Table 3
Value of parameters.

Parameters Value Parameters Value

Vehicle Simulator

𝑠0 3 m 𝑏safe 2 m/s2

𝑏max 5 m/s2 𝑏sharp 8 m/s2

𝜏 5 s 𝑇 2 s
𝛾 0.6 𝛥𝑎 5 m/s2

𝑎max 5 m/s2 𝑢𝑓 120 km/h

METANET and LCTFM

𝜏 20 s 𝜈 0.05
𝜅 13 veh/km/lane 𝑢𝑓 120 km/h
𝑑cr 33.5 veh/km 𝑎 1.4324
𝛼 0.2

5. Numerical study

In order to assess the performance of the lane-changing traffic flow model (LCTFM) proposed in this research, a series of numerical
experiments are conducted. The primary focus of these experiments revolves around the estimation of traffic on a 3-lane highway,
wherein varying VSL settings are employed within a mixed traffic environment. This section comprehensively elucidates the design
of the numerical experiments concerning freeway geometry, mixed traffic flow simulation, model parameters, and measurements.

5.1. Freeway geometry

In the experiment, we have designed a 3-lane straight freeway with mixed traffic flow for model evaluation. The total length
of this study area measures 5 km, divided into 5 segments, each spanning 1 km. Within this mixed traffic environment, we have a
combination of CAVs and HVs. The HVs are capable of both car-following and lane-changing maneuvers.

As Fig. 5 shows, the sensors are installed along the roadside for data collection. Additionally, a speed control board is strategically
positioned at the beginning of segment 3, indicating that segment 3 is the initial road segment where speed control measures are
implemented.

5.2. Mixed traffic flow simulation

5.2.1. System logic
A mixed traffic simulator is designed for the numerical study in this research. The logic of the operation algorithm of this system

is shown in Appendix D.

5.2.2. Parameters
The parameters employed in the experiment for both the vehicle trajectory simulator and the traffic model are documented in

Table 3. The parameters utilized in the vehicle simulator serve to produce vehicle trajectories in a mixed traffic environment. The
parameters for METANET(23) and LCTFM are configured to evaluate the performance of traffic model.

5.3. Measurements

To evaluate the performance of the proposed LCTFM, the error metrics Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE), Mean Squared Prediction Error (MSPE) and Root Mean Squared Prediction Error (RMSPE) are applied.
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Fig. 6. Traffic flow estimation.

Fig. 7. Speed estimation.

The definitions of the error metrics are shown in the following equations.

𝑅𝑀𝑆𝐸 =

√√√√ 1

𝑁

𝑁∑
𝑖=1

(𝑥𝑖 − 𝑥̂𝑖)
2 (34)

𝑀𝐴𝑃𝐸 =
1

𝑁

𝑁∑
𝑖=1

||||
𝑥𝑖 − 𝑥̂𝑖

𝑥̂𝑖

|||| (35)

𝑀𝑆𝑃𝐸 =
1

𝑁

𝑁∑
𝑖=1

(
𝑥𝑖 − 𝑥𝑖

𝑥𝑖

)2

(36)

𝑅𝑀𝑆𝑃𝐸 =

√√√√ 1

𝑁

𝑁∑
𝑖=1

(
𝑥𝑖 − 𝑥̂𝑖

𝑥̂𝑖

)2

(37)

where 𝑥̂𝑖 represents the value of estimation of mixed traffic flow model at each time step 𝑖; and 𝑥𝑖 denotes the traffic flow data
generated by the simulator.

6. Result analysis

6.1. Effectiveness analysis

The traffic status data is obtained from the vehicle trajectory data generated by the mixed traffic flow simulator. To evaluate
the effectiveness of the multi-class traffic model presented in this study, we utilize the original METANET model as the reference
for traffic status prediction.

Fig. 6 illustrates the model’s performance in traffic flow estimation. It is evident that the predictive outcomes of the multi-class
model closely match the actual traffic flow, outperforming the original METANET model. Notably, substantial improvements in the
multi-class model’s performance are observed, particularly after vehicle speed control, in segments 2, 3, and 4.

The proposed model shows a considerable improvement in traffic speed estimation. This enhancement is visually evident from
Fig. 7, where it becomes apparent that the LCTFM outperforms the original METANET in accurately depicting the VSL. Notably,
after passing the control spot, the majority of vehicles adhere to the speed limitation. In contrast to the original METANET’s speed
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Table 4
Errors of model prediction.

Traffic flow Traffic speed

METANET LCTFM METANET LCTFM

RMSE 3.830534 2.626936 16.7441 4.466233
MAPE 0.037628 0.02925 0.115122 0.024635
MSPE 0.006373 0.002997 0.029819 0.002122
RMSPE 0.079803 0.054728 0.209676 0.055906

estimation, which indicates an increase over time in speed along road sections after speed control, the proposed multi-class traffic
model demonstrates a decrease in speed due to the influence of VSL.

In this case, the LCTFM achieved a substantially lower root mean square error (RMSE) of 2.626936 in traffic flow estimation,
while the METANET model obtained a higher RMSE of 3.830534. Similarly, in traffic speed estimation, LCTFM obtained an RMSE
of 4.466233, whereas the METANET model had a significantly higher RMSE of 16.7441. The lower RMSE values indicate that the
LCTFM model outperforms the METANET model in accurately predicting traffic-related values.

