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The transport of conserved quantities
like spin and charge is fundamental to
characterizing the behavior of quantum
many-body systems. Numerically simu-
lating such dynamics is generically chal-
lenging, which motivates the consideration
of quantum computing strategies. How-
ever, the relatively high gate errors and
limited coherence times of today’s quan-
tum computers pose their own challenge,
highlighting the need to be frugal with
quantum resources. In this work we re-
port simulations on quantum hardware
of infinite-temperature energy transport
in the mixed-field Ising chain, a paradig-
matic many-body system that can exhibit
a range of transport behaviors at inter-
mediate times. We consider a chain with
L = 12 sites and find results broadly con-
sistent with those from ideal circuit sim-
ulators over 90 Trotter steps, containing
up to 990 entangling gates. To obtain
these results, we use two key problem-
tailored insights. First, we identify a con-
venient basis—the Pauli-Y basis—in which
to sample the infinite-temperature trace
and provide theoretical and numerical jus-
tifications for its efficiency relative to, e.g.,
the computational basis. Second, in addi-
tion to a variety of problem-agnostic error
mitigation strategies, we employ a renor-
malization strategy that compensates for
global nonconservation of energy due to
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device noise. We discuss the applicability
of the proposed sampling approach beyond
the mixed-field Ising chain and formulate
a variational method to search for a sam-
pling basis with small sample-to-sample
fluctuations for an arbitrary Hamiltonian.
This opens the door to applying these tech-
niques in more general models.

1 Introduction

Developing an understanding of transport in in-
teracting quantum many-body systems is a topic
of substantial renewed interest. Already in one-
dimensional (1D) lattice spin models there is
a rich array of different potential behaviors for
the late-time transport of conserved quantities
such as spin and energy. Both phenomenological
methods applicable to integrable systems [1] as
well as numerical simulation methods such as ten-
sor networks (TNs) [2, 3] have led to a number of
tentative conclusions about 1D transport. On one
hand, it is expected that diffusion is the generic
behavior of interacting systems with few conser-
vation laws [4]. On the other hand, strongly dis-
ordered systems may display subdiffusive or lo-
calized dynamics [5-10] as do systems with mul-
tipole conservation laws [11]. Spin transport in
the 1D Heisenberg model is superdiffusive [12-14]
and, remarkably, energy transport in kinetically
constrained models can potentially be superdiffu-
sive as well [15].

In systems far from integrability, conclusively
establishing the nature of transport with classical
numerical approaches via exact dynamical simu-
lations is extremely challenging. To do so, one
must simulate the dynamics of large systems out
to late times where all transients of a microscopic
origin have disappeared and a hydrodynamic de-
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scription of densities corresponding to conserved
quantities is expected to apply. At the same time,
exact numerical approaches are limited to small
system sizes, while TN methods may be limited to
early times or exhibit subtle systematics [16-22].
A natural question, therefore, is whether quan-
tum computers can help. Indeed, a few works
have already proposed quantum algorithms for
this problem, including an algorithm for simu-
lating spin transport using random quantum cir-
cuits [23, 13].

The main challenge in quantum simulation is
errors due to environmental decoherence or im-
perfect realizations of quantum operations. The
cumulative effect of these errors limits the depth
of quantum circuits that can be faithfully exe-
cuted on hardware. In the interest of demonstrat-
ing non-trivial quantum simulations while still
in the era of noisy intermediate scale quantum
(NISQ) computing |24], a variety of error suppres-
sion and mitigation techniques have been devel-
oped to manage these limitations. At the hard-
ware level, one can apply sequences of dynami-
cal decoupling pulses [25-27| on the idle qubits
to extend their relaxation and coherence times.
One can also create custom pulse-level gates to
reduce circuit duration [28, 29]. Quantum er-
ror mitigation on the algorithmic level [30] such
as zero noise extrapolation (ZNE) [31-36] and
probabilistic error cancellation (PEC) [32, 37-39]
are widely used for quantum simulations on hard-
ware.

In this work we focus on quantum simulation
of energy transport in the 1D mixed-field Ising
model (MFIM), a prototypical example of a non-
integrable quantum many-body system. We find
that standard methods like ZNE and dynamical
decoupling are insufficient to capture the correct
dynamics of a Trotterized MFIM evolution at sys-
tem size L = 12. However, by employing a renor-
malization strategy that follows naturally from
the method we use to sample correlation func-
tions, we gain an empirical factor of about 5 in
the time out to which the dynamics can be cor-
rectly captured (corresponding to 90 total Trot-
ter steps). For an L = 12 chain, this is sufficient
to extract a power-law scaling exponent charac-
terizing the energy transport (on the accessible
time scales) that is consistent with classical sim-
ulations.

Our sampling method approximates unequal-

time energy density correlators at infinite temper-
ature using random y-basis product states (i.e.,
product eigenstates of single-site Pauli Y opera-
tors). For the MFIM, we show with both numer-
ics and analytics that this sampling method has
only an O(1) and exceptionally small sampling
complexity, making it suitable for NISQ devices.
At the same time, to measure unequal-time cor-
relators on hardware, we employ an ancilla-free
protocol requiring only direct measurements [40],
which leads to 16 distinct circuit evaluations at
each Trotter step (independent of L). Finally,
only local operators are measured in this proto-
col, leading to an L-independent shot noise. For
a fixed Trotter step size, the algorithm therefore
comes with an O(t) quantum circuit complexity,
where t is the total evolution time.

The remainder of the paper is organized as fol-
lows. In Sec. 2, we define the energy density oper-
ators for the MFIM along with various quantities
that are generally used to diagnose the transport
behavior. In Sec. 3, we discuss the y-basis sam-
pling method and point to Appendix A, which
contains further numerical and analytical argu-
ments for the effectiveness of sampling in the y-
basis. In Sec. 4, we explain our protocol for mea-
suring y-basis sampled correlation functions on a
quantum computer, discuss the problem-tailored
renormalization-based error mitigation strategy,
and present results calculated on an IBM quan-
tum processing unit (QPU). In Sec. 5 we provide
some steps towards generalizing the sampling ap-
proach beyond the MFIM. In particular we for-
mulate a variational approach to search for a sam-
pling basis with small sample-to-sample fluctua-
tions for an arbitrary Hamiltonian. Notably, this
variational method allows for more general sam-
pling bases to be explored, including ones with
nonzero entanglement. Finally, Sec. 6 concludes
and offers an outlook.

2 Energy transport

Motivated by experimental realizations of the
MFIM in Rydberg atom arrays [41, 42|, we fo-
cus on the following formulation of the MFIM:

L—-1 L
H=4V Y nmnip1 + Q) X, (1)
=1 =1
where n; = 252 and Z;(X;) is the Pauli Z(X)

operator acting on site 7. In Rydberg atom ar-
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rays, the transverse field €2 is set by the Rabi fre-
quency of a laser that pumps the atoms between
their ground and Rydberg states with (Z;) = +1
and —1, respectively. Van der Waals interactions
between excited Rydberg atoms generate a long-
range density-density interaction whose scale is
set by the nearest-neighbor interaction strength
V. We neglect longer-range couplings (which fall
off as ~ |i — j|7%) in the present work as they
do not qualitatively affect the energy transport.
Rewritten in terms of Pauli operators, Eq. (1)

becomes
L

H=N> h, (2)
i=1
with hz = N_l [QXZ—G—QVZZ—G—% (ZzZerl‘i'Zllez)]
for 7 in the bulk of the chain and

- 1{QX1+VZ1+‘2/2122 i=1

— 3
OX,+VZ+%Z, 12, i=L )

‘N
at the edges. Here, N = (2% + 3V2)Y/2 is a nor-
malization constant chosen so that (h?)_ _ =1 for
i in the bulk of the chain, where (A) = tr(A)/d
with d = 2% is the infinite-temperature average of
an observable A. The infinite temperature energy
transport can be characterized via the real-valued
correlation functions

Cij (t) = (hi(t)h;(0))oo (4)

where B(t) = ' Be=! for an observable B.
Eq. (4) describes the spatial energy distribution
upon evolving the slightly out of equilibrium ini-
tial state p. = e /tr(e") representing the in-
jection of a small amount of energy density on
site j. For small e,

tr(pe(t)hi) = € (hi(t)h;(0)) ,, + O(*);  (5)

hence, Cj;(t) are linear response coeflicients. Un-
less otherwise specified, we fix j = L/2 and
vary ¢ = L/2 4+ r as a function of r, defining
Cr(t) = Czj(t)

First taking the limit of L — oo, the C,(t) are
expected to admit a hydrodynamic description at
long times, such that they decay as C,. (t) ~ t~1/*
where 2z is the dynamical exponent classifying the
transport [4]. When z > 2 the energy transport is
subdiffusive, and when z < 2 it is superdiffusive.
In particular for ballistic transport, which occurs
in the presence of a global conserved current, one
has z = 1. For a non-integrable model one gen-
erally expects diffusion, corresponding to z = 2,

but other types of transport are also possible as
discussed in the introduction.

A related quantity that can be used to diagnose
transport behavior is the spatial variance (SV) of
the quasi-probability distribution over r given by
C,(t) = C(t)/C, where

L/2 2 2
QO +5V
C= g Cr (t) = 9 (6)
r=—L/2+1 @+ 3V?

is a normalization factor introduced so that
S, Cr(t) = 1. The fact that C' is a time indepen-
dent constant follows from energy conservation
and will later be a crucial ingredient in simulat-
ing the transport on a noisy quantum device. The
spatial variance (SV) is then

2 —_ 2 A o 2 2
20 =G0 - (Lr60) o

T

and is expected to grow as %2 (t) ~ t2/%.

