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Abstract A hallmark of biomolecular condensates formed via liquid-liquid phase separation is 
that they dynamically exchange material with their surroundings, and this process can be crucial 
to condensate function. Intuitively, the rate of exchange can be limited by the flux from the dilute 
phase or by the mixing speed in the dense phase. Surprisingly, a recent experiment suggests that 
exchange can also be limited by the dynamics at the droplet interface, implying the existence of an 
‘interface resistance’. Here, we first derive an analytical expression for the timescale of condensate 
material exchange, which clearly conveys the physical factors controlling exchange dynamics. We 
then utilize sticker-spacer polymer models to show that interface resistance can arise when incident 
molecules transiently touch the interface without entering the dense phase, i.e., the molecules 
‘bounce’ from the interface. Our work provides insight into condensate exchange dynamics, with 
implications for both natural and synthetic systems.

eLife assessment
This valuable contribution studies factors that impact molecular exchange between dense and dilute 
phases of biomolecular condensates through continuum models and coarse-grained simulations. 
The authors provide convincing evidence that the bouncing of molecules off the interface can lead 
to interfacial resistance and limit mixing. Results like these can inform how experimental results in 
the field of biological condensates are interpreted.

Introduction
The interior of cells is organized in both space and time by biomolecular condensates, which form 
and dissolve as needed (Shin and Brangwynne, 2017; Banani et al., 2017). These condensates play 
key roles in processes ranging from transcription to translation, metabolism, signaling, and more (An 
et al., 2008; Su et al., 2016; Sabari et al., 2018; Formicola et al., 2019). The complex interactions 
among their components endow condensates with distinct physical properties, including low surface 
tension, viscoelasticity, aging, etc. These distinct properties are crucial to the ability of condensates to 
carry out their biological functions. Here, we focus on one important physical property of condensates 
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– the rate of exchange of material between condensed and dilute phases. This rate of exchange can 
impact biochemical processes taking place in condensates by limiting the escape of completed prod-
ucts (e.g. ribosomes produced in nucleoli; Yao et al., 2019), or limiting the availability of components 
or regulatory molecules (e.g. snoRNAs and ribosomal proteins entering nucleoli, or mRNAs entering 
P bodies or stress granules). The rate of exchange can also control the dynamical response of conden-
sates to a changing environment, and, as exchange between dense and dilute phase is central to 
coarsening via Ostwald ripening, it can regulate the number, size, and location of condensates within 
the cell.

The material exchange between a condensate and the surrounding dilute phase can be probed 
via FRAP experiments, a commonly used approach for measuring condensate fluidity and molecular 
diffusion coefficients. Exchange dynamics are thus readily measurable and have been reported for a 
variety of systems (Li et al., 2012; Patel et al., 2015; Burke et al., 2015; Banani et al., 2016; Jain 
et al., 2016; Aumiller et al., 2016). However, only a very limited number of studies (Taylor et al., 
2019; Hubatsch et al., 2021; Bo et al., 2021; Folkmann et al., 2021; Lee, 2021) aimed to under-
stand what controls the timescales of condensate component exchange. Briefly, Taylor et al., 2019 
combined FRAP experiments on condensates in vitro and in vivo with different theoretical models 
to examine the impact of model choice on the physical parameters derived from data fitting (Taylor 
et al., 2019). Folkmann et al., 2021 and Lee, 2021 proposed that the rate of molecular absorption 
to the condensate can be ‘conversion-limited’ instead of diffusion-limited and established a math-
ematical framework for the temporal evolution of droplet sizes in this limit (Folkmann et al., 2021; 
Lee, 2021). In all these cases, the modeling of interface resistance (Taylor et al., 2019) or conversion-
limited material transfer (Folkmann et al., 2021; Lee, 2021) was conducted at the phenomenological 
level, without aiming to understand the underlying physical mechanism that gives rise to interface 
resistance. Hubatsch et al., 2021 and Bo et al., 2021 tackled the exchange dynamics problem by 
developing, respectively, a continuum theory of macroscopic phase separation (Hubatsch et  al., 
2021) and a stochastic Langevin equation of single-molecule trajectories (Bo et al., 2021). However, 
the mean-field approaches in Hubatsch et  al., 2021 and Bo et  al., 2021 neglect the potentially 
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Figure 1. FRAP experiments on droplets. (A) Schematic of a FRAP experiment in which an entire droplet is 
photobleached and the recovery of fluorescence is recorded. Material exchange between the condensate 
and the surrounding dilute phase can be limited by the flux of unbleached molecules coming from the dilute 
phase, the speed of internal mixing in the dense phase, or the flux passing through the interface. (B) The 
recovery time ‍τ ‍ is defined as the time required for fluorescence to return 63% (i.e. ‍1 − 1/e‍) of the way back to 
its original level. (C) Experimental data from Taylor et al., 2019 in which a LAF-1 droplet of radius ‍R = 1 µm‍ 
recovers from photobleaching. (Left) Images before bleaching, immediately after bleaching of the entire droplet 
region, and at two subsequent times. (Right) Expected recovery times ‍τdil = cdenR2/(3cdilDdil) = 4.2 ± 3.2 s‍ 
and ‍τden = R2/(π2Dden) = 60 ± 18 s‍ if the slowest recovery process was either the flux from the dilute 
phase or diffusion within the droplet, respectively, with ‍Dden = 0.0017 ± 0.0005 µm2/s‍, ‍Ddil = 94 ± 11 µm2/s‍, 
and ‍cden/cdil = 1190 ± 880‍ taken from Taylor et al., 2019. While the timescale associated with interface 
resistance ‍τint‍ is unknown, the measured recovery time ‍τ = 4570 ± 470 s‍ is much longer than ‍τdil‍ and 

‍τden‍, suggesting the recovery is limited by flux through the interface, with an interface conductance of 

‍κ = R/3/(τ − τdil − τden) = (7.4 ± 0.8) × 10−5 µm/s‍.

https://doi.org/10.7554/eLife.91680
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complex dynamics of molecules at the condensate interface, which can slow down material exchange 
significantly as suggested by Taylor et al., 2019 and Folkmann et al., 2021.

In the following, we first derive an analytical expression for the timescale of condensate material 
exchange, which conveys a clear physical picture of what controls this timescale. We then utilize a 
‘sticker-spacer’ polymer model to investigate the mechanism of interface resistance. We find that 
a large interface resistance can occur when molecules bounce off the interface rather than being 
directly absorbed. We finally discuss the characteristic features of the FRAP recovery pattern of drop-
lets when the exchange dynamics is limited by different factors.

Results
Mathematical formulation of exchange dynamics
The exchange of molecules between a condensate and the dilute phase can be investigated through 
FRAP-type experiments in which, e.g., fluorescence is locally bleached and recovery as a function of 
time recorded (Figure 1A and B). Theoretically, the time evolution of the concentration profile ‍c(r, t)‍ 
of the molecules initially located in a spherical condensate of radius ‍R‍ (bleached population) can be 
described by the following continuum diffusion equations (Taylor et al., 2019):

	﻿‍
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where ‍Dden‍ and ‍Ddil‍ are, respectively, the diffusion coefficients of molecules in the dense and dilute 
phases, and ‍cden‍ and ‍cdil‍ are, respectively, the equilibrium concentrations in the dense and dilute 
phases. The second boundary condition corresponds to flux balance at the interface of the conden-
sate. Specifically, the flux exiting the dense phase (left) equals the flux entering the dilute phase 
(middle) and also equals the flux passing through the interface (right).

To understand the physical origin of the last term in the second boundary condition in Equation 
3, we note that the net outward flux across the interface can be written as ‍k−c(R−, t) − k+c(R+, t)‍, 
where ‍k+/−‍ denotes the entering/exiting rate of molecules at the interface and ‍c(R+/−, t)‍ the concen-
tration of bleached molecules immediately outside/inside of the boundary. At thermal equilibrium, 
this net flux goes to zero, i.e., ‍k−cden = k+cdil‍ so ‍k+ = k−(cden/cdil)‍. The net outward flux is therefore 

‍k−
[
c(R−, t) − (cden/cdil)c(R+, t)

]
‍. The parameter ‍κ ≡ k−‍ is a transfer coefficient that governs the magni-

tude of this net flux. When the ratio of the concentrations on the two sides of the interface deviates 
from the equilibrium ratio, a small ‍κ‍ can kinetically limit the flux going through the interface. We 
therefore term ‍κ‍ the interface conductance, the inverse of interface resistance.

For the model described by Equations 1–3, the fraction of molecules in the condensate which are 
unbleached at time ‍t‍ is

	﻿‍
f(t) = 1 −

´ R
0 4πr2c(r, t)dr
´ R

0 4πr2cdendr
.
‍�

(4)
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Clearly, how quickly ‍f(t)‍ recovers from 0 to 1 quantifies the timescale of material exchange between 
the condensate and the surrounding dilute phase.