MAPE computes the average percentage difference between predicted values and actual values. The results show that the LCTFM
model outperforms the METANET model in both traffic flow and traffic speed prediction. The MAPE for LCTFM is 0.02925 in the
traffic flow estimation and 0.024635 in the traffic speed prediction. In contrast, the METANET model yields higher MAPE values
of 0.037628 and 0.115122 in the traffic flow and speed prediction, respectively. The lower MAPE values for LCTFM indicate that
it provides more accurate predictions with smaller percentage errors. MSPE measures the average squared percentage differences
between predicted and actual values. Once again, the LCTFM demonstrates superior performance, as it achieves lower MSPE values
in both scenarios. The LCTFM’s MSPE values are 0.002997 and 0.002122 in flow and speed estimation, respectively. On the other
hand, the METANET model has higher MSPE values of 0.006373 and 0.029819 in the flow and speed estimation, respectively. The
lower MSPE values for LCTFM highlight its ability to provide more precise predictions with minimized squared percentage errors.
RMSPE computes the square root of the average squared percentage differences between predicted and actual values. As with the
other metrics, the LCTFM performs better in this evaluation as well. It achieves RMSPE values of 0.054728 and 0.055906, while the
METANET model has higher RMSPE values of 0.079803 and 0.209676 in flow and speed prediction respectively. The lower RMSPE
values for LCTFM indicate its superior accuracy in predicting traffic-related values with minimized percentage errors (see Table 4).

In conclusion, the proposed model, by capturing the lane-changing behavior of HVs, offers a more comprehensive representation
of the traffic status compared to the original METANET model, encompassing both speed and flow. The analysis of the performance
metrics demonstrates that the LCTFM outperforms the METANET model in both traffic flow estimation and traffic speed prediction.
It consistently exhibits lower values across all evaluation metrics, highlighting its superiority in accurately estimating traffic status.

6.2. Sensitive analysis on VSL difference

To further investigate the model’s performance under various differences in VSL speeds, the experiments encompass diverse
traffic flow scenarios. Specifically, the initial traffic speed is set at 120 km/h, while the speed limit assumes different lower values
(110 km/h, 100 km/h, 90 km/h, 80 km/h, and 70 km/h). The analysis primarily centers on evaluating the extent of performance
enhancement using RMSE, MAPE, MSPE, and RMSPE.

With different VSL speed, Fig. 8 illustrates the model’s performance in estimating traffic flow, while Fig. 9 displays the predictions
of traffic speed. Concerning traffic flow estimation, it is evident that as the disparity between the VSL and free flow speed increases,
the flow variance at speed control section 2 becomes more pronounced. This is attributed to the greater influence of the speed limit
on the traffic flow with a larger difference in VSL. Regarding traffic speed estimation, as the speed difference expands, the variance
of the predicted speed also increases, indicating the model’s effectiveness in predicting speed across different VSL values.

Table 5 reveals that the model’s performance for both traffic flow and traffic speed estimation deteriorates (increased RMSE,
MAPE, MSPE, and RMSPE) with a reduction in the speed limit from 120 km/h to 70 km/h. In contrast, the improvement
demonstrated by LCTFM over the benchmark shows a progressive trend. This can be attributed to the fact that as the speed difference
of VSL increases, there is a subsequent rise in the number of lane-changing events caused by the speed decrease of the leading
vehicles. Consequently, the LCTFM proposed in this research, which takes into account the behavior of lane-changing vehicles,
allows for a more accurate representation of the traffic flow status.

Regarding the traffic flow estimation, the LCTFM exhibits superior performance compared to the original METANET. The extent
of improvement increases as the speed difference grows larger, leading to improvements of 34.61% in RMSE, 33.87% in MAPE,
57.24% in MSPE, and 34.61% in RMSE, respectively.

Concerning the speed estimation, the LCTFM also demonstrates significant enhancements over the benchmark. Notably, it exhibits
greater improvements compared to the traffic flow estimation. This outcome can be attributed to the model proposed based on
kinematic analysis of various vehicle categories, enabling the LCTFM proposed in this research to more accurately describe vehicle
speeds and achieve superior overall performance.
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Fig. 8. Traffic flow estimation with different VSL speed.
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Fig. 9. Traffic speed estimation with different VSL speed.
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Fig. 10. Dynamic traffic flow data S406 on I-15.

Table 5
Errors of model prediction with different VSL speed.

