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Abstract Phase reduction is a well-established method to study weakly driven
and weakly perturbed oscillators. Traditional phase-reduction approaches character-
ize the perturbed system dynamics solely in terms of the timing of the oscillations.
In the case of large perturbations, the introduction of amplitude (isostable) coordi-
nates improves the accuracy of the phase description by providing a sense of distance
from the underlying limit cycle. Importantly, phase-amplitude coordinates allow for
the study of both the timing and shape of system oscillations. A parallel tool is the
infinitesimal shape response curve (iSRC), a variational method that characterizes
the shape change of a limit-cycle oscillator under sustained perturbation. Despite the
importance of oscillation amplitude in a wide range of physical systems, systematic
studies on the shape change of oscillations remain scarce. Both phase-amplitude co-
ordinates and the iSRC represent methods to analyze oscillation shape change, yet
a relationship between the two has not been previously explored. In this work, we
establish the iSRC and phase-amplitude coordinates as complementary tools to study
oscillation amplitude. We extend existing iSRC theory and specify conditions under
which a general class of systems can be analyzed by the joint iSRC phase-amplitude
approach. We show that the iSRC takes on a dramatically simple form in phase-
amplitude coordinates, and directly relate the phase and isostable response curves to
the iSRC. We apply our theory to weakly perturbed single oscillators, and to study
the synchronization and entrainment of coupled oscillators.

keywords: isostable coordinates, entrainment, synchronization, limit
cycle, shape-response curve, phase-response curve

AMS subject classifications: 34C20, 37TN25, 92B25

1. Introduction. Oscillations in physical systems are ubiquitous. Examples
include flashing fireflies [64], spiking neurons [16, 23, 63], circadian rhythms [2, 17,
25], chemical reactions [29, 65], and rhythmic movement and locomotion [36, 56,
69]. Such oscillations can be modeled as non-linear dynamical systems with stable
limit-cycle solutions.

The method of phase-reduction has been used extensively to study stable limit-
cycle oscillations by characterizing the dynamics solely in terms of the timing of the
oscillations [5, 16, 23, 32, 44]. The infinitesimal phase response curve (iPRC) is a
useful tool for describing the change in timing of oscillatory dynamics under weak
perturbation. Representing oscillators in terms of their phase facilitates analysis of
the synchronization of weakly coupled oscillators, allowing one to predict the existence
and stability of synchronous solutions, and to identify regions of mode-locking as a
function of oscillator frequency [23]. Phase reduction has also been used successfully
to study entrainment of oscillators subject to a weak external input, often in the
context of a control problem [52, 78].

Traditional phase-reduction techniques are valid in the limit of weak perturba-
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tion, but tend to fail when system dynamics stray far from the unperturbed limit-cycle
solution, such as in the case of large perturbations or large Floquet multipliers. Con-
sequently, recent efforts have focused on introducing an extended framework that
incorporates a sense of distance from the periodic orbit to augment a phase-like de-
scription. Concepts such as local orthogonal rectification [34], moving orthonormal
coordinates [70], global phase (isochron) descriptions [13, 45], Koopman operator ap-
proaches [33], and isostable coordinates [7, 20, 73, 74, 75] have gained traction. The
use of isostable coordinates is particularly convenient as it directly extends the phase
description, leveraging Floquet theory to introduce amplitude (isostable) coordinates
that obey linear dynamics. By considering an infinitesimal isostable response curve
(iIRC), one can accurately predict the influence of weak perturbations on the “shape
response” of the system, that is, the deformation of its orbit, allowing for a more
accurate representation of system dynamics. Parallel techniques for studying oscil-
lation amplitude include the homotopy analysis method [9, 35, 37, 41], nonlinear
normal modes [54, 58, 59], harmonic balance methods [27, 30, 42], and the infinites-
imal shape response curve (iSRC) [67, 77]. The iSRC, a variational approach that
characterizes the shape response of limit-cycle dynamics subject to sustained pertur-
bations, is especially suitable for studying weakly perturbed systems due to its ease
of implementation and conceptual transparency. The iSRC gives an analytical ex-
pression for the shift in the average of any smooth function of the oscillator state; it
has been used to provide a criterion for homeostasis in physiological systems based
on oscillatory rather than fixed-point dynamics [77].

While different methods to analyze oscillator shape change are available, extensive
literature in this area remains lacking despite the importance of oscillation amplitude
in many physical systems. Circadian rhythm oscillations have traditionally been stud-
ied in terms of timing, focusing on sleep disorders, jet lag, and related issues. However,
recent studies have linked changes in circadian rhythm amplitude to mental health
disorders, obesity, increased risk of metabolic or cardiovascular disease, and condi-
tions such as Alzheimer’s or Parkinson’s disease [1, 14, 24, 26, 62]. The oscillation of
cytosolic Calcium plays a vital role in the regularization of cellular apoptosis; recently
it was discovered that the amplitude, not the frequency, is the most relevant feature
of the oscillations in this context [51]. Many mechanical systems display undesirable
oscillations. Nonlinear aeroelastic systems can exhibit spurious oscillatory behavior,
which results in system fatigue and decreased maneuverability [60, 61]. In downhole
drilling systems, vibrations can lead to oscillatory phenomena and the premature fail-
ure of machine components [31]. In such situations, it is desirable to minimize the
amplitude of the oscillations. A common approach is to establish a technique for
estimating the amplitude, then subsequently apply a control strategy. Additionally,
the amplitude of certain brain oscillations, such as theta-gamma waves, have been
associated with memory and perception [12, 15].

To study the shape change of weakly perturbed and weakly driven oscillators, we
leverage the existing techniques of phase-amplitude reduction and the iSRC, which
have not been previously considered together. We establish phase-amplitude coordi-
nates and the iSRC as complimentary approaches; for the first time, we connect the
iSRC and phase-amplitude coordinates by expressing the iSRC in terms of the iPRC
and iIRC of a system. We show that studying the iSRC in phase-amplitude coordi-
nates is fruitful in that it provides intuition and a dramatically simplified conceptual
approach to study the shape change of oscillations.

The paper is organized as follows. In section 2, we briefly review previously
established results pertaining to phase-amplitude reduction and its numerical imple-
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mentation, and the iSRC. Section 3 contains the main contributions of this work. We
specify conditions for a general class of systems under which the iSRC may be ex-
pressed in phase-amplitude coordinates. In these cases, we show that the iSRC takes
on a simple form. The iSRC is a vector equivalence class; we derive a novel expression
that identifies the element of this class specified by an arbitrary choice of initial con-
dition for the iISRC equation. We also derive expressions for higher order corrections
to the iSRC. As a first application, we show how the complementary phase-amplitude
iSRC approach may be used to study synchronization and entrainment of coupled
oscillators. As a second application, we introduce an iSRC-based method to track the
extrema of specific system states. This approach extends the limit-cycle homeostasis
criterion [77] to give an expression for critical points (with respect to a perturbation
parameter of state-variable extrema). In section 4, we apply our theory to several
examples, including (non-planar) single oscillators under sustained perturbation, and
the synchronization and entrainment of systems of coupled oscillators. We conclude
in section 5 with a discussion of the results.

All codes used to generate the figures in this paper are publicly available at
https://github.com/MaxKreider /PhaseAmplitudeISRC.git.

2. Background.

2.1. Phase-Amplitude Reduction. In this section, we review the basics of
phase-amplitude reduction. Consider an n-dimensional system

(2.1) x' = F(x;¢) = f(x) + € u(x)

where u(x) is a parametric perturbation and € a small parameter characterizing the
strength of the perturbation. Assume that when ¢ = 0, (2.1) admits a T-periodic
stable limit-cycle solution, v(¢t;0) = ~(t + T50). One can define a phase variable
6(x(t)) € [0,T) on the limit cycle so that the phase evolves at a constant rate

(2.2) o' =1

The notion of phase can be extended to the basin of attraction, I, of the limit cycle
via isochrons [19, 76], or level sets of the phase function 6(x). If initial condition xq,
with associated trajectory x(t), lies on the limit cycle with phase 6y, then all initial
conditions yg € T, giving rise to trajectories y(¢), that satisfy

(23) Tim [x(®) — ()] = 0
for any norm || - || are said to lie on the same isochron and have the same phase as xg.

With this convention, the phase is defined in I" and evolves at a constant rate. When
le| < 1, the phase dynamics obey

(2.4) 0'=1+¢€-(Zo(0) u(x)+ O (%)

where Zy(6) is the infinitesimal phase response curve (iPRC) vector and represents
the gradient of the phase function evaluated on the limit cycle. Eq. (2.4) is useful
to study the change in timing of system oscillations due to a weak perturbation, but
can fail to give an accurate representation of the dynamics in the case of strong per-
turbations. In such cases, one may define an additional n — 1 amplitude (isostable)
coordinates, o;, that capture a sense of distance in directions transverse to the limit
cycle. The amplitude coordinates require concepts from Floquet theory, which we
review in the supplementary materials in Appendix A, including the variational equa-
tion, the monodromy matrix, Floquet multipliers and exponents, and a non-resonance
condition pertaining to the numerical implementation of phase-amplitude reduction.
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2.1.1. Amplitude (Isostable) Coordinates. The additional n — 1 amplitude
coordinates are defined so that in the absence of perturbation, their dynamics admit
a simple linear form

(2.5) 0 =1, o =Ko, K =diag(kz,~K3,...,kn)

where the k; are the non-trivial Floquet exponents of the system. One may find that
a subset of the Floquet exponents are highly negative, meaning that the dynamics
in the corresponding amplitude coordinates decay very rapidly to the limit cycle. In
practice, one can disregard these directions, resulting in a system of reduced dimension
with only m < (n — 1) relevant amplitude coordinates [43]. The perturbed (e # 0)
system dynamics are expressed as

0 =1+¢-(Zo(0) u(x) + O(e?)

o} =njo;+e- (15 (0)Tux) + O(?), j=2,...,m

(2.6)

where I(()j ) are infinitesimal isostable response curves (iIRC), which are the gradients
of the jth amplitude coordinate evaluated on the limit cycle. In practice, it is common
to compute the response curves by finding the solution to the adjoint equations [7,
20, 23, 75]

4z

i —Df(v(t)" Zo
(2.7) G
S = (DS wiLwea)lo, G =200

with T-periodic boundary conditions and normalization constraints

(Zo(0)" f(x0) = 1

29 (I 0)Tv; =1

where v; is the eigenvector of the monodromy matrix corresponding to the jth Floquet
exponent.

