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Abstract Phase reduction is a well-established method to study weakly driven10

and weakly perturbed oscillators. Traditional phase-reduction approaches character-11

ize the perturbed system dynamics solely in terms of the timing of the oscillations.12

In the case of large perturbations, the introduction of amplitude (isostable) coordi-13

nates improves the accuracy of the phase description by providing a sense of distance14

from the underlying limit cycle. Importantly, phase-amplitude coordinates allow for15

the study of both the timing and shape of system oscillations. A parallel tool is the16

infinitesimal shape response curve (iSRC), a variational method that characterizes17

the shape change of a limit-cycle oscillator under sustained perturbation. Despite the18

importance of oscillation amplitude in a wide range of physical systems, systematic19

studies on the shape change of oscillations remain scarce. Both phase-amplitude co-20

ordinates and the iSRC represent methods to analyze oscillation shape change, yet21

a relationship between the two has not been previously explored. In this work, we22

establish the iSRC and phase-amplitude coordinates as complementary tools to study23

oscillation amplitude. We extend existing iSRC theory and specify conditions under24

which a general class of systems can be analyzed by the joint iSRC phase-amplitude25

approach. We show that the iSRC takes on a dramatically simple form in phase-26

amplitude coordinates, and directly relate the phase and isostable response curves to27

the iSRC. We apply our theory to weakly perturbed single oscillators, and to study28

the synchronization and entrainment of coupled oscillators.29

keywords: isostable coordinates, entrainment, synchronization, limit30
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1. Introduction. Oscillations in physical systems are ubiquitous. Examples33

include flashing fireflies [64], spiking neurons [16, 23, 63], circadian rhythms [2, 17,34

25], chemical reactions [29, 65], and rhythmic movement and locomotion [36, 56,35

69]. Such oscillations can be modeled as non-linear dynamical systems with stable36

limit-cycle solutions.37

The method of phase-reduction has been used extensively to study stable limit-38

cycle oscillations by characterizing the dynamics solely in terms of the timing of the39

oscillations [5, 16, 23, 32, 44]. The infinitesimal phase response curve (iPRC) is a40

useful tool for describing the change in timing of oscillatory dynamics under weak41

perturbation. Representing oscillators in terms of their phase facilitates analysis of42

the synchronization of weakly coupled oscillators, allowing one to predict the existence43

and stability of synchronous solutions, and to identify regions of mode-locking as a44

function of oscillator frequency [23]. Phase reduction has also been used successfully45

to study entrainment of oscillators subject to a weak external input, often in the46

context of a control problem [52, 78].47

Traditional phase-reduction techniques are valid in the limit of weak perturba-48
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tion, but tend to fail when system dynamics stray far from the unperturbed limit-cycle49

solution, such as in the case of large perturbations or large Floquet multipliers. Con-50

sequently, recent efforts have focused on introducing an extended framework that51

incorporates a sense of distance from the periodic orbit to augment a phase-like de-52

scription. Concepts such as local orthogonal rectification [34], moving orthonormal53

coordinates [70], global phase (isochron) descriptions [13, 45], Koopman operator ap-54

proaches [33], and isostable coordinates [7, 20, 73, 74, 75] have gained traction. The55

use of isostable coordinates is particularly convenient as it directly extends the phase56

description, leveraging Floquet theory to introduce amplitude (isostable) coordinates57

that obey linear dynamics. By considering an infinitesimal isostable response curve58

(iIRC), one can accurately predict the influence of weak perturbations on the “shape59

response” of the system, that is, the deformation of its orbit, allowing for a more60

accurate representation of system dynamics. Parallel techniques for studying oscil-61

lation amplitude include the homotopy analysis method [9, 35, 37, 41], nonlinear62

normal modes [54, 58, 59], harmonic balance methods [27, 30, 42], and the infinites-63

imal shape response curve (iSRC) [67, 77]. The iSRC, a variational approach that64

characterizes the shape response of limit-cycle dynamics subject to sustained pertur-65

bations, is especially suitable for studying weakly perturbed systems due to its ease66

of implementation and conceptual transparency. The iSRC gives an analytical ex-67

pression for the shift in the average of any smooth function of the oscillator state; it68

has been used to provide a criterion for homeostasis in physiological systems based69

on oscillatory rather than fixed-point dynamics [77].70

While different methods to analyze oscillator shape change are available, extensive71

literature in this area remains lacking despite the importance of oscillation amplitude72

in many physical systems. Circadian rhythm oscillations have traditionally been stud-73

ied in terms of timing, focusing on sleep disorders, jet lag, and related issues. However,74

recent studies have linked changes in circadian rhythm amplitude to mental health75

disorders, obesity, increased risk of metabolic or cardiovascular disease, and condi-76

tions such as Alzheimer’s or Parkinson’s disease [1, 14, 24, 26, 62]. The oscillation of77

cytosolic Calcium plays a vital role in the regularization of cellular apoptosis; recently78

it was discovered that the amplitude, not the frequency, is the most relevant feature79

of the oscillations in this context [51]. Many mechanical systems display undesirable80

oscillations. Nonlinear aeroelastic systems can exhibit spurious oscillatory behavior,81

which results in system fatigue and decreased maneuverability [60, 61]. In downhole82

drilling systems, vibrations can lead to oscillatory phenomena and the premature fail-83

ure of machine components [31]. In such situations, it is desirable to minimize the84

amplitude of the oscillations. A common approach is to establish a technique for85

estimating the amplitude, then subsequently apply a control strategy. Additionally,86

the amplitude of certain brain oscillations, such as theta-gamma waves, have been87

associated with memory and perception [12, 15].88

To study the shape change of weakly perturbed and weakly driven oscillators, we89

leverage the existing techniques of phase-amplitude reduction and the iSRC, which90

have not been previously considered together. We establish phase-amplitude coordi-91

nates and the iSRC as complimentary approaches; for the first time, we connect the92

iSRC and phase-amplitude coordinates by expressing the iSRC in terms of the iPRC93

and iIRC of a system. We show that studying the iSRC in phase-amplitude coordi-94

nates is fruitful in that it provides intuition and a dramatically simplified conceptual95

approach to study the shape change of oscillations.96

The paper is organized as follows. In section 2, we briefly review previously97

established results pertaining to phase-amplitude reduction and its numerical imple-98
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mentation, and the iSRC. Section 3 contains the main contributions of this work. We99

specify conditions for a general class of systems under which the iSRC may be ex-100

pressed in phase-amplitude coordinates. In these cases, we show that the iSRC takes101

on a simple form. The iSRC is a vector equivalence class; we derive a novel expression102

that identifies the element of this class specified by an arbitrary choice of initial con-103

dition for the iSRC equation. We also derive expressions for higher order corrections104

to the iSRC. As a first application, we show how the complementary phase-amplitude105

iSRC approach may be used to study synchronization and entrainment of coupled106

oscillators. As a second application, we introduce an iSRC-based method to track the107

extrema of specific system states. This approach extends the limit-cycle homeostasis108

criterion [77] to give an expression for critical points (with respect to a perturbation109

parameter of state-variable extrema). In section 4, we apply our theory to several110

examples, including (non-planar) single oscillators under sustained perturbation, and111

the synchronization and entrainment of systems of coupled oscillators. We conclude112

in section 5 with a discussion of the results.113

All codes used to generate the figures in this paper are publicly available at114

https://github.com/MaxKreider/PhaseAmplitudeISRC.git.115

2. Background.116

2.1. Phase-Amplitude Reduction. In this section, we review the basics of117

phase-amplitude reduction. Consider an n-dimensional system118

(2.1) x′ = F (x; ϵ) = f(x) + ϵ · u(x)119

where u(x) is a parametric perturbation and ϵ a small parameter characterizing the120

strength of the perturbation. Assume that when ϵ = 0, (2.1) admits a T -periodic121

stable limit-cycle solution, γ(t; 0) = γ(t + T ; 0). One can define a phase variable122

θ(x(t)) ∈ [0, T ) on the limit cycle so that the phase evolves at a constant rate123

(2.2) θ′ = 1124

The notion of phase can be extended to the basin of attraction, Γ, of the limit cycle125

via isochrons [19, 76], or level sets of the phase function θ(x). If initial condition x0,126

with associated trajectory x(t), lies on the limit cycle with phase θ0, then all initial127

conditions y0 ∈ Γ, giving rise to trajectories y(t), that satisfy128

(2.3) lim
t→∞

∥x(t)− y(t)∥ = 0129

for any norm ∥ · ∥ are said to lie on the same isochron and have the same phase as x0.130

With this convention, the phase is defined in Γ and evolves at a constant rate. When131

|ϵ| ≪ 1, the phase dynamics obey132

(2.4) θ′ = 1 + ϵ · (Z0(θ))
Tu(x) +O

(
ϵ2
)

133

where Z0(θ) is the infinitesimal phase response curve (iPRC) vector and represents134

the gradient of the phase function evaluated on the limit cycle. Eq. (2.4) is useful135

to study the change in timing of system oscillations due to a weak perturbation, but136

can fail to give an accurate representation of the dynamics in the case of strong per-137

turbations. In such cases, one may define an additional n − 1 amplitude (isostable)138

coordinates, σi, that capture a sense of distance in directions transverse to the limit139

cycle. The amplitude coordinates require concepts from Floquet theory, which we140

review in the supplementary materials in Appendix A, including the variational equa-141

tion, the monodromy matrix, Floquet multipliers and exponents, and a non-resonance142

condition pertaining to the numerical implementation of phase-amplitude reduction.143
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2.1.1. Amplitude (Isostable) Coordinates. The additional n− 1 amplitude144

coordinates are defined so that in the absence of perturbation, their dynamics admit145

a simple linear form146

(2.5) θ′ = 1, σ′ = Kσ, K = diag(κ2, κ3, . . . , κn)147

where the κi are the non-trivial Floquet exponents of the system. One may find that148

a subset of the Floquet exponents are highly negative, meaning that the dynamics149

in the corresponding amplitude coordinates decay very rapidly to the limit cycle. In150

practice, one can disregard these directions, resulting in a system of reduced dimension151

with only m ≤ (n − 1) relevant amplitude coordinates [43]. The perturbed (ϵ ̸= 0)152

system dynamics are expressed as153

θ′ = 1 + ϵ · (Z0(θ))
Tu(x) +O(ϵ2)

σ′
j = κjσj + ϵ · (I(j)0 (θ))Tu(x) +O(ϵ2), j = 2, . . . ,m

(2.6)154

where I
(j)
0 are infinitesimal isostable response curves (iIRC), which are the gradients155

of the jth amplitude coordinate evaluated on the limit cycle. In practice, it is common156

to compute the response curves by finding the solution to the adjoint equations [7,157

20, 23, 75]158

dZ0

dt
= −Df(γ(t))TZ0

dI
(j)
0

dt
= −(Df(γ(t))T − κjIn×n)I0, j = 2, . . . ,m

(2.7)159

with T -periodic boundary conditions and normalization constraints160

(Z0(0))
T f(x0) = 1

(I
(j)
0 (0))T vj = 1

(2.8)161

where vj is the eigenvector of the monodromy matrix corresponding to the jth Floquet162

exponent.163

2.1.2. Numerical Implementation. The phase-amplitude framework (2.6) is164

an improvement over a purely phase-based description (2.4), but the resulting expan-165

sions are accurate to only first order in the amplitude variables. Recently, efforts have166

been made to compute higher order corrections, either by Taylor expansion methods167

[46, 72], or by the parameterization method [7, 20, 49]. While both theoretically give168

identical results, we use the parameterization method because we find it to be more ac-169

curate and computationally efficient. More precisely, if the following phase-amplitude170

reduction assumptions hold:171

• (A1) The vector field f(x) is analytic.172

• (A2) System (2.1) admits a linearly asymptotically stable limit cycle,173

γ(t; 0) = γ(t+ T ; 0), when ϵ = 0.174

• (A3) There does not exist a resonance at some order |α| = α2 + · · ·+ αn ≥ 2175

in the sense of definition SM1 (see supplementary materials, Appendix A).176

then (2.1) admits a phase-amplitude reduction to arbitrarily high (finite) order177

θ′ = 1 + ϵ · (Z(θ, σ2, . . . , σm))Tu(x) +O(ϵ2)

σ′
j = κjσj + ϵ · (I(j)(θ, σ2, . . . , σm))Tu(x) +O(ϵ2), j = 2, . . . ,m

x(t) = K(θ, σ2, . . . , σm)

(2.9)178
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The function K(θ, σ2, . . . , σm) should be thought of as a change of coordinates. The179

high order PRC and IRC functions, Z(θ, σ2, . . . , σm) and I(θ, σ2, . . . , σm), are ex-180

pressed as Taylor expansions in terms of the amplitude coordinates. For example, if181

m = 2, one writes182

Z(θ, σ2) = Z0(θ) + σ2Z1(θ) + σ2
2Z2(θ) + . . .