Timescale of condensate component exchange
The authors of Taylor et al., 2019 derived an exact solution for ‍f(t)‍ in an integral form using Laplace 
transforms. However, it is not directly apparent from the integral expression what physics governs 
the timescale of fluorescence recovery. In addition, the lengthy integral form of the expression also 
presents an impediment to its practical experimental applications. To obtain a more intuitive and 
concise result, we note that diffusion of biomolecules in the dilute phase is typically much faster than 
diffusion in the dense phase, with measured ‍Ddil/Dden‍ in the range of 102–105 (Freeman Rosenzweig 
et al., 2017; Taylor et al., 2019). We therefore employed the exact solution to derive an approximate 
solution in the parameter regime ‍Ddil ≫ Dden‍:

	﻿‍
f(t) = 1 − exp

(
− t
τ

)
,
‍� (5)

where the timescale of fluorescence recovery is given by

	﻿‍
τ = R2

π2Dden
+ cdenR2

3cdilDdil
+ R

3κ
.
‍�

(6)

Please refer to Appendix 1 for a detailed derivation. We note that, in practice, ‍Ddil > 20Dden‍ is suffi-
cient for the validity of the approximation with the approximate ‍τ ‍ in Equation 6 within 10% of the 
exact value.

Equation 6 conveys a clear physical picture of what controls the timescale of condensate material 
exchange. First, for large condensates and slow internal diffusion, exchange is limited by the rate of 
mixing within the condensate, so that ‍τ ≃ R2/(π2Dden)‍. Second, if instead diffusion in the dilute phase 
is sufficiently slow, or the concentration in the dilute phase is very low, then ‍τ ≃ cdenR2/(3cdilDdil)‍, 
which is the time required to replace all molecules in the condensate if molecules incident from the 
dilute phase are immediately absorbed (see Appendix 1). Finally, if the interface conductance ‍κ‍ is very 
small, the interfacial flux can be rate limiting for exchange, yielding ‍τ ≃ R/(3κ)‍.

Can interface resistance be much larger than predicted by mean-field 
theory?
What determines the magnitude of the interface conductance ‍κ‍? From a theoretical perspective, 
transitions between dense and dilute phases have been modeled both from the continuum theory 
approach (Hubatsch et al., 2021) and by considering single-molecule trajectories (Bo et al., 2021). 
However, for any particular systems, the magnitude of the interface conductance depends on micro-
scopic features of the biomolecules, such as internal states, which may not be captured by Flory-
Huggins and Cahn-Hilliard-type mean-field theories. Indeed, if we start with the continuum approach 
in Hubatsch et al., 2021, where the concentration of bleached components ‍c(r, t)‍ is governed by

	﻿‍

∂c(r, t)
∂t

= ∇ ·
{

D
[
ceq(r)

] [
∇c(r, t) − c(r, t)

∇ceq(r)
ceq(r)

]}

‍�
(7)

with ‍ceq(r)‍ the equilibrium concentration profile and ‍D[ceq(r)]‍ the diffusion coefficient which depends 
on the local equilibrium concentration, one can obtain an expression for ‍κ‍ (see Appendix 1):

	﻿‍
κ−1 =

ˆ
cden

ceq(r)D(r)
dr,

‍�
(8)

where the integral is over the interface region. We would then conclude ‍κ
−1 < δ/Dden + δcden/(cdilDdil)‍, 

where ‍δ‍ is the width of the interface. As the interface is typically narrow, this inequality would imply 
that in practice the interfacial term in Equation 6 would always be smaller than the sum of the other 
two terms, and thus could be neglected.

However, a recent FRAP experiment on LAF-1 protein droplets (Taylor et al., 2019) contradicts the 
above mean-field result. In the experiment, a micron-sized LAF-1 droplet (‍R = 1 µm‍) was bleached and 
fluorescence recovery measured as a function of time (Figure 1C). It was observed that recovery of that 

https://doi.org/10.7554/eLife.91680


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Zhang et al. eLife 2023;12:RP91680. DOI: https://doi.org/10.7554/eLife.91680 � 5 of 28

droplet occurs on a timescale of ∼ 1.3hr. Given the measured parameters of the system, one can esti-
mate the recovery time in the mean-field approach to be ‍τ = R2/(π2Dden) + cdenR2/(3cdilDdil) = 64 ± 18 s‍, 
much shorter than the measured recovery time. A large interface resistance was proposed as a possible 
explanation for this discrepancy (Taylor et al., 2019). Motivated by this surprising experimental result, 
we sought to investigate if it is possible for the interface resistance to be much larger than predicted 
by mean-field theory, and if so, what could be the underlying mechanisms and how does the interface 
resistance depend on the microscopic features of phase-separating molecules?

Coarse-grained simulation of ‘sticker-spacer’ polymer phase separation
As noted above, if all molecules incident from the dilute phase are immediately absorbed into the 
dense phase, the interfacial flux can’t be rate limiting. The existence of a large interface resistance 
then necessarily implies a strongly reduced flux of molecules successfully crossing the interface. This 
can occur either because the molecules incident from the dilute phase fail to incorporate into the 
interface, or they transiently incorporate but fail to enter the dense phase. In both cases, the mole-
cules effectively ‘bounce’ from the interface leading to a large interface resistance. Mechanistically, 
bouncing can occur for a variety of reasons, which we discuss in the Discussion section below. Here, 
we employ a ‘sticker-spacer’ polymer model (Choi et al., 2020; Semenov and Rubinstein, 1998) to 
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Figure 2. Coarse-grained molecular-dynamics simulations of multivalent phase-separating polymers. (A) Each 
polymer is composed of monomers (‘stickers’) of type A (blue) or B (red), and modeled as a linear chain of 
spherical particles each with a diameter of 2 nm, connected by stretchable bonds with an equilibrium length of 
3.9 nm. Stickers of different types have an attractive interaction, while stickers of the same type interact repulsively, 
ensuring one-to-one binding between the A and B stickers. (B) Snapshot of a simulation of 1000 A6B6 polymers in 
a 500 nm × 50 nm × 50 nm box with periodic boundary conditions. The system undergoes phase separation into 
a dense phase (middle region) and a dilute phase (two sides), driven by the one-to-one A-B bonds. (C) Polymer 
concentration profile for the simulation in (B) with the center of the dense phase aligned at ‍x = 0‍ and averaged 
over time and over 10 simulation repeats. (D) Average total polymer concentrations in the dense (top) and dilute 
(bottom) phases from simulations of the five types of polymers shown in (A). (E) Polymer diffusion coefficients in 
the dense (top) and dilute (bottom) phases. All simulations were performed and snapshots were obtained using 
LAMMPS Plimpton, 1995. Please refer to Appendix 2 for simulation details.
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explore one possible mechanism in which molecules can assume non-sticking conformations by satu-
rating all their possible binding sites. These molecules incident from the dilute phase typically fail to 
form bonds with the dense phase, thus ‘bouncing’ off of the condensate.

The ‘sticker-spacer’ model provides a conceptual framework for understanding biomolecular phase 
separation, wherein the ‘stickers’ represent residues or larger domains that are capable of forming 
saturable bonds, while the ‘spacers’ connect the stickers to form polymers. Specifically, we simulated 
polymers consisting of type A and type B stickers connected by implicit spacers in the form of stretch-
able bonds (Kremer and Grest, 1990; Figure 2A):

	﻿‍
Ub(r) = −1

2
KR2

0 ln

[
1 −

(
r

R0

)2
]

, r < R0,
‍�

(9)

where ‍r‍ is the distance between two stickers. One-to-one heterotypic bonds between A and B are 
implemented via an attractive potential:

	﻿‍
Ua(r) = −1

2
U0

(
1 + cos πr

r0

)
, r < r0,

‍�
(10)
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Figure 3. Determination of interface conductance from simulations. (A) Illustration of simulation protocol: At ‍t = 0‍ 
only polymers in the dilute phase are ‘labeled’ (solid balls), any polymer that enters the dense phase (forms an 
A-B bond lasting >10 times the average bond lifetime of an isolated A-B pair) becomes permanently ‘unlabeled’ 
(hollow balls). (B) Fraction of labeled polymers in the dilute phase as a function of time for simulations of the 
five types of polymers shown in Figure 2A. (C) Decay time of labeled polymers from exponential fits to curves 
in (B) (top), and corresponding calculated values of interface conductance ‍κ‍ (bottom). (D) For all simulated 
polymers, interface conductance scaled by ‍κ0‍ (Equation 13) is approximately a linear function of a parameter 
‍u‍ which reflects the fraction of unbound stickers in the dense and dilute phases. Inset illustration: Polymers in 
the dilute phase with few or no unbound stickers may ‘bounce’ off the dense phase, which contributes to the 
interface resistance. (E) Example of simulated trajectory in which a dilute-phase A6B6 polymer ‘bounces’ multiple 
times before finally joining the dense phase. (F) Interface conductance ‍κ‍ of A6B6 system as a function of binding 
strength ‍U0‍ between A and B stickers.
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while stickers of the same type interact through a repulsive potential to prevent many-to-one binding:

	﻿‍
Ur(r) = 4ϵ

[(σ
r

)12
−

(σ
r

)6
]

+ ϵ, r ≤ rc.
‍�

(11)

We take ‍K = 0.15 kBT/nm2
‍, ‍R0 = 10 nm‍, ‍U0 = 14 kBT ‍, ‍r0 = 1 nm‍, ‍ϵ = 1 kBT ‍, ‍σ = 2 nm‍, and ‍rc = 1.12σ‍ in 

all simulations, except in the simulations of Figure 3F where we vary ‍U0‍ systematically from 13.5 to 

‍15 kBT ‍. For all simulation results we reported below, the standard error of the mean is typically smaller 
than the symbol size and therefore not shown.

For each of the five sequences shown in Figure  2A, we simulated 1000 polymers in a 
‍500 nm × 50 nm × 50 nm‍ box with periodic boundary conditions using Langevin dynamics (see Appendix 
2 for details). Simulations were performed using LAMMPS molecular-dynamics simulator (Plimpton, 
1995). Figure 2B shows a snapshot of coexisting dense and dilute phases after equilibration of the 
A6B6 polymers (6A stickers followed by 6B stickers), while Figure 2C shows the time-averaged profile 
of the total polymer concentration. The five different polymer sequences we simulated were chosen 
to yield a range of dilute- and dense-phase sticker concentrations (Figure 2D) as well as a range of 
dilute- and dense-phase diffusion coefficients (Figure 2E). As found previously (Weiner et al., 2021), 
polymers like A6B6 with long blocks of stickers of the same type have low dilute-phase concentra-
tions. This follows because it is entropically unfavorable for these polymers to form multiple self-
bonds, which favors the dense phase where these polymers can readily form multiple trans-bonds. 
These long-block polymers also have low dense-phase diffusion coefficients because of their large 
number of trans-bonds, which need to be repeatedly broken for the polymers to diffuse.

Interface conductance ‍κ‍ from simulations
Having determined the concentrations and diffusion coefficients in the dense and dilute phases, we 
are now in a position to extract the values of interface conductance from simulations. Figure 3 depicts 
a simple protocol that allows us to infer ‍κ‍ by applying the 1D, slab-geometry version of Equations 
1–6 to simulation results (see Appendices 1 and 2 for details): (i) All polymers in the dilute phase are 
initially considered ‘labeled’, (ii) any labeled polymer that forms a lasting A-B bond with a polymer in 
the dense phase becomes permanently unlabeled (Figure 3A), (iii) the remaining fraction of labeled 
dilute phase polymers is fit to an exponential decay (Figure 3B), and (iv) the resulting decay time 
constant ‍τ ‍ is used together with the known dense and dilute phase parameters to infer ‍κ‍ from:

	﻿‍
κ = cdil

cden

√
Ddil
τ

tan d√
τDdil

,
‍�

(12)

where ‍d‍ is the half-width of the dilute phase. As shown in Figure 3C, the resulting values of ‍κ‍ span 
more than an order of magnitude for our selected polymer sequences, despite the fact that all five 
polymers can in principle form the same number (6) of self-bonds.

We note that one can alternatively obtain ‍κ‍ by directly measuring the flux of molecules that enter 
the dense phase. Mathematically, this flux equals ‍k+cdil = κcden‍. We show in Appendix 2 that the 
values of ‍κ‍ found via this method are consistent with results reported in Figure 3C.

‘Bouncing’ of molecules can lead to large interface resistance
What gives rise to the very different values of ‍κ‍? To address this question, we first consider the 
predicted interface conductance ‍κ0‍ if polymers incident from the dilute phase simply move through 
the interface region with a local diffusion coefficient that crosses over from ‍Ddil‍ to ‍Dden‍. Then according 
to Equation 8 (see Appendix 1)

	﻿‍
κ0 = cdilDdil

δcden
.
‍�

(13)

However, as shown in Figure 3D, the actual values of ‍κ‍ in our simulations can be a factor of ∼50 
smaller than ‍κ0‍. This reduction can be traced to a ‘bouncing’ effect. As shown schematically in the 
inset to Figure 3D and for an exemplary simulated trajectory in Figure 3E (more trajectories can be 
found in Appendix 2), molecules incident from the dilute phase may fail to form bonds with the dense 
phase, effectively ‘bouncing’ off of the condensate. The differing extent of this bouncing effect for the 

https://doi.org/10.7554/eLife.91680
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five sequences we studied reflects differences in their numbers of free stickers in both their dilute- and 
dense-phase conformations. The fewer such available stickers, the fewer ways for a polymer incident 
from the dilute phase to bond with polymers at the surface of the dense phase, and thus the more 
likely the incident polymer is to bounce. More generally, we find that the interface conductance of 
the sticker-spacer polymers is controlled by the encounter rate of a pair of unbound stickers and the 
availability of these stickers, which in turn depends on the sticker-sticker binding strength, the dilute- 
and dense-phase polymer concentrations, and the width of the interface:

	﻿‍
κ = 4πr0δDdiln2cdil

2 + s + s−1
(
fdilAfdenB + fdilBfdenA

)
,
‍�

(14)

where ‍n‍ is the number of monomers in a polymer, ‍s‍ is the global stoichiometry (i.e. ‍cA/cB‍), ‍fdilA/dilB‍ and 

‍fdenA/denB‍ are the fractions of unbound ‍A/B‍ monomers in the dilute and dense phases, respectively. In 
support of this picture, we find that all our simulation results for ‍κ/κ0‍ collapse as a linear function of a 
lumped parameter ‍u‍ (Figure 3D):

	﻿‍
u = 4πr0δ

2n2cden
2 + s + s−1 (fdilAfdenB + fdilBfdenA),

‍�
(15)

which expresses the availability of free stickers, where all parameters in ‍u‍ are determined directly from 
simulations. See Appendix 1 for derivations of Equations 14 and 15.

Comparing sequences with unequal sticker stoichiometry A8B6 and A10B6 to their most closely 
related equal-stoichiometry sequence A6B6, we find that the extra A stickers substantially increase 
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Figure 4. Molecular-dynamics simulations of in silico ‘FRAP experiment’ on a small droplet of A6B6 polymers. 
(A) Snapshot of 2000 A6B6 polymers in a 286 nm × 286 nm × 286 nm box with periodic boundary conditions. The 
system phase separates into a dense droplet (middle) and a surrounding dilute phase. (B) Polymer concentration 
profile for the simulation in (A) with the center of the droplet aligned to the origin and averaged over time 
and over 10 simulation repeats. The dilute- and dense-phase concentrations obtained from simulations in 
the slab geometry are denoted by green lines. The effective radius ‍R‍ of the droplet is determined through 

‍4πR3cd
den/3 + (Vbox − 4πR3/3)cd

dil = Ntotal‍, where ‍Vbox‍ is the volume of the simulation box and ‍Ntotal‍ is the 
total number of polymers. (C) Average concentration profile of bleached population measured at different times. 
(D) Comparison of the FRAP recovery curves obtained by tracking the simulated fraction of unbleached molecules 
inside the droplet as a function of time (black dots) and by numerical integration (red curve) of Equation 1 in 

a sphere of the same volume as ‍Vbox‍ using the measured parameters of the droplet system: ‍c
d
den = 8.1 mM‍, 

‍c
d
dil = 0.073 mM‍, ‍Dden = 0.013µm2/s‍, ‍Ddil = 17µm2/s‍, ‍R = 0.037µm‍, and ‍κ

d = 0.20µm/s‍. For details of 
simulation and theory, refer to Appendix 2.

https://doi.org/10.7554/eLife.91680
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the interface conductance ‍κ‍. Intuitively, the excess As in both dense and dilute phases of A8B6 and 
A10B6 provide a pool of available stickers for any unbound B to bind to. By contrast, at equal stoi-
chiometry, both free As and free Bs are rare which maximizes the bouncing effect. This reduction in 
potential binding partners at equal stoichiometry has also been observed experimentally (Brassinne 
et al., 2017), and theoretically Ronceray et al., 2022, to cause an anomalous slowing of diffusion 
within condensates at equal stoichiometry in the regime of strong binding.