2.1.2. Numerical Implementation. The phase-amplitude framework (2.6) is
an improvement over a purely phase-based description (2.4), but the resulting expan-
sions are accurate to only first order in the amplitude variables. Recently, efforts have
been made to compute higher order corrections, either by Taylor expansion methods
[46, 72], or by the parameterization method [7, 20, 49]. While both theoretically give
identical results, we use the parameterization method because we find it to be more ac-
curate and computationally efficient. More precisely, if the following phase-amplitude
reduction assumptions hold:

e (A1) The vector field f(x) is analytic.
e (A2) System (2.1) admits a linearly asymptotically stable limit cycle,
~(t;0) = ~v(t + T;0), when € = 0.
e (A3) There does not exist a resonance at some order |a| = ag+ -+ + a;, > 2
in the sense of definition SM1 (see supplementary materials, Appendix A).
then (2.1) admits a phase-amplitude reduction to arbitrarily high (finite) order

0 =1+¢-(Z(0,02,...,0m)) " u(x) + O(?)
(2.9) o) =rjo5+ e (19(0,00,...,0m) ux)+ O(&), j=2,....m
x(t) =K(0,09,...,0m)

This manuscript is for review purposes only.
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The function K(, 09, ...,0,,) should be thought of as a change of coordinates. The
high order PRC and IRC functions, Z(60,09,...,0,) and I(0,09,...,0,,), are ex-
pressed as Taylor expansions in terms of the amplitude coordinates. For example, if
m = 2, one writes

Z(07O'2) = ZQ(@) + O'QZl(H) + O-SZQ(G) +...

2.10
(2.10 1?0, 0) = 182 (0) + 021 () + 02152 (6) + . ..
where Zy and 182) are the iPRC and iIRC functions, respectively.

We remark that if (A3) does not hold, one can still use the parameterization
method, but will be unable to recover a linear field of the form (2.5) [49]. Further,
note that there can be no resonance for o € N when [8]

Re(pin)
Re(p2)

This fact implies that for any given system, there are only a finite number of possible
resonances, the size of which is determined by the ratio of the real parts of the “largest”
and “smallest” eigenvalues of R. Note that a two-dimensional system can never
exhibit resonance in the sense of definition SM1. For a more detailed discussion of
the resonance condition, the interested reader may consult [8].

The output of the parameterization method is not unique because the amplitude
coordinates are defined up to an arbitrary multiplicative factor (see (2.8); any scalar
multiple of an eigenvector is still an eigenvector). While any choice of normalization is
equivalent mathematically, it is desirable to choose a normalization that, in practice,
results in solutions which do not rapidly grow or decay. A precise description of
the parameterization method, along with step-by-step instructions for its numerical
implementation, may be found in [49)].

(2.11) 2 < |a| <

2.2. infinitesimal Shape Response Curve. In this section, we briefly review
iSRC theory. Consider a one parameter family of n-dimensional vector fields describ-
ing the dynamics of a single oscillator (coupled oscillators are analyzed later)

(2.12) x' = F(x;¢€) = f(x) + € u(x)

with u(x) a parametric perturbation of strength e. If the following single oscillator
iSRC assumptions hold: [67]
e (B1) There exists an open subset @ C R™ and an open neighborhood of zero
Z C R such that the vector field F(x;¢) : Q x Z — R™ is C! in both the
coordinates x € 2, and the perturbation strength e € Z.
e (B2) For € € Z, system (2.12) admits a linearly asymptotically stable T'(e)-
periodic limit cycle, y(¢;€) € Q, i.e., that {vy(t;¢€) |t € [0,T)} € Q.
e (B3) The limit cycle period T'(¢) has C' dependence on .
then (2.12) has a well-defined iSRC, 71 (t) = v (¢t + T'), satisfying
(2.13)

Y (8) = DF(YE ) () + 11 F (115 0)) + 2L Qi)

Oe
e=0
with
T . .
(2.14) n :—%/ (Zo(s))T% ds
0 € o

5
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In (2.14), T = T(0) is the unperturbed period of (2.12) and Zj is the iPRC.
The iSRC describes the shape response (deformation of the orbit) of a limit cycle
under sustained perturbation to linear order in e. That is, one writes

(2.15) Y(7T(t);€) = v(t;0) + ey1(t) + O(e?), uniformly in ¢
(2.16) T(t) =t (1 —ev1 + O(e?))

The scaled time, 7(t) (discussed in more detail in the proof of Lemma 3.2), permits
a consistent comparison of the perturbed and unperturbed orbits at corresponding
time points [67]. Eq. (2.13) can be understood in the following way. The first term
is the variational equation describing the contraction of a small perturbation back to
the stable limit cycle. The second term takes into account the shift in timing due to
the perturbation, with v the change in frequency to linear order in €. The third term
represents a shape change (transverse expansion) due to the perturbation. Intuitively,
the natural contraction of dynamics toward the limit cycle is exactly balanced by the
transverse expansion due to the perturbation, resulting in a periodic solution.

The initial condition for (2.13), p1, is chosen by fixing a Poincaré section, trans-
verse to the unperturbed limit cycle at base point py = Xg, which intersects the
perturbed limit cycle at point p.. One then chooses p; as the first order description
of p. by writing

Pe — Po
€

(2.17) P =

The Poincaré section, II, must be chosen transverse to f(xg), but is otherwise ar-

bitrary. Let ’Pén_l)(xo) be the space of smooth, simply connected (n — 1) dimensional
surfaces transverse to f(xg) with normal vector 7. Formally, we choose a section II

(2.18) 1 CpnBi(x), pePL (xo)

where BJ}(xo) is the n-dimensional ball centered at xo with radius 7 > 0, chosen
so that II does not intersect the unperturbed and perturbed orbits in more than
one location. To eliminate ambiguity, we establish the convention that the sign of the
normal vector, 7, is chosen so that 7i- f(xg) > 0. Different choices of section will result
in different intersection points p. (and thus different initial conditions p;), which in
turn will result in different iISRCs. By Lemma 2.3 in [67], these iSRCs differ only by
a fixed offset, which underlines an important fact: the iSRC is a vector equivalence
class, whose elements are specific iISRCs determined by specific Poincaré section.

3. Results. We specify conditions under which a general class of systems is
amenable to analysis via phase-amplitude reduction and the iSRC simultaneously.

THEOREM 3.1. Consider a one parameter family of n-dimensional vector fields
describing the dynamics of a single oscillator

(3.1) X(t:€) = F(x;€) = f(x) + ¢ u(x)

subject to a parametric perturbation u(x) with strength €. Suppose that (3.1) satisfies
the iSRC phase-amplitude assumptions
e (C1) There exists an open subset Q@ C R™ and an open neighborhood of zero
Z C R such that the vector field F(x;e) : Q x T — R™ is analytic in the
coordinates x € Q and C' in the perturbation e € T.

6
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e (C2) Fore € T, the system (3.1) admits a linearly asymptotically stable T'(¢)-
periodic limit cycle v(t;€) € Q, where T(€) has C' dependence on e.
e (C3) The non-resonance condition (A3) holds.
Then, (3.1) admits a well-defined iSRC, y1(t) = v (t + T), with initial condition
7(0) = p1 specified by a choice of Poincaré section transverse to f(xq). Moreover,

when expressed in phase-amplitude coordinates, the iSRC takes the form
(3.2)

i Jy (1 + Zols) - ul(s:0)) ) s

exp(k berat=9) (1) () - ul~(s; s

wy= | N @ (3(5:0)))d
I e CRORTCIE) I

where the linear change in frequency, v, is given by

(3.3) v = _% /T(ZO(S))TWS;O);E)
0

Oe

e=0

Here, Zy and Iéj) are the iPRC and iIRC of the unperturbed system (expressed in its
original coordinates), the k; are the non-unitary Floguet exponents, and T = T(0).

For the sake of clarity, we give the proof of Theorem 3.1 in two steps. Lemma
3.2 shows that system (3.1) admits a well-defined iISRC. Lemma 3.3 shows that the
iSRC can be expressed in phase-amplitude coordinates. A detailed discussion of the
initial condition, p;, is presented in the next section. Note that the iSRC phase-
amplitude assumptions (C1-C3) represent a concise restatement of the single oscillator
iSRC assumptions (B1-B3) and the phase-amplitude reduction assumptions (A1-A3)
without overlap.

LEMMA 3.2. Under assumptions (C1-C2), system (3.1) admits a well-defined
iSRC, y1(t) = 1 (t + T), which satisfies

OF (v(t;0);€)

(3.4) Y1(t) = Df(y(t:0)y (t) + v f(v(t:0)) + e
e=0
with linear shift in frequency, v1, given by
T .0)-
(3.5) p = _l/ (ZO(S))TM ds
T 0 86 -0

Proof. Define a new time variable 7(¢t) = wt for some w(e) = w € R to be
determined. Written as x(7(t); €), the solution of (3.1) obeys

dx

(3.6) W

=F(x,¢)
Assumptions (C1-C2) guarantee a solution of the form

x(7(t);€) = v(t;0) + ev1(t) + O(e?)  (uniformly in t)
w=1+ew +O(e)
7

(3.7)
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Substitution of (3.7) into (3.6) gives, for the LHS

(3.8)
(14 ewn +0(e) (V(5:0) + x4 (1) + O(e))
=7/ (£;0) + €, (t) + ewr (£;0) + O(€)
= F(7(£;0); 0) + € [7; (t) + w1/ (t;0)] + O(€?)

and for the RHS

F(x;e) = F('y(t; 0) + i (t) + O(e?); e) + O(e)

= F(1(t50)50) + €5 (0(6:0) + e (t) + O():

(3.9) OF dx OF
P + —_

= F(v(t0);0) + ¢ % dc T Be

+ (9(62)
e=0

Df(v(t;0))71(t) + %*f(v(t; 0);€)

(v(t;0);€)

= F(y(t;0);0) + € +0(€)

e=0

Equating the two expressions (noting that the O(e) terms match) and dropping
higher order terms gives

(310) ()~ DI = 1 S4(150)) + o (5(1:0)50)

e=0

The Fredholm alternative establishes a solvability condition for (3.10). Note that the
operator acting on 7 (¢) is given by

(3.11) Lin(®)] = [jt —Df((t; 0))] (1(t))
along with T-periodic boundary conditions. The adjoint of L is
(3.12) Ll ()] = [ - (Df(v(t;O)))T] (n ()

Note that the iPRC (up to normalization) spans the nullspace of L. By the Fredholm
alternative, a solvability condition for the existence of a T-periodic solution is

) ds
e=0

T
(3.13) 0= /0 (Zo(s))" < — w1 f(7(s;0)) + %(7(5;0); €)

Rearranging gives

(3.14) w = = _ H__,
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where we used the normalization condition (2.8) pertaining to the iPRC function and
where T7 represents the linear shift in period [67]. As was to be shown, we conclude
that the iSRC equation, along with appropriate initial condition, is given by

(3.15) M) = Df(y(E0)n(t) +vif(y(£0)) + %lz(v(t; 0);€) 0
e=0

The proof of Lemma 3.2 offers a derivation of the iSRC equation distinct from
the original found in [67]. In [67] the re-scaling of time was imposed first, followed
by the deformation of the orbit, without invoking the Fredholm alternative. Here,
the shift in frequency falls out naturally from the solvability condition. Moreover,
our derivation extends directly to treatment of coupled oscillators, as shown below.
Our derivation follows an asymptotic analysis similar to that found in [28]. Lemma
3.3 to follow demonstrates that the iSRC equation admits a simple representation in
phase-amplitude coordinates and completes the proof of Theorem 3.1.