I(2)(θ, σ2) = I
(2)
0 (θ) + σ2I

(2)
1 (θ) + σ2

2I
(2)
2 (θ) + . . .

(2.10)183

where Z0 and I
(2)
0 are the iPRC and iIRC functions, respectively.184

We remark that if (A3) does not hold, one can still use the parameterization185

method, but will be unable to recover a linear field of the form (2.5) [49]. Further,186

note that there can be no resonance for α ∈ Nn when [8]187

(2.11) 2 ≤ |α| ≤ Re(µn)

Re(µ2)
188

This fact implies that for any given system, there are only a finite number of possible189

resonances, the size of which is determined by the ratio of the real parts of the “largest”190

and “smallest” eigenvalues of R. Note that a two-dimensional system can never191

exhibit resonance in the sense of definition SM1. For a more detailed discussion of192

the resonance condition, the interested reader may consult [8].193

The output of the parameterization method is not unique because the amplitude194

coordinates are defined up to an arbitrary multiplicative factor (see (2.8); any scalar195

multiple of an eigenvector is still an eigenvector). While any choice of normalization is196

equivalent mathematically, it is desirable to choose a normalization that, in practice,197

results in solutions which do not rapidly grow or decay. A precise description of198

the parameterization method, along with step-by-step instructions for its numerical199

implementation, may be found in [49].200

2.2. infinitesimal Shape Response Curve. In this section, we briefly review201

iSRC theory. Consider a one parameter family of n-dimensional vector fields describ-202

ing the dynamics of a single oscillator (coupled oscillators are analyzed later)203

(2.12) x′ = F (x; ϵ) = f(x) + ϵ · u(x)204

with u(x) a parametric perturbation of strength ϵ. If the following single oscillator205

iSRC assumptions hold: [67]206

• (B1) There exists an open subset Ω ⊂ Rn and an open neighborhood of zero207

I ⊂ R such that the vector field F (x; ϵ) : Ω × I → Rn is C1 in both the208

coordinates x ∈ Ω, and the perturbation strength ϵ ∈ I.209

• (B2) For ϵ ∈ I, system (2.12) admits a linearly asymptotically stable T (ϵ)-210

periodic limit cycle, γ(t; ϵ) ∈ Ω, i.e., that {γ(t; ϵ) | t ∈ [0, T )} ∈ Ω.211

• (B3) The limit cycle period T (ϵ) has C1 dependence on ϵ.212

then (2.12) has a well-defined iSRC, γ1(t) = γ1(t+ T ), satisfying213

(2.13)

γ′1(t) = Df(γ(t; 0))γ1(t) + ν1f(γ(t; 0)) +
∂F (γ(t; 0); ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

, γ1(0) = γ1(T ) = p1214

with215

(2.14) ν1 = − 1

T

∫ T

0

(Z0(s))
T ∂F (γ(s; 0); ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

ds216
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In (2.14), T = T (0) is the unperturbed period of (2.12) and Z0 is the iPRC.217

The iSRC describes the shape response (deformation of the orbit) of a limit cycle218

under sustained perturbation to linear order in ϵ. That is, one writes219

γ(τ(t); ϵ) = γ(t; 0) + ϵγ1(t) +O(ϵ2), uniformly in t(2.15)220

τ(t) = t
(
1− ϵν1 +O(ϵ2)

)
(2.16)221222

The scaled time, τ(t) (discussed in more detail in the proof of Lemma 3.2), permits223

a consistent comparison of the perturbed and unperturbed orbits at corresponding224

time points [67]. Eq. (2.13) can be understood in the following way. The first term225

is the variational equation describing the contraction of a small perturbation back to226

the stable limit cycle. The second term takes into account the shift in timing due to227

the perturbation, with ν1 the change in frequency to linear order in ϵ. The third term228

represents a shape change (transverse expansion) due to the perturbation. Intuitively,229

the natural contraction of dynamics toward the limit cycle is exactly balanced by the230

transverse expansion due to the perturbation, resulting in a periodic solution.231

The initial condition for (2.13), p1, is chosen by fixing a Poincaré section, trans-232

verse to the unperturbed limit cycle at base point p0 = x0, which intersects the233

perturbed limit cycle at point pϵ. One then chooses p1 as the first order description234

of pϵ by writing235

(2.17) p1 =
pϵ − p0

ϵ
236

The Poincaré section, Π, must be chosen transverse to f(x0), but is otherwise ar-237

bitrary. Let P(n−1)
n⃗ (x0) be the space of smooth, simply connected (n−1) dimensional238

surfaces transverse to f(x0) with normal vector n⃗. Formally, we choose a section Π239

(2.18) Π ⊂ p ∩Bn
η (x0), p ∈ P(n−1)

n⃗ (x0)240

where Bn
η (x0) is the n-dimensional ball centered at x0 with radius η > 0, chosen241

so that Π does not intersect the unperturbed and perturbed orbits in more than242

one location. To eliminate ambiguity, we establish the convention that the sign of the243

normal vector, n⃗, is chosen so that n⃗ ·f(x0) > 0. Different choices of section will result244

in different intersection points pϵ (and thus different initial conditions p1), which in245

turn will result in different iSRCs. By Lemma 2.3 in [67], these iSRCs differ only by246

a fixed offset, which underlines an important fact: the iSRC is a vector equivalence247

class, whose elements are specific iSRCs determined by specific Poincaré section.248

3. Results. We specify conditions under which a general class of systems is249

amenable to analysis via phase-amplitude reduction and the iSRC simultaneously.250

Theorem 3.1. Consider a one parameter family of n-dimensional vector fields251

describing the dynamics of a single oscillator252

(3.1) x′(t; ϵ) = F (x; ϵ) = f(x) + ϵ · u(x)253

subject to a parametric perturbation u(x) with strength ϵ. Suppose that (3.1) satisfies254

the iSRC phase-amplitude assumptions255

• (C1) There exists an open subset Ω ⊂ Rn and an open neighborhood of zero256

I ⊂ R such that the vector field F (x; ϵ) : Ω × I → Rn is analytic in the257

coordinates x ∈ Ω and C1 in the perturbation ϵ ∈ I.258
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• (C2) For ϵ ∈ I, the system (3.1) admits a linearly asymptotically stable T (ϵ)-259

periodic limit cycle γ(t; ϵ) ∈ Ω, where T (ϵ) has C1 dependence on ϵ.260

• (C3) The non-resonance condition (A3) holds.261

Then, (3.1) admits a well-defined iSRC, γ1(t) = γ1(t + T ), with initial condition262

γ1(0) = p1 specified by a choice of Poincaré section transverse to f(x0). Moreover,263

when expressed in phase-amplitude coordinates, the iSRC takes the form264

(3.2)

γ1(t) =


1

exp(κ2t)
. . .

exp(κnt)

 p1 +


∫ t

0

(
ν1 + Z0(s) · u(γ(s; 0))

)
ds∫ t

0
eκ2(t−s)

(
I
(2)
0 (s) · u(γ(s; 0))

)
ds

...∫ t

0
eκn(t−s)

(
I
(n)
0 (s) · u(γ(s; 0))

)
ds

265

where the linear change in frequency, ν1, is given by266

(3.3) ν1 = − 1

T

∫ T

0

(Z0(s))
T ∂F (γ(s; 0); ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

ds267

Here, Z0 and I
(j)
0 are the iPRC and iIRC of the unperturbed system (expressed in its268

original coordinates), the κj are the non-unitary Floquet exponents, and T ≡ T (0).269

For the sake of clarity, we give the proof of Theorem 3.1 in two steps. Lemma270

3.2 shows that system (3.1) admits a well-defined iSRC. Lemma 3.3 shows that the271

iSRC can be expressed in phase-amplitude coordinates. A detailed discussion of the272

initial condition, p1, is presented in the next section. Note that the iSRC phase-273

amplitude assumptions (C1-C3) represent a concise restatement of the single oscillator274

iSRC assumptions (B1-B3) and the phase-amplitude reduction assumptions (A1-A3)275

without overlap.276

Lemma 3.2. Under assumptions (C1-C2), system (3.1) admits a well-defined277

iSRC, γ1(t) = γ1(t+ T ), which satisfies278

(3.4) γ′1(t) = Df(γ(t; 0))γ1(t) + ν1f(γ(t; 0)) +
∂F (γ(t; 0); ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

279

with linear shift in frequency, ν1, given by280

(3.5) ν1 = − 1

T

∫ T

0

(Z0(s))
T ∂F (γ(s; 0); ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

ds281

Proof. Define a new time variable τ(t) = ωt for some ω(ϵ) = ω ∈ R to be282

determined. Written as x(τ(t); ϵ), the solution of (3.1) obeys283

(3.6) ω
dx

dτ
= F(x, ϵ)284

Assumptions (C1-C2) guarantee a solution of the form285

x(τ(t); ϵ) = γ(t; 0) + ϵγ1(t) +O(ϵ2) (uniformly in t)

ω = 1 + ϵω1 +O(ϵ2)
(3.7)286
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Substitution of (3.7) into (3.6) gives, for the LHS287

(
1 + ϵω1 +O(ϵ2)

)(
γ′(t; 0) + ϵγ′1(t) +O(ϵ2)

)
= γ′(t; 0) + ϵγ′1(t) + ϵω1γ

′(t; 0) +O(ϵ2)

= F (γ(t; 0); 0) + ϵ [γ′1(t) + ω1γ
′(t; 0)] +O(ϵ2)

(3.8)

288

and for the RHS289

F (x; ϵ) = F
(
γ(t; 0) + ϵγ1(t) +O(ϵ2); ϵ

)
+O(ϵ2)

= F (γ(t; 0); 0) + ϵ
dF

dϵ
(γ(t; 0) + ϵγ1(t) +O(ϵ2); ϵ)

∣∣∣∣∣
ϵ=0

+O(ϵ2)

= F (γ(t; 0); 0) + ϵ

[
∂F

∂x

dx

dϵ
+
∂F

∂ϵ

]
(γ(t; 0); ϵ)

∣∣∣∣∣
ϵ=0

+O(ϵ2)

= F (γ(t; 0); 0) + ϵ

[
Df(γ(t; 0))γ1(t) +

∂F

∂ϵ
(γ(t; 0); ϵ)

∣∣∣∣∣
ϵ=0

]
+O(ϵ2)

(3.9)290

Equating the two expressions (noting that the O(ϵ0) terms match) and dropping291

higher order terms gives292

(3.10) γ′1(t)−Df(γ(t; 0))γ1 = −ω1f(γ(t; 0)) +
∂F

∂ϵ
(γ(t; 0); ϵ)

∣∣∣∣∣
ϵ=0

293

The Fredholm alternative establishes a solvability condition for (3.10). Note that the294

operator acting on γ1(t) is given by295

(3.11) L[γ1(t)] =

[
d

dt
−Df(γ(t; 0))

]
(γ1(t))296

along with T -periodic boundary conditions. The adjoint of L is297

(3.12) L†[γ1(t)] =

[
− d

dt
− (Df(γ(t; 0)))T

]
(γ1(t))298

Note that the iPRC (up to normalization) spans the nullspace of L†. By the Fredholm299

alternative, a solvability condition for the existence of a T -periodic solution is300

(3.13) 0 =

∫ T

0

(Z0(s))
T

(
− ω1f(γ(s; 0)) +

∂F

∂ϵ
(γ(s; 0); ϵ)

∣∣∣∣∣
ϵ=0

)
ds301

Rearranging gives302

(3.14) ω1 =

∫ T

0
(Z0(s))

T ∂F
∂ϵ (γ(s; 0); ϵ)

∣∣∣∣∣
ϵ=0

ds∫ T

0
(Z0(s))T f(γ(s; 0))ds

= −T1
T

= −ν1303
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where we used the normalization condition (2.8) pertaining to the iPRC function and304

where T1 represents the linear shift in period [67]. As was to be shown, we conclude305

that the iSRC equation, along with appropriate initial condition, is given by306

(3.15) γ′1(t) = Df(γ(t; 0))γ1(t) + ν1f(γ(t; 0)) +
∂F

∂ϵ
(γ(t; 0); ϵ)

∣∣∣∣∣
ϵ=0

307

The proof of Lemma 3.2 offers a derivation of the iSRC equation distinct from308

the original found in [67]. In [67] the re-scaling of time was imposed first, followed309

by the deformation of the orbit, without invoking the Fredholm alternative. Here,310

the shift in frequency falls out naturally from the solvability condition. Moreover,311

our derivation extends directly to treatment of coupled oscillators, as shown below.312

Our derivation follows an asymptotic analysis similar to that found in [28]. Lemma313

3.3 to follow demonstrates that the iSRC equation admits a simple representation in314

phase-amplitude coordinates and completes the proof of Theorem 3.1.315

Lemma 3.3. Under assumptions (C1-C3), the iSRC of system (3.1) can be ex-316

pressed in phase-amplitude coordinates317

(3.16)

γ1(t) =


1

exp(κ2t)
. . .