Finally, we expect the interface resistance to increase approximately exponentially with the increase 
of binding strength ‍U0‍ between A and B stickers, as the tighter the binding, the fewer available 
stickers, and hence the more bouncing of molecules at the interface. We demonstrate in Figure 3F 
that the interface conductance ‍κ‍ of the A6B6 system indeed drops by a factor of 5 as the value of ‍U0‍ 
increases from 13.5 to ‍15 kBT ‍.

Direct simulation of droplet FRAP
Above we simulated phase separation of sticker-spacer polymers in a slab geometry, and discussed 
how the extracted interface conductance ‍κ‍ depends on sequence pattern, sticker stoichiometry, and 
binding strength between stickers. In principle, with the parameters measured from such simulations, 
Equation 6 and Equations 1–4 can be used to predict FRAP recovery times for simulated 3D droplets. 
To check the consistency between theory and simulation, we simulated a small droplet of the A6B6 
polymers and measured its FRAP recovery time. Briefly, we simulated 2000 A6B6 polymers in a cubic 
box of side length ‍286 nm‍ with periodic boundaries using Langevin dynamics. All interaction poten-
tials and parameters are the same as the simulations in Figure 2. Figure 4A shows a snapshot of the 
droplet coexisting with the surrounding dilute phase after equilibration. Figure 4B shows the mean 
polymer concentration profile, which is consistent with the dense- and dilute-phase concentrations of 
the A6B6 system reported in Figure 2D. We note that both concentrations are slightly higher than 
their counterparts in the slab geometry due to a surface tension effect (Thomson, 1872). At time 
‍t = 0‍, we labeled all the molecules inside the droplet as ‘bleached’ and tracked the time evolution 
of the concentration profile of the bleached population (Figure 4C) and obtained the FRAP recovery 
curve (Figure  4D, black circle). We note that the recovery curve plateaus at ‍A ≈ 0.5‍ instead of 1 
due to limited number of polymers in the dilute phase. Using parameters of the droplet system, we 
numerically integrated Equation 1 with modified initial and boundary conditions to account for the 
system’s finite size. The resulting numerical curve agrees almost perfectly with the simulation result 
(Figure 4D), which validates both our theoretical and simulation approaches.

Fitting the recovery curve by

Figure 5. FRAP recovery patterns for large versus small droplets can be notably different for condensates with a sufficiently large interface resistance. 
(A) Expected relaxation time as a function of droplet radius for in silico ‘FRAP experiments’ on the A6B6 system. The interface resistance dominates 
recovery times for smaller droplets, whereas dense-phase diffusion dominates recovery times for larger droplets. Green circle: FRAP recovery time 
obtained from direct simulation of an A6B6 droplet of radius 37 nm. Black curve: the recovery time as a function of droplet radius from a single 
exponential fit of the exact solution of the recovery curve from Equation 1–4. Gray curve: the recovery time predicted by Equation 6. Yellow, 
blue, and red curves: the recovery time when dense-phase, dilute-phase, and interface flux limit the exchange dynamics, i.e., the first, second, and 

last term in Equation 6, respectively. Parameters matched to the simulated A6B6 system in the slab geometry: ‍cden = 7.7 mM‍, ‍cdil = 0.05 mM‍, 

‍Dden = 0.013µm2/s‍, ‍Ddil = 17µm2/s‍, and ‍κ = 0.14µm/s‍. (B) Time courses of fluorescence profiles for A6B6 droplets of radius ‍1µm‍ (top) and ‍0.1µm‍ 
(bottom); red is fully bleached, green is fully recovered. These concentration profiles are the numerical solutions of Equations 1–3 using parameters 
provided in (A).

https://doi.org/10.7554/eLife.91680
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	﻿‍
f(t) = A

[
1 − exp

(
− t

Aτ

)]
,
‍� (16)

which takes into account the effect of the finite-size dilute phase (see Appendix 2 for a derivation), 
yielded a recovery time ‍τ = 0.071 s‍. We compare the measured FRAP recovery time for the small 
droplet ‍R = 37 nm‍ (green circle) to theoretical predictions from Equation 6 (gray) and Equations 1–4 
(black) in Figure 5A. The FRAP recovery of the simulated droplet is clearly limited by the interface 
resistance. We note that the small deviation between theory and simulation in Figure 5A is due to the 
utilization of parameters from the slab geometry for the theory prediction, including a ‍κ = 0.14 µm/s‍ 
lower than the measured ‍κ

d = 0.20 µm/s‍ of the droplet system, which in turn reflects the difference in 
the dilute-phase concentrations of the two systems, as ‍κ ∼ cdil‍ from Equation 14.

Signatures of interface resistance
Under what circumstances is interface resistance experimentally measurable? If there were no 
bouncing effect, i.e., if all molecules incident from the dilute phase that touch the interface get imme-
diately absorbed into the condensate, then interface resistance would never dominate the recovery 
time in FRAP-type experiments, making it very difficult to measure ‍κ‍. However, as shown in Figure 3, 
the bouncing effect can reduce ‍κ‍ substantially. For such systems, the interface conductance can be 
inferred quantitatively from Equation 6 or by fitting FRAP recovery curves as in Taylor et al., 2019, 
using the experimentally measured dense- and dilute-phase concentrations and diffusion coefficients.

Even without knowing all parameters, one may still be able to infer the presence of a large interface 
resistance by observing the pattern of fluorescence recovery in droplets of different sizes. According 
to Equation 6 the recovery time associated with interface resistance increases linearly with radius ‍R‍ 
while the other terms increase as ‍R2‍ (Figure 5A). Therefore, one expects a cross-over for the recovery 
from being interface-resistance dominated (small ‍R‍) to being either dilute-phase-diffusion or dense-
phase-mixing dominated (large ‍R‍). In the latter case, the fluorescence profile during recovery will be 
notably different in large versus small droplets as shown in Figure 5B – for large droplets progres-
sive diffusion of fluorescence into the droplet will be apparent, whereas small droplets will recover 
uniformly as internal mixing will be fast compared to exchange with the surroundings. Thus observa-
tion of such a cross-over of the recovery pattern as a function of droplet size provides evidence for 
the presence of a large interface resistance, which can be followed up by more quantitative studies. 
For example, the uniform recovery of the LAF-1 droplet in Figure 1C and the simulated droplet in 
Figure 4C are indicative of a large interface resistance, as the diffusion in the dilute phase is too fast 
to be rate limiting. We also predict the cross-over for LAF-1 droplets to be around ‍R = 71µm‍, which 
in principle can be tested experimentally.

Discussion
The dynamic exchange of condensate components with the surroundings is a key feature of membrane-
less organelles, and can significantly impact condensate biological function. In this work, we combined 
analytical theory and coarse-grained simulations to uncover physical mechanisms that can control 
this exchange dynamics. Specifically, we first derived an analytical expression for the exchange rate, 
which conveys the clear physical picture that this rate can be limited by the flux of molecules from the 
dilute phase, by the speed of mixing inside the dense phase, or by the dynamics of molecules at the 
droplet interface. Motivated by recent FRAP measurements (Taylor et al., 2019) that the exchange 
rate of LAF-1 droplets can be limited by interface resistance, which contradicts predictions of conven-
tional mean-field theory, we investigated possible physical mechanisms underlying interface resis-
tance using a ‘sticker-spacer’ model. Specifically, we demonstrated via simulations a notable example 
in which incident molecules have formed all possible internal bonds, and thus bounce from the inter-
face, giving rise to a large interface resistance. Finally, we discussed the signatures in FRAP recovery 
patterns when the exchange dynamics is limited by different factors.

What are potential mechanisms that could lead to the bouncing of molecules from the interface 
and hence to a substantial interface resistance? The essential requirement is that molecules in the 
dilute phase and molecules at the interface should not present ‘sticky’ surfaces to each other. Since 
these same molecules must be capable of sticking to each other in order to phase separate, a natural 
scenario is that these molecules assume non-sticky conformations due to the shielding of interacting 

https://doi.org/10.7554/eLife.91680
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regions, e.g., burial of hydrophobic residues in the core of a protein, or, in the scenario explored in 
the simulations, the saturation of sticker-like bonds. Examples of systems with strong enough bonds 
to allow bond saturation include SIM-SUMO (Banani et al., 2016) and nucleic acids with strong intra-
molecular base-pairing. Interestingly, a recent coarse-grained simulation of RNA droplets of (CAG)47 
(Nguyen et al., 2022) illustrated that a (CAG)47 molecule in a closed hairpin conformation fails to 
integrate into a droplet but rather bounces off the droplet interface. Another possible scenario is 
that charged molecules could arrange themselves to form a charged layer at the interface, resulting 
in a high energetic barrier from electrostatic repulsion for a dilute-phase component to reach and 
cross the interface (Ray et al., 2023; Dai et al., 2023; Majee et al., 2024). In the case of LAF-1, we 
note that the values of interface conductance ‍κ‍ obtained in our simulations are a factor of 103 to 104 
higher than the experimentally measured ‍κ‍ for the LAF-1 droplet. While we do not aim to specifically 
simulate the LAF-1 system in this work and the value of ‍κ‍ in simulations can in principle be tuned 
by adjusting the bond strength ‍U0‍, the large disparity between simulation and experiment renders 
the mechanism responsible for the inferred large interface resistance in LAF-1 droplets unclear. We 
hope that our study will motivate further experimental investigations into the anomalous exchange 
dynamics of LAF-1 droplets and potentially other condensates, and the mechanisms underlying inter-
face resistance.