For generic model parameters, the MFIM is
nonintegrable with no conserved quantities ex-
cept energy, and we thus expect it to display dif-
fusive energy transport, i.e. with a late-time dy-
namical exponent z = 2. However, the model (1)
also has a natural parameter 2/V that can tune
the apparent transport behavior at intermedi-
ate times. In the limit Q/V — 0, the model
maps to the “PXP model" [43-45|, where pairs
of sites for which (n;n;+1) = 1 effectively be-
come frozen. The prevalence of such configura-
tions leads to exponentially suppressed infinite-
temperature transport. Conversely, in the limit
2/V — oo the model exhibits ballistic transport
in the prethermal regime as the z-basis magne-
tization becomes a conserved quantity and spin
flips in that basis become well-defined quasipar-
ticles. In our IBM hardware experiments, we sim-
ulate 2/V = 2,3, 6 looking for signatures of effec-
tive diffusive and superdiffusive behavior at the
accessible timescales.

3 Sampling Methods

3.1 General approaches

Let Q = hl(t)hj (0), such that Ci]’ (t) = <Q>oo
A direct and exact approach to computing an
infinite-temperature correlation function such as
(@), would be to pick a complete basis of states
{|¢k) r, compute all (px|Q|¢r), and then average
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the results over k. A convenient sampling basis
could be, e.g., product states, which are cheap
to produce on a QPU and to store on a classi-
cal computer. By choosing |pg) to be random
product states, one could instead imagine Monte-
Carlo sampling (Q) ., incurring a statistical error
proportional to S~Y/2 where S is the number of
samples. A problem-tailored method of this type
has been used for spin transport: Ref. [46] uses
random pairs of z-basis product states to sample
spin-spin correlation functions such that there is
no sampling error at time zero.

In general, to achieve a system-size and time-
independent relative statistical error using prod-
uct states, the needed number of samples S could
grow with time ¢ for transport-type problems.
For example, one could try to sample the infi-
nite temperature average with random product
states locally drawn independently from the Haar
measure; see Appendix E for an analysis of this
ensemble. The sample-to-sample fluctuations are
upper bounded by (QTQ).., which is provably
O(1) for the transport problem. However the
quantity of interest, Cj;(t) = (Q),,, is decreas-
ing in time as t~1/*. Assuming the O(1) upper
bound on the fluctuations is tight, this implies
a number of samples growing as S = O(t%/?) to
obtain a time-independent relative error.

Alternatively, one can harness the phenomenon
of quantum typicality to reduce this problem to
the calculation of a single expectation value [47—
49|. In this method, one draws a random pure
state |¢) from the Haar measure on the entire
Hilbert space and finds that the statistical correc-
tions are d—%/2 <QTQ>OO, which is exponentially
small in system size since (QTQ). = O(1) for
the transport problem. On classical computers, a
sample from the Haar ensemble can be generated
by fixing some orthonormal basis |7) and directly
constructing the entangled state

[) o< 3 ;1) (8)
J

where c¢; are independent and identically dis-
tributed (i.i.d.) complex Gaussian random vari-
ables with zero mean. This approach of course
does not alleviate the exponential cost of storing
|1} or computing (¥|Q|v), but since it eliminates
the need for ensemble averaging, it is still expo-
nentially faster than simulating the entire ensem-
ble. In Fig. 1 panel (a) we plot Cy(t) in black, as
well as the statistics of Re (¢|hr/2(t)hr/2(0)[1))

0.75
1072

0.50 A

0.25 A

— o §—0.989 S

Figure 1: Exact classical numerical benchmark of sam-
pling Co(t) and X2(t) in the y basis for L = 12 sites
and model parameters V =1, Q = 2. Time is measured
in units of 1/V. (a) The exact autocorrelator Cy(t) in
black, whereas the gray confidence band is one stan-
dard deviation over all y-basis product states, named
Fy(L,t) in the text. For comparison, the orange band is
one standard deviation over 1000 Haar random states.
(b) The same quantities but for 32(¢). The insets show
improvement of accuracy with increasing ensemble size
following theoretical predictions, see text for discussion.

over an ensemble of 1000 Haar random states |1},
with the orange confidence band corresponding
to one standard deviation. We can see that the
statistical error is already almost negligible even
for L = 12; a single state suffices to simulate the
infinite temperature ensemble.

On quantum computers, the situation is some-
what different. In order to coherently prepare
a Haar-random state, at least an exponentially
deep local random circuit would be needed [50].
On the other hand, it may suffice in practice to
prepare a sample from an approximate quantum
state k-design for sufficiently large k, which has
some statistical properties equivalent to those of
a Haar-random state. Actually, these states are
proven to require only depth-O(k'9L?) local ran-
dom quantum circuits to prepare [51] and are
conjectured to require even less depth [52]. This
scaling is efficient in principle and the method of
using shallow random circuits for spin transport
calculations was demonstrated via classical sim-
ulations of noisy quantum hardware in Ref. [23].
This work was followed up by Ref. [13] which per-
formed the calculation on IBM hardware and con-
firmed KPZ scaling for spin transport in the XXZ
chain. However, in general on NISQ devices, it
may be advantageous to consider methods that
skip this state preparation step and save valuable
coherence time needed to measure transport be-
havior.
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Having discussed various methods that could
be used to sample from the infinite temperature
Gibbs ensemble, we note that more direct meth-
ods such as operator time-evolving block decima-
tion (TEBD) have also been used to successfully
approximate the infinite temperature trace out to
long times in restricted Hilbert spaces [15].

3.2 Sampling of Correlators

Here, we propose to sample from the infinite-
temperature ensemble using a special set of prod-
uct states that are tailored to computing energy-
density correlation functions in the MFIM. In
this way, the state preparation step requires only
single-qubit gates, making it much more suitable
for NISQ devices. Let |yx) be product states
where each qubit is in a randomly chosen eigen-
state of the Pauli Y operator on the correspond-
ing site. The subscript £ = 1,...,S5 indexes S
random samples from the set of all d such prod-
uct states; we denote the corresponding random
variable by |y). We define

1

S
CP(t) = < > Re (yklhr oir(t)hr2(0)lyr) (9)
k=1

|

to be a sample-averaged energy-density correlator
in a random ensemble of y-basis states. It follows
that statistically,

(10)

CE(t) = Cr(t) + 0<Fr(L,t)>

S1/2

where F,(L,t) is the standard deviation of
Re (ylhpjor()hr2(0)]y) — Cr(t) over all d y-
basis states. Eq. (10) then follows from
the central limit theorem and the fact that
Re (y|hrjo4r(t)hr/2(0)|y) is an unbiased estima-
tor of Cy.(t). Of course, the preceding statement
holds for any complete basis of states; to advocate
for sampling in the y-basis versus other bases, we
need to say something about the size of F,.(L,t).
We demonstrate the following:

1. The dynamical relative error Fy(L,t)/Co(t)
is at worst O(1) in L and ¢ and exceptionally
small for multiple model parameters.

2. The equivalent dynamical relative error for
the z basis can be larger than 100% and ap-
pears to increase with L at late times.

3. The initial error F,.(L,0) = 0.

4. The long-time error is exponentially small—
ie., F(L,t — 00) = O(L*d~'/?) for some
« > 0—assuming a quantum chaotic system.

Points 1 and 2 above are empirical observations
from classical numerics, while point 3 is a simple
consequence of the relation between the model
and the y basis, as discussed below. Point 4 is
non-trivial and is demonstrated analytically in
Appendix A.

The basic mechanism behind the advantage of
sampling in the y basis is that for the Hamilto-
nian (2), the random product states |y ) look like
infinite-temperature Gibbs states as far as one
and two point spatial energy-density correlators
are concerned:

Wlhily) = (hi) oo
(ylhihjly) = (hihj)

An immediate consequence of the second con-
dition is that there is no error at time zero,
F.(L,0) = 0. At the same time, we prove in
Appendix A that, for a quantum chaotic system,

Vi, y (11)
Vi, j, y- (12)

T
lim l/ dt F*(L,t) = O(L*d™)  (13)
T—o0 T 0

for some o > 0. To make this statement we as-
sume a mild form of the “diagonal" eigenstate
thermalization hypothesis (ETH) [53, 54| along
with a no-resonance condition on the energy spec-
trum [55] as well as exponentially small average
purity of y-basis state diagonal ensembles, all in
line with standard assumptions in the study of
quantum chaotic systems [56, 57]. Although this
bound does not enforce F,.(L,t) to be exponen-
tially small at time scales relevant to diagnosing
transport, we find numerically that after an initial
transient, the actual error is particularly small at
intermediate times (i.e., those from which we ex-
tract a dynamical exponent) before it ultimately
becomes exponentially small at late times.

To help demonstrate the sense in which the y-
basis is empirically useful for this problem, we
first perform a classical numerical simulation of
the dynamics using a high-order series-expansion
approximation to e *! which is essentially ex-
act. Fig. 1(a) shows in the gray confidence band
the classical simulation of Fy(L,t) for L = 12.
We can see that Fy(L,t) is reasonably small; i.e.
a single randomly drawn y-basis state more or
less captures the physics of the energy transport.
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To make this more quantitative, in Appendix A.4
we show how Fy(L,t)/Co(t) scales with ¢t and L
for different model parameters and product state
bases. We find that the y-basis is consistently
advantageous. Of course to use this method to
identify a dynamical exponent z, much more pre-
cision is needed than just being within the gray
confidence band. Thus, one can average over S
random samples—our results suggest that S can
be relatively small and, at worst, O(1) in L and
t.