exp(κnt)

 p1 +


∫ t

0

(
ν1 + Z0(s) · u(γ(s; 0))

)
ds∫ t

0
eκ2(t−s)

(
I
(2)
0 (s) · u(γ(s; 0))

)
ds

...∫ t

0
eκn(t−s)

(
I
(n)
0 (s) · u(γ(s; 0))

)
ds

318

Proof. Assumptions (C1-C2) in conjunction with Lemma 3.2 show that (3.1) ad-319

mits a well-defined iSRC. Under the additional assumption (C3), system (3.1) is guar-320

anteed to admit a phase-amplitude reduction as described in §2.1.2. Recall that the321

phase-amplitude dynamics are given, to linear order in ϵ, by322

θ′ = 1 + ϵ · (Z(θ, σ2, . . . , σn))Tu(x)
σ′
j = κjσj + ϵ · (I(j)(θ, σ2, . . . , σn))Tu(x)

(3.17)323

In order to write the equations in terms of phase-amplitude coordinates alone, we324

substitute x = K(θ, σ2, . . . , σn), in the u(x) terms. Expanding theK function in terms325

of the amplitude coordinates, we note that the zeroth order term is the unperturbed326

limit cycle [49]. Therefore, writing σ⃗ = [σ2, . . . , σn]
T , we have x = K(θ, σ⃗) = γ(t; 0)+327

O(∥σ⃗∥). Consequently, the phase-amplitude dynamics go as328

θ′ = 1 + ϵ · (Z(θ, σ⃗))Tu(γ(t; 0) +O(∥σ⃗∥))
σ′
j = κjσj + ϵ · (I(j)(θ, σ⃗))Tu(γ(t; 0) +O(∥σ⃗∥))

(3.18)329

Note these dynamics are now in the form ξ′ = F (ξ; ϵ) = f(ξ) + ϵ · v(ξ), that is (3.1)
with ξ = [θ, σ1, . . . , σn]

T , f(ξ) = [1, κ2σ2, . . . , κnσn]
T , and

v(ξ) = [Z(ξ), I(2)(ξ), . . . , I(n)(ξ)]Tu(γ(t; 0) +O(∥σ⃗∥)).

Therefore, the iSRC equation, for this particular system, reads330

(3.19) γ′1(t) =


0

κ2
. . .

κn

 γ1(t) + ν1


1
0
...
0

+


Z0(t) · u(γ(t; 0))
I
(2)
0 (t) · u(γ(t; 0))

...

I
(n)
0 (t) · u(γ(t; 0))

331
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The O(∥σ⃗∥) terms of the iPRC, iIRC, and the argument of u do not appear in (3.19)332

because we evaluate on the unperturbed limit-cycle solution, where the amplitude333

coordinates are zero. The resulting n equations are linear and uncoupled. Integration334

over one period with initial condition γ1(0) = p1 (specified by an arbitrary choice of335

Poincaré section) gives the result.336

We remark that computation of the iSRC in phase-amplitude coordinates is more337

efficient than in Cartesian coordinates because solving a system of ODEs is not nec-338

essary. One need only integrate the inner product of the iPRC or iIRC with the given339

perturbation u(x). Appendix E compares our Theorem 3.1 to related results in [71].340

The form of the solution provides a direct relation between the iSRC and the341

iPRC and iIRC. Theorem 3.1 establishes that the components of the infinitesimal342

shape-response curve, when expressed in phase-amplitude coordinates, are directly343

related to the inner products of the infinitesimal isostable response curves with the344

static perturbation u(x). The phase component of the iSRC is a sum of three terms:345

the constant offset (p1)1 arises from the arbitrary choice of initial phase, the term ν1t346

denotes a constant rate of increase, accounting for a linear change in frequency given347

by ν1, and the integral term highlights the role of the iPRC in describing the phase348

shift of the perturbed system with respect to the unperturbed system. The amplitude349

components of the iSRC are a sum of two terms: the term exp(κjt)(p1)j describes an350

exponential decay to the limit cycle, which is balanced by a transverse expansion due351

to the perturbation given by the integral term with the iIRC.352

Note that there exist systems with a well defined iSRC that do not admit a353

phase-amplitude reduction to arbitrarily high order. For example, the system354

x′ = x− x3 − y + ϵ

y′ = x+ a|x|3/2
(3.20)355

with a = −0.7 satisfies the single oscillator iSRC assumptions (B1-B3) and therefore356

admits a well-defined iSRC. However, the system (3.20) does not admit a phase-357

amplitude reduction via the parameterization method (or by Taylor expansions) to358

arbitrary order because assumption (C1) is not met. Specifically, the term |x|3/2 does359

not admit well defined derivatives (of order 2 or greater) on the limit-cycle solution360

(the derivatives are not defined at x = 0). Because the high order phase-amplitude361

reduction methods require f to be differentiable arbitrarily many times on the limit-362

cycle solution to achieve a reduction of arbitrarily high order, both methods will fail.363

We remark that one could implement a phase-amplitude reduction for system (3.20)364

up to 1st order. However, such a reduction is of limited use because higher order365

terms are necessary, in general, to obtain an accurate representation of the dynamics.366

The phase-amplitude reduction assumptions (A1-A3) pertain only to the unper-367

turbed system (ϵ = 0). To state that a system which admits a phase-amplitude368

reduction also admits a well-defined iSRC, one must consider the perturbation u(x)369

on a case by case basis and verify the single oscillator iSRC assumptions (B1-B3).370

3.1. iSRC Initial Condition. Here, we derive an expression for the initial371

condition, p1, as the solution to a linear system. Subsequently, we show that in372

phase-amplitude coordinates, the linear system for p1 admits a simple form.373

Lemma 3.4. Under the single oscillator iSRC assumptions (B1-B3), and with a374

choice of Poincaré section transverse to the flow of the unperturbed system at the base375

point, the system (3.1) admits an iSRC with initial condition p1, given as the solution376

10

This manuscript is for review purposes only.



to the linear system377

(I −M)p1 =M

∫ T

0

Φ(0, s)

[
ν1f(γ(s; 0)) +

∂F (γ(s; 0); ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

]
ds

n⃗ · p1 = 0

(3.21)378

where M is the monodromy matrix, Φ(t, t0) is the fundamental matrix solution, and n⃗379

is the normal vector of the chosen Poincaré section. Furthermore, the system (3.21)380

is non-singular and hence specifies a unique initial condition.381

Proof. For convenience, express the iSRC equation in simplified notation382

(3.22)

γ′1 = A(t)γ1 + b(t), A(t) ≡ Df(γ(t; 0)), b(t) ≡ ν1f(γ(t; 0)) +
∂F (γ(t; 0); ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

383

The solution to such a periodic linear inhomogeneous equation is expressed as [4]384

(3.23) γ1(t) = Φ(t, 0)

[
γ1(0) +

∫ t

0

Φ(0, s)b(s)ds

]
385

Note that Φ(0, s) is the inverse of the fundamental matrix solution.386

Suppose that the true initial condition is given by γ1(0) = p1. It must be that387

γ1(T ) = p1 by the periodicity of γ1(t). Substitution and simplification gives388

(3.24) (I −M)p1 =M

∫ T

0

Φ(0, s)b(s)ds389

This is a linear system, but it is singular as the monodromy matrix has a unitary390

eigenvalue. We remove this degree of freedom by considering the modified system391

(I −M)p1 =M

∫ T

0

Φ(0, s)b(s)ds

n⃗ · p1 = 0

(3.25)392

where n⃗ is the normal vector to the Poincare section chosen for the problem. We now393

show that this modified linear system is non-singular.394

It is clear that dim null(I−M) = 1 by the linear asymptotic stability of the limit395

cycle. However, we can further characterize the nullspace of I−M by recognizing that396

any vector v ∈ null(I −M) is an eigenvector associated with the unit eigenvalue of397

M . This vector is none other than the velocity at the base point on the unperturbed398

limit cycle, f(x0). Consequently, all such vectors v satisfy399

(3.26) v = kf(x0), k ∈ R400

By assumption, the chosen Poincaré section is transverse to the flow at x0. It follows401

that the section cannot be tangent to the flow at x0, which implies that402

(3.27) n⃗ · v ̸= 0, v ∈ null(I −M)403

Denote404

(3.28) M =

[
I −M
n⃗T

]
405
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Suppose by contradiction that M is singular. Then, there must exist some y ̸= 0 such406

that M y = 0. That is, we have simultaneously407

(I −M)y = 0, n⃗T y = 0(3.29)408

From the first equation, y ∈ null(I −M), which implies that n⃗T y ̸= 0, contradicting409

the second equation. Hence, the equation (3.21) is a linear system with a trivial410

nullspace and thus specifies a unique solution.411

We now show that this system simplifies in phase-amplitude coordinates.412

Lemma 3.5. Under the iSRC phase-amplitude assumptions (C1-C3), the iSRC413

initial condition, p1, in phase-amplitude coordinates, satisfies a linear system414



0
1− e(κ2T )

. . .

1− e(κnT )

n⃗


p1 =



0∫ T

0
e(κ2(T−s))

(
I
(2)
0 (s) · u(γ(s; 0))

)
ds

...∫ T

0
e(κn(T−s))

(
I
(n)
0 (s) · u(γ(s; 0))

)
ds

0



(3.30)

415

where n⃗ is a vector normal to the Poincaré section transverse to the flow of the416

unperturbed system at the intersection point.417

Proof. Observe that in phase-amplitude coordinates418

Φ(t, 0) =


1

e(κ2t)

. . .

e(κnt)

 , ∂F (γ(t; 0); ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

=


Z0(t) · u(γ(t; 0); 0)
I
(2)
0 (t) · u(γ(t; 0); 0)

...

I
(n)
0 (t) · u(γ(t; 0); 0)


(3.31)

419

The result follows from rewriting equation (3.21) in phase-amplitude coordinates.420

The form of the linear system in phase-amplitude coordinates underlines why421

the system is singular. While the amplitude coordinates of the initial condition are422

uniquely specified, the initial phase is arbitrary. To fix a unique initial condition, one423

must in turn fix an appropriate Poincaré section. Mathematically, this is accomplished424

by choosing an appropriate normal vector n⃗.425

Often, a specific choice of Poincaré section is well-suited for a particular problem.426

In neuron oscillator models, it is a common convention to fix a reference phase when427

the voltage component reaches a maximum [16]. Other systems admit limit-cycle428

solutions which may be divided into regions [67]. The dividers in each of these systems429

are natural candidates for a particular choice of Poincaré section. In phase-amplitude430

coordinates, it is straightforward to choose an isochron of the system as a Poincaré431

section. One need only choose the vector normal to the flow of the phase. In two432

dimensions, one would choose a section spanned by q⃗ = (0, 1) (see Figure 3.1).433

Choosing the Poincaré section to be an isochron of the original system corresponds434

to setting n1 = [1, 0, . . . , 0], hence the first component of p1 (the phase shift) must435

be identically zero. The remaining components are determined by the 2nd through436

(n+ 1)st rows of (3.30).437
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Figure 3.1. Limit-cycle dynamics in phase-amplitude coordinates (left) and Cartesian coor-
dinates (right). Shown are an unperturbed limit cycle (black) and a perturbed limit cycle (orange)
overlayed with isochrons (gray) and isostable level curves (pink). An isochron is chosen as a partic-
ular choice of Poincaré section (cyan). The dynamics are considerably simplified in phase-amplitude
coordinates as opposed to Cartesian coordinates. The dynamics correspond to the simplified circa-
dian rhythm model considered in §4.4.