In this work, we focused on the exchange dynamics of in vitro single-component condensates. 
How is the picture modified for condensates inside cells? It has been shown that Ddx4-YFP droplets 
in the cell nucleus exhibit negligible interface resistance (Taylor et al., 2019), which raises the ques-
tion whether interface resistance is relevant to natural condensates in vivo. Future quantitative FRAP 
and single-molecule tracking experiments on different types of droplets in the cell will address this 
question. One complication is that condensates in cells are almost always multi-component, which 
can increase the complexity of the exchange dynamics. Interestingly, formation of multiple layers or 
the presence of excess molecules of one species coating the droplet is likely to increase interface 
resistance. A notable example is the Pickering effect, in which adsorbed particles partially cover the 
interface, thereby reducing the accessible area and the overall condensate surface tension, slowing 
down the exchange dynamics (Folkmann et al., 2021). The development of theory and modeling for 
the exchange dynamics of multi-component condensates is currently underway.

Biologically, the interface exchange dynamics also influences the coarsening of condensates. The 
same interface resistance that governs exchange between phases at equilibrium will control the flux of 
material from the dilute phase to the dense phase during coarsening, so that bouncing will slow down 
the coarsening process. Indeed, a recent theoretical study (Ranganathan and Shakhnovich, 2020) of 
coarsening via mergers of small polymer clusters found anomalously slow coarsening dynamics due 
to exhaustion of binding sites, paralleling the single-polymer bouncing effect explored here. Other 
mechanisms that may slow coarsening include the formation of metastable microemulsions (Welsh 
et al., 2022; Kelley et al., 2021) and the Pickering effect (Folkmann et al., 2021) mentioned above. 
In the latter study, additional slow coarsening of PGL-3 condensates was attributed to a conversion-
limited (i.e. interface resistance) rather than a diffusion-limited flux of particles from the dilute phase 
into the dense phase. Interestingly, a conversion-limited flux has been shown to lead to qualitatively 
distinct scaling of condensate size with time (Lee, 2021). As many condensates dissolve and reform 
every cell cycle (or as needed), we anticipate that interfacial exchange will constitute an additional 
means of regulating condensate dynamics.

Methods
We perform coarse-grained molecular-dynamics simulations using LAMMPS (Plimpton, 1995) to 
simulate phase separation of ‘sticker and spacer’ polymers. Individual polymers are modeled as linear 
chains of spherical stickers of types A and B connected by implicit spacers (Figure 2A) with the inter-
action potentials in Equations 9–11, which ensure one-to-one binding between A and B stickers. 
For each of the five selected polymer sequences, we perform 10 simulation replicates with different 
random seeds in a slab geometry. Consistency of results is checked across replicates and across the 
first and second halves of the recorded data. The agreement indicates that the system has reached 
equilibrium. For details see Appendix 2, Simulation procedures and data recording.

To measure the dilute- and dense-phase concentrations, we first group polymers into connected 
clusters in each recording. Two stickers are considered connected if they are part of the same polymer, 

https://doi.org/10.7554/eLife.91680
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or if they are within the attraction distance ‍r0 = 1 nm‍. Connected stickers are then grouped into clus-
ters. To find the concentrations of each phase, we identify the center of mass of the largest cluster in 
each recording, and recenter the simulation box to this center of mass. The resulting polymer concen-
tration profile has high values in the middle corresponding to the dense-phase concentration, and low 
values on the two sides corresponding to the dilute-phase concentration (Figure 2C). For details, see 
Appendix 2, Determining the dilute- and dense-phase concentrations.

To measure the dilute- and dense-phase diffusion coefficients, we perform simulations with a pure 
dilute phase or dense phase, i.e., with polymers at the measured dilute- and dense-phase concen-
trations. To find the diffusion coefficients, we compute the time-averaged mean squared displace-
ment (MSD) for each polymer as a function of the lag time ‍tlag‍, and average over all polymers in a 
simulation box and over five replicates. The time- and ensemble-averaged MSD is then linearly fit to 

‍MSD = 6Dtlag‍ to extract the diffusion coefficient. For details, see Appendix 2, Determining the dilute- 
and dense-phase diffusion coefficients.

To measure the interface conductance ‍κ‍, we follow the simple protocol depicted in Figure 3A. 
Specifically, in this protocol we first define a ‘survival’ variable ‍S‍ for each polymer in the dilute phase as 
a function of time: ‍S = 1‍ if the polymer has remained in the dilute phase, and ‍S = 0‍ if the polymer has 
ever entered the dense-phase cluster. The obtained ‍S(t)‍ is the average survival probability of polymers 
in the dilute phase that have never entered the dense phase. We fit ‍S(t)‍ to a decaying exponential to 
extract the decay time ‍τ ‍. The interface conductance ‍κ‍ is then calculated using Equation 12 with the 
measured decay time and dilute- and dense-phase parameters. For details, see Appendix 2, Deter-
mining the interface conductance.

Simulations of the A6B6 spherical droplet system largely follow their counterparts in the slab geom-
etry. To obtain the concentration profile in Figure 4B, we identify the center of mass of the droplet 
and recenter the simulation box to this center of mass in each recording. We then compute the 
time- and ensemble-averaged polymer concentration histogram along the radial direction. The dilute- 
and dense-phase concentrations (‍c

d
dil‍ and ‍c

d
den‍) of the droplet system are calculated by averaging the 

concentration profile over the relevant regions. To obtain the concentration profile of the bleached 
population at time ‍t‍ after photobleaching in Figure 4C, we label all polymers in the droplet at time 

‍t0‍ as bleached and track the concentration profile of these polymers at a later time ‍t0 + t‍. Results 
are averaged over all possible choices of ‍t0‍. To obtain the theory curve in Figure 4D, we numerically 
integrate Equation 1 using a finite-difference method. Interface conductance of the droplet system 
is determined using the flux method. For details, see Appendix 2, Details of simulation and theory of 
FRAP recovery of an A6B6 droplet.

The codes for generating simulated data following the above-mentioned methods are uploaded as 
Source code 1. Source code 1 contains MATLAB codes used to generate input files for the LAMMPS 
Molecular Dynamics Simulator, as well as the generated LAMMPS input files. All data in the manuscript 
can be reproduced using these files. LAMMPS input files are contained in the folders: FullSystem, 
DensePhase, and DilutePhase. Codes in FullSystem/In are for simulations in slab geometry at a fixed 
interaction strength ‍U0 = 14 kBT ‍, which generate the data shown in Figures 2 and 3. Codes in Full-
System/In_A are for simulations in slab geometry at varying interaction strengths, which generate the 
data shown in Figure 2F. Codes in FullSystem/In_Droplet are for simulations of a 3D droplet, which 
generate the data shown in Figure 4. Codes in DensePhase and DilutePhase are used to measure the 
diffusion coefficients of molecules in dense and dilute phases, respectively, which generate the data 
shown in Figure 2E.
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Appendix 1
Derivation of the FRAP recovery curve in Equations 5 and 6
The exact solution for ‍f(t)‍ in Equation 4, the fraction of molecules in a spherical condensate of radius 
‍R‍ which are unbleached at time ‍t‍, is derived by Taylor et al., 2019, in an integral form using Laplace 
transforms (Taylor et al., 2019),

	﻿‍
f(t) = 1 − 6αk2

π
√
λ

ˆ ∞

0
g(u, t∗) du,

‍�
(17)

where

	﻿‍

g(u, t∗) = (u cos u − sin u)2 exp(−u2t∗)

u2
{

u2
[
u cos u + (k − 1) sin u

]2 + λ
[
(1 + kα

λ
)u cos u + (k − 1 − kα

λ
) sin u

]2
}

‍�

(18)

and ‍λ = Ddil/Dden‍, ‍α = cden/cdil‍, ‍t
∗ = tDden/R2

‍, and ‍k = Rκ/Dden‍, where ‍κ‍ is the interface conductance.
To obtain a more intuitive result, we first rearrange ‍g(u, t∗)‍ as

	﻿‍

g = exp(−u2t∗)

u4
(

1 + k
u cot u − 1

)2
+ λu2

(
1 + kα

λ
+ k

u cot u − 1

)2 .