LEMMA 3.3. Under assumptions (C1-C3), the iSRC of system (3.1) can be ex-
pressed in phase-amplitude coordinates
(3.16)

1 Jo (”1 + Zo(s) - u(y(s;

eXp(/th) ft eKZ2(t—S) 132) (S) . u(fy
() = N pt | ( _

—~
»
O ~—
~—
~—
N—
U
»

exp(Knt) f(f efin(t—s) (I(gn) (s) - u(y(s; 0)))d8

Proof. Assumptions (C1-C2) in conjunction with Lemma 3.2 show that (3.1) ad-
mits a well-defined iISRC. Under the additional assumption (C3), system (3.1) is guar-
anteed to admit a phase-amplitude reduction as described in §2.1.2. Recall that the
phase-amplitude dynamics are given, to linear order in €, by

0 =1+¢-(Z(0,09,...,00)) u(x)

o =kjo;+e-(19(0,00,...,00) u(x)

(3.17)

In order to write the equations in terms of phase-amplitude coordinates alone, we
substitute x = K (0, 03, ...,0,), in the u(x) terms. Expanding the K function in terms
of the amplitude coordinates, we note that the zeroth order term is the unperturbed
limit cycle [49]. Therefore, writing &@ = [02, ..., 0,]T, we have x = K(0,5) = v(¢;0) +
O(]|&]|). Consequently, the phase-amplitude dynamics go as

0 =1+e(2(0,5)) uly(t:0) + O(|5]))

7} = w0y + ¢+ (19(0,3) uly(1:0) + O(|31))

Note these dynamics are now in the form ¢ = F(&;€) = f(€) + € - v(€), that is (3.1)
with &€ = [0,01,...,0,]T, f(&) = [1, k209, ..., kn0,]T, and

v(€) = [Z(&), I (€),... . 1) u(+(£:0) + O(||7])))-

Therefore, the iSRC equation, for this particular system, reads

(3.18)

0 1 Z(o)(t) ~u(y(t;0))
) 0 I - u ;0
319) - BN TR o
Fin 0] LIg™(t) - u(v(t;0))
9
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The O(]|@]|) terms of the iPRC, iIRC, and the argument of u do not appear in (3.19)
because we evaluate on the unperturbed limit-cycle solution, where the amplitude
coordinates are zero. The resulting n equations are linear and uncoupled. Integration
over one period with initial condition ~;(0) = p; (specified by an arbitrary choice of
Poincaré section) gives the result. |

We remark that computation of the iSRC in phase-amplitude coordinates is more
efficient than in Cartesian coordinates because solving a system of ODEs is not nec-
essary. One need only integrate the inner product of the iPRC or iIRC with the given
perturbation u(x). Appendix E compares our Theorem 3.1 to related results in [71].

The form of the solution provides a direct relation between the iSRC and the
iPRC and iIRC. Theorem 3.1 establishes that the components of the infinitesimal
shape-response curve, when expressed in phase-amplitude coordinates, are directly
related to the inner products of the infinitesimal isostable response curves with the
static perturbation u(x). The phase component of the iSRC is a sum of three terms:
the constant offset (p1); arises from the arbitrary choice of initial phase, the term vt
denotes a constant rate of increase, accounting for a linear change in frequency given
by v1, and the integral term highlights the role of the iPRC in describing the phase
shift of the perturbed system with respect to the unperturbed system. The amplitude
components of the iSRC are a sum of two terms: the term exp(x;t)(p1); describes an
exponential decay to the limit cycle, which is balanced by a transverse expansion due
to the perturbation given by the integral term with the iIRC.

Note that there exist systems with a well defined iSRC that do not admit a
phase-amplitude reduction to arbitrarily high order. For example, the system
3

¥=x—-2°—y+e

(3.20) 72

y =z +alz

with a = —0.7 satisfies the single oscillator iSRC assumptions (B1-B3) and therefore
admits a well-defined iSRC. However, the system (3.20) does not admit a phase-
amplitude reduction via the parameterization method (or by Taylor expansions) to
arbitrary order because assumption (C1) is not met. Specifically, the term |=|>/? does
not admit well defined derivatives (of order 2 or greater) on the limit-cycle solution
(the derivatives are not defined at = 0). Because the high order phase-amplitude
reduction methods require f to be differentiable arbitrarily many times on the limit-
cycle solution to achieve a reduction of arbitrarily high order, both methods will fail.
We remark that one could implement a phase-amplitude reduction for system (3.20)
up to 1st order. However, such a reduction is of limited use because higher order
terms are necessary, in general, to obtain an accurate representation of the dynamics.
The phase-amplitude reduction assumptions (A1-A3) pertain only to the unper-
turbed system (e = 0). To state that a system which admits a phase-amplitude
reduction also admits a well-defined iSRC, one must consider the perturbation u(x)
on a case by case basis and verify the single oscillator iISRC assumptions (B1-B3).

3.1. iSRC Initial Condition. Here, we derive an expression for the initial
condition, p;, as the solution to a linear system. Subsequently, we show that in
phase-amplitude coordinates, the linear system for p; admits a simple form.

LEMMA 3.4. Under the single oscillator iSRC assumptions (B1-B3), and with a
choice of Poincaré section transverse to the flow of the unperturbed system at the base
point, the system (3.1) admits an iSRC with initial condition p1, given as the solution

10
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to the linear system

OF (v(s;0);€)

(I = M)ps :M/o ®(0,s) [Vlf('V(SQO))+ e

(3.21)

] ds
e=0

where M is the monodromy matriz, ®(t,ty) is the fundamental matriz solution, and i
is the normal vector of the chosen Poincaré section. Furthermore, the system (3.21)
is mon-singular and hence specifies a unique initial condition.

ﬁ'ple

Proof. For convenience, express the iSRC equation in simplified notation

(3.22)
V= AWy + b0, A() = DE(YED)),  b(t) = v f(y(t;0)) + 2LOED:)

Oe

e=0

The solution to such a periodic linear inhomogeneous equation is expressed as [4]

(3.23) 1 (t) = B(2,0) [71(0)+ /O @(o,s)b(s)ds]

Note that ®(0, s) is the inverse of the fundamental matrix solution.
Suppose that the true initial condition is given by 71(0) = p;. It must be that
v1(T) = p1 by the periodicity of v, (¢). Substitution and simplification gives

T
(3.24) (I —M)p, = M/o D(0, s)b(s)ds

This is a linear system, but it is singular as the monodromy matrix has a unitary
eigenvalue. We remove this degree of freedom by considering the modified system

T
(I—M)p = M/o (0, s)b(s)ds

‘p1=0

(3.25)

S

where 77 is the normal vector to the Poincare section chosen for the problem. We now
show that this modified linear system is non-singular.

It is clear that dim null(I — M) = 1 by the linear asymptotic stability of the limit
cycle. However, we can further characterize the nullspace of I — M by recognizing that
any vector v € null(I — M) is an eigenvector associated with the unit eigenvalue of
M. This vector is none other than the velocity at the base point on the unperturbed
limit cycle, f(x0). Consequently, all such vectors v satisfy

(3.26) v=kf(x0), k€eR

By assumption, the chosen Poincaré section is transverse to the flow at xg. It follows
that the section cannot be tangent to the flow at x¢, which implies that

(3.27) fi-v#0, véenul(l— M)
Denote
(3.28) M= {I qTM}
7l
11
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Suppose by contradiction that .# is singular. Then, there must exist some y # 0 such
that .#y = 0. That is, we have simultaneously

(3.29) (I-M)y=0, ily=0

From the first equation, y € null(I — M), which implies that 77y # 0, contradicting
the second equation. Hence, the equation (3.21) is a linear system with a trivial
nullspace and thus specifies a unique solution. 0

We now show that this system simplifies in phase-amplitude coordinates.

LEMMA 3.5. Under the iSRC phase-amplitude assumptions (C1-C3), the iSRC
initial condition, p1, in phase-amplitude coordinates, satisfies a linear system

(3.30)
0 q r 0 1
1 — olRaT) ST ewa(T=s) ( 19(s) - u(y(s: o)))ds
p1 = :
| — ern) Jy et =D (1§ (s) - u((5:0) ) ds
. 0

where 1 is a vector normal to the Poincaré section transverse to the flow of the
unperturbed system at the intersection point.

Proof. Observe that in phase-amplitude coordinates

(3.31)
1 - Z(o)(t) ~u(y(t;0);0)
B elrat OF(y(t;0);6)| I (t) - u(y(t; 0); 0)
o(t,0) = Y _ = :
elFnt) 1) - u(v(t;0); 0)

The result follows from rewriting equation (3.21) in phase-amplitude coordinates. 0O

The form of the linear system in phase-amplitude coordinates underlines why
the system is singular. While the amplitude coordinates of the initial condition are
uniquely specified, the initial phase is arbitrary. To fix a unique initial condition, one
must in turn fix an appropriate Poincaré section. Mathematically, this is accomplished
by choosing an appropriate normal vector 7i.

Often, a specific choice of Poincaré section is well-suited for a particular problem.
In neuron oscillator models, it is a common convention to fix a reference phase when
the voltage component reaches a maximum [16]. Other systems admit limit-cycle
solutions which may be divided into regions [67]. The dividers in each of these systems
are natural candidates for a particular choice of Poincaré section. In phase-amplitude
coordinates, it is straightforward to choose an isochron of the system as a Poincaré
section. One need only choose the vector normal to the flow of the phase. In two
dimensions, one would choose a section spanned by ¢= (0, 1) (see Figure 3.1).

Choosing the Poincaré section to be an isochron of the original system corresponds
to setting ny = [1,0,...,0], hence the first component of p; (the phase shift) must
be identically zero. The remaining components are determined by the 2nd through
(n + 1)st rows of (3.30).

12
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FIGURE 3.1. Limit-cycle dynamics in phase-amplitude coordinates (left) and Cartesian coor-
dinates (right). Shown are an unperturbed limit cycle (black) and a perturbed limit cycle (orange)
overlayed with isochrons (gray) and isostable level curves (pink). An isochron is chosen as a partic-
ular choice of Poincaré section (cyan). The dynamics are considerably simplified in phase-amplitude
coordinates as opposed to Cartesian coordinates. The dynamics correspond to the simplified circa-
dian rhythm model considered in §/./.

The computation of the initial condition is efficient in phase-amplitude coordi-
nates. In Cartesian coordinates, one must solve an ODE (the variational equation) to
obtain the fundamental matrix solution at each time-step. One must also invert the
fundamental matrix solution at each time-step, which can introduce numerical errors
if ill-conditioned. In phase-amplitude coordinates, one need only compute integrals.

Theorem 3.1 and Lemma 3.5 show that iSRC computations simplify dramatically
in phase-amplitude coordinates, regardless of the system’s dimension. Methods exist
for mapping the result to the original Cartesian coordinates, i.e., Eq. (2.9), yet often
involve non-trivial computations for high-dimensional systems [46, 49, 72].