The computation of the initial condition is efficient in phase-amplitude coordi-438

nates. In Cartesian coordinates, one must solve an ODE (the variational equation) to439

obtain the fundamental matrix solution at each time-step. One must also invert the440

fundamental matrix solution at each time-step, which can introduce numerical errors441

if ill-conditioned. In phase-amplitude coordinates, one need only compute integrals.442

Theorem 3.1 and Lemma 3.5 show that iSRC computations simplify dramatically443

in phase-amplitude coordinates, regardless of the system’s dimension. Methods exist444

for mapping the result to the original Cartesian coordinates, i.e., Eq. (2.9), yet often445

involve non-trivial computations for high-dimensional systems [46, 49, 72].446

3.2. iSRC Equation (Coupled Oscillators with Identical Periods). In447

this section, we consider applications of the iSRC and phase-amplitude reduction to448

systems of two coupled oscillators with identical periods. Formally, we consider an449

n-dimensional system450 [
x′

y′

]
=

[
F (x,y; δ)
G(y,x; δ)

]
=

[
f(x)
g(y)

]
+ δ

[
uf (x,y)
ug(y,x)

]
(3.32)451

with x ∈ Rp, y ∈ Rq, p + q = n, and where uf (x,y) and ug(y,x) are coupling452

functions with strength δ. By letting z = [xT yT ]T and u(z) = [uf (x,y)
T ug(y,x)

T ]T453

we express (3.32) more concisely as454

(3.33) z′ = H(z, δ) = h(z) + δ · u(z)455

We consider only cases where the uncoupled dynamics (δ = 0) admit non-constant456

limit-cycle solutions, γf (t; 0) and γg(t; 0). It is possible to introduce an arbitrary phase457

shift into one of the uncoupled limit cycles, and therefore none of the n-dimensional458

orbits are limit cycles when δ = 0 because they are neither unique nor isolated.459

We are interested in studying (3.32-3.33) in the case of 1:1 mode-locked solutions460

(for δ ̸= 0), by which we mean a non-constant stable limit cycle z(t) = γ(t; δ) char-461

acterized by the property that the corresponding coupled trajectories of the f and g462

dynamics have the same (minimal) period.463
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Lemma 3.6. Consider a system of the form (3.33) and assume that the coupled464

oscillator iSRC assumptions hold:465

• (D1) There exists an open subset Ω ⊂ Rn and an open neighborhood of zero466

I ⊂ R such that the vector field H(z; δ) : Ω × I → Rn is C1 in both the467

coordinates z ⊂ Ω and the perturbation strength δ ∈ I.468

• (D2) When δ = 0, the uncoupled dynamics admit non-constant linearly469

asymptotically stable limit-cycle solutions, γf (t; 0) and γg(t; 0), of period T .470

• (D3) For δ ∈ I \ {0}, system (3.33) admits a unique linearly asymptotically471

stable limit cycle, γ(t; δ) ∈ Ω, corresponding to a 1:1 mode locked solution.472

• (D4) The period of the 1:1 mode-locked solution is given by T (δ), which has473

C1 dependence in δ ∈ I, and satisfies limδ→0 T (δ) = T .474

Then, (3.33) has a well-defined iSRC which is expressed as set of uncoupled equations475

(γ
(f)
1 )′ = Df(γf (t; 0))γ

(f)
1 + ν1f(γf (t; 0)) +

∂F (γf (t; 0), γg(t+∆; 0); δ)

∂δ

∣∣∣∣∣
δ=0

(γ
(g)
1 )′ = Dg(γg(t+∆; 0))γ

(g)
1 + ν1g(γg(t+∆; 0)) +

∂G(γg(t+∆; 0), γf (t; 0); δ)

∂δ

∣∣∣∣∣
δ=0

(3.34)

476

The linear shift in frequency, ν1, and the constant phase-shift, ∆, are uniquely deter-477

mined by the equations478

ν1 = − 1

T

∫ T

0

(Z
(f)
0 (s))T

∂F (γf (s; 0), γg(s+∆; 0); δ)

∂δ

∣∣∣∣∣
δ=0

ds

= − 1

T

∫ T

0

(Z
(g)
0 (s+∆))T

∂G(γg(s+∆; 0), γf (s; 0); δ)

∂δ

∣∣∣∣∣
δ=0

ds

(3.35)479

The initial condition for (3.34) is discussed in more detail after the proof.480

Proof. Note that a priori, the uncoupled oscillators have an arbitrary phase offset.481

Explicitly, denote the time variable for the first oscillator as t1 = t + ϕ1 and for the482

second oscillator as t2 = t + ϕ2, where ϕ1, ϕ2 ∈ [0, T ) are constant phase offsets483

determined by a particular choice of base points, x0 and y0, respectively. Define new484

time variables, τi(t) = ωti for some ω ∈ R to be determined. In these new coordinates,485

written as x(τ1(t); δ) and y(τ2(t); δ), the solution of (3.32) obeys486

ω
dx

dτ1
= F (x,y; δ)

ω
dy

dτ2
= G(y,x; δ)

(3.36)487

Assumptions (D1-D4) guarantee a solution of the form488

x(τ1(t); δ) = γf (t+ ϕ1; 0) + δγ
(f)
1 (t) +O(δ2) (uniformly in t)

y(τ2(t); δ) = γg(t+ ϕ2; 0) + δγ
(g)
1 (t) +O(δ2) (uniformly in t)

ω = 1 + δω1 +O(δ2)

(3.37)489

for certain values of ϕ2 − ϕ1, to be determined in the following. Substituting (3.37)490
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into (3.36) for the x dynamics gives, for the LHS491

ω
dx

dτ1
=
(
1 + δω1 +O(δ2)

) d
dt

[
γf (t+ ϕ1; 0) + δγ

(f)
1 (t) +O(δ2)

]

= f(γf (t+ ϕ1; 0)) + δ

[
ω1f(γf (t+ ϕ1; 0)) + (γ

(f)
1 (t))′

]
+O(δ2)

(3.38)492

and for the RHS493

F (x,y; δ) = F (γf (t+ ϕ1; 0) + δγ
(f)
1 (t) +O(δ2), γg(t+ ϕ2; 0) + δγ

(g)
1 (t) +O(δ2); δ)

= F (γf (t+ ϕ1; 0), γg(t+ ϕ2; 0); 0)

+ δ
dF

dδ
(γf (t+ ϕ1; 0), γg(t+ ϕ2; 0); δ)

∣∣∣∣∣
δ=0

+O(δ2)

= F (γf (t+ ϕ1; 0), γg(t+ ϕ2; 0); 0)

+ δ

[
∂F

∂x

dx

dδ
+
∂F

∂y

dy

dδ
+
∂F

∂δ

]
(γf (t+ ϕ1; 0), γg(t+ ϕ2; 0); δ)

∣∣∣
δ=0

+O(δ2)

(3.39)

494

Note that F (γf (t + ϕ1; 0), γg(t + ϕ2; 0); 0) = F (γf (t + ϕ1; 0), 0; 0) = f(γf (t + ϕ1; 0))495

because the y dependence arises only for δ ̸= 0. Equating the two sides (neglecting496

higher order terms) and simplifying gives497

ω1f(γf (t+ ϕ1; 0)) + (γ
(f)
1 )′ = Df(γf (t+ ϕ1; 0))γ

(f)
1 + 0

+
∂F (γf (t+ ϕ1; 0), γg(t+ ϕ2; 0); δ)

∂δ

∣∣∣∣∣
δ=0

(3.40)498

The analysis for the y dynamics is similar. We find that499

(γ
(f)
1 )′ −Df(γf (t+ ϕ1; 0))γ

(f)
1 = −ω1f(γf (t+ ϕ1; 0))

+
∂F (γf (t+ ϕ1; 0), γg(t+ ϕ2; 0); δ)

∂δ

∣∣∣∣∣
δ=0

(γ
(g)
1 )′ −Dg(γg(t+ ϕ2; 0))γ

(g)
1 = −ω1g(γg(t+ ϕ2; 0))

+
∂G(γg(t+ ϕ2; 0), γf (t+ ϕ1; 0); δ)

∂δ

∣∣∣∣∣
δ=0

(3.41)500

The full system can be expressed as a block n-dimensional system501

[
γ
(f)
1

γ
(g)
1

]′
=

[
Df(γf (t+ ϕ1; 0)) 0

0 Dg(γg(t+ ϕ2; 0))

] [
γ
(f)
1

γ
(g)
1

]
− ω1

[
f(γf (t+ ϕ1; 0))
g(γg(t+ ϕ2; 0))

]

+

[
∂F (γf (t+ϕ1;0),γg(t+ϕ2;0);δ)

∂δ
∂G(γg(t+ϕ2;0),γf (t+ϕ1;0);δ)

∂δ

] ∣∣∣∣∣
δ=0

(3.42)

502
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We find a solvability condition for (3.42) by employing the Fredholm alternative. The503

operator acting on the iSRC is given by504

L

[
γ
(f)
1

γ
(g)
1

]
=

(
d

dt
−
[
Df(γf (t+ ϕ1; 0)) 0

0 Dg(γg(t+ ϕ2; 0))

])[
γ
(f)
1

γ
(g)
1

]
(3.43)505

along with T -periodic boundary conditions. The adjoint is given by506

L†

[
γ
(f)
1

γ
(g)
1

]
=

(
− d

dt
−
[
Df(γf (t+ ϕ1; 0)) 0

0 Dg(γg(t+ ϕ2; 0))

]T)[
γ
(f)
1

γ
(g)
1

]
(3.44)507

Notice that the nullspace of the adjoint operator is two-dimensional, with508

(3.45) span
(
null(L†)

)
= span

{[
Z

(f)
0 (t+ ϕ1)

0

]
,

[
0

Z
(g)
0 (t+ ϕ2)

]}
509

where Z
(f)
0 and Z

(g)
0 are the iPRCs of the first and second oscillators, respectively.510

The Fredholm alternative establishes a solvability condition for a T -periodic solution511

by enforcing the simultaneous orthogonality of the inhomogenous term in (3.42) with512

both spanning vectors of the nullspace of L†513

0 =

∫ T

0

[
Z

(f)
0 (t+ ϕ1)

0

]T (
− ω1

[
f(γf (t+ ϕ1; 0))
g(γg(t+ ϕ2; 0))

]

+

[
∂F (γf (t+ϕ1;0),γg(t+ϕ2;0);δ)

∂δ
∂G(γg(t+ϕ2;0),γf (t+ϕ1;0);δ)

∂δ

] ∣∣∣∣∣
δ=0

)
dt

0 =

∫ T

0

[
0

Z
(g)
0 (t+ ϕ2)

]T (
− ω1

[
f(γf (t+ ϕ1; 0))
g(γg(t+ ϕ2; 0))

]

+

[
∂F (γf (t+ϕ1;0),γg(t+ϕ2;0);δ)

∂δ
∂G(γg(t+ϕ2;0),γf (t+ϕ1;0);δ)

∂δ

] ∣∣∣∣∣
δ=0

)
dt

(3.46)514

Simplification of the orthogonality condition reveals that515

0 =

∫ T

0

(Z
(f)
0 (t+ ϕ1))

T

(
− ω1f(γf (t+ ϕ1; 0))

+
∂F (γf (t+ ϕ1; 0), γg(t+ ϕ2; 0); δ)

∂δ

∣∣∣∣∣
δ=0

)
dt

0 =

∫ T

0

(Z
(g)
0 (t+ ϕ2))

T

(
− ω1g(γg(t+ ϕ2; 0))

+
∂G(γg(t+ ϕ2; 0), γf (t+ ϕ1; 0); δ)

∂δ

∣∣∣∣∣
δ=0

)
dt

(3.47)516
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Rearranging gives517

ω1 =

∫ T

0
(Z

(f)
0 (t+ ϕ1))

T ∂F (γf (t+ϕ1;0),γg(t+ϕ2;0);δ)
∂δ

∣∣∣∣∣
δ=0

dt∫ Tf

0
(Z

(f)
0 (t+ ϕ1))T f(γ(t+ ϕ1; 0))dt

ω1 =

∫ T

0
(Z

(g)
0 (t+ ϕ2))

T ∂G(γg(t+ϕ2;0),γf (t+ϕ1;0);δ)
∂δ

∣∣∣∣∣
δ=0

dt∫ Tg

0
(Z

(g)
0 (t+ ϕ2))T g(γ(t+ ϕ2; 0))dt

(3.48)518

Equating the expressions for ω1, and exploiting periodicity, gives519 ∫ T

0

(Z
(f)
0 (s))T

∂F (γf (s; 0), γg(s+ ϕ2 − ϕ1; 0); δ)

∂δ

∣∣∣∣∣
δ=0

ds

=

∫ T

0

(Z
(g)
0 (s))T

∂G(γg(s; 0), γf (s+ ϕ1 − ϕ2; 0); δ)

∂δ

∣∣∣∣∣
δ=0

ds

(3.49)520

For convenience, we introduce the notation521

Hf (α) =

∫ T

0

(Z
(f)
0 (s))T

∂F (γf (s; 0), γg(s+ α; 0); δ)

∂δ

∣∣∣∣∣
δ=0

ds

Hg(α) =

∫ T

0

(Z
(g)
0 (s))T

∂G(γg(s; 0), γf (s+ α; 0); δ)

∂δ

∣∣∣∣∣
δ=0

ds

(3.50)522

In this notation, equation (3.49) becomes523

(3.51) Hg(−ψ)−Hf (ψ) = 0524

where ψ = ϕ2 − ϕ1 denotes the difference of the phases. Note that the roots of this525

equation are equivalent to the fixed points of the ODE526

(3.52) ψ′ = δ[Hg(−ψ)−Hf (ψ)]527

a familiar result from weakly coupled oscillator theory [16]. As in the classical theory,528

(un)stable fixed points of (3.52) correspond to (un)stable periodic orbits of the full529

equations (3.32), to linear order in δ. By assumption (D3) (unique linearly asymp-530

totically stable 1:1 mode-locked solution) the equation (3.52) is guaranteed to have a531

unique stable fixed point, ψ∗ = ∆, corresponding to a fixed phase offset. Given this532

value of ∆, one can determine ω1 by either of the equations in (3.49).533

Without loss of generality, and for ease of notation, we may choose the phase534

constants ϕ1 and ϕ2 so that ϕ1 = 0 and ϕ2 = ∆. Then, the linear change in frequency535

of the system is given by536

ν1 = − 1

T

∫ T

0

(Z
(f)
0 (s))T

∂F (γf (s; 0), γg(s+∆; 0); δ)