‍�

(19)

We note that the diffusion of biomolecules in the dilute phase is typically much faster than diffusion 
in the dense phase, i.e., ‍λ = Ddil/Dden ≫ 1‍. In this parameter regime, ‍g(u, t∗)‍ is sharply peaked at the 
values of ‍u‍ where

	﻿‍
1 + kα

λ
+ k

u cot u − 1
= 0,

‍�
(20)

i.e., when the second term in the denominator of ‍g(u, t∗)‍ becomes 0. Representative ‍g(u, t∗)‍ curves 
are shown in Appendix 1—figure 1. We can therefore approximate ‍g(u, t∗)‍ as

	﻿‍
g(u, t∗) =

∑
n

an
λ2

u4
nk2α2 exp(−u2

nt∗)δ(u − un),
‍�

(21)

where ‍un‍ is the ‍n‍ th solution of Equation 20 and ‍an ∼ 1/
√
λ‍ is the inverse of effective width of ‍n‍ th 

peak of ‍g(u, t∗)‍. Clearly, the prefactor of the delta function ‍δ(u − un)‍ in Equation 21 drops rapidly 
with increasing values of ‍un‍. Consequently, the integral in Equation 17 is always dominated by the 
contribution from the first mode, and therefore

	﻿‍ f(t) ≈ 1 − exp(−t/τ ),‍� (22)

where

	﻿‍
τ = R2

Ddenu2
1

,
‍�

(23)

with ‍u1‍ the first root of Equation 20.

https://doi.org/10.7554/eLife.91680
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Appendix 1—figure 1. Representative curves of ‍g(u, t∗)‍. Parameters matched to the simulated ‍A6B6‍ system: 

‍cden = 7.7 mM‍, ‍cdil = 0.05 mM‍, ‍Dden = 0.013 µm2/s‍, ‍Ddil = 17 µm2/s‍, and ‍κ = 0.14 µm/s‍. Droplet radius is 

‍R = 1 µm‍ (top) and ‍0.1 µm‍ (bottom). Inset: same plot with the ‍y‍-axis in log scale.

At any given values of ‍k‍, ‍α‍, and ‍λ‍, the solutions of Equation 20 can be obtained numerically. 
Alternatively, we can obtain an approximate analytical solution by first rewriting Equation 20 as

	﻿‍
1 − u cot u = K = k

1 + kα/λ
.
‍�

(24)

We plot the combined parameter ‍K = k/(1 + kα/λ)‍ versus the first root ‍u1‍ in Appendix 1—figure 2. 
For small ‍K ‍, Taylor series expansion around ‍u = 0‍ for the left side of Equation 24 yields

	﻿‍
1 − u

(
1
u
− u

3

)
= u2

3
= K,

‍�
(25)

which yields ‍u1 =
√

3K ‍. For large ‍K ‍, ‍u1‍ plateaus at ‍π‍. We therefore approximate ‍u1‍ as

	﻿‍
u1 = π

√
3K√

π2 + 3K
.
‍�

(26)

This approximate solution is compared with the exact numerical solution of ‍u1‍ in Appendix 1—
figure 2. The maximum error of about 5% occurs at an intermediate value of ‍K ‍ (Appendix 1—figure 
2, inset). The relaxation time ‍τ ‍ corresponding to the approximate solution in Equation 26 is

	﻿‍
τ = R2

π2Dden
+ cdenR2

3cdilDdil
+ R

3κ
.
‍�

(27)
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Appendix 1—figure 2. Comparison of exact and approximate solutions of Equation 24. Inset: percentage error 
of the approximate solution.

Time required to replace all molecules in a spherical droplet in the 
absorbing boundary limit
The time evolution of the spherically symmetric concentration profile ‍c(r, t)‍ of molecules in the dilute 
phase around a droplet of radius ‍R‍ is given by

	﻿‍

∂

∂t
c(r, t) = Ddil

(
∂2

∂r2 + 2
r
∂

∂r

)
c(r, t), r > R.

‍�
(28)

If molecules incident from the dilute phase are immediately and irreversibly absorbed into the dense 
phase, the boundary condition is then ‍c(R, t) = 0‍. The steady-state solution of Equation 28 in this 
absorbing-boundary limit is

	﻿‍
c(r) = cdil

(
1 − R

r

)
, r > R,

‍�
(29)

where ‍cdil‍ is the concentration at ‍r → ∞‍, which yields a total steady-state flux into the droplet of

	﻿‍
J = −4πR2Ddil

d
dr

c(r)
∣∣∣∣
r=R

= 4πRDdilcdil.
‍�

(30)

It then takes a time

	﻿‍
τ = R2cden

3Ddilcdil ‍�
(31)

to replace all ‍4πR3cden/3‍ molecules in the droplet.

Derivation of the interface conductance in the continuum limit, yielding 
Equations 8 and 13
To derive the interface conductance in the continuum limit (which neglects the bouncing effect), we 
start with the mean-field formulation developed in Hubatsch et al., 2021, where the concentration 
of bleached components ‍c(r, t)‍ is governed by

	﻿‍
∂

∂t
c(r, t) = −∇ · j(r, t),

‍�
(32)

with the flux

	﻿‍
j(r, t) = −D

[
ceq(r)

] [
∇c(r, t) − c(r, t)

∇ceq(r)
ceq(r)

]
,
‍� (33)
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where ‍ceq(r)‍ is the equilibrium concentration profile, and ‍D[ceq(r)]‍ the diffusion coefficient which 
depends on the local equilibrium concentration.

For a spherical condensate of radius ‍R‍, if the interface width is narrow, we can assume that the 
flux going through the interface is uniform in space along the radial direction, i.e.,

	﻿‍
j(r, t) = −D(r)

[
∂

∂r
c(r, t) − c(r, t)

ceq(r)
d
dr

ceq(r)
]

r̂ = j(t)̂r,
‍�

(34)

where ‍̂r‍ denotes the unit vector in the radial direction. Therefore,

	﻿‍

∂

∂r
c(r, t) − c(r, t)

ceq(r)
d
dr

ceq(r) = − j(t)
D(r)

.
‍�

(35)

The solution to the above equation is

	﻿‍
c(r, t) =

ceq(r)c
(
R, t

)

ceq
(
R
) −

ˆ r

R

ceq(r)j(t)
ceq(r′)D(r′)

dr′.
‍�

(36)

We assume that the interface spans a width of ‍δ‍ from ‍R−‍ to ‍R+‍ with ‍R+/− = R ± δ/2‍, then 

‍ceq
(
R − δ/2

)
= cden‍ and ‍ceq

(
R + δ/2

)
= cdil‍. Substituting Equation 36 into the second boundary 

condition in Equation 3, we have

	﻿‍
j(t) = κ

[
c
(
R − δ/2, t

)
− cden

cdil
c
(
R + δ/2, t

)]
= κ

ˆ R+δ/2

R−δ/2

cdenj(t)
ceq(r)D(r)

dr.
‍�

(37)

We then obtain an expression for the interface conductance ‍κ‍:

	﻿‍
κ =

[ˆ R+δ/2

R−δ/2

cden
ceq(r)D(r)

dr

]−1

.
‍�

(38)

The equilibrium concentration ‍ceq(r)‍ transitions from ‍cden‍ to ‍cdil‍ between ‍R − δ/2‍ and ‍R + δ/2‍, and 
the corresponding diffusion coefficient ‍D(r)‍ transitions from ‍Dden‍ to ‍Ddil‍. Assuming a monotonic 
sigmoidal transition, along with ‍Dden ≪ Ddil‍ and ‍cden ≫ cdil‍, we obtain

	﻿‍

cden
ceq(r)D(r)

≤ 1
Dden

+ cden
cdilDdil

,
‍�

(39)

which leads to an interface conductance in the continuum limit

	﻿‍
κ ≥ 1

δ

[
1

Dden
+ cden

cdilDdil

]−1
.
‍�

(40)

In the simulations in Figure 3, we are only interested in molecules that remain in the dilute phase 
without entering the dense phase, and the corresponding interface conductance in the continuum 
limit is then

	﻿‍
κ0 = cdilDdil

δcden
.
‍�

(41)