In principle, Eq. (10) only holds statistically,
and the actual fluctuations of C:(¢) around C.(t)
are O(S~Y2) in S only when S is large enough
that higher moments are suppressed via the cen-
tral limit theorem. To confirm that the empirical
fluctuations are at least in some sense captured by
the second moment even for relatively small S, we
numerically calculate the averaged square devia-
tions of the sample-averaged correlation function
C§(t) from the exact Co(t) as follows:

1

E%(S) = m e

CEt) —Co)| at (19)
-

‘2
where the time interval 7 = (0, 15). In the inset
of Fig. 1(a), we can see that indeed EZ decays
with S as S~! up to fluctuations, as indicated by
the slope of a best linear fit to EZ on a log-log
scale. The fact that such a clean S™! scaling can
be seen can be attributed to the time averaging
and to the coarse-graining effected by the least-
squares best-fit. The precise form of the scaling
aside, the error clearly decreases with S.

3.3 Sampling of Spatial Variance

The other transport diagnostic that we discussed
in Sec. 2 is the spatial variance ¥2(t). Here, we
also provide a classical simulation of this quantity
along with a benchmark of the y-basis method as
compared to the standard typicality method. Let
CY(t) = Re (Ylhp o qr (), j2(0)[). In Fig. 1(b),
the orange confidence band shows the statistics
of

i r20Y POV ()N 2
Ei(f) _ Zr Cr (t) . (Z?" Cr (t)) (15)

>, CF(t) >, CF(t)

over 1000 samples from the Haar ensemble. We
can clearly see that the relative error in f]?ﬁ (t) is
significantly larger than it was for C¥(t), which
we attribute to the fact that the statistical error

in C¥(t) are amplified by 72. The same feature
is observed for the y basis sampling method: let
CY(t) = Re (y|hr o4, (t)hr/2(0)]y) and define

o 2, TR0 (X, rCYB)°
=0 =5"a0 (zmmw>'<m

The gray confidence band in Fig. 1 panel (b)
shows the statistics of iz(t) in the ensemble of all
y basis states. This method clearly comes with
a large confidence band relative to the value of
$2(t), but the ratio of the y-basis standard devi-
ation to that of the Haar samples is around 3.5
for both the spatial variance and the autocorre-
lator; i.e., both methods are more costly for the
spatial variance.

To reduce this band, we would like to average
over y basis states as we did for C§'(t). A distinc-
tion between C,(t) and iz(t), however, is that
»2(t) is a non-linear function of |y) and thus iz(t)

is a biased estimator of X2(¢). Interestingly, the
nonlinearity is due only to the second term in the
spatial variance and not the denominators. This
is because the denominators are independent of
|y), which follows from Eq. (12) and energy con-
servation. While this bias should ultimately be
small in a large system since the second term in
the spatial variance is present only because of lack
of exact reflection symmetry around site L/2, we
can also mitigate it as follows.

Since the estimation of $2(t) is an efficient clas-
sical post-processing step (scaling as S- L), using
the data {C¥*(t)}7_, obtained from the QPU, we
could first compute all of {CF(t)}, and then use
these as data to estimate ¥2(t). Therefore, we

define
S _ Zr TQCf(t) Zr TCf(t) ?
0= - (Sokw) - 7

The denominators are actually independent of
t,y, and S in the noiseless case, but we explic-
itly include these dependencies for future refer-
ence; on noisy hardware they will become impor-
tant. Now, Eq. (17) is still a biased estimator
of ¥:2(t), but the bias decreases as O(S~/2). To
numerically demonstrate improvement of the y-
basis sampling of % (¢) with increasing ensemble
size in this setting, we also calculate the time av-
eraged square error

1

F%2,(8) = —
2O =] er

S20) -2 e (8)
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and we can see in the inset of Fig. 1(b) that in
practice, E%z (S) behaves approximately as S~

4 QPU: Methods and Results

4.1 Measuring Correlation Functions

To characterize the energy transport, we will need
to measure quantities of the form (| A(t) B(0)|¢)
on a quantum computer. This is a nontrivial task
for generic operators A and B because it consti-
tutes an overlap between distinct quantum states
Ae "t |9) and e~ B 1)) rather than an expec-
tation value of the form (|O(t)[) for some ob-
servable O. While there are simple, generic quan-
tum computing primitives for computing such
overlaps, like the Hadamard [58, 59] and swap
tests [60, 61], they require ancilla qubits and/or
multiple qubit registers, along with high connec-
tivity controlled-unitary gates that make their
naive implementation on quantum hardware chal-
lenging. Some simplifications can be made when
the initial state [¢) is an eigenstate of the observ-
ables A and B. For example, when calculating
spin transport (see, e.g., Ref. [46]), one can set
A= Z; and B = Z; and use z-basis initial states,
in which case the correlation function factorizes
as (Y| Zi(t)|) (| Z;(0)]1). Again for the case
of spin transport, but using a typicality based
approach, Refs. [23, 13] observed that the spin-
spin correlator (Z;(t)Z;(0)) can be deduced from
a one-point function (Z;(t)) by evolving a pseudo-
random state on all sites except j. However, such
simplifications are not directly available for more
complicated operators like the energy density op-
erators considered in this work.

To avoid preparing entangled initial states and
using costly ancilla-controlled unitaries, we adapt
a protocol for replacing Hadamard tests with di-
rect measurements outlined in Ref. [40], which
makes it possible to measure the desired correla-
tion functions when using y-basis states. We first
decompose the energy density correlators in the
Pauli basis,

4
hijor(Hhr2(0) = > O‘u,vpf/zw (t) Pr s (0)

=1
(19)
where we have defined P! = X;, P? = Z,
Pi3 = Z’iZ’i+17 and Pz4 = i—lZi~ The Qy,p are
real-valued coefficients that depend principally on

V,€ but also depend slightly on r since energy

densities are defined differently on the boundaries
of the chain [see Eq. (3)]. Then, we observe that

Re (Y| Pr o, ()P 5(0)]y)

= & (bl Pl (D)

Pl By (20)
where |+,v,y) = ([ £ PLV/2) ly) /v/2.  For
a fixed y-basis product state and fixed 7,
Re (ylhrjo4r(t)hr/2(0)|y) is thus computed by
preparing the 8 states e *H* |+, v, y) and measur-
ing Pf ot Since these operators commute for
w € {2,3,4} we ultimately need to prepare only
8 - 2 = 16 distinct circuits.

Additionally we observe that, for a Hamilto-
nian that is reflection invariant around site L/2,
some of the above circuits are redundant on the
average over y-basis states. Specifically, we have
that

(Pl (PR (0) = (Pl (6)PE(0)) _
(1)
so that, having estimated the RHS of Eq. (21) for
all r, one would also already have the LHS for all
r, reducing the number of needed circuits from
16 to 12 (up to the ensemble average). For an
even number of sites, H is not reflection invariant.
However, the lack of reflection symmetry around
site L/2 is due only to a single sub-extensive
boundary term; we expect this to become increas-
ingly unimportant for larger and larger systems.
We would like to take advantage of this ap-
proximate symmetry to reduce the number of
needed circuits, but a potential problem is that
we have advocated using only a small ensemble
of S y-basis states to estimate correlation func-
tions, whereas the symmetry only holds on the
average over all y-basis states. For an ensemble
of S states, the distinction between the LHS and
RHS of Eq. (21) is in principle only O(S~1/2).
In practice however, for a certain fixed ensemble
of S = 12 y-basis states under consideration, we
find that by simply assuming

Wkl PL 3 () PL 2 (0) )
= (Y| PL ;5. ()P (0)yk)  (22)

for each |yi) in that ensemble, we obtain nu-
merical results very close to those not assuming

Accepted in (uantum 2024-11-12, click title to verify. Published under CC-BY 4.0. 7



Eq. (22).
pendix B.
To further reduce circuit depth and save coher-
ence time for diagnosing transport rather than
preparing initial states, we make one more sim-
plification. ~ Note that for v € {3,4}, the
states |+,v,y) = (I + PZ/Z) ly) /v/2 are Bell
pairs on sites L/2 £ 1 (and product on the
other sites). We opt to ignore these superposi-
tions and simply replace these initial states with
the local computational (Pauli Z) basis states
{]00), |01),|10),|11)} on sites L/2 — 1, L/2 (for
v = 3) and sites L/2,L/2 + 1 (for v = 4), in-
curring an error which is negligible in practice, as
is also shown in Appendix B. This replacement
comes at the cost of requiring 16 distinct circuits
instead of the 8 needed when using bell pairs.