∂δ

∣∣∣∣∣
δ=0

ds

= − 1

T

∫ T

0

(Z
(g)
0 (s+∆))T

∂G(γg(s+∆; 0), γf (s; 0); δ)

∂δ

∣∣∣∣∣
δ=0

ds

(3.53)537
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and, as was to be shown, the iSRC for the n-dimensional system is given by538 [
γ
(f)
1

γ
(g)
1

]′
=

[
Df(γf (t; 0)) 0

0 Dg(γg(t+∆; 0))

] [
γ
(f)
1

γ
(g)
1

]

+ ν1

[
f(γf (t; 0))

g(γg(t+∆; 0))

]
+

[
∂F (γf (t;0),γg(t+∆;0);δ)

∂δ
∂G(γg(t+∆;0),γf (t;0);δ)

∂δ

] ∣∣∣∣∣
δ=0

(3.54)539

Although our proof leverages elements of the classical theory of weakly coupled os-540

cillators [16], to the best of our knowledge the iSRC for weakly coupled oscillators has541

not been previously described. We showed that the iSRC for the coupled system can542

be expressed as a system of uncoupled iSRCs corresponding to each of the oscillators.543

To compute the initial condition, one must specify an appropriate Poincaré section for544

the full n-dimensional system, in the sense of (2.18). We repeat that this section must545

be transverse to the flow of the uncoupled system at the initial condition and must546

intersect the perturbed orbit. In contrast to single oscillators, the coupled system547

consists of perturbed trajectories corresponding to both oscillators which, in general,548

have a certain phase-lag. Any intersection point on the perturbed orbit, specified by549

a particular choice of section, must be chosen consistently to respect the phase-lag of550

the true perturbed orbit. Given an appropriate choice of section, the initial conditions551

for the uncoupled iSRC equations can be computed as for a single oscillator by using552

the corresponding components of the normal vector for each computation.553

The frequency matching condition (3.49) can be used as a test to determine if a554

system admits a 1:1 mode-locked solution for arbitrarily small coupling strengths. By555

the assumed existence of such a solution, there must exist a phase offset ∆ so that556

the equations are consistent. A lack of consistency indicates that such a solution does557

not exist. Appendix B in the supplementary materials contains several examples of558

analytically tractable systems to demonstrate this point.559

Implementing a phase-amplitude reduction for an n-dimensional system with n ≥560

4 is numerically challenging. It is significant that the iSRC for a system of two561

coupled oscillators with identical periods can be deflated into a system of uncoupled562

equations corresponding to each oscillator. In practice, one need only implement563

a phase-amplitude reduction for each of the individual oscillators (provided that the564

phase-amplitude reduction assumptions (A1-A3) hold for each oscillator), allowing for565

the study of systems of higher dimensionality using the phase-amplitude framework.566

3.3. iSRC Equation (Coupled Oscillators with Non-Identical Periods).567

In this section, we apply the iSRC analysis to systems of two coupled oscillators with568

non-identical periods. We begin by noting that the condition of non-identical periods569

complicates an asymptotic analysis in the style presented above. For systems of two570

coupled oscillators with identical periods, a 1:1 mode locked solution is expected for571

arbitrarily small coupling strengths, δ. In the case of oscillators with different natural572

periods, a 1:1 mode-locked solution is expected to break down as the coupling strength573

δ tends to zero [23] (see Figure 3.2). In such a case, assumption (D4) does not hold574

because the period T (δ) does not depend continuously on δ. Here, we provide an575

asymptotic approach that circumvents the continuity issue, and demonstrate that576

the iSRC for the system with non-identical periods is a linear combination of two577

iSRCs: one corresponding to the shape change induced by the coupling, and another578

corresponding to the shape change induced by the timing difference of the oscillators.579
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Figure 3.2. The Arnold tongue for a 4D system: a 2D Stuart-Landau oscillator coupled to a
2D Van der Pol oscillator (see §4.3). The yellow region corresponds to parameter values for which
the system admits a stable 1:1 mode-locked solution. Left: In the case of oscillators with identical
periods (Lemma 3.6), a 1:1 mode-locked solution is expected for any value of the coupling strength,
δ. Right: In the case of oscillators with different natural periods (Theorem 3.7), the 1:1 mode-locked
solution is expected to break down as δ → 0.

Theorem 3.7. Consider a system of two coupled oscillators580

x′ = F (x,y; δ) = f(x) + δ · uf (x,y)
y′ = G(y,x; δ) = g(y) + δ · ug(y,x)

(3.55)581

with x ∈ Rp, y ∈ Rq, and p+q = n. Assume that when δ = 0, the uncoupled dynamics582

admit linearly asymptotically stable limit-cycle solutions, x(t) = γf (t) = γf (t + Tf )583

and y(t) = γg(t) = γg(t + Tg), with Tg ≥ Tf . Assume further that there exists an584

open subset J ⊂ R \ {0} such that for every δ ∈ J , (3.55) admits a unique linearly585

asymptotically stable 1:1 mode-locked solution. There are two cases:586

• (Identical periods) Assume that Tf = Tg, and further that (3.55) satisfies587

the coupled oscillator iSRC assumptions (D1-D4). Then, (3.55) admits a588

well-defined iSRC described by Lemma 3.6.589

• (Non-identical periods) Assume that Tf < Tg, and that the related system590

x′ = F̃ (x,y; δ, β) =

(
Tf
Tg

+ β

)
f(x) + δ · uf (x,y)

y′ = G(y,x; δ) = g(y) + δ · ug(y,x)
(3.56)591

satisfies the following assumptions:592

– For every (β, δ) ∈ [0, 1 − Tf/Tg] × J , (3.56) admits a unique linearly593

asymptotically stable limit cycle, γ(t; δ, β), corresponding to a 1:1 mode-594

locked solution.595

– When β = 0 and δ = 0, (3.56) satisfies the coupled oscillator iSRC596

assumptions (D1-D4).597

– When β = 0 and δ ∈ J , (3.56) satisfies the single oscillator iSRC as-598

sumptions (B1-B3).599

Then, (3.55) admits a well-defined iSRC to linear order in both the parameters600

δ and β. The explicit form of the iSRC is specified in the proof to follow by601

equations (3.57), (3.59), and (3.63).602

We make several clarifying remarks before proving Theorem 3.7. The related603

system (3.56) introduces a timing parameter, β, that shifts the frequency of one of604
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the oscillators (one could choose to shift the frequency of either oscillator without605

loss of generality). As motivation, shifting the frequency of one of the oscillators606

maintains continuity of the period of the limit cycle (in the joint variables z) as a607

function of the coupling strength, δ. This continuity ensures that our asymptotic608

analysis of the system does not break down (see Figure 3.3). Of interest are cases for609

which δ ∈ J can be treated as a small parameter. In these cases, the existence of610

a unique asymptotically stable 1:1 mode-locked solution implies that the ratio of the611

periods of the two oscillators is small in the sense that Tf/Tg ≲ 1 (see Figure 3.2).612

Therefore, the timing parameter, β, with 0 ≤ β ≤ 1−Tf/Tg ≪ 1, can also be treated613

as a small parameter.614

Figure 3.3. The Arnold tongue corresponding to 1:1 mode locking for a 4D system: a 2D
Stuart-Landau oscillator coupled to a 2D Van der Pol oscillator (see §4.3). The four steps outlined
in the proof of Theorem 3.7 to compute the iSRC for coupled oscillators with non-identical periods
are labeled. Step 1: The original system of uncoupled oscillators with non-identical periods. Step
2: Uncoupled oscillators with identical periods. Step 3: Coupled oscillators with identical periods
(stable 1:1 mode-locked solution). Step 4: The true 1:1 mode-locked solution to be approximated by
the four step iSRC analysis. Our analysis requires only horizontal and vertical shifts in parameter
space; this guarantees that the period of the stable 1:1 mode-locked solution depends continuously on
the coupling strength δ at all steps, and that our asymptotic analysis of the system remains valid.

Conceptually, we begin at the point labelled “1” in Figure 3.3, where the two615

oscillators are uncoupled (δ = 0) and have their original periods Tf < Tg. For ease616

of notation, define β∗ = 1 − Tf/Tg. At point 1, β = β∗. From the assumptions of617

Theorem 3.7, the two oscillators will exhibit a single limit cycle with 1:1 mode locking618

upon increasing δ sufficiently to a fixed δ∗ ∈ J , i.e., at point 4 in the (β, δ) plane619

(Figure 3.3). However, we cannot study how the coupling distorts the shape of the620

oscillators – via the iSRC – by directly introducing the coupling parameter, because621

any arc passing from the point 1 to point 4 passes through a region outside the 1:1622

mode-locking Arnold tongue. In order to circumvent this difficulty, we pursue an623

alternative route. First, we shift the period of one of the oscillators (shifting β from624

β∗ to zero) to move from point 1 to point 2. At point 2 we have two uncoupled oscil-625

lators with identical periods. But because we have only changed the first oscillator’s626

differential equation by multiplying with a decelerating prefactor, the shift from point627

1 to point 2 has not changed the shape of the orbit. Next, we shift from point 2 to628

point 3 by introducing the coupling (δ → δ∗). The iSRC relating the 1:1 mode-locked629

solution at point 3 to the uncoupled, identical-period oscillators at point 2 is given630
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by Lemma 3.6. Finally, by reaccelerating the first oscillator back to its orignal period631

(β → β∗) we recover the iSRC for the original system of interest: a 1:1 mode-locked632

system of two coupled oscillators with nonidentical periods.633

The detailed proof of Theorem 3.7 follows.634

Proof. In the case of identical periods, the proof is given by Lemma 3.6. If635

Tf < Tg, we analyze the iSRC of (3.55-3.56) in two steps (corresponding to the636

arrows 2 → 3 and 3 → 4 in Figure 3.3). Abusing notation, we denote the uncoupled637

limit-cycle dynamics γf (t; 0, β) and γg(t; 0, β), respectively.638

Step 1: Fix β = 0 (point 2 in Fig. 3.3) and let δ → δ∗ ∈ J to couple the oscil-639

lators (point 2 → point 3). By assumption, the related system (3.56) with β = 0640

and δ = δ∗ (coupled oscillators with identical periods) admits a unique linearly641

asymptotically stable 1:1 mode-locked solution, γ(t; δ∗, 0) = γ(t + T ; δ∗, 0). Fur-642

thermore, when β = 0 and δ = 0 (uncoupled oscillators with identical periods), by643

Lemma 3.6, (3.56) admits a well-defined Tg-periodic iSRC corresponding to γ(t; δ∗, 0),644

Υ1(t) = [(Υ
(f)
1 (t))T (Υ

(g)
1 (t))T ]T , which satisfies645

(Υ
(f)
1 )′ = Df̃(γf (t; 0, 0))Υ

(f)
1 + ν1f̃(γf (t; 0, 0))

+
∂F̃ (γf (t; 0, 0), γg(t+∆; 0); δ, 0)

∂δ

∣∣∣∣∣
δ=0

(Υ
(g)
1 )′ = Dg(γg(t+∆; 0))Υ

(g)
1 + ν1g(γg(t+∆; 0))

+
∂G(γg(t+∆; 0), γf (t; 0, 0); δ)

∂δ

∣∣∣∣∣
δ=0

(3.57)

646

where f̃(x) =
Tf

Tg
f(x). The linear shift in frequency, ν1, and the constant phase-shift,647

∆, are determined by648

ν1 = − 1

Tg

∫ Tg

0

(Z
(f̃)
0 (s))T

∂F̃ (γf (s; 0, 0), γg(s+∆; 0); δ, 0)

∂δ

∣∣∣∣∣
δ=0

ds

= − 1

Tg

∫ Tg

0

(Z
(g)
0 (s+∆))T

∂G(γg(s+∆; 0), γf (s; 0, 0); δ)

∂δ

∣∣∣∣∣
δ=0

ds

(3.58)649

exactly as in the proof of Lemma 3.6.650

Step 2: Let β → β∗ and keep δ = δ∗ fixed to reintroduce the timing discrepancy651

in the oscillators (point 3 → point 4 in Fig. 3.3). By assumption, when β = β∗ and652

δ = δ∗ (coupled oscillators with non-identical periods), system (3.56) admits a unique653

linearly asymptotically stable 1:1 mode-locked solution, γ(t; δ∗, β∗) = γ(t+T ∗; δ∗, β∗).654

Furthermore, when β = 0 and δ = δ∗ (stable limit cycle corresponding to a stable 1:1655

mode-locked solution), by Lemma 3.2, (3.56) admits a well-defined T -periodic iSRC,656