Traffic flow Traffic speed

METANET LCTFM Improvement METANET LCTFM Improvement

120 km/h to 110 km/h

RMSE 0.755647 0.701197 7.21% 4.069715 1.435452 64.73%
MAPE 0.007795 0.007824 −0.37% 0.020998 0.00587 72.04%
MSPE 0.000248 0.000213 13.89% 0.001289 0.00016 87.56%
RMSPE 0.015773 0.014653 7.10% 0.03708 0.013076 64.74%

120 km/h to 100 km/h

RMSE 1.697376 1.694786 0.15% 8.681826 2.771797 68.07%
MAPE 0.016763 0.017818 −6.29% 0.048785 0.01234 74.71%
MSPE 0.001251 0.001248 0.30% 0.006516 0.000664 89.81%
RMSPE 0.035404 0.035372 0.09% 0.087197 0.027841 68.07%

120 km/h to 90 km/h

RMSE 2.691084 1.942346 27.82% 12.77466 3.734368 70.77%
MAPE 0.026262 0.021094 19.68% 0.07883 0.01832 76.76%
MSPE 0.003143 0.001637 47.90% 0.01561 0.001334 91.45%
RMSPE 0.056064 0.040466 27.82% 0.141936 0.041478 70.78%

120 km/h to 80 km/h

RMSE 3.830534 2.626936 31.42% 16.7441 4.466233 73.33%
MAPE 0.037628 0.02925 22.26% 0.115122 0.024635 78.60%
MSPE 0.006373 0.002997 52.97% 0.029819 0.002122 92.89%
RMSPE 0.079803 0.054728 31.42% 0.209676 0.055906 73.34%

120 km/h to 70 km/h

RMSE 5.111124 3.342379 34.61% 20.38392 4.947461 75.73%
MAPE 0.050117 0.033142 33.87% 0.158486 0.031353 80.22%
MSPE 0.011338 0.004849 57.24% 0.049022 0.002888 94.11%
RMSPE 0.106482 0.069633 34.61% 0.291951 0.070755 75.76%

6.3. Dynamic traffic flow analysis

To evaluate model performance in practice, experiments are conducted with dynamic traffic flow in this section. The simulation
of mixed traffic flow trajectories is carried out using SUMO 1.19.0. In this experiment, traffic flow and speed undergo dynamic
changes every 5 min. Real-world highway traffic data obtained from PeMS is utilized as traffic volume and speed in the mixed-traffic
simulation, specifically, one-day traffic statistics data from Site S406 on I-15 on January 7, 2019, are employed. Fig. 10 illustrates
the traffic patterns of flow and speed. The simulated 3-lane highway spans 5 km in length, with a VSL board situated at the 2 km
mark, showing a speed limit of 90 km/h.

Figs. 11 and 12 depict the results of dynamic traffic estimation for flow and speed, respectively. During non-peak hours,
both LCTFM and METANET demonstrate comparable performance in traffic flow estimation. Although occasional negative values
are observed in the improvement column during these periods, the magnitude of differences among measurements is minimal.
For instance, in the 18:00–24:00 time interval, the RMSE for traffic flow is 27.92 for METANET and marginally higher at
27.94 for LCTFM, indicating negligible variance between the two models during non-peak hours. However, during peak hours,
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Fig. 11. Dynamic traffic speed estimation.

specifically from 6:00–9:00 and 15:00–18:00, LCTFM demonstrates a significant performance advantage over METANET in traffic
flow estimation. In the morning peak hours (6:00–9:00), METANET exhibits an RMSE for traffic flow of 47.73, while LCTFM achieves
a notably lower RMSE of 34.11. Similarly, during the evening peak hours (15:00–18:00), METANET shows an RMSE for traffic flow
of 45.32, whereas LCTFM achieves a lower RMSE of 33.66, clearly illustrating the superior performance of LCTFM during periods
of heightened traffic activity.

When it comes to speed estimation, LCTFM consistently outperforms METANET across all time intervals. For example, during
the 0:00–6:00 period, METANET yields an RMSE of 14.34 for speed prediction, while LCTFM achieves a significantly lower RMSE
of 4.46. Similarly, throughout peak hours, LCTFM maintains its superior performance in speed estimation, underscoring its efficacy
in capturing the intricacies of traffic dynamics.

In conclusion, LCTFM presents itself as a promising model for improving the accuracy of traffic prediction in dynamic
environments. During non-peak hours, the performance of METANET and LCTFM appears similar, owing to the lower traffic volume
allowing drivers for more freely driving with ample space, resulting in fewer lane changes. However, during peak hours, when traffic
volume increases, LCTFM outperforms METANET. This difference arises because as the number of vehicles increases, car-following
distances decrease, leading to more frequent lane changes by human drivers. LCTFM focuses on the effects of lane-changing, which
accounts for its better performance under these conditions (see Table 6).

7. Conclusion

The CAV technology holds promising benefits for road traffic management. In the long run, HVs and CAVs are expected to coexist
and share the road network. To effectively support traffic management in this mixed traffic environment, it is essential to establish
a fundamental traffic model theory. However, the conventional macroscopic traffic model faces critical challenges that need to be
addressed, including: (a) Incorporating the lane-changing and car-following behaviors of HVs into the macroscopic traffic flow model
to accurately capture the interaction between CAVs and HVs. (b) Developing a model for variable speed limit control that effectively
accommodates both CAVs and HVs in a mixed traffic environment. (c) Properly accounting for the impact of the penetration rate
and compliant rate of CAVs on the dynamics of traffic flow in freeway scenarios. Addressing these critical issues is essential to devise
comprehensive traffic management strategies and ensure the seamless integration of CAVs and HVs in mixed traffic environments.
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Fig. 12. Dynamic traffic flow estimation.