3.2. iSRC Equation (Coupled Oscillators with Identical Periods). In
this section, we consider applications of the iISRC and phase-amplitude reduction to
systems of two coupled oscillators with identical periods. Formally, we consider an
n-dimensional system

x'| _ [F(xy; 5)} [f(X)] {Uf(x, y)}
(3.32) [y’} {G(%x; 3] [9) ug(y, %)
with x € RP, y € R?, p+ ¢ = n, and where us(x,y) and uy4(y,x) are coupling

functions with strength §. By letting z = [xT y 7|7 and u(z) = [us(x,y)T uy(y,x)T]T
we express (3.32) more concisely as

(3.33) z' = H(z,0) = h(z)+§ - u(z)

We consider only cases where the uncoupled dynamics (6 = 0) admit non-constant
limit-cycle solutions, v¢(t; 0) and ~4(¢; 0). It is possible to introduce an arbitrary phase
shift into one of the uncoupled limit cycles, and therefore none of the n-dimensional
orbits are limit cycles when § = 0 because they are neither unique nor isolated.

We are interested in studying (3.32-3.33) in the case of 1:1 mode-locked solutions
(for § # 0), by which we mean a non-constant stable limit cycle z(t) = y(¢;0) char-
acterized by the property that the corresponding coupled trajectories of the f and g
dynamics have the same (minimal) period.

13
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LEMMA 3.6. Consider a system of the form (3.33) and assume that the coupled
oscillator iSRC' assumptions hold:
e (D1) There exists an open subset @ C R™ and an open neighborhood of zero
T C R such that the vector field H(z;0) : Q x T — R™ is C! in both the
coordinates z C §) and the perturbation strength § € L.
e (D2) When 6 = 0, the uncoupled dynamics admit non-constant linearly
asymptotically stable limit-cycle solutions, v¢(t;0) and v4(t;0), of period T
o (D3) For 6 € T\ {0}, system (3.33) admits a unique linearly asymptotically
stable limit cycle, v(t;6) € §2, corresponding to a 1:1 mode locked solution.
e (D4) The period of the 1:1 mode-locked solution is given by T(§), which has
C! dependence in § € T, and satisfies lims_so T(6) = T.
Then, (3.33) has a well-defined iSRC which is expressed as set of uncoupled equations

(3.34)
(1) = DI 00 + w17y 10)) 4 PO L 000D
6=0
O0G (74(t + A;0),7£(;0);0)

(1”)' = Dyl (¢ + A5 0N + 19 (v, (¢t + 450)) + 7

6=0

The linear shift in frequency, v1, and the constant phase-shift, A, are uniquely deter-
mined by the equations

T . . .
v = _%/ (Zéf)(s))TaF(’Yf(Sy0),’;;(8+A,O)76) ds
0
(3.35) ] .
- _l/ (29 (5 + a)T IG5+ 8:0),77(5:00:9) |-
T Jo a5 _

The initial condition for (3.34) is discussed in more detail after the proof.

Proof. Note that a priori, the uncoupled oscillators have an arbitrary phase offset.
Explicitly, denote the time variable for the first oscillator as t; = t 4+ ¢; and for the
second oscillator as to = t + ¢o, where ¢1,¢2 € [0,T) are constant phase offsets
determined by a particular choice of base points, x¢ and yq, respectively. Define new
time variables, 7;(t) = wt; for some w € R to be determined. In these new coordinates,
written as x(71(t);0) and y(72(t); d), the solution of (3.32) obeys

W = Plxy:0)
(3.36) 71
B Gy x:0)
wde - y7 )

Assumptions (D1-D4) guarantee a solution of the form

x(71(£):8) = 4 (t + ¢1:0) + 69\ (1) + O(6?)  (uniformly in ¢)
(3.37) Y(72(£): 6) = vyt + ¢2;0) + 64\ (£) + O(6%)  (uniformly in t)
w=1+dws + 0(62)

for certain values of ¢ — ¢1, to be determined in the following. Substituting (3.37)
14
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191 into (3.36) for the x dynamics gives, for the LHS

wd—x = (1+ dwy + 0(52))1

o o [ o0 + 60 () + 0%

190 (3.38)

= F(rp(t+ 6130)) + 8 [wr f (v (t + 613 0)) + (17 (1)) | + O(8%)

193 and for the RHS

(3.39)
F(x,y;6) = F(y5(t + ¢150) + 097 (£) + O(62), 74 (t + 623 0) + 6117 (1) + O(82); 8)

= F(y¢(t+ ¢1;0),74(t + ¢2;0);0)
dF
494 +5%
= F(y¢(t+ ¢1;0),74(t + ¢2;0);0)
OFdx OFdy  OF

oxds oydo s

+0(8?)
6=0

(v (t+ 015 0), 74 (t + $250);9)

(vt + 6150),7g(t + ¢2;0);0)| 4+ O(6?)

195 Note that F(v¢(t + ¢150),79(t + ¢2;0);0) = F(v¢(t + ¢150),0;0) = f(v¢(t + ¢1;0))
196 because the y dependence arises only for § # 0. Equating the two sides (neglecting
497 higher order terms) and simplifying gives

wif(vp(t+ 61:0) + (W) = Df(4(t + d150)0) +0

108 (3.40) N OF (v¢(t + ¢150),74(t + ¢2;0);0)
150

6=0

499  The analysis for the y dynamics is similar. We find that

(’Ygf))/ . Df('yf(t + 1 0))7518) = —wlf('yf(t + ¢1;0))

. OF (7 (t + ¢1;0),74(t + ¢2;0);0)

96
so0 (341 ), (9) "
(M”) = Dg(vy(t + ¢2;0)) 7" = —w19(74(t + ¢2;0))

n OG(7g(t + ¢2;0),v¢(t + ¢1;0);0)
15))

6=0

501 The full system can be expressed as a block n-dimensional system

(3.42)
/
e :[Dﬂwﬁ+¢n®) 0 ] %P _M[ﬂw@+¢n®q
0 | 0 Dyg(vg(t + ¢2;0))] |49 9(7q(t + ¢2:0))
OF (v (t+61:0),74 (t+¢250)36)
+ | 06 (g (1 62:0) v (t461:0):6)
9 6=0
15
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We find a solvability condition for (3.42) by employing the Fredholm alternative. The
operator acting on the iSRC is given by

(3.43) L

%”1 _ (d - [Df(vf(t+¢>1;0)) 0 D [ﬁ”]

O 7 0 Dy(y(t + ¢2;0))] ) |49

along with T-periodic boundary conditions. The adjoint is given by

W[ d_[Df<w<t+¢1;o>> 0 ]T 7
49 dt 0 Dg(yy(t + ¢2;0)] | |4

Notice that the nullspace of the adjoint operator is two-dimensional, with

@45)  span(mil(Z)) = span { {Zéf)(? W} | {Zég) " @)] }

where Zéf ) and Zég ) are the iPRCs of the first and second oscillators, respectively.
The Fredholm alternative establishes a solvability condition for a T-periodic solution
by enforcing the simultaneous orthogonality of the inhomogenous term in (3.42) with
both spanning vectors of the nullspace of Lt

=[] (i)

OF (75 (t+¢130),74 (t+¢250);9)
5
OG (g (t+¢2 ;0% Vf (E+¢150);9)
a5

o_/T[ ) r <W1 {f('yf(t+¢1';0))]
0o LZy (t+ ¢2) 9(v4(t + $2;0))
OF (7§ (t+6130) 74 (t+¢2;0);9)
8G(Wg(t+¢2;0§§7f (t+¢1;0);5)]

+

)dt
§=0

>dt
6=0

(3.46)

+

Simplification of the orthogonality condition reveals that

T
0= / (Zéf><t+¢1>>T<—w1f<vf<t+ $10))
0

n OF (74 (t + ¢150), 74 (t + ¢2;0);6)
06

)
§=0

)dt
6=0

(3.47) .
0 :/0 (Zég)(t+¢2))T<—w1g(7g(t+¢2;0))

n IG(vg(t + ¢2;0),v¢(t + ¢1;0);0)
00

16
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Rearranging gives

fOT(Z(()f)(t +¢1)T 6F(’Yf(t+¢1;(gé’yg(t+¢2;0);5) i
“i= Ty 3 e 6=0
(3.48) Jo ' (27 (t + o)) (4t + ¢1; 0))dt
fOT(Z(gg) (t + ¢2)>T aG('Yg(tthbz;O(r;éyf (t+413;0):6) it
w1 = 5=0

fng (Z8(t + ¢2))Tg(Y(t + ¢ 0))dt

Equating the expressions for wq, and exploiting periodicity, gives

T(z{()f)(s))TaF('Yf(s;O)a'Yg(s+¢2_¢1§0)§5) ds
a5
(3.49) " . s ((5:0 .
_ (), 179G (74(8;0), 77 (5 + d1 — $2;0); 0
= [ (@ oy TR s

For convenience, we introduce the notation

g S, S o .
Hf(a):/o (Zé“(s))TaF(Wf( 70),;3( +os0):6)|
. : 0G50y 0)d)|
g Yg(5;0),7r(s +a;0);

In this notation, equation (3.49) becomes
(3.51) Hy(=¢) = Hp(y) =0

where ¥ = ¢o — ¢1 denotes the difference of the phases. Note that the roots of this
equation are equivalent to the fixed points of the ODE

(3.52) V' = 0[Hy(—1)) — Hy(¢)]

a familiar result from weakly coupled oscillator theory [16]. As in the classical theory,
(un)stable fixed points of (3.52) correspond to (un)stable periodic orbits of the full
equations (3.32), to linear order in . By assumption (D3) (unique linearly asymp-
totically stable 1:1 mode-locked solution) the equation (3.52) is guaranteed to have a
unique stable fixed point, ¥* = A, corresponding to a fixed phase offset. Given this
value of A, one can determine w; by either of the equations in (3.49).

Without loss of generality, and for ease of notation, we may choose the phase
constants ¢, and ¢2 so that ¢; = 0 and ¢ = A. Then, the linear change in frequency
of the system is given by

T M . .
v == [ (@ DB SO
0
(3.53) : o
- _l/ (29 (5 4 ayT OG0 (s + 8 0),75(5:0):0) |-
T'Jo 2
6=0
17

This manuscript is for review purposes only.



538

539

ot

gt ot O Ot O Ot Ot Ot Ot O

50

e T TR SRS e NS R SURI O

and, as was to be shown, the iSRC for the n-dimensional system is given by

O [Dfs(150) 0 A
(9) 0 Dy(y(t+A;0))] [4@

71
OF (77 (£50),74 (t+4:0);9)
0G (14 (t-+870) 7 (£:0):0)
a5

(3.54) l

F(s(#:0))
(vt + A;o»} *

+ 1 |:
5=0

Although our proof leverages elements of the classical theory of weakly coupled os-
cillators [16], to the best of our knowledge the iISRC for weakly coupled oscillators has
not been previously described. We showed that the iSRC for the coupled system can
be expressed as a system of uncoupled iISRCs corresponding to each of the oscillators.
To compute the initial condition, one must specify an appropriate Poincaré section for
the full n-dimensional system, in the sense of (2.18). We repeat that this section must
be transverse to the flow of the uncoupled system at the initial condition and must
intersect the perturbed orbit. In contrast to single oscillators, the coupled system
consists of perturbed trajectories corresponding to both oscillators which, in general,
have a certain phase-lag. Any intersection point on the perturbed orbit, specified by
a particular choice of section, must be chosen consistently to respect the phase-lag of
the true perturbed orbit. Given an appropriate choice of section, the initial conditions
for the uncoupled iSRC equations can be computed as for a single oscillator by using
the corresponding components of the normal vector for each computation.