This is shown and discussed in Ap-

42 QPU Results

Here we describe energy transport results ob-
tained on the 27-qubit ibmq_montreal QPU. We
focus on model parameters L = 12, V = 1, and
Q) = 2 in Fig. 2. To implement the unitary dy-
namics U(t) = e~ on a digital QPU, we Trot-
terize the dynamics [62, 63]. One subtlety that
arises in the context of energy transport is that
energy is no longer strictly conserved with finite
Trotter step size. Consider the quantity

cS(t) =3 5 () (23)

which, without any Trotter error, would be equal
to the time independent constant C' defined via
Eq. (6). This fact follows from Eq. (12) and en-
The black scatter points in
Fig. 2(b) are a classical ideal quantum circuit sim-
ulation, including shot noise, of the Trotterized
dynamics of C®(t) for S = 12 y-basis states. We
can see that C'%(t) initially deviates from C and
then slightly fluctuates around a decreased value
for later times. The fact that C'°(t) does not sig-
nificantly decay within the timescale shown im-
plies that any decrease in Cj(t) [black scatter
points in Fig. 2(a)| is due to transport of local
energy density and not global non-conservation
of energy. In fact, the decay of C**(t) observed in
our QPU results [blue scatter points in Fig. 2(b)]
serves as a useful diagnostic of the level of noise
present on hardware. In Appendix C we study
the behavior of C'(t) under noisy classical dy-
namics simulations and find that its decay rate

ergy conservation.

(a) (b)

LIS s, Q=2 101 , °'.°,-:’:."VLW
o .o‘.'
S S . .
- 2z =1.99(7) ¢ O
— 2 =0.79(3) o
107! 4 « Simulator 034 — C Ay
« QPU : o

() (d)

10° 4°
és $i2
1 — 2=203(7) 1.
-1 |
10714 — z=1.9132) [0
10° 101 10° 101
t t

Figure 2: Demonstration of renormalization strategy for
simulating energy transport. Black scatter points are
obtained from ideal quantum circuit simulations using
gasm_simulator and blue are obtained from quantum
hardware experiments on ibmq_montreal. The black
and blue lines are power-law fits to the ideal and QPU
results, respectively (using at '/ for the energy density
autocorrelator and bt?/# for the SV). (a) The y-basis-
sampled raw energy density autocorrelator C§'(t) and (b)
their sum C®(t), shown also with the value C in green
for comparison. (c) The renormalized correlator Cjy (t)
and (d) the renormalized spatial variance %2(t). For
both the simulator and the hardware experiment we set
L =12,V =1, and 2 = 2; we fix the Trotter step size
6t = 0.1 and simulate up to 90 Trotter steps. The data
points meaurements at only even Trotter steps. In all
simulations we use a fixed sample of S = 12 y-basis ini-
tial states which are recorded in Appendix B. Quantum
expectation values are approximated with 8192 measure-
ment shots.

is directly related to the amount of noise in the
simulation.

This observation leads to a natural strategy for
error mitigation in the context of this particular
problem: we renormalize all L correlation func-
tions by their measured sum, defining

C3(t) = C3(1)/CS 1), (24)

In Appendix C we show data from classical sim-
ulations of the Trotter dynamics in the presence
of noise and demonstrate the systematic depen-
dence of this strategy’s effectiveness on the noise
strength. We find that renormalization provides
a substantial improvement up to a time scale (re-
lated to the device coherence time) where C(t)
becomes small. The renormalized results begin
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to become significantly noisy when C9(t) be-
comes too small, say less than 0.1. Therefore the
size of C¥(t) can be used as a self-consistency
check on the quality of the simulation, provided
that the decay of the individual C2(t)s is suf-
ficiently spatially uniform to justify a uniform
global rescaling. In addition to the renormal-
ization, our QPU runs use standard problem-
agnostic error mitigation methods as in our previ-
ous work [64]: zero noise extrapolation with scale
factors {1.0, 1.5,2.0}, tensored readout error mit-
igation, dynamical decoupling, and dressing all
two-qubit gates with randomly chosen Pauli op-
erators. To significantly save on coherence time,
we also implement Rz rotations with pulse level
control using Rzx rotations native to the de-
vice [28].

The blue points in Fig. 2(a) show unrenor-
malized QPU results produced using these stan-
dard error mitigation techniques. |[The same tech-
niques are also applied to obtain the QPU re-
sults in Fig. 2(b).] Clearly, these error mitiga-
tion methods alone are insufficient to capture the
correct dynamics and predict a different scaling
exponent than the ideal circuit results. Fig. 2(c)
shows, however, that renormalization by C(t) in
combination with the above methods brings the
QPU data points much closer to the ideal simu-
lator, especially at late times. A power-law fit to
the decay of the renormalized energy autocorre-
lator provides a QPU estimate of z = 2.03, which
is very close to that predicted by the ideal circuit
simulator (z = 1.91). We can also probe trans-
port via the SV of the energy distribution defined
by C2(t), which we denote by ¥%. In Fig. 2(d)
we see that the QPU and ideal classical simula-
tor both produce an SV growing approximately
linearly with ¢. Taken together, these results in-
dicate that the energy transport on timescales
probed by these simulations is approximately dif-
fusive.

As discussed in Sec. 2, increasing the trans-
verse field strength  brings the Hamiltonian (1)
closer to integrability. To investigate the en-
ergy transport in this regime and explore how
varying model parameters affects the quality of
QPU data, we simulate energy transport with
the above protocol for 2 = 3 and 2 = 6. Re-
sults are shown in Fig. 3. Fig. 3(a) and (b) show
that, even without renormalization, the individ-
ual data points obtained from the QPU match the

b
3 o

— 2 =1.08(30)
— 2=0.75(16) &7
(c) (d
100 4 * 3 107 4 T
. Q == 3 ® Q == 6
. J
~ ° ~
Cs s
— 2 =1.54(21)n&, 107!
— 2=155(21) _
107! 4+ Simulator - = 1.07(29) A
. QPU — 2 =0.96(27)
0.1 05 1 2 4 0.1 05 1 2 4
t t

Figure 3: Raw and renormalized energy autocorrela-
tor data from the ideal circuit simulator and the hard-
ware experiment for other 2. Beyond varying Q, the
model parameters, hyper-parameters and y-basis states
are identical to Fig. 2. The left two panels show the raw
(a) and renormalized (c) results at €2 = 3 and the right
two show Q = 6. Solid lines show fits to ¢~1/%.

ideal simulator results fairly closely until times
t ~ 3Vl This closer agreement is reason-
able given that transport is occurring on shorter
timescales for these values of 2 as compared to
the results shown in Fig. 2. Faster transport
means that fewer Trotter steps are needed to sim-
ulate the correlator’s dynamics until it reaches an
O(1/L) value, which means lower circuit depth
and lower infidelity. However, the deviations from
the simulator results between ¢t ~ 3 to t ~ 5 are
sufficient to skew the QPU estimate of the power-
law decay (blue lines) away from the estimates
obtained from the ideal simulator (black lines).
In Fig. 3(c) and (d), we see that renormalizing
the correlator by C*(t) brings the ideal and QPU
results into much closer agreement over the full
simulation time window. The renormalized QPU
data predict transport exponents z = 1.55 for
Q =3 and z = 0.97 for 2 = 6, consistent with su-
perdiffusive and ballistic behaviors, respectively,
that are expected at early times for these param-
eters. In Appendix D we show further QPU data
including the SV and spatiotemporal energy cor-
relations.
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5 Generalization to Other Models

5.1 Explicit Examples and a Counterexample

Before concluding our study of simulating energy
transport in the MFIM, we discuss some prelimi-
nary results that suggest the method applies more
generally. The central idea of our proposal is that,
if one can identify a complete basis of product
states |p) for which

(plhilp) = (hi)so s  (plhihjlp) = (hihj), (25)

holds for all |p), then this is a particularly good
basis in which to sample the infinite temperature
dynamical energy-energy correlators. Some other
examples besides the MFIM where we can iden-
tify the appropriate product-state basis include
any odd-body generalization of the XY model,

e.g.
hi = Jo X1 XiXip1 + JyYi1YiYi,  (26)

where Eqgs. (25) hold for z-basis states. A more
physically motivated example is the 1D Zs lattice
gauge theory coupled to spinless fermions. This
theory can be mapped onto a spin chain [65] with

Here, again the y-basis satisfies Eqs. (25). This
fact was leveraged in Ref. [66] to study the finite-
temperature properties of this model.

A product state basis satisfying (25) need not
exist for a generic Hamiltonian. As an explicit
counterexample, consider the isotropic Heisen-
berg chain for which

h? =3 — 2h;, (28)

hihit1 = O 0o+ 5'2‘_;,_1 . (52 X 5}4.2). (29)

hi = G; - 01,

The most general product state basis of three
sites is

|d+) |b+) |¢+) (30)
where d, l;, C are general unit vectors on the Bloch

sphere and =+ refer to the antipodal points along
these axes. The desired conditions obtain only if

a-b=0,a-¢=0b-(@xd=0, (31

which is impossible in three dimensions. This
suggests that in general, one will have to relax
the assumptions of our sampling approach, for ex-
ample by allowing for some entanglement in the
sampling basis or demanding that Egs. (25) hold
only approximately.

5.2 Variational Approach

Here, we consider a variational approach to
finding a basis which approximately satisfies
Egs. (25) while also allowing for some entangle-
ment. First, we fix a shallow entangling circuit
ansatz U () made of local gates with O(L) varia-
tional angles. We also fix a random set of .S com-
putational basis states |k). We then minimize the

cost function

L, o1&
CS(G)ZEZZ

k=1 1

(k|UT(0)hU (0)|k) — (hs)

o0

(32)

S
% SONT KU @) hibU0) 1K) — (hihy)

k=1 i,j

which attempts to simultaneously minimize the
amount by which the conditions (25) are violated.
We test the method on the paradigmatic XXZ
spin chain with energy density

J

h; = ?Z (Zz'Zi—l—l + Zi—lzi) (33)
J.