In this study, we introduce a discrete second-order macroscopic traffic model to bridge the existing gap. The proposed model
categorizes vehicles into distinct classes, each possessing unique characteristics. Formulating the macroscopic model relies on the
microscopic movement of each vehicle class, taking into account essential factors such as lane-changing and car-following behaviors.
Additionally, the model effectively captures the intricate interaction between Connected and Autonomous Vehicles (CAVs) and
Human-Operated Vehicles (HVs) arising from speed control. Moreover, both the penetration rate of CAVs and the compliant rate
of HVs are incorporated into the framework of this model, contributing to its comprehensive and realistic representation of mixed
traffic dynamics.

The numerical experiment was conducted to validate the performance of the proposed LCTFM. When compared to the original
METANET model, the proposed model demonstrates a higher degree of accuracy in predicting the traffic status. Specifically, in
terms of traffic flow estimation, the LCTFM exhibits significantly superior performance to the original METANET, with remarkable
enhancements observed across the evaluation metrics. These improvements include a 34.61% reduction in RMSE, a 33.87% decrease
in MAPE, a 57.24% decrease in MSPE, and a 34.61% decrease in RMSE, respectively. Regarding speed estimation, the LCTFM also
showcases substantial advancements over the benchmark, surpassing the improvements observed in traffic flow estimation. This
outcome can be attributed to the LCTFM being designed based on kinematic analysis of various vehicle categories, enabling it to
more accurately capture vehicle speeds and achieve an overall superior performance compared to the original METANET model. On
the other hand, the dynamic flow experiment compares the performance of METANET and LCTFM during both non-peak and peak
traffic hours. During non-peak hours, both systems perform similarly due to lower traffic volume allowing for more relaxed driving
conditions with fewer lane changes. However, during peak hours, LCTFM outperforms METANET. This is attributed to increased
traffic volume, which reduces car-following distances and leads to more frequent lane changes by human drivers. LCTFM’s focus on
lane-changing behavior accounts for its superior performance under these conditions.

The proposed model holds the potential to facilitate various traffic control tasks in freeway management. By effectively estimating
the mixed traffic status through current speed control on both CAVs and HVs, the model can contribute to more efficient traffic
management strategies. Since the proposed model has been exclusively tested with a base case of 20% CAV penetration rate,
exploring the effects of different penetration rates of CAVs could be a valuable subject for future research. Investigating pertinent
issues related to varying rates of CAVs would offer valuable insights and enhance our understanding of the model’s performance
under different scenarios, thereby contributing to further advancements in traffic flow management in mixed-traffic environments.
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Table 6
Errors of model prediction with dynamic traffic.

Traffic flow Traffic speed

METANET LCTFM Improvement METANET LCTFM Improvement

0:00–6:00

RMSE 19.484145 23.024619 −18.17% 14.343982 4.461923 68.89%
MAPE 19.230693 13.826918 28.10% 7.827990 2.028493 74.09%
MSPE 0.028607 0.014946 47.75% 0.003247 0.000255 92.16%
RMSPE 0.345821 0.259399 24.99% 0.169094 0.055247 67.33%

Morning Peak: 6:00–9:00

RMSE 47.731768 34.112328 28.53% 28.710381 16.757571 41.63%
MAPE 10.998845 10.312187 6.24% 48.894659 21.672432 55.68%
MSPE 0.000055 0.000049 10.01% 0.016610 0.003657 77.98%
RMSPE 0.179710 0.188256 −4.76% 0.846426 0.424577 49.84%

9:00–15:00

RMSE 46.862666 43.777104 6.58% 26.664435 10.077302 62.21%
MAPE 11.326111 9.440654 16.65% 47.760446 12.468550 73.89%
MSPE 0.000066 0.000040 38.99% 0.017008 0.001585 90.68%
RMSPE 0.200232 0.168005 16.09% 0.697024 0.233139 66.55%

Evening Peak: 15:00–18:00

RMSE 45.321898 33.662123 25.73% 25.532131 11.297092 55.75%
MAPE 9.188097 7.720175 15.98% 47.940067 14.809010 69.11%
MSPE 0.000040 0.000030 25.53% 0.015921 0.002434 84.71%
RMSPE 0.171894 0.143504 16.52% 0.724282 0.275972 61.90%

18:00–24:00

RMSE 27.923541 27.937251 −0.05% 17.215965 5.669504 67.07%
MAPE 10.341115 10.780485 −4.25% 16.263195 4.382192 73.05%
MSPE 0.000213 0.000346 −62.71% 0.001622 0.000227 85.99%
RMSPE 0.170328 0.180110 −5.74% 0.254897 0.084139 66.99%
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Appendix A. Proportion analysis of lane-changing HVs

The proportion of LCHV is related to the traffic flow status and lane-changing conditions. Human drivers are assumed to be
greedy, as long as the lane-changing conditions are satisfied, the driver will change lanes to ensure that the driving speed will not
be affected by the deceleration of the leading vehicle. Drivers are also assumed to change their lanes only once per time interval.

For two homogeneous adjacent lanes 𝑗 and 𝑗 + 1 in segment 𝑖, if the vehicle on lane 𝑗 intend to switch to lane 𝑗 + 1, the vehicle
space on lane 𝑗 + 1 𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑗+1
should satisfy both safe distance (Eq. (3)) and advantage distance (Eq. (4)).

𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗+1

≥ 𝑆𝑠𝑎𝑓𝑒 + 𝑆𝑎𝑑𝑣 (38)

𝑆 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗,𝑗+1

= 𝑆𝑠𝑎𝑓𝑒 + 𝑆𝑎𝑑𝑣 = 𝑠0 + 𝑇

[
𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗+1

+ 𝜏(𝛥𝑎 + 𝑎𝑏𝑖𝑎𝑠 − 𝑏𝑠𝑎𝑓𝑒)
]
+ 𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑗
(39)

Assume 𝑛𝑗,𝑗+1 human-drivers will change their lane from 𝑗 to 𝑗+1, the final number of HVs on lane 𝑗+1 after lane-changing will
be 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑗+1
+ 𝑛𝑗,𝑗+1, and the number of HVs on lane 𝑗 will be 𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑗
− 𝑛𝑗,𝑗+1. The traffic density after lane-changing for lane 𝑗 and 𝑗 + 1

could be
𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗

−𝑛𝑗,𝑗+1

𝐿
and

𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗+1

+𝑛𝑗,𝑗+1

𝐿
respectively; and car-following distance after lane-changing for lane 𝑗 and 𝑗 + 1 is 𝐿

𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗

−𝑛𝑗,𝑗+1

and 𝐿

𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗+1

+𝑛𝑗,𝑗+1
.

After the lane-changing, the vehicle distance on lane 𝑗 + 1 will be less than:

𝑠
𝑓𝑖𝑛𝑎𝑙

𝑗+1
≥ 𝑆

𝑓𝑖𝑛𝑎𝑙

𝑗,𝑗+1
(40)
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Fig. 13. LCHV follows a VSL-compliant vehicle after lane-changing.

𝑆
𝑓𝑖𝑛𝑎𝑙

𝑗,𝑗+1
= 𝑠0 + 𝑇

[
𝑣
𝑓𝑖𝑛𝑎𝑙

𝑗+1
+ 𝜏(𝛥𝑎 + 𝑎𝑏𝑖𝑎𝑠 − 𝑏𝑠𝑎𝑓𝑒)

]
+ 𝑠

𝑓𝑖𝑛𝑎𝑙

𝑗
(41)

Because the drivers are greedy, they will try to change lanes if the lane-changing conditions are satisfied. As vehicles change
lanes from lane 𝑗 to 𝑗 + 1, the traffic density in lane 𝑗 + 1 increases, while the car-following distance decreases. Lane 𝑗 + 1 could
accommodate vehicles from lane 𝑗 until the car-following distance of lane 𝑗 + 1 does not meet the lane-changing conditions.

Considering the relation between the number of lane-changing vehicles from lane 𝑗 to 𝑗 + 1 and the car-following distance on
lane 𝑗 + 1, the equilibrium of lane-changing of adjacent lanes 𝑗 and 𝑗 + 1 in segment 𝑖 could be described as:

𝐿

𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗+1

+ 𝑛𝑗,𝑗+1

=𝑠0 +
𝐿

𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗

− 𝑛𝑗,𝑗+1

+ 𝑇 𝜏(𝛥𝑎 + 𝑎𝑏𝑖𝑎𝑠 − 𝑏𝑠𝑎𝑓𝑒)

+ 𝑇 𝑣𝑓,𝑖,𝑗+1exp

[
1

𝑎𝑖,𝑗+1
(
𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗+1

+ 𝑛𝑗,𝑗+1

𝐿𝑑𝑐𝑟,𝑖,𝑗+1
)𝑎𝑖,𝑗+1

] (42)

In the Eq. (42), the number of lane-changing vehicles 𝑛𝑖,𝑗,𝑗+1 from lane 𝑗 to lane 𝑗 + 1 on segment 𝑖 could be calculated.

Appendix B. Proof of the Lemmas

Lemma 1. In a given road segment, a higher proportion of VSL-compliant vehicles leads to a shorter platoon length. platoon length.
Assume there are 𝑛 vehicles in road segment 𝑖 lane 𝑗. The proportion 𝑝 of VSL-compliant vehicles could be calculated as:

𝑝𝑖,𝑗 = 𝛼𝑖,𝑗 + 𝛽𝑖,𝑗 (43)

Then, the length of the platoon is 1

𝛼𝑖,𝑗+𝛽𝑖,𝑗
. As the parameter 𝑝𝑖,𝑗 increases, the reciprocal of (𝛼𝑖,𝑗 + 𝛽𝑖,𝑗 ) decreases, resulting in a reduction

in the platoon’s length. In summary, in a given road segment, a higher proportion of VSL-compliant vehicles leads to a shorter platoon length.
Proved.

Lemma 2. The further a CAV or a CHV is from the LCHV, the later the LCHV will decelerate its speed.
In the absence of a lane change, the HV should reduce its speed when the preceding vehicle in the current lane slows down. Due to the

advantageous condition, the HV can maintain a higher speed in the adjacent lane after the lane change than in its original lane. Assume the
LCHV gets into the target lane at 𝑡0, the car-following distance of LCHV is:

𝑠LCHV(𝑡) = 𝑠𝑒 + ∫
𝑡

𝑡0

𝑣𝑙(𝑡) 𝑑𝑡 − ∫
𝑡

𝑡0

𝑣LCHV(𝑡) 𝑑𝑡 (44)

Car-following behavior is contingent on the car-following distance; when the car-following distance exceeds the threshold
distance 𝑠𝑐𝑓 , alterations in the leading vehicle’s velocity do not affect the trailing vehicle.