The frequency matching condition (3.49) can be used as a test to determine if a
system admits a 1:1 mode-locked solution for arbitrarily small coupling strengths. By
the assumed existence of such a solution, there must exist a phase offset A so that
the equations are consistent. A lack of consistency indicates that such a solution does
not exist. Appendix B in the supplementary materials contains several examples of
analytically tractable systems to demonstrate this point.

Implementing a phase-amplitude reduction for an n-dimensional system with n >
4 is numerically challenging. It is significant that the iSRC for a system of two
coupled oscillators with identical periods can be deflated into a system of uncoupled
equations corresponding to each oscillator. In practice, one need only implement
a phase-amplitude reduction for each of the individual oscillators (provided that the
phase-amplitude reduction assumptions (A1-A3) hold for each oscillator), allowing for
the study of systems of higher dimensionality using the phase-amplitude framework.

3.3. iSRC Equation (Coupled Oscillators with Non-Identical Periods).
In this section, we apply the iSRC analysis to systems of two coupled oscillators with
non-identical periods. We begin by noting that the condition of non-identical periods
complicates an asymptotic analysis in the style presented above. For systems of two
coupled oscillators with identical periods, a 1:1 mode locked solution is expected for
arbitrarily small coupling strengths, 6. In the case of oscillators with different natural
periods, a 1:1 mode-locked solution is expected to break down as the coupling strength
J tends to zero [23] (see Figure 3.2). In such a case, assumption (D4) does not hold
because the period T'(d) does not depend continuously on 6. Here, we provide an
asymptotic approach that circumvents the continuity issue, and demonstrate that
the iISRC for the system with non-identical periods is a linear combination of two
iSRCs: one corresponding to the shape change induced by the coupling, and another
corresponding to the shape change induced by the timing difference of the oscillators.

18
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FIGURE 3.2. The Arnold tongue for a 4D system: a 2D Stuart-Landau oscillator coupled to a
2D Van der Pol oscillator (see §4.3). The yellow region corresponds to parameter values for which
the system admits a stable 1:1 mode-locked solution. Left: In the case of oscillators with identical
periods (Lemma 3.6), a 1:1 mode-locked solution is expected for any value of the coupling strength,
d. Right: In the case of oscillators with different natural periods (Theorem 3.7), the 1:1 mode-locked
solution is expected to break down as 6 — 0.

THEOREM 3.7. Consider a system of two coupled oscillators

x' = F(x,y;0) = f(x)+ 6 - ur(x,y)

(3.55) y' =Gy, x:6) = gly) +6 - ug(y,x)

withx € RP |y € R?, and p+q = n. Assume that when § = 0, the uncoupled dynamics
admit linearly asymptotically stable limit-cycle solutions, x(t) = v(t) = v (t + Ty)
and y(t) = v4(t) = v4(t + Ty), with Ty > Ty. Assume further that there exists an
open subset J C R\ {0} such that for every 6 € J, (3.55) admits a unique linearly
asymptotically stable 1:1 mode-locked solution. There are two cases:
o (Identical periods) Assume that Ty = Ty, and further that (3.55) satisfies
the coupled oscillator iSRC assumptions (D1-D4). Then, (3.55) admits a
well-defined iSRC' described by Lemma 3.6.
e (Non-identical periods) Assume that Ty < Ty, and that the related system

"= F(x,y; = & X “ur(x
v o= (2420 i

Y =Gy, x;0) = g(y) + 0 - ug(y, x)

satisfies the following assumptions:

— For every (3,6) € [0, 1 —T§/Ty] x T, (3.56) admits a unique linearly
asymptotically stable limit cycle, v(t; 0, (), corresponding to a 1:1 mode-
locked solution.

— When 8 = 0 and § = 0, (3.56) satisfies the coupled oscillator iSRC
assumptions (D1-D/).

— When 8 =0 and § € J, (3.56) satisfies the single oscillator iSRC as-
sumptions (B1-B3).

Then, (3.55) admits a well-defined iSRC to linear order in both the parameters
0 and B. The explicit form of the iSRC is specified in the proof to follow by
equations (3.57), (3.59), and (3.63).

We make several clarifying remarks before proving Theorem 3.7. The related
system (3.56) introduces a timing parameter, §, that shifts the frequency of one of
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the oscillators (one could choose to shift the frequency of either oscillator without
loss of generality). As motivation, shifting the frequency of one of the oscillators
maintains continuity of the period of the limit cycle (in the joint variables z) as a
function of the coupling strength, §. This continuity ensures that our asymptotic
analysis of the system does not break down (see Figure 3.3). Of interest are cases for
which § € J can be treated as a small parameter. In these cases, the existence of
a unique asymptotically stable 1:1 mode-locked solution implies that the ratio of the
periods of the two oscillators is small in the sense that T¢/T; S 1 (see Figure 3.2).
Therefore, the timing parameter, 3, with 0 < § < 1—-T}/T, < 1, can also be treated
as a small parameter.

1
Tf;'Tg

FIGURE 3.3. The Arnold tongue corresponding to 1:1 mode locking for a 4D system: a 2D
Stuart-Landau oscillator coupled to a 2D Van der Pol oscillator (see §4.3). The four steps outlined
in the proof of Theorem 3.7 to compute the iSRC for coupled oscillators with non-identical periods
are labeled. Step 1: The original system of uncoupled oscillators with non-identical periods. Step
2: Uncoupled oscillators with identical periods. Step 3: Coupled oscillators with identical periods
(stable 1:1 mode-locked solution). Step 4: The true 1:1 mode-locked solution to be approzimated by
the four step iSRC analysis. Our analysis requires only horizontal and vertical shifts in parameter
space; this guarantees that the period of the stable 1:1 mode-locked solution depends continuously on
the coupling strength & at all steps, and that our asymptotic analysis of the system remains valid.

Conceptually, we begin at the point labelled “1” in Figure 3.3, where the two
oscillators are uncoupled (6 = 0) and have their original periods Ty < T,. For ease
of notation, define g* = 1 —T¢/T,. At point 1, 3 = §*. From the assumptions of
Theorem 3.7, the two oscillators will exhibit a single limit cycle with 1:1 mode locking
upon increasing 0 sufficiently to a fixed §* € 7, i.e., at point 4 in the ((5,0) plane
(Figure 3.3). However, we cannot study how the coupling distorts the shape of the
oscillators — via the iSRC — by directly introducing the coupling parameter, because
any arc passing from the point 1 to point 4 passes through a region outside the 1:1
mode-locking Arnold tongue. In order to circumvent this difficulty, we pursue an
alternative route. First, we shift the period of one of the oscillators (shifting 8 from
B* to zero) to move from point 1 to point 2. At point 2 we have two uncoupled oscil-
lators with identical periods. But because we have only changed the first oscillator’s
differential equation by multiplying with a decelerating prefactor, the shift from point
1 to point 2 has not changed the shape of the orbit. Next, we shift from point 2 to
point 3 by introducing the coupling (§ — ¢*). The iSRC relating the 1:1 mode-locked
solution at point 3 to the uncoupled, identical-period oscillators at point 2 is given
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by Lemma 3.6. Finally, by reaccelerating the first oscillator back to its orignal period
(8 — B*) we recover the iSRC for the original system of interest: a 1:1 mode-locked
system of two coupled oscillators with nonidentical periods.

The detailed proof of Theorem 3.7 follows.

Proof. In the case of identical periods, the proof is given by Lemma 3.6. If
Ty < T,, we analyze the iSRC of (3.55-3.56) in two steps (corresponding to the
arrows 2 — 3 and 3 — 4 in Figure 3.3). Abusing notation, we denote the uncoupled
limit-cycle dynamics v¢(¢;0, 5) and 74(¢; 0, B), respectively.

Step 1: Fix § = 0 (point 2 in Fig. 3.3) and let 6 — §* € J to couple the oscil-
lators (point 2 — point 3). By assumption, the related system (3.56) with 3 = 0
and 6 = ¢* (coupled oscillators with identical periods) admits a unique linearly
asymptotically stable 1:1 mode-locked solution, (t;6*,0) = ~(t + 7;6*,0). Fur-
thermore, when 8 = 0 and 6 = 0 (uncoupled oscillators with identical periods), by
Lemma 3.6, (3.56) admits a well-defined T-periodic iSRC corresponding to v(¢; 6%, 0),

i) = (TP )T (Y (#)T)T, which satisfies
(3.57)
(Y)Y = Dy (10,00 + 1 f (77 (£0,0))
L OF(17(£:0,0),7(t + A;0); 6,0)

96 .
(YD) = Dg(v,(t + A;0) Y + vy g(7,(t + A;0))
O0G(vq4(t + A;0),7v£(t;0,0);6)
+
96 e

where f (x) = Tf f (x). The linear shift in frequency, v, and the constant phase-shift,
A, are determlned by

L (70 )y OF (17 (:0,0), 7 (s + A;0)56,0)
7 [ @ i

ds
§=0

1 Ty (9) 709G (v4(s + A;0),7(s;0,0);0)
— 7 [ @+ a) o

vy = —

(3.58)

ds
6=0

exactly as in the proof of Lemma 3.6.

Step 2: Let 8 — 8* and keep 6 = §* fixed to reintroduce the timing discrepancy
in the oscillators (point 3 — point 4 in Fig. 3.3). By assumption, when 8 = £* and
d = 0™ (coupled oscillators with non-identical periods), system (3.56) admits a unique
linearly asymptotically stable 1:1 mode-locked solution, v(¢; 8*, 8*) = v(t+T*; 6%, 8*).
Furthermore, when 8 = 0 and § = 6* (stable limit cycle corresponding to a stable 1:1
mode-locked solution), by Lemma 3.2, (3.56) admits a well-defined T-periodic iSRC,
Ty (¢t) corresponding to y(t; 6*, 8*), which satisfies

(3.59)

(DR (yy(t:5%,0),7 (:6%,0):6,0))  DEy(5(t: 8%, 0), 7 (1:5%,0):,0))

F““‘{ B A S A Lwﬂ%uﬁtmmﬂuwnxaﬂrﬂﬂ
~( t 5% 0 ’Yg(t 5.0 ) (5 O) Bﬁ(vf(t;6*70),'yg(t;§*,0);5,5)
[th507N50MJ i
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with linear shift in frequency given by

1 T
(3.60) v=—=[ (Z(s)" [

ds

T Jo o

F (v (£:6™,0),74 (£:6*,0);6,8)
ap
0

where Zy(t) is the iPRC corresponding to v(¢; 6*,0).