+ S (XiXi + YY1 + Xim X + i Yi),

which includes the Heisenberg chain as a special
case and therefore does not admit a product state
basis satisfying Eqgs. (25). For simplicity, we fix
the system size L = 8 with PBC, set J, = J;, =1
(i.e., tune to the Heisenberg point) and take a
fixed set of § = 50 random initial computa-
tional basis states. We use the shallow circuit
ansatz shown in Fig. 4(d) which contains Rz ro-
tations and single-qubit rotations V = Rx Ry Ry
for a total of 4L variational angles. The SciPy
COBYLA optimizer was used to carry out the
optimization. Once the optimal U is found, we
can sample the correlator Cy(t) via

Cy(t) = Re (k|Uhpjo(t)hp 2 (0)U k). (34)

Fig. 4(c) shows the result of this method, and
panels (a) and (b) are different methods for com-
parison. Panel (a) shows the same optimization,
but using only the single qubit layer of V’s and
no entangling gates. Panel (b) shows the result of
using a randomly chosen set of fixed angles within
the same shallow ansatz circuit of panel (d). The
orange curves in each panel indicate individual
samples CF(t).

Qualitatively, the optimized entangled basis
performs the best among all three variants—the
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Figure 4: Comparison of sampling methods for an L = 8-site XXZ spin chain at the Heisenberg point. All plots make
use of a variational ansatz circuit of the form depicted in panel (d). (a) Sampled energy density autocorrelator using
an optimized product-state basis involving only single-qubit gates V' = Rx Ry Rz, corresponding to only the bottom
layer of gates depicted in (d). (b) Sampled energy density autocorrelator using a set of random low-entanglement
states obtained by feeding random computational basis states into a single instance of the variational ansatz (d)
with randomly chosen angles. (c) Sampled energy density autocorrelator using a low-entanglement basis obtained by
optimizing the ansatz circuit shown in (d). In all panels, the orange lines represent each of S = 50 samples obtained
by feeding random computational basis states into the respective ansatz circuits, and the black line represents the
exact reference dynamics that is well captured by the sample average, shown in cyan. In the insets, the blue lines are

the statistical relative error €(t) and the green horizontal lines are their time-averaged values.

samples are better concentrated around the exact
dynamics. Allowing some entanglement though is
crucial; the optimized product basis in panel (a)
would require 100 times the number of samples to
achieve the same accuracy as even the naive shal-
low random circuit in panel (b) which involves no
optimization. To be more quantitative, we also
plot in the inset of each panel the correspond-
ing dynamical relative error e(t) = Fy(t)/Cy (t),
where

S
SHOEED D61t} (3)
k=1

S
Rt =Y Ichn - 5P, (30)
k=1

We see that the optimized entangled sampling ba-
sis performs best, with the smallest overall time-
averaged relative error (green lines). We find that
the time-averaged relative error of the optimized
entangled ansatz state in panel (c) is about 0.56
times that of the unoptimized ansatz state with
randomly chosen angles in panel (b). This implies
that the optimized basis would require about four
times fewer samples than the random circuit for
the same overall accuracy. This preliminary anal-
ysis suggests that the principles underlying our
sampling approach for the MFIM can be gen-
eralized to study energy transport for arbitrary
Hamiltonians.

6 Conclusion and Outlook

In this work, we have proposed a sampling ap-
proach for approximating energy-density corre-
lation functions in the MFIM. The method re-
lies on the fact that every y-basis product state
looks like a spatially uniform infinite temperature
Gibbs state as measured by quadratic functions
of energy-density operators; we have shown ana-
lytically that this leads to an exponentially small
statistical sampling error at long times in the
strongly chaotic parameter regime of the MIFM.
We have also shown numerically that the expo-
nentially small long-time value is accompanied by
an empirically small statistical error at interme-
diate times and for two sets of model parameters
(see Appendix A).

Using this approach, we simulated energy
transport in the L = 12 MFIM on the 27 qubit
QPU ibmq_montreal. We found that the most
effective error mitigation strategy is the problem-
aware approach of renormalizing correlation func-
tions by their sum, which corrects for global en-
ergy non-conservation due to decoherence. From
QPU simulations of the energy density autocor-
relation function in the middle of the chain, we
obtained intermediate-time dynamical exponents
very close to those predicted by an ideal quantum
circuit simulator. We extracted from the QPU
data the values z = 2.03 for transverse field {2 = 2
corresponding to the far from integrable regime,
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as well as z = 1.55 for @ = 3 and z = 0.97
for Q = 6. The latter two cases demonstrate
that, qualitatively and at relatively early times,
the model displays energy transport increasingly
close to ballistic as ) increases.

Digital quantum simulation of energy trans-
port provides a potential route to demonstrating
practical quantum advantage: one could try to
generalize the y-basis method to two dimensions
and apply it to a larger and newer (with longer
coherence times) quantum devices (e.g. the 127
qubit ibm_kyiv or 433 qubit ibm_seattle), and
estimate energy correlators out to times longer
than are accessible with TN or other approximate
methods [67, 68]. The renormalization strategy
would play an essential role in reaching suffi-
ciently late times. At the same time, the fact
that the ideal energy correlators obey a spatial
sum rule means the constancy of their sum could
be used as a metric to asses the quality of a given
quantum hardware platform.

To assess the viability of generalizing our
sampling approach to other models, we have
performed a preliminary numerical calculation
for the isotropic XXZ spin chain by variation-
ally identifying an ensemble of weakly entangled
states which look only approximately like infinite-
temperature states for one and two point func-
tions of the energy density. We found signifi-
cantly reduced sampling costs compared to sam-
pling from product states. A worthwhile topic
for future work is to formulate the optimization
in a more rigorous state-independent way, i.e. in
terms of a variational unitary U(0) and the en-
ergy density operators alone. The analytical anal-
ysis in Appendix A could also be extended to a
finitely-entangled sampling basis generated by a
depth-O(1) circuit.

Energy transport at finite temperature is also
of theoretical and experimental interest. The y-
basis method may also be helpful in that context,
and future work could analyze how the sampling
complexity depends on L,t, and inverse temper-
ature  in a manner similar to Ref. [69]. One can
also ask if the y-basis is useful for sampling equi-
librium finite-temperature expectation values of
local observables via imaginary-time evolution of
y-basis states [70-74].

Data Availability

An example code demonstrating the method
adopted in this paper in a noisy simulator
is publicly available at https://gitlab.com/
yxphysics/diffusion.
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A Theoretical justification for Y-basis
product state sampling

In this appendix we argue that, in a system
which obeys a no-resonance condition on the en-
ergy spectrum as well as the ETH, the infinite-
temperature correlation functions C,(t) are par-
ticularly well-sampled by the special product
states |y). More specifically, we show that in
an ETH system, the statistical fluctuations of
(y|hi(t)h;(0)|y) around the exact value are on the
average over a long time exponentially small in
the system size L. While this fact certainly does
not imply that at all times ¢ the statistical fluctu-
ations are small, we give numerical evidence that
after a short initial transient, the effect of the ex-
ponentially small long-time value is already felt in
the sense that the statistical y-basis fluctuations
are already particularly small. We further this
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claim by showing, numerically, a significant dif-
ference in the dynamical relative error for y-basis
sampling as compared to another basis, such as
the z-basis, which has no special properties with
respect to the models under consideration.

In this appendix we will still focus on the
MFIM, but without necessarily imposing the con-
straint that the ZZ coupling and Z field are re-
lated as is done implicitly in Eq. (1). We now
take

IRy Vv
hij = N WX+ haZ + 5 (Zj1Z5 + 2 Z511)]

(37)
in the bulk (2 <j <L —1) and
_ 1{h§;}X1+}122Z1+‘2/Z122 J=1
TN \MXL+ %2+ 52,42, j=L
38)

at the boundaries. We set N = (V2/2 + h2 +

hi)l/ 2. For the purposes of this appendix, we
will consider two sets of model parameters:

(V7 hi,hz) = (172,2)
hz) = (1, —1.05 +rj, 0.5)

(“QPU Experiment")
(V,h

)y Iogs

where r; € [—0.01,0.01] is a small uniformly dis-
tributed random perturbation to remove any ex-
act degeneracy for technical reasons; this way
E, = E,, if and only if n = m. Beyond this,
we ignore the r; in our subsequent analysis, e.g.
we take <h§>oo =1.