Γ1(t) corresponding to γ(t; δ∗, β∗), which satisfies657

Γ′
1(t) =

[
DF̃x(γf (t; δ

∗, 0), γg(t; δ
∗, 0); δ, 0)) DF̃y(γf (t; δ

∗, 0), γg(t; δ
∗, 0); δ, 0))

DGx(γg(t; δ
∗, 0), γf (t; δ

∗, 0); δ)) DGy(γg(t; δ
∗, 0), γf (t; δ

∗, 0); δ))

]
Γ1(t)

+ ν1

[
F̃ (γf (t; δ

∗, 0), γg(t; δ
∗, 0); δ, 0)

G(γg(t; δ
∗, 0), γf (t; δ

∗, 0); δ)

]
+

[
∂F̃ (γf (t;δ

∗,0),γg(t;δ
∗,0);δ,β)

∂β

0

] ∣∣∣∣∣
β=0

(3.59)

658
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with linear shift in frequency given by659

(3.60) ν1 = − 1

T

∫ T

0

(Z0(s))
T

[
∂F̃ (γf (t;δ

∗,0),γg(t;δ
∗,0);δ,β)

∂β

0

] ∣∣∣∣∣
β=0

ds660

where Z0(t) is the iPRC corresponding to γ(t; δ∗, 0).661

Without loss of generality, introduce frequency constants ηj , j = 1, . . . , 4, so that662

γf (η1t; 0, β
∗), Γ1(η2t), γ(η3t, δ

∗, 0) and γ(η4t, δ
∗, β∗) are Tg-periodic. These time scal-663

ings are introduced so that a pointwise comparison of the unperturbed and perturbed664

orbits via the iSRC can be performed in a consistent manner (as in (2.15)) and have665

no influence on the shape of the curves. Then, by the computations in steps 1 and 2,666

(3.61) γ(η3t, δ
∗, 0) =

[
γf (η1t; 0, β

∗)
γg(t; 0)

]
+ δΥ1(t) +O(δ2)667

and668

(3.62) γ(η4t; δ
∗, β∗) = γ(η3t; δ

∗, 0) + βΓ1(η2t) +O(β2)669

It follows that670

(3.63) γ(η4t; δ
∗, β∗)︸ ︷︷ ︸

perturbed orbit

=

[
γf (η1t; 0, β

∗)
γg(t; 0)

]
︸ ︷︷ ︸
unperturbed orbit

+ δΥ1(t) + βΓ1(η2t)︸ ︷︷ ︸
iSRC

+O(δ2) +O(β2)671

so that the iSRC for the original system (3.55) is given by a linear combination of672

two iSRCs: one corresponding to the coupling (step 1) and the other corresponding673

to the timing discrepancy (step 2).674

Adding the two iSRCs as in (3.63) is valid provided that an appropriate base point675

on the intermediate orbit, γ(t; δ∗, 0), is chosen. The iSRC establishes a pointwise676

correspondence between unperturbed and perturbed (coupled) orbits. The Poincaré677

section chosen in step 1 establishes such a correspondence between the base point678

on the unperturbed orbit, γ(t; 0, 0), and the intersection point of that section with679

the intermediate orbit, γ(t; δ∗, 0). A different section chosen in step 2 establishes a680

correspondence between the base point on γ(t; δ∗, 0) and the intersection point of this681

other section with the perturbed orbit, γ(t; δ∗, β∗). One way to guarantee that (3.63)682

holds, i.e., that the base point on the unperturbed orbit is mapped to the intersection683

point on the final perturbed orbit, is to choose the intersection point on γ(t; δ∗, 0)684

from step 1 as the base point on γ(t; δ∗, 0) from step 2.685

3.4. Tracking Extrema of State Variables. Previous work demonstrated686

that the iSRC is useful for tracking how the average value of specific system observ-687

ables changes as a parameter is varied [77]. Here, we establish a new result, that688

complements the existing theory, by deriving an iSRC-based method to track the ex-689

trema of specific system states. Tracking oscillation extrema is particularly useful for690

systems with dynamics that change drastically once a certain ‘threshold’ value is met.691

Examples include cellular apoptosis [51], stochastic resonance [18], periodically forced692

integrate-and-fire neurons [10, 11], motor control systems [21, 39, 68], and the role of693

glucose oscillations in diabetes [40].694

Recall that the iSRC establishes a pointwise correspondence between unperturbed695

and perturbed limit-cycle orbits. By Lemma 2.3 in [67], a particular iSRC (specified696
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by a particular choice of Poincaré section) is a member of a vector equivalence class.697

Consequently, it is not true in general that the extrema of the unperturbed limit cycle698

will have a pointwise correspondence via the iSRC to the extrema of the perturbed699

limit cycle. Such a direct correspondence would obtain only for certain choices of700

Poincaré section. In such cases, one could add the iSRC to the unperturbed limit701

cycle to obtain an approximation for the position of the extremum. To address the702

general case, we show how one can determine the point on the unperturbed limit703

cycle that maps to an extremum on the perturbed limit cycle, for arbitrary choice of704

section, by determining an appropriate phase offset. Without loss of generality, we705

consider a maximal value of some component of the limit cycle trajectory; the case of706

a minimum can be handled mutatis mutandis.707

Lemma 3.8. Consider a system of the form708

(3.64) x′(t; ϵ) = F (x; ϵ) = f(x) + ϵ · u(x)709

which satisfies the single oscillator iSRC assumptions (B1-B3). Fix a component of710

interest γ · e⃗i for some i ∈ {1, 2, . . . , n}, where e⃗i represents the canonical basis vector.711

Assume that for this i, γ′′(t; 0) exists and that γ(t; 0) · e⃗i has a well-defined maximum712

at time tm in the sense that γ′′(tm; 0) · e⃗i ̸= 0. Then, the value of this maximum may713

be tracked in the perturbed system to linear order in ϵ by714

(3.65) max(γ(t; ϵ) · e⃗i) =

[
γ(tm + ϵΞ∗; 0) + ϵγ1(tm + ϵΞ∗)

]
· e⃗i +O(ϵ2)715

where the appropriate phase shift, Ξ∗, corresponding to an infinitesimal perturbation,716

is given by717

(3.66) Ξ∗ = −

(
Df(γ(tm; 0))γ1(tm) + ∂F (γ(tm;0);ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

)
· e⃗i

Df(γ(tm; 0))f(γ(tm; 0)) · e⃗i
718

Proof. We seek to maximize the quantity719

(3.67)

[
γ(tm + ϵΞ; 0) + ϵγ1(tm + ϵΞ)

]
· e⃗i720

by finding the optimal value of the phase-shift, Ξ. To solve for Ξ, we expand, then721

differentiate722

0 =
∂

∂Ξ

[
γ(t+ ϵΞ; 0) + ϵγ1(t+ ϵΞ)

]
· e⃗i

=
∂

∂Ξ

[
γ(t; 0) + ϵΞγ′(t; 0) +

1

2
ϵ2Ξ2γ′′(t; 0)

+ ϵ

(
γ1(t) + ϵΞγ′1(t) +

1

2
ϵ2Ξ2γ′′1 (t)

)
+O(Ξ3)

]
· e⃗i

=

[
ϵγ′(t; 0) + ϵ2Ξγ′′(t; 0) + ϵ

(
ϵγ′1(t) + ϵ2Ξγ′′1 (t)

)
+O(Ξ2)

]
· e⃗i

(3.68)723
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Disregarding higher order terms, evaluating at t = tm, and solving for ϵΞ gives724

(3.69) ϵΞ = −

(
γ′(tm; 0) + ϵγ′1(tm)

)
· e⃗i(

γ′′(tm; 0) + ϵγ′′1 (tm)
)
· e⃗i

725

Observe that γ′(tm; 0) = f(γ(tm; 0)) and further that f(γ(tm; 0)) · e⃗i = 0 because the726

ith component of the vector field is necessarily zero at t = tm. Therefore,727

(3.70) ϵΞ = −

(
ϵγ′1(tm)

)
· e⃗i(

γ′′(tm; 0) + ϵγ′′1 (tm)
)
· e⃗i

728

which implies that729

(3.71) Ξ = −

(
γ′1(tm)

)
· e⃗i(

γ′′(tm; 0) + ϵγ′′1 (tm)
)
· e⃗i

730

Taking the limit as ϵ → 0 gives a formula for the infinitesimal phase-shift, Ξ∗, of the731

locus of the maximum732

(3.72) Ξ∗ = − γ′1(tm) · e⃗i
γ′′(tm; 0) · e⃗i

733

with convergence guaranteed by the assumption that γ′′(tm; 0) · e⃗i ̸= 0. Observe that734

this relation can be expressed using only knowledge of the base system and the iSRC735

(3.73) Ξ∗ = −

(
Df(γ(tm; 0))γ1(tm) + ∂F (γ(tm;0);ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

)
· e⃗i

Df(γ(tm; 0))f(γ(tm; 0)) · e⃗i
736

We now show that our expression accounts for an arbitrary choice of Poincaré737

section. Indeed, note that the rate of change of the maximum as a function of ϵ is738

d

dϵ

[
γ(tm + ϵΞ∗; 0) + ϵγ1(tm + ϵΞ∗)

]
· e⃗i

=
d

dϵ

[
γ(tm; 0) + ϵΞ∗γ′(tm; 0) +O(ϵ2) + ϵ

(
γ1(tm) + ϵΞ∗γ′1(tm) +O(ϵ2)

)]
· e⃗i

=
[
Ξ∗γ′(tm; 0) + γ1(tm)

]
· e⃗i +O(ϵ)

(3.74)

739

Disregarding higher order terms, the rate of change (RoC) of the locus of the maximum740

in Rn satisfies741

(3.75) RoC of Maximal Point = Ξ∗f(γ(tm; 0)) + γ1(tm)742

The expression (3.75) is the O(ϵ) term in an expansion for the true location of the743

maximum. If a (reference) Poincaré section is chosen so that the maximum on the744

unperturbed limit cycle is mapped to the corresponding maximum on the perturbed745
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limit cycle, then Ξ∗ = 0 and we obtain the perturbed maximum by adding the iSRC.746

Otherwise, we may compare the Poincaré section which was chosen with the previous747

(reference) section. By Lemma 2.3 in [67], each of these choices results in two distinct748

iSRCs, which are related in that their difference is given by a constant scaling of749

the unperturbed vector field: the first term in (3.75). That is, the effect of choosing750

a different Poincaré section (choosing a different normal vector n⃗) is equivalent to751

keeping n⃗ fixed while simultaneously introducing a phase-shift scaling the unperturbed752

vector field. Note that Ξ∗ is a function of n⃗ by its dependence on the iSRC, γ1(t).753

This representation makes it clear that to linear order in ϵ, the shift in the locus of754

the maximum is given by a linear combination of the iSRC and a scaled vector field755

which accounts for the arbitrary choice of Poincaré section.756

3.5. Higher Order iSRC Terms. The iSRC analysis holds to only linear order757

in the perturbation strength, and hence loses accuracy when large perturbations are758

considered. Here, we derive equations for higher order iSRC correction terms. We759

proceed by following the proof of Lemma 3.2. The computations are straightforward,760

yet it quickly becomes cumbersome to take the required higher order derivatives. To761

that end, we adopt notation previously used in [22] to express the required derivatives.762

Let P be the set of all partitions of {1, 2, . . . , n}. A partition of a set A is a763

grouping of its elements into non-empty subsets so that each a ∈ A is included in764

exactly one subset. For example,765

(3.76) n = 3 =⇒ P = {123, 12|3, 13|2, 23|1, 1|2|3}766

where the notation 12|3, for instance, is meant to represent the partition {{1, 2}, {3}}.767

The sets in each partition are blocks. For example, the partition 12|3 has two blocks,768

while the partition 123 has one block.769

Consider a composite function (f ◦ g)(x) = f(g(x)), with x ∈ R. Following [22],770

the nth derivative of f(g(x)) can be expressed as771

(3.77)
dn

dxn
f(g(x)) =

∑
p∈P

f (|p|)(g(x)) ·
∏
B∈p

g(|B|)(x)772

where the notation p ∈ P is understood in the sense that p is an index which runs773

through each partition of P , and the notation |p| represents the number of blocks in774

that partition. Analogously, the notation B ∈ p is understood in the sense that B775

is an index which runs through each block of the partition p, and the notation |B|776

represents the size of each block. For the sake of clarity, writing out (3.77) explicitly777

when n = 3 gives778

d3

dx3
f(g(x)) = f (1)g(3) + f (2)g(2)g(1) + f (2)g(2)g(1) + f (2)g(2)g(1) + f (3)g(1)g(1)g(1)

= f (1)g(3) + 3f (2)g(2)g(1) + f (3)(g(1))3

(3.78)

779

where the notation h(j) is the jth derivative of a function h with respect to x. We780

now derive an expression for the nth order iSRC correction.781

Lemma 3.9. Consider a system of the form782

(3.79) x′(t; ϵ) = F (x; ϵ) = f(x) + ϵ · u(x)783

with x ∈ RN that satisfies the high-order iSRC assumptions:784
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• (E1) There exists an open subset Ω ⊂ RN and an open neighborhood of zero785

I ⊂ R such that the vector field F (x; ϵ) : Ω × I → RN is Cn in both the786

coordinates x ∈ Ω, and the perturbation strength ϵ ∈ I.787

• (E2) For ϵ ∈ I, the system (3.79) admits a linearly asymptotically stable788

T (ϵ)-periodic limit cycle γ(t; ϵ) ∈ Ω, where T (ϵ) has Cn dependence on ϵ.789

Then, system (3.79) admits an nth order iSRC expansion of the form790

γ(τ(t); ϵ) = γ(t; 0) + ϵγ1(t) + ϵ2γ2(t) + · · ·+ ϵnγn(t) (uniformly in t)

τ(t) = t(1− ϵν1 − ϵ2ν2 − · · · − ϵnνn)
(3.80)791

where the formula for γk = γk(t) with 2 ≤ k ≤ n is given by792

γ′k = Dfγk +

[
νkf +

k−1∑
j=1

νjγ
′
k−j

]
+

1

k!