Without loss of generality, introduce frequency constants 7;, j = 1,...,4, so that
~vr(mt; 0, 8%), Ti(nat), v(nst, 6%, 0) and y(nat, 6%, B*) are Ty-periodic. These time scal-
ings are introduced so that a pointwise comparison of the unperturbed and perturbed
orbits via the iSRC can be performed in a consistent manner (as in (2.15)) and have
no influence on the shape of the curves. Then, by the computations in steps 1 and 2,

« my _ [7r(mt; 0, 5%)
(3.61) v(nst, *,0) = [ fvgl(t; 0) } +071(t) + O(6?)
and
(3.62) Y(nat; 6%, B) = y(nst; 6%, 0) + L1 (nat) + O(5°)

It follows that

(3.63) (et 6", ) = Pf (m#:0, 5*)} L 8T (8) + BT (1at) +O(82) + O(62)
—_———— ’)/g(t, O)

perturbed orbit — iSRC
unperturbed orbit

so that the iSRC for the original system (3.55) is given by a linear combination of
two iISRCs: one corresponding to the coupling (step 1) and the other corresponding
to the timing discrepancy (step 2). O

Adding the two iSRCs as in (3.63) is valid provided that an appropriate base point
on the intermediate orbit, y(¢;5*,0), is chosen. The iSRC establishes a pointwise
correspondence between unperturbed and perturbed (coupled) orbits. The Poincaré
section chosen in step 1 establishes such a correspondence between the base point
on the unperturbed orbit, y(¢;0,0), and the intersection point of that section with
the intermediate orbit, v(¢;6*,0). A different section chosen in step 2 establishes a
correspondence between the base point on v(¢;6*,0) and the intersection point of this
other section with the perturbed orbit, v(t; 6%, 5*). One way to guarantee that (3.63)
holds, i.e., that the base point on the unperturbed orbit is mapped to the intersection
point on the final perturbed orbit, is to choose the intersection point on ~(t;d*,0)
from step 1 as the base point on v(¢;6*,0) from step 2.

3.4. Tracking Extrema of State Variables. Previous work demonstrated
that the iSRC is useful for tracking how the average value of specific system observ-
ables changes as a parameter is varied [77]. Here, we establish a new result, that
complements the existing theory, by deriving an iSRC-based method to track the ez-
trema of specific system states. Tracking oscillation extrema is particularly useful for
systems with dynamics that change drastically once a certain ‘threshold’ value is met.
Examples include cellular apoptosis [51], stochastic resonance [18], periodically forced
integrate-and-fire neurons [10, 11], motor control systems [21, 39, 68], and the role of
glucose oscillations in diabetes [40].

Recall that the iSRC establishes a pointwise correspondence between unperturbed
and perturbed limit-cycle orbits. By Lemma 2.3 in [67], a particular iSRC (specified
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by a particular choice of Poincaré section) is a member of a vector equivalence class.
Consequently, it is not true in general that the extrema of the unperturbed limit cycle
will have a pointwise correspondence via the iSRC to the extrema of the perturbed
limit cycle. Such a direct correspondence would obtain only for certain choices of
Poincaré section. In such cases, one could add the iSRC to the unperturbed limit
cycle to obtain an approximation for the position of the extremum. To address the
general case, we show how one can determine the point on the unperturbed limit
cycle that maps to an extremum on the perturbed limit cycle, for arbitrary choice of
section, by determining an appropriate phase offset. Without loss of generality, we
consider a maximal value of some component of the limit cycle trajectory; the case of
a minimum can be handled mutatis mutandis.

LEMMA 3.8. Consider a system of the form
(3.64) x'(t;€) = F(x;¢) = f(x) + € - u(x)

which satisfies the single oscillator iSRC assumptions (B1-B3). Fiz a component of
interest 7y - €; for some i € {1,2,...,n}, where & represents the canonical basis vector.
Assume that for this i, v"(t;0) exists and that v(t;0) - €; has a well-defined mazimum
at time ty, in the sense that v" (t,,;0) - €; # 0. Then, the value of this mazimum may
be tracked in the perturbed system to linear order in € by

(3.65) max(y(t;€) - &) = [Y(tm + €2%50) + €y1(tm + €E*)| - € + O(e?)

=k

where the appropriate phase shift, =*, corresponding to an infinitesimal perturbation,
is given by

(Df(v(tm;o))%(tm) + 2E((mill)ic) ) L&
= = e=0
(366 - Df(y(tm;0))f(v(tm;0)) - &

Proof. We seek to maximize the quantity

L&,

(3.67) [v(tm +€Z;0) + €1 (tm + €2)

by finding the optimal value of the phase-shift, =. To solve for =, we expand, then
differentiate

0 "
028—: Yt +€E;0) + ey (t+€2)| - &;
a —_ ! 1 22 11

= 32 |V(60) + €E7'(5:0) + 5 =N (10)

(3.68)

= [P - ~
+e (’h(t) +eEm(t) + 262:2%’@)) + 0(:3)1 €

= [e’y’(t; 0) + 227" (t;0) + e(e’y{ (t) + 62571/(t)> + 0(52)] - €
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Disregarding higher order terms, evaluating at ¢ = t,,, and solving for €= gives

(4 (ts 0) + ex1 t)) -

(7 (tmi 0) + e (tm)) - &

(1]

(3.69) €

Observe that v/ (t,,;0) = f(7(tm;0)) and further that f(v(t,,;0)) - € = 0 because the
ith component of the vector field is necessarily zero at t = t,,,. Therefore,

(ei(t) -

(765 0) + 3 (b)) - &

(3.70) = =—

which implies that

(vitw) @

(3.71) ('y”(tm; 0) + evi’(tm)> i

[1]

Taking the limit as € — 0 gives a formula for the infinitesimal phase-shift, =%, of the
locus of the maximum

/ -

tm T 6
(3.72) g = - i) &
Y (tmao)'ez

with convergence guaranteed by the assumption that v”(¢,,;0) - €; # 0. Observe that
this relation can be expressed using only knowledge of the base system and the iSRC

<Df(’y(tm§0))’yl(tm) | PP tmi0)i0) ) .
=F .
(3.73) = Df(Y(tm30)) f((tm30)) - € 0

We now show that our expression accounts for an arbitrary choice of Poincaré
section. Indeed, note that the rate of change of the maximum as a function of € is

(3.74)
d

de

—

Yt + €2%50) + ey1(tm, + €27) | - €;

de

V(tm; 0) + €279/ (tm; 0) + O(?) + 6(71 (tm) + €2 (tm) + 0(62))] s

= [E*v’(tm; 0) + vl(tm)] - €+ O(e)

Disregarding higher order terms, the rate of change (RoC) of the locus of the maximum
in R™ satisfies

(3.75) RoC of Maximal Point = Z* f(v(t1,,;0)) + 71 (tm)

The expression (3.75) is the O(e) term in an expansion for the true location of the
maximum. If a (reference) Poincaré section is chosen so that the maximum on the
unperturbed limit cycle is mapped to the corresponding maximum on the perturbed
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limit cycle, then Z* = 0 and we obtain the perturbed maximum by adding the iSRC.
Otherwise, we may compare the Poincaré section which was chosen with the previous
(reference) section. By Lemma 2.3 in [67], each of these choices results in two distinct
iSRCs, which are related in that their difference is given by a constant scaling of
the unperturbed vector field: the first term in (3.75). That is, the effect of choosing
a different Poincaré section (choosing a different normal vector 1) is equivalent to
keeping 71 fixed while simultaneously introducing a phase-shift scaling the unperturbed
vector field. Note that =* is a function of 7 by its dependence on the iSRC, v1(t).
This representation makes it clear that to linear order in e, the shift in the locus of
the maximum is given by a linear combination of the iSRC and a scaled vector field
which accounts for the arbitrary choice of Poincaré section.

3.5. Higher Order iSRC Terms. The iSRC analysis holds to only linear order
in the perturbation strength, and hence loses accuracy when large perturbations are
considered. Here, we derive equations for higher order iSRC correction terms. We
proceed by following the proof of Lemma 3.2. The computations are straightforward,
yet it quickly becomes cumbersome to take the required higher order derivatives. To
that end, we adopt notation previously used in [22] to express the required derivatives.

Let P be the set of all partitions of {1,2,...,n}. A partition of a set A is a
grouping of its elements into non-empty subsets so that each a € A is included in
exactly one subset. For example,

(3.76) n=3 = P=/{123, 123, 13[2, 231, 123}

where the notation 12|3, for instance, is meant to represent the partition {{1,2},{3}}.
The sets in each partition are blocks. For example, the partition 12|3 has two blocks,
while the partition 123 has one block.

Consider a composite function (f o g)(z) = f(g(x)), with « € R. Following [22],
the nth derivative of f(g(z)) can be expressed as

n

(3.77) = fg@) =Y P (g(2)) - TT 9PV (@)

dxm
peP Bep

where the notation p € P is understood in the sense that p is an index which runs
through each partition of P, and the notation |p| represents the number of blocks in
that partition. Analogously, the notation B € p is understood in the sense that B
is an index which runs through each block of the partition p, and the notation |B]|
represents the size of each block. For the sake of clarity, writing out (3.77) explicitly
when n = 3 gives

(3.78)
a?i; (g(z)) = fMg® 4 g g1 4 £2) g2 (1) 4 £(2)(2) (1) 4 #3) (1) o(1) (1)
= fWg®) L 352 g2 (1) 4 B3 (53
where the notation k() is the jth derivative of a function h with respect to z. We
now derive an expression for the nth order iSRC correction.

LEMMA 3.9. Consider a system of the form
(3.79) X' (t;e) = F(x5€) = f(x) + € u(x)

with x € RN that satisfies the high-order iSRC assumptions:
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e (E1) There exists an open subset Q@ C RN and an open neighborhood of zero
T C R such that the vector field F(x;e) : Q x T — RN 4s C" in both the
coordinates x € §, and the perturbation strength e € T.
e (E2) For e € I, the system (3.79) admits a linearly asymptotically stable
T (€)-periodic limit cycle v(t;€) € Q, where T(€) has C™ dependence on e.
Then, system (3.79) admits an nth order iSRC expansion of the form

Y(T(t);€) = Y(t;0) + ey1(t) + E292(t) + - - -+ €™ (t)  (uniformly in t)

3.80
(3.80) 7(t) = t(1 — ey — vy — -+ — €'y,

where the formula for v = y(t) with 2 < k < n is given by

(3.81)
k—1 1
Ve =Dfw+ {wf + vy | + 55| 2 £ T IBIs
7j=1 " LpeP Bep
1
9. F)aD) . el
qeQ Ceq
with
(3.82)
17 = 1
V=7 ) (Zo(t))T<ZVﬂ;c—j T Z FPD- H |B1 B
j=1 pEP™ Bep
1
- (Iql) .
+ ) [Z(&F) D11 |C|!70|Ddt
q€Q Ceq
The vector field f, the Jacobian Df = g—i, the derivatives fUP) = gz;ﬂc, and the
derivatives (0.F)1) = gz;;lq{ are evaluated at y(t;0). Here, P* = P\{{1,2,...,k}}

and @ 1s the set of all permutations of {1,2,...,k —1}.