Case 1: If the LCHV follows a VSL-compliant vehicle after lane-changing (Fig. 13) with 𝑠LCHV > 𝑠𝑐𝑓 and the VSL-compliant
vehicle passes a VSL control spot at 𝑡𝑣𝑠𝑙 with 𝑣𝑉 𝑆𝐿 < 𝑣𝑙(𝑡𝑣𝑠𝑙), the LCHV will start to decrease speed when the car-following distance
𝑠LCHV = 𝑠𝑐𝑓 at 𝑡𝑑𝑒𝑐 :

𝑠𝑐𝑓 = 𝑠𝑒 + ∫
𝑡𝑑𝑒𝑐

𝑡𝑣𝑠𝑙

𝑣𝑙(𝑡) 𝑑𝑡 − ∫
𝑡𝑑𝑒𝑐

𝑡𝑣𝑠𝑙

𝑣LCHV(𝑡) 𝑑𝑡 (45)

𝑠𝑐𝑓 − 𝑠𝑒 = ∫
𝑡𝑑𝑒𝑐

𝑡𝑣𝑠𝑙

𝑣𝑙(𝑡) − 𝑣LCHV(𝑡) 𝑑𝑡 (46)

𝛥𝑡 = 𝑡𝑑𝑒𝑐 − 𝑡𝑣𝑠𝑙 (47)
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Fig. 14. LCHV follows an N-vehicle platoon after lane-changing.

Case 2: If the LCHV follows an N-vehicle platoon after lane-changing (Fig. 14), the platoon should be in equilibrium status
without the VSL control, and the car-following distance for 𝑖th UHV in the platoon should be 𝑠𝑈𝐻𝑉𝑖

= 𝑠𝑒 > 𝑠𝑐𝑓 . Assume the
VSL-compliant vehicle passes a VSL control spot at 𝑡𝑣𝑠𝑙 with 𝑣𝑉 𝑆𝐿 < 𝑣𝑙(𝑡𝑣𝑠𝑙), the first UHV will start to decrease speed when the
car-following distance 𝑠𝑈𝐻𝑉 1𝑖

= 𝑠𝑐𝑓 at 𝑡𝑑𝑒𝑐1 :

𝑠𝑐𝑓 − 𝑠𝑒 = ∫
𝑡𝑑𝑒𝑐1

𝑡𝑣𝑠𝑙

𝑣𝑙(𝑡) − 𝑣𝑈𝐻𝑉1
(𝑡) 𝑑𝑡 (48)

𝛥𝑡1 = 𝑡𝑑𝑒𝑐1
− 𝑡𝑣𝑠𝑙 (49)

When 𝑣𝑉 𝑆𝐿 in Case 1 is equal to the speed limit in Case 2, 𝛥𝑡 = 𝛥𝑡1. Similarly, the 𝑖th UHV will start to decrease speed at 𝑡𝑑𝑒𝑐𝑖 :

𝑠𝑐𝑓 − 𝑠𝑒 = ∫
𝑡𝑑𝑒𝑐𝑖

𝑡𝑑𝑒𝑐𝑖−1

𝑣𝑈𝐻𝑉𝑖−1
(𝑡) − 𝑣𝑈𝐻𝑉𝑖

(𝑡) 𝑑𝑡 (50)

The LCHV will start to decrease its speed when its car-following distance at 𝑡𝑑𝑒𝑐 ,

𝑡𝑑𝑒𝑐 = 𝑡𝑣𝑠𝑙 +

𝑁∑
𝑖=1

𝛥𝑡𝑖 = 𝑡𝑣𝑠𝑙 + 𝛥𝑡1 +

𝑁∑
𝑖=2

𝛥𝑡𝑖 = 𝑡𝑣𝑠𝑙 + 𝛥𝑡 +

𝑁∑
𝑖=2

𝛥𝑡𝑖 (51)

∵
∑𝑁

𝑖=2
𝛥𝑡𝑖 > 0 ∴ 𝑡𝑑𝑒𝑐 in Case 2 is larger than 𝑡𝑑𝑒𝑐 in Case 1. In other words, the further a CAV or a CHV is from the LCHV, the

later the LCHV will decelerate its speed.
Proved.

Appendix C. Proof of the Theorem

Assume the LCHV follows a 3-vehicle platoon after lane-changing, the first vehicle is a VSL-compliant vehicle, which is also the
leading vehicle of this platoon, and the second and third vehicles are UHVs (see Fig. 15).