Derivation of the 1D, slab-geometry versions of Equations 1–6
For the case of a quasi-1D slab geometry, we consider the condensate to sit in the middle in the region 
‍−l < x < l‍ with the simulation box extending along the ‍x‍-axis from ‍−L‍ to ‍L‍. The time evolution of the 
concentration profile ‍c(x, t)‍ of molecules initially located in the dense phase (bleached population) is 
then given by the 1D diffusion equations:

	﻿‍

∂

∂t
c(x, t) = Dden

∂2

∂x2 c(x, t), |x| < l;

∂

∂t
c(x, t) = Ddil

∂2

∂x2 c(x, t), l < |x| < L,
‍� (42)
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with the initial condition:

	﻿‍

c(x, 0) =




cden, |x| < l;

0, l < |x| < L,‍�
(43)

and boundary conditions:

	﻿‍

∂

∂x
c(x, t)

∣∣∣∣
x=0

= ∂

∂x
c(x, t)

∣∣∣∣
x=L

= 0
‍�

(44)

	﻿‍
−Dden

∂

∂x
c(x, t)

����
x=l−

= −Ddil
∂

∂x
c(x, t)

����
x=l+

= κ

[
c(l−, t) − cden

cdil
c(l+, t)

]
.
‍�

(45)

The general solution for the diffusion Equation 42 with the boundary condition in Equation 44 is:

	﻿‍

c(x, t) =





∑
n

an cos(pnx)e−Ddenp2
nt, |x| < l;

∑
n

bn cos[qn(L − x)]e−Ddilq2
nt, l < |x| < L.

‍�

(46)

Applying the boundary condition in Equation 45 to this general solution yields:

	﻿‍ Ddenp2
n = Ddilq

2
n,‍� (47)

	﻿‍
Ddenanpn sin(pnl) = −Ddilbnqn sin(qn(L − l)) = κ

[
an cos(pnl) − cden

cdil
bn cos

(
qn(L − l)

)]
,
‍�

(48)

which leads to

	﻿‍

1
κ

=
√

τ

Dden
cot l√

τDden
+ cden

cdil

√
τ

Ddil
cot L − l√

τDdil
,
‍�

(49)

where ‍τ = (Ddenp2
n)−1 = (Ddilq

2
n)−1

‍ is the relaxation time of the ‍n‍ th mode of the system. For given 
parameters ‍cdil‍, ‍cden‍, ‍Ddil‍, ‍Dden‍, ‍l‍, ‍L‍, and ‍κ‍, ‍τ ‍ can be obtained numerically using the above equation. 
In the regime where the interface conductance is small, we derive an analytical expression for the 
relaxation time

	﻿‍
τ = l(L − l)

κ(L − l + cdenl/cdil)
,
‍�

(50)

which resembles the corresponding relaxation time for a spherical droplet when interface 
conductance is small ‍τ = R/(3κ)‍.

We note that, in principle, Equation 49 can be used to infer the value of ‍κ‍ for a system using 
the relaxation time ‍τ ‍ from simulation. However, due to the relatively small simulation sizes, the 
interface regime can constitute a significant fraction of the dense-phase condensate. This can result 
in uncertainties in the determination of the dense-phase width ‍l‍ and diffusion coefficient ‍Dden‍, etc., 
leading to errors in the determination of the interface conductance using Equation 49. Such errors 
can be significant when slow diffusion in the dense phase becomes rate-limiting for overall system 
relaxation. Therefore, instead of sticking to the ‘FRAP protocol’, we find it more convenient to track 
the molecules that remain in the dilute phase without ever entering the dense phase (Figure 3), 
as this minimizes the errors caused by any inaccuracies in dense-phase parameters. To relate ‍κ‍ to 
the decay time of the dilute-phase molecules, we note that the time evolution of the concentration 
profile ‍c(x, t)‍ of the dilute-phase molecules which have never entered the dense phase is given by

	﻿‍
∂

∂t
c(x, t) = Ddil

∂2

∂x2 c(x, t), l < |x| < L,
‍� (51)

with the initial condition ‍c(x, 0) = cdil‍ for ‍l < |x| < L‍ and boundary conditions:

https://doi.org/10.7554/eLife.91680
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	﻿‍

∂

∂x
c(x, t)

∣∣∣∣
x=L

= c(l−, t) = 0;
‍�

(52)

	﻿‍
−Ddil

∂

∂x
c(x, t)

∣∣∣∣
x=l+

= −κ
cden
cdil

c(l+, t).
‍�

(53)

Going through a similar procedure as for Equations 46–49, we obtain

	﻿‍
κ = cdil

cden

√
Ddil
τ

tan L − l√
τDdil

.
‍�

(54)

The interface conductance ‍κ‍ for simulated systems in Figure 3C (bottom) is obtained from the 
relationship in Equation 54, which is Equation 12 in the main text, using the measured relaxation 
time ‍τ ‍ (Figure 3C, top), of molecules that remain in the dilute phase without ever entering the dense 
phase.

Derivation of the unbound-sticker parameter ‍u‍, Equations 14 and 15
In the interface-resistance-dominated regime, the decay time ‍τ ‍ of the number of dilute-phase 
molecules that have not entered the dense phase can be obtained from Equation 54:

	﻿‍
τ = cdil(L − l)

cdenκ
.
‍�

(55)

In the slab geometry, this decay time is controlled by the flux per unit area ‍j‍ entering the dense 
phase

	﻿‍
τ = cdilV

2jA
,
‍�

(56)

where ‍V ‍ is the volume of the dilute phase, and ‍A‍ the cross-sectional area of the interface between 
the dilute and dense phases (the factor of 2 accounts for the two interfaces). Combining these two 
equations, we have

	﻿‍
κ = j

cden
.
‍�

(57)

For our simulations of polymers with A and B type stickers, we can approximate ‍j‍ by assuming 
that a polymer incident from the dilute phase will join the dense phase if and only if an unbound 
monomer on the polymer binds to an unbound monomer in the dense phase somewhere in the 
interface region. To find an approximate formula for ‍j‍ we therefore need to estimate the rate of such 
binding events per unit area of the interface. To this end, we can use the formula for diffusion-limited 
monomer-monomer binding, but with some modifications: First, we can write the concentration of 
unbound monomers of type A in the dilute phase as

	﻿‍ cdilA = nAcdilfdilA,‍� (58)

where ‍nA‍ is the number of type A monomers per polymer and ‍fdilA‍ is the fraction of these monomers 
that are unbound. This concentration implies a diffusion-limited binding flux onto each unbound 
dense-phase type B monomer in the interface region

	﻿‍ jA→B = 4πr0DdilcdilA,‍� (59)

where ‍r0‍ is the sticker radius, and we have assumed that the diffusion rate is set by the whole polymer. 
Now we need an estimate for the areal density ‍ρdenB, unbound‍ of available unbound B-type monomers 
in the dense-phase interface region, since each one will contribute the above flux (Equation 59). 
We can write

	﻿‍ ρdenB, unbound = δnBcdenfdenB,‍� (60)

where ‍δ‍ is the width of the interface region, ‍nB‍ is the number of type B monomers per polymer, and 
‍fdenB‍ is the fraction of unbound B monomers on dense-phase polymers in this region. Finally, we can 
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combine the above equations, and include the binding of dilute-phase B-type monomers to dense-
phase A-type monomers, to obtain

	﻿‍ j = jA→BρdenB, unbound + jB→AρdenA, unbound = 4πr0DdilδnAnBcdilcden
(
fdilAfdenB + fdilBfdenA

)
.‍� (61)

The interface conductance ‍κ‍ is then

	﻿‍ κ = 4πr0DdilδnAnBcdil
(
fdilAfdenB + fdilBfdenA

)
.‍� (62)

Using this expression, we can then estimate the ratio between the true ‍κ‍ and its continuum limit 
‍κ0 = cdilDdil/(δcden)‍ to be

	﻿‍

κ

κ0
≈ 4πr0δ

2n2cden
2 + s + s−1

(
fdilAfdenB + fdilBfdenA

)
,
‍�

(63)

where ‍n = nA + nB‍ is the length of a polymer and ‍s = cA/cB‍ is the global stoichiometry. Note that we 
have used ‍nAnB = n2s/(1 + s)2

‍ to derive the above expression. In practice, we find this expression 
to be quite accurate up to a constant prefactor (Figure 3D), and we define the right-hand side of 
Equation 63 as a lumped parameter ‍u‍.
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Appendix 2
Simulation procedures and data recording
We perform coarse-grained molecular-dynamics simulations using LAMMPS (Plimpton, 1995) to 
simulate phase separation of ‘sticker and spacer’ polymers. Individual polymers are modeled as 
linear chains of spherical stickers of types A and B connected by implicit spacers (Figure 2A) with 
the interaction potentials in Equations 9–11, which ensure one-to-one binding between A and B 
stickers.