A detailed proof of Lemma 3.9 is provided in Appendix C in the supplementary
materials. We remark that the initial condition for (3.81) describing the dynamics
of a single oscillator is computed as described in the earlier Lemma 3.4. The only
difference is that the inhomogeneous term in the nth order equation changes, i.e., the
b(t) term from the proof of Lemma 3.4 changes. This formalism also applies to the
computation of an iSRC corresponding to coupled oscillators with identical periods,
as in §3.2. In this case, one arrives at a different frequency matching condition for
each higher order correction. In practice, therefore, a different choice of base point
for each +; is required. To ensure that one can add the higher order corrections in a
consistent manner, a different Poincaré section must be chosen for each +; to maintain
the pointwise correspondence established by the original choice of section for ~;.

The higher order iSRC equations must be computed in order, starting with n = 1.
We note that our closed form expression becomes impractical after n = 4 orn =5
because the cardinality of P* becomes quite large. For convenience, we provide the
formula for the iSRC corrections to third order in €
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(3.83)

OF (vo;

Y1 =Df(vo)yr + vif() + %
e=0
102 f(y 0% F(7o; €

%= DG+ |k +wfo)| + 2200 2 TED) ()

, 163 92
V3= Df(v0)ys + |vive +vev +vsf(v0) | + = f(;,m) (m)® + f(zO) (M72)
6 Ox ox
0?F (o5 €) 1 O3 F(v0;¢€) 9
O0x0€ e:O<72) + 2 0x20¢ 6:0(%)

To understand the notation used in these equations, we review formalism pre-
sented in [72]. Let f(v0) = [fi(y) ... fN('yg)]T7 where T denotes the matrix
transpose, and let f;o) = fj(70). Define a sequence of matrices for ¢ > 1

(i-1)
avec(fj (’YO)) c RN"’IXN

(3.84) 17 (0) = =47

where vec(+) is the vectorization operator which stacks the columns of a matrix on top

of each other. In words, f;l) (70) is computed by vectorizing f;l_l)(fyo), then taking
the Jacobian. See Appendix F for an example computation of (3.84). This notation
allows for a convenient representation of the Taylor expansion of f(7g), say about a
small perturbation dx

325, HE (dx) T vee( £ (70))
(3.85) f(vo +dx) = f(y0) + Df(v0)dx + :

S0, L@ (dx) vee(f (0))

where ® is the Kronecker product and, as an example, the superscript is understood
to represent

(3.86) [ (dx)T] = (dx)" ® (dx)" ® (dx)" @ (dx)"

This formalism easily extends to the representation of the higher order derivatives in
(3.83). For example,

51 () [®2 () Jvee({*) (70))
0 .

83)2 (71)2 = .
2(11)TIvee(f1 (70))
(3.87) ® N o
9 o) (1) ® (72) TIvee(£{* (+0))
89@30 (1172) = :

[(7)T ® (72) " Tvee( £ (70))

and so forth.
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We illustrate our results by computing the iSRC terms up to fourth order for

d=z—2)—y+ex

(3.88) )
Yy =x+ey
where ¢ = 0.3 (see Figure 3.4).
x Error y Error High Order LC Approximation
0.1 0.3 2 e
—1
O Q —
x x 02 —_—
% 0.05 %) A 1
- 01 l
) )
= = >
z ° z °f >0
g - g
g %-0.1
5 -0.05 5 4
a A -02
0.1 0.3 2
0 2 4 6 0 2 4 6 -2 -1 0 1 2
time t time t

FIGURE 3.4. Higher order terms can improve the accuracy of the iSRC approzimation. Left:
The difference between the true perturbed solution y(¢; €) and the iSRC approzimation of orders 1 to 4
(red, green, blue, light blue, respectively). The 4th order approzimation is significantly more accurate
than the 1st order. Right: The unperturbed limit cycle, v(¢;0) (light gray), overlayed with the
true perturbed solution, v(t;€) (black), and the 1st (red) and 4th (light blue) iSRC approximations.
Despite the large shape change, the 4th order iSRC approzimation is still accurate.

4. Applications.

4.1. Supercritical Hopf Normal Form. As a pedagogical example, we com-
pute the iSRC for the normal form of a supercritical hopf bifurcation in two dimensions

o= (p—2"— ") —wy

/ 2

4,
1) Y =(p—a"—y’)y +wz

For p > 0, the system admits a periodic solution in the form of a circle

(4.2) x = /pcos(wt), y = /psin(wt)

The amplitude (maximum of the state variables) of this orbit grows as ,/i. We provide
analytic solutions for the iSRC in Cartesian, polar, and phase-amplitude coordinates.

Suppose that w = 1 is fixed. Let py > 0 represent the unperturbed system
amplitude and let € be a small, variable parameter. Let the system amplitude, pu,
vary by writing p = po + € so that the system becomes

o = (o +e—a" -y’ )z —y

4.3
(43) Yy =(o+e—2>—y)y+uo

With initial condition x¢ = (\/ft0,0) and Poincaré section spanned by (1,0) so that
the relative phase difference between the unperturbed and perturbed systems is zero,
one can verify by direct computation (solving (2.13), (2.14), and (3.21)) that the iSRC
is given by (see Appendix G for further details)

(1.4) W) = 5= e
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By (2.15), the iSRC predicts that the perturbed trajectory will be of the form

cos(t)

(4.5) Ve(t) = Vo [sin(t)} +62\;170 [Z?E((:))} <W+ 2\ﬁ> {(sj?r?((g]

and therefore predicts that the amplitude will vary linearly in e with slope 1/(2/p0).
Indeed, note that the rate of change of the system amplitude at pg is given by

4
dp

1
a 2\/1to

H=HK0

(4.6)

and so the iISRC behaves as it should by giving the amplitude change to linear order
in € (see Figure 4.1).

Amplitude vs. Perturbation

1.5

Amplitude

0.5

-1 0 1 2
€

FIGURE 4.1. The amplitude of the Hopf normal form system (4.3) as a function of the pertur-
bation € with o = w = 1. The true system amplitude (black) goes as \/j. The amplitude predicted
by the iSRC (pink) matches the slope of the tangent line to \/p at po (gray).

In polar coordinates, (4.3) becomes
(4.7) =t
| ~ (po+e—1)r

By writing the iSRC equation (2.13) using the polar representation (4.7), one can
directly solve the resulting system and verify that the iSRC is given by

(18) () = [Or]

Direct comparison of equations (4.4) and (4.8) reveals their equivalence. In both
cases, there is no phase shift and the radius increases linearly with respect to € with

rate given by 1/(2/f0).
Finally, we compute the iSRC in phase-amplitude coordinates. One can verify
directly that the iPRC and iIRC for the system are given by

as e R ]
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where the constant a corresponds to the arbitrary scaling constant used in the com-
putation of the K function in the parameterization method [49]. The iIRC is scaled
by an arbitrary constant because the amplitude coordinates are defined up to an
arbitrary multiplicative constant. By substituting these expressions into the iSRC
equation, one may directly verify that the iSRC, in phase-amplitude coordinates, is
given by

(1.10) =] 1|

2a/fro
Note the similarity in structure of the iSRC in polar coordinates and in amplitude
coordinates. The phase component of the iSRC is identical in both coordinate sys-
tems. One can verify that the isochrons (level curves of the phase function) of (4.1)
are evenly spaced spokes of a wheel. Thus, in this simple example the polar phase
variable is identical to the phase variable in isostable coordinates. The radial/am-
plitude component have similar structures, but are not identical due to the arbitrary
multiplicative scaling associated with the amplitude coordinate.

4.2. Coupled Oscillators with Identical Periods. Systems of coupled Van
der Pol oscillators are commonly used as simple mathematical models to describe
physically important phenomena, such as circadian rhythms [53], heart rhythms and
pacemakers [55], and locomotion [36, 38]. It is desirable to understand how the shape
of such oscillations are influenced by sustained perturbations, e.g., changes in the
environment. Here, we demonstrate that our joint phase-amplitude iSRC approach
may be effectively applied to systems of this form. We consider coupling structures
corresponding to both entrainment and synchronization. In each case, we consider
two non-identical Van der Pol oscillators given by

o' =T (@ -2’ —y)

4.11

(4.11) y =Tux

and

(4.12) w=w—-—w®—z+e

2 =w+e

where T = T, /T, is the ratio of the natural period of the first (T,) and second (T3,)
oscillators. Multiplying the dynamics of the first oscillator by the ratio of the periods
ensures that each oscillator has period Ty, yet does not change the shape of the first
oscillator. Here, ¢ = 0.1 is fixed so that oscillator 2 admits a limit-cycle solution
that has slightly perturbed shape in comparison with that of oscillator 1. Note that
each of oscillators 1 and 2 satisfy assumptions (A1-A3) and thus admit well-defined
phase-amplitude reductions via the parameterization method.

4.2.1. Entrainment. We consider a coupled system of the form
=T (x— 2% —y)+ 5w —x)
/
=Tux
(4.13) v \
w=w—w —z+E€
Z=w+e

where 6 = —0.03. Note that this system is of the form (3.32) with u, = 0. We
apply Lemma 3.6 to compute the iSRC of (4.13) in phase-amplitude coordinates.
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Appendix D in the supplementary materials demonstrates that assumptions (D1-D4)
pertaining to Lemma 3.6 are satisfied, both for § < 0 (anti-synchronous) and for
d > 0 (synchronous). We find numerically that the system admits a unique linearly
asymptotically stable 1:1 mode locked solution with the oscillations of the two systems
in anti-synchrony. The dynamics of oscillator 2 are not affected by the coupling; this
model corresponds to a scenario in which oscillator 2 entrains oscillator 1.

In the 1:1 mode locked solution of (4.13), the orbit of oscillator 1 is distorted when
0 # 0, but the orbit of oscillator 2 is unaffected by the perturbation. We combine
phase-amplitude reduction and the iSRC to analyze the shape change of oscillator
1 under entrainment. Recall that by Lemma 3.6, it is necessary only to implement
phase-amplitude reduction and compute the iSRC for each uncoupled system. In the
case of entrainment, we need only compute the iSRC for oscillator 1, as the dynamics
of oscillator 2 remain unchanged. To gauge the numerical accuracy of the iSRC, we
compute the relative Ly norm of the approximation.! Figure 4.2 shows the results.

Oscillator 1 04 iSRC

0.05 V

-0.05

-1.5 -0.1

time t time t
FIGURE 4.2. Dynamics of the entrained and original Van der Pol systems. Left: The perturbed
steady-state trajectories of oscillator 1 (x(t) - gray, and y(t) - light pink) overlayed with its un-
perturbed trajectories (x(t) - black, and y(t) - pink). Right: The difference between the perturbed

and unperturbed trajectories of oscillator 1 (z(t) - black, and y(t) - pink) closely match the iSRC
prediction (z(t) - gray, and y(t) - light pink).