[ ∑
p∈P∗

f (|p|) ·
∏
B∈p

|B|!γ|B|

]

+
1

(k − 1)!

[∑
q∈Q

(∂ϵF )
(|q|) ·

∏
C∈q

|C|!γ|C|

]
(3.81)

793

with794

νk = − 1

T

∫ T

0

(Z0(t))
T

(
k−1∑
j=1

νjγ
′
k−j +

1

k!

[ ∑
p∈P∗

f (|p|) ·
∏
B∈p

|B|!γ|B|

]

+
1

(k − 1)!

[∑
q∈Q

(∂ϵF )
(|q|) ·

∏
C∈q

|C|!γ|C|

])
dt

(3.82)

795

The vector field f , the Jacobian Df = ∂f
∂x , the derivatives f (|p|) = ∂|p|f

∂x|p| , and the796

derivatives (∂ϵF )
(|q|) = ∂|q|+1f

∂ϵ∂x|q| are evaluated at γ(t; 0). Here, P ∗ = P \{{1, 2, . . . , k}}797

and Q is the set of all permutations of {1, 2, . . . , k − 1}.798

A detailed proof of Lemma 3.9 is provided in Appendix C in the supplementary799

materials. We remark that the initial condition for (3.81) describing the dynamics800

of a single oscillator is computed as described in the earlier Lemma 3.4. The only801

difference is that the inhomogeneous term in the nth order equation changes, i.e., the802

b(t) term from the proof of Lemma 3.4 changes. This formalism also applies to the803

computation of an iSRC corresponding to coupled oscillators with identical periods,804

as in §3.2. In this case, one arrives at a different frequency matching condition for805

each higher order correction. In practice, therefore, a different choice of base point806

for each γj is required. To ensure that one can add the higher order corrections in a807

consistent manner, a different Poincaré section must be chosen for each γj to maintain808

the pointwise correspondence established by the original choice of section for γ1.809

The higher order iSRC equations must be computed in order, starting with n = 1.810

We note that our closed form expression becomes impractical after n = 4 or n = 5811

because the cardinality of P ∗ becomes quite large. For convenience, we provide the812

formula for the iSRC corrections to third order in ϵ813
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γ′1 = Df(γ0)γ1 + ν1f(γ0) +
∂F (γ0; ϵ)

∂ϵ

∣∣∣∣∣
ϵ=0

γ′2 = Df(γ0)γ2 +

[
ν1γ

′
1 + ν2f(γ0)

]
+

1

2

∂2f(γ0)

∂x2
(γ1)

2 +
∂2F (γ0; ϵ)

∂x∂ϵ

∣∣∣
ϵ=0

(γ1)

γ′3 = Df(γ0)γ3 +

[
ν1γ

′
2 + ν2γ

′
1 + ν3f(γ0)

]
+

1

6

∂3f(γ0)

∂x3
(γ1)

3 +
∂2f(γ0)

∂x2
(γ1γ2)

+
∂2F (γ0; ϵ)

∂x∂ϵ

∣∣∣
ϵ=0

(γ2) +
1

2

∂3F (γ0; ϵ)

∂x2∂ϵ

∣∣∣
ϵ=0

(γ1)
2

(3.83)

814

To understand the notation used in these equations, we review formalism pre-815

sented in [72]. Let f(γ0) =
[
f1(γ0) . . . fN (γ0)

]T
, where T denotes the matrix816

transpose, and let f
(0)
j = fj(γ0). Define a sequence of matrices for i ≥ 1817

(3.84) f
(i)
j (γ0) =

∂vec(f
(i−1)
j (γ0))

∂xT
∈ RNi−1×N

818

where vec(·) is the vectorization operator which stacks the columns of a matrix on top819

of each other. In words, f
(i)
j (γ0) is computed by vectorizing f

(i−1)
j (γ0), then taking820

the Jacobian. See Appendix F for an example computation of (3.84). This notation821

allows for a convenient representation of the Taylor expansion of f(γ0), say about a822

small perturbation dx823

(3.85) f(γ0 + dx) = f(γ0) +Df(γ0)dx+


∑∞

i=2
1
i! [⊗

i(dx)T ]vec(f
(i)
1 (γ0))

...∑∞
i=2

1
i! [⊗

i(dx)T ]vec(f
(i)
N (γ0))

824

where ⊗ is the Kronecker product and, as an example, the superscript is understood825

to represent826

(3.86) [⊗4(dx)T ] = (dx)T ⊗ (dx)T ⊗ (dx)T ⊗ (dx)T827

This formalism easily extends to the representation of the higher order derivatives in828

(3.83). For example,829

∂2f(γ0)

∂x2
(γ1)

2 =


[⊗2(γ1)

T ]vec(f
(2)
1 (γ0))

...

[⊗2(γ1)
T ]vec(f

(2)
N (γ0))


∂2f(γ0)

∂x2
(γ1γ2) =


[(γ1)

T ⊗ (γ2)
T ]vec(f

(2)
1 (γ0))

...

[(γ1)
T ⊗ (γ2)

T ]vec(f
(2)
N (γ0))


(3.87)830

and so forth.831
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We illustrate our results by computing the iSRC terms up to fourth order for832

x′ = x− x3 − y + ϵx

y′ = x+ ϵy
(3.88)833

where ϵ = 0.3 (see Figure 3.4).

Figure 3.4. Higher order terms can improve the accuracy of the iSRC approximation. Left:
The difference between the true perturbed solution γ(t; ϵ) and the iSRC approximation of orders 1 to 4
(red, green, blue, light blue, respectively). The 4th order approximation is significantly more accurate
than the 1st order. Right: The unperturbed limit cycle, γ(t; 0) (light gray), overlayed with the
true perturbed solution, γ(t; ϵ) (black), and the 1st (red) and 4th (light blue) iSRC approximations.
Despite the large shape change, the 4th order iSRC approximation is still accurate.

834

4. Applications.835

4.1. Supercritical Hopf Normal Form. As a pedagogical example, we com-836

pute the iSRC for the normal form of a supercritical hopf bifurcation in two dimensions837

x′ = (µ− x2 − y2)x− ωy

y′ = (µ− x2 − y2)y + ωx
(4.1)838

For µ > 0, the system admits a periodic solution in the form of a circle839

(4.2) x =
√
µ cos(ωt), y =

√
µ sin(ωt)840

The amplitude (maximum of the state variables) of this orbit grows as
√
µ. We provide841

analytic solutions for the iSRC in Cartesian, polar, and phase-amplitude coordinates.842

Suppose that ω = 1 is fixed. Let µ0 > 0 represent the unperturbed system843

amplitude and let ϵ be a small, variable parameter. Let the system amplitude, µ,844

vary by writing µ = µ0 + ϵ so that the system becomes845

x′ = (µ0 + ϵ− x2 − y2)x− y

y′ = (µ0 + ϵ− x2 − y2)y + x
(4.3)846

With initial condition x0 = (
√
µ0, 0) and Poincaré section spanned by (1, 0) so that847

the relative phase difference between the unperturbed and perturbed systems is zero,848

one can verify by direct computation (solving (2.13), (2.14), and (3.21)) that the iSRC849

is given by (see Appendix G for further details)850

(4.4) γ1(t) =
1

2
√
µ0

[
cos(t)
sin(t)

]
851

28

This manuscript is for review purposes only.



By (2.15), the iSRC predicts that the perturbed trajectory will be of the form852

(4.5) γϵ(t) =
√
µ0

[
cos(t)
sin(t)

]
+ ϵ

1

2
√
µ0

[
cos(t)
sin(t)

]
=

(
√
µ0 + ϵ

1

2
√
µ0

)[
cos(t)
sin(t)

]
853

and therefore predicts that the amplitude will vary linearly in ϵ with slope 1/(2
√
µ0).854

Indeed, note that the rate of change of the system amplitude at µ0 is given by855

(4.6)
d

dµ

√
µ

∣∣∣∣∣
µ=µ0

=
1

2
√
µ0

856

and so the iSRC behaves as it should by giving the amplitude change to linear order857

in ϵ (see Figure 4.1).858

Figure 4.1. The amplitude of the Hopf normal form system (4.3) as a function of the pertur-
bation ϵ with µ0 = ω = 1. The true system amplitude (black) goes as

√
µ. The amplitude predicted

by the iSRC (pink) matches the slope of the tangent line to
√
µ at µ0 (gray).

In polar coordinates, (4.3) becomes859

θ′ = 1

r′ = (µ0 + ϵ− r2)r
(4.7)860

By writing the iSRC equation (2.13) using the polar representation (4.7), one can861

directly solve the resulting system and verify that the iSRC is given by862

(4.8) γ1(t) =

[
0
1

2
√
µ0

]
863

Direct comparison of equations (4.4) and (4.8) reveals their equivalence. In both864

cases, there is no phase shift and the radius increases linearly with respect to ϵ with865

rate given by 1/(2
√
µ0).866

Finally, we compute the iSRC in phase-amplitude coordinates. One can verify867

directly that the iPRC and iIRC for the system are given by868

(4.9) Z0 =
1

√
µ0

[
− sin(t)
cos(t)

]
, I0 =

1

α

[
cos(t)
sin(t)

]
869
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where the constant α corresponds to the arbitrary scaling constant used in the com-870

putation of the K function in the parameterization method [49]. The iIRC is scaled871

by an arbitrary constant because the amplitude coordinates are defined up to an872

arbitrary multiplicative constant. By substituting these expressions into the iSRC873

equation, one may directly verify that the iSRC, in phase-amplitude coordinates, is874

given by875

(4.10) γ1(t) =

[
0
1

2α
√
µ0

]
876

Note the similarity in structure of the iSRC in polar coordinates and in amplitude877

coordinates. The phase component of the iSRC is identical in both coordinate sys-878

tems. One can verify that the isochrons (level curves of the phase function) of (4.1)879

are evenly spaced spokes of a wheel. Thus, in this simple example the polar phase880

variable is identical to the phase variable in isostable coordinates. The radial/am-881

plitude component have similar structures, but are not identical due to the arbitrary882

multiplicative scaling associated with the amplitude coordinate.883

4.2. Coupled Oscillators with Identical Periods. Systems of coupled Van884

der Pol oscillators are commonly used as simple mathematical models to describe885

physically important phenomena, such as circadian rhythms [53], heart rhythms and886

pacemakers [55], and locomotion [36, 38]. It is desirable to understand how the shape887

of such oscillations are influenced by sustained perturbations, e.g., changes in the888

environment. Here, we demonstrate that our joint phase-amplitude iSRC approach889

may be effectively applied to systems of this form. We consider coupling structures890

corresponding to both entrainment and synchronization. In each case, we consider891

two non-identical Van der Pol oscillators given by892

x′ = T (x− x3 − y)

y′ = T x
(4.11)893

and894

w′ = w − w3 − z + ϵ

z′ = w + ϵ
(4.12)895

where T = Tx/Tw is the ratio of the natural period of the first (Tx) and second (Tw)896

oscillators. Multiplying the dynamics of the first oscillator by the ratio of the periods897

ensures that each oscillator has period Tw, yet does not change the shape of the first898

oscillator. Here, ϵ = 0.1 is fixed so that oscillator 2 admits a limit-cycle solution899

that has slightly perturbed shape in comparison with that of oscillator 1. Note that900

each of oscillators 1 and 2 satisfy assumptions (A1-A3) and thus admit well-defined901

phase-amplitude reductions via the parameterization method.902

4.2.1. Entrainment. We consider a coupled system of the form903

x′ = T (x− x3 − y) + δ(w − x)

y′ = T x

w′ = w − w3 − z + ϵ

z′ = w + ϵ

(4.13)904

where δ = −0.03. Note that this system is of the form (3.32) with ug = 0. We905

apply Lemma 3.6 to compute the iSRC of (4.13) in phase-amplitude coordinates.906
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Appendix D in the supplementary materials demonstrates that assumptions (D1-D4)907

pertaining to Lemma 3.6 are satisfied, both for δ < 0 (anti-synchronous) and for908

δ > 0 (synchronous). We find numerically that the system admits a unique linearly909

asymptotically stable 1:1 mode locked solution with the oscillations of the two systems910

in anti-synchrony. The dynamics of oscillator 2 are not affected by the coupling; this911

model corresponds to a scenario in which oscillator 2 entrains oscillator 1.912

In the 1:1 mode locked solution of (4.13), the orbit of oscillator 1 is distorted when913

δ ̸= 0, but the orbit of oscillator 2 is unaffected by the perturbation. We combine914

phase-amplitude reduction and the iSRC to analyze the shape change of oscillator915

1 under entrainment. Recall that by Lemma 3.6, it is necessary only to implement916

phase-amplitude reduction and compute the iSRC for each uncoupled system. In the917

case of entrainment, we need only compute the iSRC for oscillator 1, as the dynamics918

of oscillator 2 remain unchanged. To gauge the numerical accuracy of the iSRC, we919

compute the relative L2 norm of the approximation.1 Figure 4.2 shows the results.920

Figure 4.2. Dynamics of the entrained and original Van der Pol systems. Left: The perturbed
steady-state trajectories of oscillator 1 (x(t) - gray, and y(t) - light pink) overlayed with its un-
perturbed trajectories (x(t) - black, and y(t) - pink). Right: The difference between the perturbed
and unperturbed trajectories of oscillator 1 (x(t) - black, and y(t) - pink) closely match the iSRC
prediction (x(t) - gray, and y(t) - light pink).