In this platoon, the moving of the leading vehicle could be described as:

𝑣̇𝑙𝑒𝑎𝑑 (𝑡) =
𝑉 𝑉 𝑆𝐿(𝑠(𝑡)) − 𝑣𝑙𝑒𝑎𝑑 (𝑡)

𝜏
(52)

For the UHVs in the platoon following the VSL-compliant vehicle, the car-following model could be written as:

𝑣̇𝑚(𝑡) =
𝑉 𝑓𝑟𝑒𝑒(𝑠(𝑡)) − 𝑣𝑚(𝑡)

𝜏
− 𝛾(𝑣𝑚(𝑡) − 𝑣𝑚+1(𝑡)) (53)

Then, the car-following model of this LCHV could be written as:

𝑣̇𝐿𝐶𝐻𝑉 (𝑡, 3) =
𝑉 (𝑠1(𝑡) − 𝑣𝐿𝐶𝐻𝑉 (𝑡))

𝜏
−

𝑣𝐿𝐶𝐻𝑉 (𝑡)

𝐿

(
𝑣𝐿𝐶𝐻𝑉 (𝑡) − 𝑣𝑈𝐻𝑉 1(𝑡)

)
(54)

From the Eq. (6), the velocity function of vehicles in the platoon could be written as:

𝑣𝑈𝐻𝑉 1(𝑡 + 𝛥𝑡) = 𝑣𝑈𝐻𝑉 1(𝑡) + 𝛥𝑡

(
𝑉 (𝑠2(𝑡) − 𝑣𝑈𝐻𝑉 1(𝑡))

𝜏
−

𝑣𝑈𝐻𝑉 1(𝑡)

𝐿

(
𝑣𝑈𝐻𝑉 1(𝑡) − 𝑣𝑈𝐻𝑉 2(𝑡)

))
(55)

𝑣𝑈𝐻𝑉 2(𝑡 + 𝛥𝑡) = 𝑣𝑈𝐻𝑉 2(𝑡) + 𝛥𝑡

(
𝑉 (𝑠3(𝑡) − 𝑣𝑈𝐻𝑉 2(𝑡))

𝜏
−

𝑣𝑈𝐻𝑉 2(𝑡)

𝐿

(
𝑣𝑈𝐻𝑉 2(𝑡) − 𝑣𝑙𝑒𝑎𝑑 (𝑡)

))
(56)
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Fig. 15. The situation of 3 vehicles before the LCHV.

𝑣𝑙𝑒𝑎𝑑 (𝑡 + 𝛥𝑡) = 𝑣𝑙𝑒𝑎𝑑 (𝑡) +
𝑣𝑉 𝑆𝐿 − 𝑣𝑙𝑒𝑎𝑑 (𝑡)

𝜏
(57)

∵𝑣(𝑡) = lim𝛥𝑡→0 𝑣(𝑡 + 𝛥𝑡)

∴ In Eq. (57), 𝑣𝑙𝑒𝑎𝑑 (𝑡) = lim𝛥𝑡→0 𝑣𝑙𝑒𝑎𝑑 (𝑡 + 𝛥𝑡); 𝑣𝑈𝐻𝑉 2(𝑡) = lim𝛥𝑡→0 𝑣𝑈𝐻𝑉 2(𝑡 + 𝛥𝑡) in Eq. (56); 𝑣𝑈𝐻𝑉 1(𝑡) = lim𝛥𝑡→0 𝑣𝑈𝐻𝑉 1(𝑡 + 𝛥𝑡) in
Eq. (55).

After the replacement and reorganization, the acceleration function of LCHV following a 3-vehicle platoon could be written as

𝑣̇𝐿𝐶𝐻𝑉 (𝑡, 3) =

3∑
𝑛=1

[
𝛥𝑡

𝐿

𝑛−1
(
𝑉 (𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)

𝜏
−

𝑣𝑛(𝑡)(𝑣𝑛(𝑡) − 𝑣𝑛+1(𝑡))

𝐿

) 2∏
𝑛=1

𝑣𝑛(𝑡)

]
(58)

To get the general formulation, replace 3 with 𝑁 in Eq. (58). If there are 𝑁 vehicles before an LCHV. The leading vehicle is a
VSL-compliant vehicle, and the 𝑁 − 1 followed vehicles are UHV. The acceleration function of time could be written as:

𝑣̇𝐿𝐶𝐻𝑉 (𝑡,𝑁) =

𝑁∑
𝑛=1

[
𝛥𝑡

𝐿

𝑛−1
(
𝑉 (𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)

𝜏
−

𝑣𝑛(𝑡)(𝑣𝑛(𝑡) − 𝑣𝑛+1(𝑡))

𝐿

)𝑁−1∏
𝑛=1

𝑣𝑛(𝑡)

]
(59)

Proved.

Appendix D. The operation logic of the simulator

In this study, the simulator is developed to model car-following and lane-changing behaviors in multi-lane mixed traffic scenarios.
The overall structure of the simulator is illustrated in Algorithm 1, which consists of the vehicle initialization module Algorithm
2, CAV operation module Algorithm 3, LCHV operation module Algorithm 4, and HV operation module Algorithm 5.

The vehicle initialization module is designed to generate vehicles dynamically as the traffic status may change in different
calculating periods (for example, 5 min) during the whole simulation process. Then, the simulated traffic flow will be more similar
to the real-world traffic flow with time-varying traffic status.

The CAV operation module describes the moving of CAVs in the mixed-traffic environment. CAVs will follow the previous vehicle
and be controlled by the activated VSL speed.

The LCHV operation module describes the lane-changing behavior. In practice, the lane-changing process typically spans a time
interval of 1–1.5 s rather than occurring instantaneously. Consequently, the lane-changing count is employed to characterize this
temporal aspect of the process. In addition, the lane-changing vehicle’s movement is influenced by preceding vehicles in both its
current and target lanes, necessitating the adoption of the minimum acceleration value from both lanes.