A.1 Long time averaged fluctuations

Consider the quantity
AY(t) = (ylhi(0)h;0)y) — (hi()h;(0))oo. (39)
This has the property that

Ey[AY(t)] =0 Vi, j,t. (40)
where E, = d-! >, and d = 2~ is the Hilbert
space dimension. In other words, random prod-
uct states are unbiased estimators of a trace. We
would like to study the statistical fluctuations
of this quantity across randomly drawn y-basis
product states |y). If the fluctuations are small,
then (hi(t)h;(0))so could be accurately estimated
with a small ensemble of random product states.
Ideally, we would like to show that

Ey[|A] ()] (41)

(“Strongly Chaotic"),

is small for all times ¢. Note that in the main text
we discussed the quantity

F2(L,t) = E,[ReA¥ ()] <E, AT (1)) (42)

(here ¢ = L/2 and j = L/2 + r), but in this
appendix we focus on bounding the sum of the
fluctuations of the real and imaginary parts for
analytical simplicity. Despite this simplification,
we will see that this simpler bound is still “qual-
itatively tight" in the sense that it scales with L
as do the fluctuations of the real part of the error.
Faced with the lack of a closed form expression
for h;(t), as in the original problem of estimating
the dynamical exponent, we opt to make some
statements instead about the long-time average

—_— 1 /T |
E A7 OP] = Jim = [ atE, a7 0]
(43)

To do this, we assume the standard no-resonance
condition [55]

IR
P T /0 dt " Fn=Em =Bt Bl = 6, Sh1+ GOt
(44)

Recent work has actually revealed that this stan-
dard assumption need not hold exactly, inde-
pendently of chaos via standard indicators [75].
However, the corrections to this formula are ex-
pected to be subdominant, making it sufficient
for our purposes. Inserting resolutions of iden-
tity in the eigenbasis of H and making use of the
no-resonance condition, we get

E, [|A7 (0)12]

|1, 2
=8, 3 tnlhuln) ((nlhslo) gl — L0

1n) 12
+E, 30 (nlhahm) 2| nlgly o)~

Expanding the square in the second term of
Eq. (45) and using that |y) is a complete basis
allows this term to be written as

Ey Y | {nlhilm) | (mlhyly) [*] {yln)

nm

— 2 Y nlialm) 2 ) . (46)

Looking towards an upper bound, we can drop
the negative term. However this is still an asymp-
totically tight upper bound because <hjz>oo =1
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and ||h;|[* = O(1) where || - || is the operator
norm (maximum singular value) and the second
term is O(d~1). The first term in Eq. (46) is fur-
ther upper bounded as

1 1/2
o ) (T, ()T, ) ) (47)
where we have defined

D= 1wl I (48)

to be the inverse participation ratio (IPR) of the
state |1) in the y basis.
To simplify Eq. (47), we observe that

Zy(hj ) < 64 Z,(|¢)) (49)

for any state [¢) and in particular, for |¢) =
|n). In other words, if |¢) is delocalized in a
product state basis like |y), a local operator h;
cannot parametrically localize [¢) in that basis.
Eq. (49) follows precisely from the locality of h;
and the fact that |y) are product states. We prove
Eq. (49) as follows. Inserting a complete y-basis
into the IPR yields

Iy (h; [¥)) = >

> (yayslh;lyays) Yayslv)

YAYB yly s
(50)
where |yayp) = |ya) |yp) with A being the subset
of the chain consisting of sites j — 1,7,7 + 1 and

B the rest, so that y4(yp) labels the possible y-

basis product states within region A(B). It is
then clear that
4
Zy(hi [¥)) = D | D2 (walhylya) (vayslv)
YAYB y%
(51)

Applying Cauchy-Schwartz inequality to the
sum over y’ then employing the fact that
<yA|h2-]yA> =1 for any y4, we find the bound

Ty(hi ) <8 > |

yByAyA

(yayslv) Pl (Waysly) 1.

(52)
Using inequality of geometric and arithmetic

means (GM-AM) gives

| (yayslv) '+ | (Waysl) |*

T l9) <8 Y !
YBYAY,
(53)
=8 > |(yaysly)|! (54)
yByAyA

from which Eq. (49) follows. Using this result, we
may upper bound Eq. (47) by

= nlhalm) P, (n) T, ()] (55)

< 8llhulloe (T)  (56)

Yoo

where in the second line we used again the GM-
AM inequality and defined

ESEA() 67)

to be the spectrally averaged y-basis IPR. Eq. 47
is thus bounded by the average IPR of eigenstates
in the y-basis up to an O(1) factor. The numeri-
cal factor of 8||hi||oo likely leads to a loose upper
bound as compared to numerics at small system
sizes, but we nonetheless rely on this result be-
cause it rigorously implies a suppression of the
second term contributing to Eq. (45) by the av-
erage inverse participation ratio.

Now, let us turn to the first term contributing

to Eq. (45). We express h; as two terms:
1 H
hi = hi
=Nt (58)

where N is the normalization factor introduced in
Eq. (3) and h; is a Hermitian operator. We make
this ansatz for h; because we expect that most
matrix elements of h; will be small in a system
obeying the eigenstate thermalization hypothesis
(ETH). We discuss the ETH in more detail in the
next subsection, but for now let us treat Eq. (58)
as a definition of the operator h; whether or not
ETH holds for the system under consideration.
Plugging this into the first term in Eq. (45), we
find

2

5, )

> nliste) ((nlhyly) (o) — 5

n

(59)
where the term proportional to E, has dropped
out because Eq. (12) holds for each y. Expanding
out the square, we find this expression is upper
bounded by

Ey Y | (nlhiln) [*| (yln) [* (ylh3]y)
- %Z | (nlhiln) [* | {nlhyln) 2. (60)

Now letting

ohi = (| offul) 12)1/2, (61)

n
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Figure 5: Eigenstate thermalization and its consequences for long-time values of dynamical quantities of interest. (a)
The diagonal matrix elements of /.1, /» concentrating around their thermal value for L = 14. (b) Scaling with L of 5h?
fori = L/2 and L/2+2. Data are consistent with the theoretical expectation that A7 is only polynomially large in an
ETH-obeying system. (c) Exact energy-density autocorrelator Cy(t) for system sizes up to L = 16. The inset shows
evidence that Cy(t — o0) deviates from the semi-classical value by an exponentially small amount, see Eq. (71). (d)
Statistical error in using y basis states to sample the correlator Cy(t). The inset shows that Fy(L,t — o0) is also

exponentially small up to a prefactor, see Eq. (72).
we find that Eq. (60) is bounded by
Sh2 H2 1/2 Sh2 1/242
e [(Gem) () 11 @
d N2L2 d

We thus conclude this section with the upper
bound

N RCORICIRY
(63)

E,[|AY (OP] < 0((Z,))

In the next subsections we will see that, up to
a multiplicative polynomial prefactor, this entire
expression is exponentially small in system size.

A.2  Assuming the ETH

Srednicki [55] proposed that in a non-integrable
system and for a local operator such as h;,

(nlhilm) = h(E/L)8nm + D Y?(E) f(E,w)Rym
(64)
where E = (E, + E,,)/2, w = E, — E,, f and h
are smooth functions, D(E) the smeared density
of states at energy E, and R, = O(1). Since h;
is an energy density operator, we identify h(E/L)
with the semi-classical value of E/N L. In a quan-
tum chaotic system, we expect f(eL,w) for fixed
arguments e,w to scale with L only polynomi-
ally, since any exponential dependence has been
stripped off via the factor D(E)~1/2.
If we assume the ETH as in Eq. (64) and treat
the spectum as continuous, we observe that (re-

call Eq. (61))

n? = [ dE|f(E.0) (65)
so that dh? should scale polynomially in L. In
Fig. 5(a) we can see that almost all diagonal ma-
trix elements of hp/, are concentrated around
their semi-classical value. Fig. 5(b) shows nu-
merical evidence that §h? is bounded by a power
law. The L scaling of the ETH function f(F,w)
for w — 0 has been discussed by assuming hydro-
dynamics at late times in various types of systems
[56, 76, 77]. Such arguments can, however, break
down for very small omega, for example w < 771
where 7 = O(L?) is the thermalization time. In
any case, the zero frequency behavior at finite L
should diverge at most as a power of L. Inte-
grating over E/ may increase this power, but still
maintain a polynomial scaling. We therefore as-
sume that there exists some a > 0 such that

§h? = O(L®). (66)

We highlight two consequences of Eq. (66) here.
Firstly, we note that the long-time value of cor-
relation functions for |r| < L/2 are given by
(NL)™' (H?)__ up to exponentially small correc-
tions. This is because the deviations from this
long-time value are bounded as

) 1/2
< <<H >°°> (6hi + 0h;)d=Y? + 6h;6hid ™"
(67)
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so that Eq. (66) implies

- L(e=1)/2
N2[2 O( dl/2 ) (68)
B [(e—1)/2
=7 +0 %) +0(dl/2>. (69)

This latter equation is consistent with the semi-
classical picture that energy density initially lo-
calized on site ¢ has spread roughly uniformly
across the system. The second important con-
sequence is that [combining Eqgs. (42), (63), and

(66)]

(0%
FRLO-0(@))+o(") ()
suggesting that so long as (Z,)__ is exponentially
small, so too is the long-time statistical error in
using a y-basis state to sample the infinite tem-
perature energy-density correlators.

In Fig. 5(c) and (d) we test these predictions
numerically. Clearly panel (c) is consistent with
Eq. (69), i.e. that Cy(t) decreases with L at long
times. More quantitatively, let 7 = (12,75) be
the time averaging window within which we as-
sume that the long-time value has already been
reached for L < 16. The panel (c) inset shows
that the error between the theoretical long time
value and the actual late time average

1 (H?)
= [ dtCyt) - Yl
|T| JieT o(®) N2L?

is, up to some weakly increasing prefactor [as pre-
dicted by Eq. (68)], proportional to d~1/2. As for
the y-basis error, Fig. 5(d) suggests there is in-
deed an exponentially decreasing long time value,
and the inset demonstrates that the actual late
time average

&L (71)

1

FL= 1=
BT rer

dt Fo(L,t)? (72)
is basically proportional to d~! up to a weakly
growing prefactor, as is theoretically allowed for
in Eq. (70). These numerical results can also be
seen as evidence that (Z,)  is O(d™'), up to a
weakly growing prefactor. In the next section,
we give more direct numerical evidence of this.