4.2.2. Synchronization. We consider a coupled system of the form921

x′ = T (x− x3 − y) + δ(w − x)

y′ = T x

w′ = w − w3 − z + ϵ+ δ(x− w)

z′ = w + ϵ

(4.14)922

where δ = −0.1. We apply Lemma 3.6 to compute the iSRC of (4.14) in phase-923

amplitude coordinates. Appendix D in the supplementary materials demonstrates924

that assumptions (D1-D4) pertaining to Lemma 3.6 are satisfied for both δ < 0925

(anti-synchronous) and δ > 0 (synchronous). For this choice of parameters, we find926

numerically a linearly asymptotically stable 1:1 mode-locked solution with oscillations927

in anti-synchrony.928

The perturbed four-dimensional orbit consists of a slightly perturbed orbit cor-929

responding to oscillator 1 and a slightly perturbed orbit corresponding to oscillator930

1We define the error as Eδ = (1/δ)||γ(τ(t); δ)−γ(t, 0)− δγ1(t)||/||γ(τ(t); δ)−
∫ T
0 γ(τ(t); δ)dt/T ||.
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2. We use the iSRC in conjunction with phase-amplitude reduction to characterize931

the shape change of the orbits of each oscillator. We reiterate that by Lemma 3.6,932

one need only implement phase-amplitude reduction and compute the iSRC for each933

individual oscillator separately. Figure 4.3 shows the results.934

Figure 4.3. Dynamics of the synchronized and original Van der Pol systems. The top row cor-
responds to oscillator 1, and the bottom to oscillator 2. Left: the perturbed steady-state trajectories
(x(t), w(t) - gray, and y(t), z(t) - light pink) overlayed with the unperturbed trajectories (x(t), w(t)
- black, and y(t), z(t) - pink). Right: The difference between the perturbed and unperturbed trajec-
tories (x(t), w(t) - black, and y(t), z(t) - pink) closely match the iSRC prediction (x(t), w(t) - gray,
and y(t), z(t) - light pink).

4.3. Coupled Oscillators with Non-Identical Periods. Here, we study the935

synchronization of a system of two coupled oscillators with different periods. We936

consider a system consisting of a Stuart-Landau oscillator and a Van der Pol oscillator937

x′ = (µ− x2 − y2)x− ηy + δ(w − x)

y′ = (µ− x2 − y2)y + ηx

w′ = (1 + β)(w − w3 − z) + δ(x− w)

z′ = (1 + β)w

(4.15)938

Here µ = 0.5 and β = 0.001. We take η = 2π
T , where T = 6.6632 is the natural period939

of the w, z (Van der Pol) dynamics when β = 0. Thus, when δ = 0 and β = 0, the940

oscillators have the same period T , but when δ = 0 and β ̸= 0, the oscillators have941

different periods (TSL = 6.6632, TVdP = 6.6566).942

We view the uncoupled system as (4.15) with β = 0.001 and δ = 0, so that943

the uncoupled oscillators have different periods. We view the true coupled system944

as (4.15) with β = 0.001 and δ = 0.1. With these choices of parameters, we find945

numerically that the system admits a unique linearly asymptotically stable 1:1 mode-946

locked solution, with period T1:1 = 6.6374. To compute the iSRC of the fully coupled947
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system, we proceed according to §3.3, noting that the assumptions of Theorem 3.7948

are satisfied. For comparison, we first present results for a first order analysis (Figure949

4.4, left panel), then we include higher order terms to improve the approximation of950

the coupling iSRC (Figure 4.4, right panel), as derived in §3.5.951

Figure 4.4. Difference of the uncoupled, isoperiodic orbits (β = 0, δ = 0) and the fully coupled,
anisoperiodic dynamics (β = 0.001, δ = 0.1) for the Stuart-Landau / Van der Pol oscillators with
unequal frequencies. To allow consistent computation of the difference in the resulting orbits, in
both cases the trajectories have been scaled (after coupling, for the latter case) to a common period
TVdP. Black: true difference. Gray: iSRC approximation. Left. 1st order iSRC approximation.
The iSRC approximation performs reasonably well. Right. Here, a 3rd order iSRC was used for
the coupling strength computation, and a 1st order iSRC was used for the timing perturbation. The
iSRC approximation is excellent.

4.4. Tracking Extrema of State Variables: Circadian Rhythms. Here, we952

apply the methods of §3.4 to a two-dimensional model for circadian rhythms describing953

the oscillation of core body temperature [17, 25]. The model is given by954

x′ =
π

12

[
y + µ

(
x− 4x3

3

)
+B

]

y′ =
π

12

[
−

(
24

τ

)2

x+By

](4.16)955

where µ = 0.13, τ = 24.2. Here, B is a parameter which represents the influence of956

light, x represents endogenous core body temperature, and y is an auxiliary variable.957

We ask how different levels of sustained light exposure influence the amplitude of the958

circadian rhythm oscillation. Fix B0 = 0.1 as a baseline level of light exposure. Let ϵ959

be a small, variable parameter and write B = B0 + ϵ so that (4.16) becomes960

x′ =
π

12

[
y + µ

(
x− 4x3

3

)
+B0 + ϵ

]

y′ =
π

12

[
−

(
24

τ

)2

x+ (B0 + ϵ)y

](4.17)961

Note that system (4.17) satisfies the single oscillator iSRC assumptions (B1-B3) and962

the requirements of Lemma 3.8. When ϵ = 0, the system admits a stable limit-cycle963

solution with oscillations of x(t) about zero and with a period of approximately 24964
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hours. We use the iSRC to analyze the change in amplitude (maximum) of the x(t)965

oscillations as ϵ varies. As shown in Figure 4.5, the iSRC method correctly predicts966

the sensitivity of the magnitude (the maximum of x) for small perturbations.967

Figure 4.5. The amplitude of the circadian rhythm model as a function of ϵ. The amplitude
predicted by the iSRC (pink) agrees well with the true amplitude (black).

968

4.5. Non-Planar System. In this section, we demonstrate that our joint iSRC969

phase-amplitude approach is effective for higher dimensional cases. For concreteness,970

we study a three-dimensional mean field model for quadratic integrate-and-fire (QIF)971

neurons subject to a state dependent perturbation [49]. The model equations are972

specified in Appendix H. We use Theorem 3.1 to compute the iSRC of the QIF model973

in phase-amplitude coordinates. Results are shown in Figure 4.6.974

5. Discussion. Analysis of the dynamics of weakly perturbed and weakly driven975

oscillators has been greatly facilitated by the phase-amplitude framework. In phase-976

amplitude coordinates, highly non-linear oscillatory dynamics are represented in the977

simplest possible form: a phase variable that evolves at a constant rate, and isostable978

(amplitude) coordinates that obey linear dynamics. Traditionally, analysis focused979

solely on the timing of system dynamics [5, 16, 23, 32, 44], and has since been aug-980

mented to incorporate a sense of distance from the underlying limit cycle via the981

introduction of isostable coordinates [7, 20, 73, 74, 75]. Nevertheless, analysis of cou-982

pled oscillators is still mainly understood in terms of the timing of the oscillations;983

for example, a recent study [46] implemented a phase-amplitude reduction to study984

systems of coupled oscillators, but leveraged knowledge of the amplitude coordinates985

to arrive at an improved phase-based description of the system dynamics, rather than986

to study deformations of the trajectory.987

Despite the importance of oscillation amplitude in many physical applications,988

systematic studies on this topic remain lacking. Existing techniques, such as phase-989

amplitude reduction and the infinitesimal shape response curve, provide a means to990

study the shape change of weakly perturbed oscillations. However, to the best of991

our knowledge, no published works have thus far addressed the relation between the992

iSRC and phase-amplitude methods, or used them in tandem as a joint approach to993

study oscillation amplitude. In this work, we fill this gap by developing a general994

framework to study the shape change of perturbed oscillations using a joint iSRC995
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Figure 4.6. Dynamics of the three-dimensional QIF model. Top Row: the unperturbed (black),
perturbed (grey), and iSRC approximation (colored) orbits for the x (left), y (middle), and z (right)
state variables. The inset is centered at t = 2.25. Bottom Row: the difference between the perturbed
and unperturbed orbits (black) closely matches the iSRC prediction (x - red, y - green, z - blue).

phase-amplitude approach.996

We specify conditions under which a general class of systems can be analyzed by997

the iSRC and by phase-amplitude reduction simultaneously. While the iSRC satisfies998

an ODE which is valid for any coordinate system, we show that potentially highly999

non-linear iSRC behavior in Cartesian coordinates has a dramatically simple repre-1000

sentation in phase-amplitude coordinates. Moreover, by directly relating the iPRC1001

and iIRC to the iSRC, we unify the two methods and demonstrate that our joint1002

approach offers greater conceptual clarity than either of the methods in isolation. In1003

particular, the iPRC and iIRC completely characterize the influence of an arbitrary1004

static perturbation on the shape change of stable limit-cycle dynamics.1005

In addition to its conceptual importance, we show that the iSRC also leads to1006

practical tools. We use the iSRC in conjunction with phase-amplitude reduction to1007

analyze the synchronization and entrainment of systems of coupled oscillators. In1008

the case of identical periods, we illustrate that one need only analyze each individual1009

oscillator. This analysis allows one to implement lower dimensional phase-amplitude1010

reductions to study high dimensional systems, which can significantly facilitate nu-1011

merical computation. Previous work [77] demonstrated how the iSRC may be used1012

to track the average of specific system observables in limit-cycle systems subject to1013

parametric perturbation. Here, we complement existing theory by showing how the1014

iSRC may be used to track the extrema of system states under perturbation. Despite1015

these advances, some open questions remain.1016

We demonstrated the effectiveness of the phase-amplitude iSRC theory on two-1017

and three-dimensional oscillators. Theoretically, such analysis is applicable to oscil-1018

lators of higher dimension. However, from a practical standpoint, the implementa-1019
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tion of phase-amplitude reduction in dimensions of four or greater quickly becomes1020

cumbersome. Moreover, the non-resonance condition (A3) is not trivially satisfied in1021

dimensions greater than two. It would be desirable to develop computational methods1022

capable of handling such cases.1023

We developed iSRC theory to analyze the synchronization and entrainment of two1024

coupled oscillators which admit a 1:1 mode locked solution. Extension of this theory1025

to systems of N coupled oscillators should follow straightforwardly from the analysis1026

presented here, yet remains to be implemented numerically. More interesting is the1027

case of N coupled oscillators which admit a non-trivial p : q mode-locked solution.1028

This behavior is observed in physical systems, such as coupling between respiration1029

and locomotion [3], or in neuron models [10], and is worth pursuing in future works.1030

The work presented here facilitates analysis of coupled deterministic oscillators.1031

However, physically realistic models often incorporate stochasticity, necessitating the1032

study of systems of noisy coupled oscillators. While the notion of deterministic phase1033

as reviewed in this work is not well-defined for stochastic systems, recently notions1034

of stochastic phase and stochastic isostables have gained traction [6, 47, 48, 50, 57,1035

66]. Such notions allow for the treatment of stochastic oscillators in much the same1036

manner as their deterministic counterparts; a natural future goal is to leverage notions1037

of stochastic phase and amplitude to understand how the effects of coupling and other1038

sustained perturbations distort both the shape and timing of stochastic oscillators.1039
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