4.2.2. Synchronization. We consider a coupled system of the form

=T (x—2%—y)+ 5w —z)

/
y =Tz

(4.14) / ,
w=w-—w’—z+e+x—w)
Z=w+e

where § = —0.1. We apply Lemma 3.6 to compute the iISRC of (4.14) in phase-
amplitude coordinates. Appendix D in the supplementary materials demonstrates
that assumptions (D1-D4) pertaining to Lemma 3.6 are satisfied for both § < 0
(anti-synchronous) and ¢ > 0 (synchronous). For this choice of parameters, we find
numerically a linearly asymptotically stable 1:1 mode-locked solution with oscillations
in anti-synchrony.

The perturbed four-dimensional orbit consists of a slightly perturbed orbit cor-
responding to oscillator 1 and a slightly perturbed orbit corresponding to oscillator

1We define the error as & = (1/8)|ly(r(£); 8) = 4(t,0) = 7 (DII/I17(r(1): ) — [T (7 (t); 6)dt/T]|.
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2. We use the iSRC in conjunction with phase-amplitude reduction to characterize
the shape change of the orbits of each oscillator. We reiterate that by Lemma 3.6,
one need only implement phase-amplitude reduction and compute the iSRC for each
individual oscillator separately. Figure 4.3 shows the results.

15 Oscillator 1 iSRC 1
s
1
0.5
Z 0
3
0.5
-1
1.5
0 2 4 6
time t
Oscillator 2

0 2 4 6
time t time t

FIGURE 4.3. Dynamics of the synchronized and original Van der Pol systems. The top row cor-
responds to oscillator 1, and the bottom to oscillator 2. Left: the perturbed steady-state trajectories
(z(t),w(t) - gray, and y(t),z(t) - light pink) overlayed with the unperturbed trajectories (x(t),w(t)
- black, and y(t), z(t) - pink). Right: The difference between the perturbed and unperturbed trajec-
tories (z(t), w(t) - black, and y(t), z(t) - pink) closely match the iSRC prediction (z(t), w(t) - gray,
and y(t), z(t) - light pink).

4.3. Coupled Oscillators with Non-Identical Periods. Here, we study the
synchronization of a system of two coupled oscillators with different periods. We
consider a system consisting of a Stuart-Landau oscillator and a Van der Pol oscillator

(p—a®—y*)z—ny+ 6w — )

=
(4.15) Y =(n—a®—y*)y+nz
w = (14 B)(w—w—2)+ 8z —w)
7 =

(1+ 8w

Here p = 0.5 and 8 = 0.001. We take n = 2%, where T' = 6.6632 is the natural period
of the w, z (Van der Pol) dynamics when 8 = 0. Thus, when § = 0 and 8 = 0, the
oscillators have the same period T', but when § = 0 and 5 # 0, the oscillators have
different periods (s, = 6.6632, Tyqp = 6.6566).

We view the uncoupled system as (4.15) with 8 = 0.001 and 6 = 0, so that
the uncoupled oscillators have different periods. We view the true coupled system
as (4.15) with g = 0.001 and § = 0.1. With these choices of parameters, we find
numerically that the system admits a unique linearly asymptotically stable 1:1 mode-
locked solution, with period 77.; = 6.6374. To compute the iSRC of the fully coupled
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system, we proceed according to §3.3, noting that the assumptions of Theorem 3.7
are satisfied. For comparison, we first present results for a first order analysis (Figure
4.4, left panel), then we include higher order terms to improve the approximation of
the coupling iSRC (Figure 4.4, right panel), as derived in §3.5.

EWARVAEWALY

w

0.02

-0.02

FIGURE 4.4. Difference of the uncoupled, isoperiodic orbits (8 = 0,0 = 0) and the fully coupled,
anisoperiodic dynamics (8 = 0.001,8 = 0.1) for the Stuart-Landau / Van der Pol oscillators with
unequal frequencies. To allow consistent computation of the difference in the resulting orbits, in
both cases the trajectories have been scaled (after coupling, for the latter case) to a common period
Tvygp- Black: true difference. Gray: iSRC approximation. Left. 1st order iSRC approzimation.
The iSRC approximation performs reasonably well. Right. Here, a 3rd order iSRC was used for
the coupling strength computation, and a 1st order iSRC was used for the timing perturbation. The
1SRC approximation is excellent.

4.4. Tracking Extrema of State Variables: Circadian Rhythms. Here, we
apply the methods of §3.4 to a two-dimensional model for circadian rhythms describing
the oscillation of core body temperature [17, 25]. The model is given by

, 7 423
== -2 )+B
T 2 y+u(m 3 >+
(4.16) ,
, 24
SN I (e B
Y71 <T> T+ by

where ¢ = 0.13, 7 = 24.2. Here, B is a parameter which represents the influence of
light, x represents endogenous core body temperature, and y is an auxiliary variable.
We ask how different levels of sustained light exposure influence the amplitude of the
circadian rhythm oscillation. Fix By = 0.1 as a baseline level of light exposure. Let €
be a small, variable parameter and write B = By + € so that (4.16) becomes

+ 27 ot
BT KR oTe

2
24
y S Y e x+ (Bo+ €y
12 T

Note that system (4.17) satisfies the single oscillator iSRC assumptions (B1-B3) and
the requirements of Lemma 3.8. When € = 0, the system admits a stable limit-cycle
solution with oscillations of x(t) about zero and with a period of approximately 24
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hours. We use the iSRC to analyze the change in amplitude (maximum) of the z(t)
oscillations as € varies. As shown in Figure 4.5, the iSRC method correctly predicts
the sensitivity of the magnitude (the maximum of x) for small perturbations.

] 4g.‘ircadian Temperature Oscillation

P
< 1.35 P
\>—<’ ~
£
1.3 -
-
1.25

1.2
-0.04  -0.02 0 0.02 0.04
€

FIGURE 4.5. The amplitude of the circadian rhythm model as a function of €. The amplitude
predicted by the iSRC (pink) agrees well with the true amplitude (black).

4.5. Non-Planar System. In this section, we demonstrate that our joint iSRC
phase-amplitude approach is effective for higher dimensional cases. For concreteness,
we study a three-dimensional mean field model for quadratic integrate-and-fire (QIF)
neurons subject to a state dependent perturbation [49]. The model equations are
specified in Appendix H. We use Theorem 3.1 to compute the iSRC of the QIF model
in phase-amplitude coordinates. Results are shown in Figure 4.6.

5. Discussion. Analysis of the dynamics of weakly perturbed and weakly driven
oscillators has been greatly facilitated by the phase-amplitude framework. In phase-
amplitude coordinates, highly non-linear oscillatory dynamics are represented in the
simplest possible form: a phase variable that evolves at a constant rate, and isostable
(amplitude) coordinates that obey linear dynamics. Traditionally, analysis focused
solely on the timing of system dynamics [5, 16, 23, 32, 44], and has since been aug-
mented to incorporate a sense of distance from the underlying limit cycle via the
introduction of isostable coordinates [7, 20, 73, 74, 75]. Nevertheless, analysis of cou-
pled oscillators is still mainly understood in terms of the timing of the oscillations;
for example, a recent study [46] implemented a phase-amplitude reduction to study
systems of coupled oscillators, but leveraged knowledge of the amplitude coordinates
to arrive at an improved phase-based description of the system dynamics, rather than
to study deformations of the trajectory.

Despite the importance of oscillation amplitude in many physical applications,
systematic studies on this topic remain lacking. Existing techniques, such as phase-
amplitude reduction and the infinitesimal shape response curve, provide a means to
study the shape change of weakly perturbed oscillations. However, to the best of
our knowledge, no published works have thus far addressed the relation between the
iSRC and phase-amplitude methods, or used them in tandem as a joint approach to
study oscillation amplitude. In this work, we fill this gap by developing a general
framework to study the shape change of perturbed oscillations using a joint iSRC
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FIGURE 4.6. Dynamics of the three-dimensional QIF model. Top Row: the unperturbed (black),
perturbed (grey), and iSRC approxzimation (colored) orbits for the x (left), y (middle), and z (right)
state variables. The inset is centered at t = 2.25. Bottom Row: the difference between the perturbed
and unperturbed orbits (black) closely matches the iSRC prediction (x - red, y - green, z - blue).

phase-amplitude approach.

We specify conditions under which a general class of systems can be analyzed by
the iISRC and by phase-amplitude reduction simultaneously. While the iSRC satisfies
an ODE which is valid for any coordinate system, we show that potentially highly
non-linear iISRC behavior in Cartesian coordinates has a dramatically simple repre-
sentation in phase-amplitude coordinates. Moreover, by directly relating the iPRC
and iIRC to the iSRC, we unify the two methods and demonstrate that our joint
approach offers greater conceptual clarity than either of the methods in isolation. In
particular, the iPRC and iIRC completely characterize the influence of an arbitrary
static perturbation on the shape change of stable limit-cycle dynamics.

In addition to its conceptual importance, we show that the iSRC also leads to
practical tools. We use the iSRC in conjunction with phase-amplitude reduction to
analyze the synchronization and entrainment of systems of coupled oscillators. In
the case of identical periods, we illustrate that one need only analyze each individual
oscillator. This analysis allows one to implement lower dimensional phase-amplitude
reductions to study high dimensional systems, which can significantly facilitate nu-
merical computation. Previous work [77] demonstrated how the iSRC may be used
to track the average of specific system observables in limit-cycle systems subject to
parametric perturbation. Here, we complement existing theory by showing how the
iSRC may be used to track the eztrema of system states under perturbation. Despite
these advances, some open questions remain.

We demonstrated the effectiveness of the phase-amplitude iSRC theory on two-
and three-dimensional oscillators. Theoretically, such analysis is applicable to oscil-
lators of higher dimension. However, from a practical standpoint, the implementa-
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tion of phase-amplitude reduction in dimensions of four or greater quickly becomes
cumbersome. Moreover, the non-resonance condition (A3) is not trivially satisfied in
dimensions greater than two. It would be desirable to develop computational methods
capable of handling such cases.

We developed iSRC theory to analyze the synchronization and entrainment of two
coupled oscillators which admit a 1:1 mode locked solution. Extension of this theory
to systems of N coupled oscillators should follow straightforwardly from the analysis
presented here, yet remains to be implemented numerically. More interesting is the
case of N coupled oscillators which admit a non-trivial p : ¢ mode-locked solution.
This behavior is observed in physical systems, such as coupling between respiration
and locomotion [3], or in neuron models [10], and is worth pursuing in future works.

The work presented here facilitates analysis of coupled deterministic oscillators.
However, physically realistic models often incorporate stochasticity, necessitating the
study of systems of noisy coupled oscillators. While the notion of deterministic phase
as reviewed in this work is not well-defined for stochastic systems, recently notions
of stochastic phase and stochastic isostables have gained traction [6, 47, 48, 50, 57,
66]. Such notions allow for the treatment of stochastic oscillators in much the same
manner as their deterministic counterparts; a natural future goal is to leverage notions
of stochastic phase and amplitude to understand how the effects of coupling and other
sustained perturbations distort both the shape and timing of stochastic oscillators.
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