A.3 Inverse participation ratio

In the previous subsection, we argued that up to
exponentially small corrections, the infinite-time

(@) d|(y[n)[? (b) dZ,(|n))
N awmP | 01 g Tl
9 N
51 . 6 8 10 12
it L.
. -'g I' . . -I l_.“
1_ T T T
-1 0 1
E./L E,/L

Figure 6: Relationship between y-basis product states
and eigenstates of the chaotic MFIM for L = 12. (a)
In black, the overlaps | (y|n) |* (scaled by d) versus en-
ergy density for a single random y-basis state. In blue, a
coarse-grained version of the same. Orange is a horizon-
tal line at 1. (b) In black, the IPRs Z,(|n)) (scaled by d)
as a function of energy density. The orange horizontal
line represents the spectral averaged IPR (Z,)_ . The
inset shows that d (Z,) = O(1).

averaged fluctuations are bounded by something
of order the average IPR of y-basis states in the
eigenbasis of H, for the MFIM. On a heuristic
level, we expect this spectral average IPR to be
exponentially small in a chaotic system since

L)oo = 333 ol ' = Byix(?)  (73)

where

wy =Y {yln) [ |n) (n| (74)

is the diagonal ensemble corresponding to a y-
basis product state |y). The purity of the diago-
nal ensemble of a product state in a chaotic sys-
tem is generically expected to be exponentially
small in L [57] and in this case since it is av-
eraged over all y-basis states we expect it to be
particularly well behaved. However, as a matter
of possibly independent interest, we further study
the relationship between eigenstates of the MFIM
and y-basis product states.

In Ref. [78] it was shown that the energy distri-
bution of random product states converges in the
thermodynamic limit to a normal distribution. In
particular, we have for any constants a < b and
in the limit of L — oo that

b
> i [ dEpE) (1)
a<E,<b a
where p,(E) = (271'03)_1/26_(E_E”)2/2U1% with E,
and O‘ZQ) the energy and the energy variance, re-
spectively, of the product state |p). In the spirit
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of Srednicki’s formulation of ETH [55] and in a
manner consistent with Eq. (75) let us make the
phenomenological ansatz

| (pln) [* = D™ (En)pp(En) (1 +1pn)  (76)

with —1 < 7, < O(1) pseudo-random fluctu-
ations whose particular distribution will not be
too important for our purposes. This description
is consistent with Eq. (75) since

Y. i) P= Y. DN(En)pp(En)

a<En<b a<En<b

+ Z D_l(Ean(En)Tpn (77)
a<E,<b

and the first term can be converted to the contin-
uum yielding the limiting form of Eq. (75). For
a chaotic spin chain the density of states is well
approximated by a Gaussian,

D(E) =Y 0(E — Ey) = d(2r5?)~ 12 E/27,

(78)
where . is a smeared delta function and where we
have set the mean of the Gaussian to be (H)_ =
0 and the variance to be

2= (0% = N*(L-2)
+2(V2/4+h2 +h2/4) = O(L). (79)

Using this formula and treating rp, as indepen-
dent and identically distributed random variables
with mean zero and higher moments Er;;n = Uk,
the second term has zero mean and variance

Z p2D? (En)PZ(En)
a<E,<b
< N2(2722)1/2pp(Ep)

< ; (b—a)e™/* (80)

which is O(d™!) assuming a,b,us = O(1) and
0127 = O(L), so that the left hand side of Eq. (75)
converges to the limiting form with a statisti-
cal error of O(d~'/?). In case |p) = |y) further
simplifications also occur due to the fact that
E, = (H),, =0 and 05 = (H?)__. Namely, in
this case we have D~1(E,,)py (E,) = d~! for all n.
This is clearly seen in Fig. 6, whereby the coarse
grained version of d| (y|n)|? (obtained by aver-
aging over windows of 64 nearest eigenenergies),
which is an approximation to dD~1(E,)p,(E»),
is a very flat function of energy. Still assuming

€y €,
0.30 1.50
(QPU Exp.)
0.25 - 1.25 /Q‘;//;
0.20 1.00 -
0.15 - \ 0.75
0.10 : 0.50 .
0.6
(Strongly
Chaotic)
0.4
1.0 L=10
L=12
—L=14
0.5 — L=16
0 25 50 0 25 50
t t

Figure 7: The dynamical relative error ¢, for prod-
uct state bases p = y and p = z shown in left and
right columns, respectively, for “QPU experiment" (top)
and “strongly chaotic" (bottom) parameters [see below
Eq. (38)]. Different curves show data for system sizes
L = 10,12, 14,16 with darker gray indicating larger L.
For the QPU experiment parameters, the region between
the orange vertical lines indicate the time range in which
the dynamical exponent was extracted in the QPU ex-
periment.
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Tpn to be mean zero i.i.d. random variables with
higher moments Er;fn = g, we find

E(Z,). . =d '(1+ p2). (81)

oo

We can also calculate how typical this average
value is in the joint distribution of ry,,. We find
that the variance is

]E<Iy>io B [E <Iy>oo]2
= d*(4pz + Aps + s — p13). (82)

Therefore if we assume that u; are at most, say,
growing polynomially with L and not exponen-
tially we find for large L that

<Iy>oo =

since statistical fluctuations are exponentially
smaller than the average. Interestingly, Fig. 6
(b) is numerical evidence that at least pg does not
grow with L (for the small range of system sizes
considered). With a more systematic numerical
study of “how random" the r,,, actually are in a
nonintegrable system, Eq. (76) could potentially
be seen as part of a more detailed phenomenolog-
ical understanding of why diagonal ensembles of
product states are exponentially small in chaotic
systems. For the purposes of this paper, sim-
ply assuming that rp, are effectively independent
random variables helps justify the central claim
of this Appendix; that

o@d™h (83)

E, [|A7 (1)2] < O(i)' (84)

for some a > 0 which is consistent with our nu-
merics [recall our earlier discussion of the inset of
Fig. 5(b)].

A.4 Relative Error

Analytical bounds aside, to further clarify the ad-
vantage of sampling (h;(t)h;(0)) . in the y-basis
over some other product state basis, we compare
numerically the dynamical relative error

 Ry(L,t)

&p(t) = T(t) (85)

for the two different product state bases |p) =
ly), |2). Fig. 7 shows a big practical difference be-
tween the y-basis and z-basis. Firstly, the z-basis
fluctuations in both models are actually larger

(a) (b

100 N 1.1
\\ fx \ 2 i
oS cs ! Wi g‘”\‘""
0 | —— None . \ THTURS
— CB A
RS N | ¥
RS and CB Vv
1071 —— (.95
(c) (d)
10° A -
0 //
100 5 /
cs \ 52 /
0 ‘ s /
N0
1071 4y T T T/ T T
1071 100 10* 1071 100 10t

t t

Figure 8: Ideal (no shot noise) Trotter simulation of the
effects of making two simplifications to the hardware
implementation protocol. (None: without any simplifi-
cation, CB: replacing Bell pairs with local computational
states, RS: assuming reflection symmetry of the ensem-
ble, and CB and RS: combining both simplifications.)
All four possible combinations are shown. Model pa-
rameters, hyper-parameters, and the set of y basis states
[Eq. (86)] are identical to Fig. 2 in the main text.

than the correlator itself at late times and still
large at earlier times. On the other hand, in both
models the y-basis has fluctuations on the order
of 20%. Consequently, a single randomly drawn
y-basis state will already approximate the exact
correlator with a statistical error of order 20%.

B Protocol Simplifications made for
Hardware Simulations
For the hardware simulations, in this appendix,

and in the subsequent appendices, we refer to the
fixed ensemble of 12 y-basis states defined by

100010111110 010001100101
110101111101 010001111011
011101101100 011101000001
100011011010 111010110010 (86)
000011010110 111110001111
001011001110 011011101000

where 1 denotes a +1 eigenstate of Y on the cor-

responding site and 0 denotes a —1 eigenstate.
In Sec. 4 of the main text, we discussed two

principle simplifying assumptions we make in im-
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Figure 9: Sum rule and the energy autocorrelators from the noisy simulator with 8192 shots.

All parameters

and hyper-parameters are the same as in Fig. 2, including the choice of y-basis sample [Eq. (86)]. (a) The sum
rule results with different thermal relaxation time set (77 = 120.73us, T> = 107.29us), (T — 50us, To — 50us), and
(Th + 60us, To + 60us). (b) The bare sample-averaged energy autocorrelator. (c) The renormalized sample-averaged
energy autocorrelator. The black points represent the results of a noiseless circuit simulation of the same Trotter

dynamics.

plementing the transport experiment on hard-
ware. We assume reflection symmetry in Eq. 21
in order to reduce the number of circuits. Be-
sides that, we also evolve local computational ba-
sis states {|00),]01),]10),|11)} instead of the lo-
cal Bell states |+, v, y) (when v = 3,4) in order to
reduce circuit depth. The error made in replacing
the Bell states present in, for example, the term

<+’3’y|P£/2+r(t)|+737y> (87)
with product states comes from what we call the
“off diagonal" contribution

(_l)y%er%_H <PM

) (89)

where y; denotes jth entry of a bitstring in the
list (86) and

AP (1) =
—{00,y|Pp 5, ()11, y) + (11, y|PL . (£)]00,)

L Y|Py, (D]10,4) (10,5 Py, (£)]01 1)
(89)

with |00,y),|01,y),]10,y),|11,y) denoting prod-
uct states obtained by replacing the Y eigenstates
on sites L/2 — 1 and L/2 with the correspond-
ing z-basis states indicated by the first argument.
Eq. 88 depends explicitly on the y-basis sample
being averaged over. Under an average over S
samples, Eq. (88) will be suppressed by a prefac-
tor S~1/2 due to the random sign. However, the
smallness of Eq. 88 for relatively small S depends
on the size of <Pf/2+r(t)>zﬁ.