In the HV operation module, the lane-changing judgment describes the decision-making process for lane changes. If the lane-
changing conditions and random factor condition are satisfied, the current HV will commence the lane-changing process in the
subsequent time step; otherwise, it will update its status through car-following.

Fig. 16 illustrates the time-space pattern of vehicles in each lane, depicting their trajectories and corresponding speeds with the
trajectory color. The initial flow and speed for the simulation are based on the peak hour volume of the S406 on I-15 in the PeMS
dataset. The speed was controlled to decrease to 90 km/h after passing the designated control spot at 2000 m. When the traffic
flow is lower, the figure demonstrates a noticeable decrease in the gradient of vehicle trajectories, signifying a decrease in vehicle
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Algorithm 1: Mixed traffic multi-lane simulator

1 Start
2 if Accumulate simulation time < Total simulation time then
3 if mod(Accumulate simulation time ∕ Flow update interval)=0 then
4 Run vehicle initialization module

5 for Each vehicle in vehicle matrix do
6 In-system Judgement:
7 if Vehicle in-system status is activated then
8 if The vehicle is a CAV then
9 Run CAV operation module

10 if The vehicle is a LCHV then
11 Run LCHV operation module

12 if The vehicle is a HV then
13 Run HV operation module

14 In-system Adjustment
15 if Vehicle position still in experiment area then
16 Vehicle in-system status activated
17 else
18 The vehicle finished the experiment, vehicle in-system status inactivated

19 else
20 Vehicle in-system status is inactivated;
21 Goes to the next vehicle.

22 Accumulate simulation time update

23 else
24 Simulation End

Output: The trajectory sets include vehicle lane number, speed, acceleration, and position of all vehicles.

Algorithm 2: Vehicle initialization module

Input: Traffic flow, speed, vehicle proportion gathered in time interval; Speed variance, Car-following distance variance;
Number of lanes

1 Step1 Calculate the vehicle number in the current update interval and generate the vehicle set for each lane.
2 Step2 Generate vehicle type randomly with vehicle proportion.
3 Step3 Generate vehicle speed and car-following distance based on the traffic speed, traffic density, and variance.
Output: Vehicle matrix with initial speed, position, vehicle type

Algorithm 3: CAV operation module

Input: CAV position, speed, acceleration; Front vehicle position, speed, acceleration; VSL speed and position
1 Step1 Calculate the acceleration for the next step
2 if CAV is under VSL control then
3 Desired speed = VSL speed

4 if CAV is not under VSL control then
5 Desired speed = Free flow speed

6 Step2 Calculate the speed for the next step
7 Step3 Calculate the position for the next step
Output: CAV position, speed, acceleration for next simulation step

speed after passing the control point. Conversely, higher traffic flow leads to the generation of shockwaves. Furthermore, the figure
reveals that lane 2 exhibited a higher initial traffic density compared to lanes 1 and 3. As a result, vehicles in lanes with higher
initial density, such as lane 2, demonstrated a greater tendency to switch to lanes with lower density after receiving the speed
decrease command.
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Fig. 16. Vehicle trajectory in 3 lanes simulation.

Algorithm 4: LCHV operation module

Input: LCHV position, speed, acceleration; Front vehicle position, speed, acceleration in both origin lane and target lane;
Free flow speed; Lane-changing count

1 Step1 Calculate the acceleration for the next step, 𝑎𝑛𝑒𝑥𝑡 = 𝑚𝑖𝑛{𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑎𝑡𝑎𝑟𝑔𝑒𝑡}

2 Step2 Calculate the speed for the next step
3 Step3 Calculate the position for the next step
4 Step4 Update lane-changing count
5 if Lane-changing count < Lane-changing time then
6 Vehicle still in the lane-changing process, vehicle type for the next step is LCHV
7 else
8 Vehicle finished lane-changing, the vehicle type change to HV, vehicle lane number = target lane

Output: LCHV position, speed, acceleration, lane number for next simulation step
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Algorithm 5: HV operation module

Input: HV position, speed, acceleration; Front vehicle position, speed, acceleration in both origin lane and adjacent lane(s);
Free flow speed; VSL speed and position

1 Check the lane-changing conditions
2 if Both conditions are satisfied, random selection satisfied then
3 The vehicle will start lane-changing;
4 Step1-1 Calculate the acceleration for the next step, 𝑎𝑛𝑒𝑥𝑡 = 𝑚𝑖𝑛{𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑎𝑡𝑎𝑟𝑔𝑒𝑡}

5 Step1-2 Calculate the speed for the next step
6 Step1-3 Calculate the position for the next step
7 Step1-4 lane-changing count = 0; record the target lane number

8 else
9 The vehicle will keep car-following;
10 if Vehicle type is CHV then
11 if Vehicle is under VSL control then
12 Desired speed = VSL speed

13 if Vehicle is not under VSL control then
14 Desired speed = Free flow speed

15 else
16 Vehicle type is UHV;
17 Desired speed = Free flow speed

18 Step2-1 Calculate the acceleration for the next step
19 Step2-2 Calculate the speed for the next step
20 Step2-3 Calculate the position for the next step

Output: HV position, speed, acceleration, lane number, target lane number, lane-changing status, and lane-changing count
for next simulation step
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