Fig. 8 shows statevector simulator results (i.e.,
assuming an infinite number of measurement
shots) for Trotter simulations of the sample-
averaged energy correlation function and SV us-
ing just Eq. 20 (None), using computational ba-
sis states instead of Bell states so as to ignore
Eq. (88) (CB), assuming reflection symmetry
(RS), and combining both simplifications (CB
and RS). For all sample-averaged quantities con-
sidered, namely the bare correlator C§ (a), the
sum rule value C° (b), the renormalized corre-
lator Cj§ (c), and the corresponding SV (d), all
four methods yield nearly indistinguishable re-
sults. This indicates that our simplifying assump-
tions should not have a strong impact on the QPU
results.

C Noise Analysis

In this appendix we simulate the impact of noise
on the sum rule value C(t) = >, C,(t) and the
renormalization strategy discussed in the main
text that corrects for the noise-induced decay of
this quantity with time. Motivated by the fact
that two-qubit gates take significantly longer to
perform on hardware than one-qubit gates, our
noisy circuit simulation in Qiskit adds noise only
to the two-qubit gates in the Trotter circuit. We
model thermal relaxation noise during the appli-
cation of a two-qubit gate by subsequently acting
with a phenomenological noise channel including
both dephasing and amplitude damping compo-
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nents [79]:

Nalp) = 3 VipVi', (90)

with Kraus operators

1 0
Vo= ( 0 e—idwt—t/Ts ) (91)

0 0
‘/1 = ( /eft/Tl - eft/TQ ) (92)

0 0

Vs — ( 0 V1—et/h ) (93)

Here, 177 and 15 are the amplitude damping
and dephasing relaxation times, respectively, ¢
is the duration of the two-qubit gate, and dw
is the energy difference between |0) and [1).
We fix t = 0.6 pus and test three different pa-
rameter sets (77 = 120.7 ps,To = 107.3 us),
(Ty — 50,75 — 50), and (T} + 60,75 + 60). The
parameters ¢, 77, and T5 are chosen to be compa-
rable to those of real IBM QPUs, which on aver-
age have roughly 77 ~ 100us and T» = 100us.

We perform noisy circuit simulations in Qiskit
by applying the above noise channel after each
two-qubit gate to the qubits on which the gate
acted. Results for the sum rule and energy den-
sity autocorrelators are shown in Fig.9 [with re-
sults averaged over the same y-basis sample as
in the QPU experiment, i.e., Eq. (86)]. Fig.9 (a)
shows that the sum rule decays faster as 17 and 15
become shorter. This decay impacts the energy
density autocorrelator results shown in panel (b)
in a predictable manner—the global nonconserva-
tion of energy due to noise leads to faster decay of
the autocorrelator, with the decay rate of the sum
rule correlating directly with the deviation from
the results of a noiseless circuit simulation (black
points). In panel (c) we see that the renormalized
correlators in the presence of noise match the ex-
act version much better. The timescale on which
visible deviations develop can be directly inferred
from panel (a): once the sum rule decays to a
value ~ 0.2 the renormalized correlator becomes
noisy due to the smallness of both the numerator
and denominator of Eq. (24). This demonstrates
how the renormalization strategy adopted in the
main text can be used to systematically reduce
the impact of noise.

10 1
101 .
52 ] 52
100 E 100 4
: - T T T T 1071 ; T T T T
0.1 051 2 4 0.1 051 2 4
t t

Figure 10: Renormalized spatial variance with differ-
ent parameters for (a) © = 3 and (b) Q@ = 6 from
ibmgq_montreal. Remaining parameters and hyper-
parameters are as in Fig. 2. Blue and black points are
data from the QPU and ideal simulator, respectively.
Blue and black lines depict power-law fits to bt/* for
the QPU and simulator data, respectively.
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Figure 11: Spatio-temporal visualization of the renor-
malized energy correlation functions C'¥ obtained via (a)
hardware experiment on ibmq_montreal and (b) ideal
simulator. Model parameters and hyper-parameters are
identical to those in Fig. 2.
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D Additional QPU Data

In the main text we showed in Fig. 3 that the
energy autocorrelation functions with 2 = 3 and
Q = 6 exhibit superdiffusive (Cj(t) oc t=0:6%)
and ballistic (Cy(t) oc t71036) scaling at early
times, respectively. In Fig. 10 we cross-reference
QPU and simulator results for the renormal-
ized SV. For both choices of €2, the power-law
growth exponents match well between the QPU
and simulator results (blue and black points, re-
spectively). Furthermore, hydrodynamics predict
that 32 ~ t2/% when Cy ~ t~1/%. The exponents
extracted from power-law fits to the QPU results
(see plot legends) are consistent with this predic-
tion, being very close to twice the decay expo-
nents extracted from the results in Fig. 3.
Consistent with the energy density autocorre-
lator results in Fig. 3, the SV results in Fig. 10
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Figure 12: Renormalized energy correlators C'¥ with @ =
3 from (a) QPU and (b) ideal simulator, and with Q =
6 from (c) QPU and (d) ideal simulator. Remaining
model parameters and all hyper-parameters are identical
to those in Fig. 2.

display good agreement between the QPU and
the simulator. This reinforces the point made in
the main text that the faster transport timescale
for larger () leaves less time for decoherence to
affect the QPU results.

Figs. 11 and 12 show the spatial profile of the
renormalized energy density correlators CN';? for
Q = 2 and Q = 3,6, respectively. The results
shown in Fig. 11 are much noisier than those
shown in Fig. 12, consistent with the fact that the
Q) = 2 QPU simulation is more challenging due
to the longer evolution time necessary to capture
the decay of the autocorrelator. In particular,
while an approximately diffusive ~ /% light cone
is visible in the circuit simulation in Fig. 11(b),
no such feature is visible for the QPU results in
Fig. 11(a) due to noise. However, for larger 2,
where the noise has less time to impact the re-
sults, the QPU and simulator results are qualita-
tively very similar, see Fig. 12. In particular, the
energy wavefront or light cone structure is clearly
visible in both the QPU and simulator plots. In-
terestingly, the results in Fig. 12 also reveal spa-
tial variations in the quality of individual qubits.
For example, in Fig. 12(c) there is a dark spot ap-
pearing at site » = 2 near ¢t = 1.6 that does not
appear in the simulator results from Fig. 12(d).
Indeed, the corresponding qubit has lower 77 and

Ts.

E Haar Random Product States

In this appendix we study the problem of using
products of Haar random single-qudit states for
sampling the trace of an operator Q. We (1) de-
rive an exact expression for the sample-to-sample
fluctuations in estimating (@), in this ensemble
and (2) show that this quantity is bounded by
QIQ)...

Take ) to act non-trivially on N sites of a
system with local Hilbert space dimension q.
Consider the random ensemble of states [¢) =
|p1) -+ |¢n) where |¢pg) are i.i.d. Haar random
states acting on one site, i.e. each realized by
U |0) for U a ¢ x ¢ Haar random unitary and |0)
an arbitrary fixed state. First, it is clear that
these states are unbiased estimators of the trace,
ie.

E (#QY) = (@) - (94)

We claim that the second moment E| (v|Q|v) |2
is given exactly by

1

Gary 2 altra(@)(Q). (95)

ze{0,1}N

Here tr, means to trace all sites j out of the total
N for which z; = 1 and Z is the logical NOT of
x. We sketch the proof of this as follows. The
central formula is the correlator

Ev[(0[U[i) (j|U10) (O|UT[k) (|U10)]
1

= ————(0;0k; + 951015 96
which involves only the first column of a Haar
random U and follows from the expression for
the general four point correlator of a Haar ma-
trix [80]. In a product basis of the N sites, we
find

(alg + 1)) > {IQ'J) (K|QIL)

IJKL

N
X [ GieeOkats + 6istOk5.)  (97)
s=1

where I = 41---i5---in etc. are multi-indices.
Expanding out the product of delta functions
leads to 2%V possibilities, where in each case, some
of the sub-indices in I are connected to those in
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J and some are connected to those in L. Each
time a sub-index in [ is connected to one in J,
a partial trace is induced. The situation can be
summarized as Eq. (95).

One can now obtain from this formula an up-
per bound. First observe that each term inside
the sum is a square Frobenius norm of the ma-
trix tr,(Q). Due to Rastegin [81], the norm of this
partial trace can be related to the Frobenius norm
of the full matrix Q via |[tr.(Q)||r < VD||Q||F
where D is the dimension of the space being
traced out. In this case D = ¢“*) where w(z)
is the Hamming weight (number of ones present)
in string x. Putting this in and using the bino-
mial theorem we obtain the bound

E [ (|Qy)|?
<1QIIE (alg+1))™ 3 ¢“® =(Q'Q), .

ze{0,1}N
(98)

The actual sample-to-sample fluctuations are
controlled by the variance | (|Q|v) [? — [ (Q) %,
but in principle (QQ) ~ still provides a rigorous
upper bound.
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