For each of the five selected sequences (Figure 2A), we simulate 1000 polymers in a 500 nm × 
50 nm × 50 nm box with periodic boundary conditions. Following the simulation procedures in Zhang 
et al., 2021, we first initialize the simulation by confining polymers in the region ‍−90 nm < x < 90 nm‍ 
to promote phase separation and ensure that only a single dense condensate is formed. The 
attractive interaction between A and B stickers (Equation 10) is gradually switched on from ‍U0 = 0‍ to 
14 over 2.5×107 time steps. This annealing procedure leads to the formation of a dense phase close 
to its equilibrated concentration. The dense condensate is equilibrated at fixed ‍U0 = 14‍ for another 
‍2.5 × 107‍ steps and then the confinement is removed. The system is equilibrated for ‍2 × 108‍ more 
time steps to allow for the formation of a dilute phase and further relaxation of the dense phase. We 
then record the positions of all particles every ‍2.5 × 105‍ steps for 800 recordings.

Through the entire simulation, we equilibrate the system using a Langevin thermostat implemented 
with LAMMPS commands fix nve and fix langevin, i.e., the system evolves according to Langevin, 
1908

	﻿‍
m d2⃗ri

dt2
= −γ

d⃗ri
dt

− ∇⃗ri U(⃗r1, ..., r⃗N) + f⃗,
‍�

(64)

where ‍⃗ri‍ is the coordinate of particle ‍i‍, ‍m‍ is its mass, ‍γ‍ is the friction coefficient, ‍⃗f ‍ is random thermal 
noise, and the potential energy ‍U(⃗r1, ..., r⃗N)‍ contains all interactions between particles, including 
bonds and sticker-sticker interactions (Equations 9–11). We take temperature ‍T = 300 K‍, damping 
factor ‍τ = m/γ = 10 ns‍, step size ‍dt = 0.1 ns‍, and mass of particle ‍m = 188.5 ag‍. These parameters 
give each sticker the correct diffusion coefficient ‍D = kBT/(3πηd)‍, where ‍η‍ is the water viscosity 
‍0.001 kg/m/s‍ and ‍d = 2 nm‍ is the sticker diameter.

We perform 10 simulation replicates with different random seeds for each of the five selected 
polymer sequences. Consistency of results is checked across replicates. To test if the system has 
reached equilibrium, we compare the dense- and dilute-phase concentrations derived from the first 
and second halves of the recorded data. The agreement indicates that the system has reached 
equilibrium.

Determining the dilute- and dense-phase concentrations
To measure the dilute- and dense-phase concentrations, we first group polymers into connected 
clusters in each recording. Two stickers are considered connected if they are part of the same polymer, 
or if they are within the attraction distance ‍r0 = 1 nm‍. Connected stickers are then grouped into 
clusters. In all simulations, we observe one large cluster which contains most of the polymers, and tens 
to hundreds of very small clusters (Figure 2B). We consider the large cluster to constitute the dense 
phase, and the smaller clusters to be constituents of the dilute phase. To find the concentrations of 
each phase, we identify the center of mass of the dense cluster in each recording, and recenter the 
simulation box to this center of mass. We then compute the polymer concentration histogram along 
the ‍x‍ axis with a bin size 1/50 of box length. The histogram of numbers of stickers per bin is averaged 
over all recordings and simulation replicates. The polymer concentration profile is derived as the 
sticker concentration profile divided by the number of stickers per polymer. The resulting polymer 
concentration profile has high values in the middle corresponding to the dense-phase concentration, 
and low values on the two sides corresponding to the dilute-phase concentration (Figure 2C). The 
dilute- and dense-phase concentrations in Figure 2D are calculated by averaging the concentration 
profile over the regions ‍(x ≤ −150 nm or x ≥ 150 nm)‍ and ‍(−10 nm ≤ x ≤ 10 nm)‍, respectively.

Determining the dilute- and dense-phase diffusion coefficients
To measure the dilute- and dense-phase diffusion coefficients, we perform simulations with a 
pure dilute phase or dense phase, i.e., with polymers at the measured dilute- and dense-phase 
concentrations. Specifically, for the dilute-phase case, we simulate 750 (A2B2)3, 285 (A3B3)2, 101 
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A6B6, 104 A8B6, and 180 A10B6 polymers, each in a ‍150 nm × 150 nm × 150 nm‍ box with periodic 
boundary conditions. For the dense-phase case, we simulate 1000 polymers for all selected 
sequences in a ‍W nm × 50 nm × 50 nm‍ box with periodic boundary conditions, where ‍W = 116.1‍ for 
(A2B2)3, 96.5 for (A3B3)2, 85.8 for A6B6, 136.5 for A8B6, and 234.2 for A10B6. To equilibrate the 
system, the attractive interaction between A and B stickers (Equation 10) is gradually switched on 
from ‍U0 = 0‍ to ‍14 kBT ‍ over ‍2.5 × 107‍ time steps and equilibrated at fixed ‍U0 = 14 kBT ‍ for ‍2 × 108‍ more 
time steps. We then record the displacement of all particles every ‍2.5 × 105‍ steps for 400 recordings. 
Five simulation replicates with different random seeds are performed for each selected sequence.

To find the diffusion coefficients, we compute the time-averaged MSD for each polymer as 
a function of the lag time ‍tlag‍, and average over all polymers in a simulation box and over five 
replicates. The time- and ensemble-averaged MSD is then linearly fit to ‍MSD = 6Dtlag‍ to extract the 
diffusion coefficient.

Determining the interface conductance
To measure the interface conductance ‍κ‍, we follow the simple protocol depicted in Figure  3A. 
This scheme, based on the rate that particles in the dilute phase join the dense phase, is both 
computationally efficient and allows us to infer the interface conductance even when slow diffusion 
in the dense phase is rate-limiting for overall system relaxation. Specifically, in this protocol we first 
define a ‘survival’ variable ‍S‍ for each polymer as a function of time: ‍S = 1‍ if the polymer belongs to 
any dilute-phase cluster (including a solo cluster), and ‍S = 0‍ if the polymer is in the dense-phase 
cluster. Next, for all polymers starting with ‍S = 1‍ (i.e. in the dilute phase), we check if there is a period 
of time (chosen here to be 10 times the average bond lifetime of an isolated A-B pair) for which its 
‍S‍ value is always 0 (i.e. the polymer has joined the dense-phase cluster). If yes, we set ‍S = 1‍ at the 
time points before the joining event and ‍S = 0‍ at all times afterward. If not, we set ‍S = 1‍ for this 
polymer for all time points. We then average ‍S(t)‍ over all polymers starting with ‍S = 1‍ and over the 10 
simulation replicates. The obtained ‍S(t)‍ is the average survival probability of polymers in the dilute 
phase that have never entered the dense phase. We fit ‍S(t)‍ to a decaying exponential to extract the 
decay time ‍τ ‍. The interface conductance ‍κ‍ is then calculated using Equation 54 with the measured 
decay time and dilute- and dense-phase parameters.

In Figure  3, we set the criterion for a polymer to have entered the dense phase as being 
continuously connected to the dense-phase cluster for a duration longer than ‍10τ ‍, where ‍τ ‍ is the 
average bond lifetime of an isolated A-B sticker pair. Briefly, the bond lifetime of an isolated pair is 
obtained by simulating a bound pair of A-B stickers in a box and recording the time when they first 
separate by the cutoff distance of the attractive interaction ‍r0 = 1 nm‍. The mean bond lifetime ‍τ ‍ is 
found by averaging results of 1000 replicates with different random seeds. In Appendix 1—figure 1, 
we compare the results for the interface conductance ‍κ‍ using alternative durations, ‍> τ ‍ and ‍> 20τ ‍, 
as criteria for joining the dense phase. The value of ‍κ‍ changes very little between the ‍10τ ‍ and ‍20τ ‍ 
criteria, suggesting that the results in Figure 3 are robust to the definition of ‘joining’ the dense 
phase, provided very short-lived bonds are neglected.

As an alternative approach, we calculated ‍κ‍ by directly measuring the flux ‍j‍ of molecules that 
enter the dense phase and then using ‍κ = j/cden‍ (Equation 57). To find this flux, we first define an 
entering event as occurring when a molecule starting from the dilute phase joins the dense-phase 
cluster and stays for a duration longer than 10 times the average bond lifetime for an isolated A-B 
sticker pair. We count the number of total entering events ‍N ‍ in a simulation (note that some molecule 
can enter the dense phase multiple times), and the flux is then ‍N/(2AT)‍, where ‍A‍ is the cross-sectional 
area of the interface and ‍T ‍ is the duration of the simulation. We show in Appendix 1—figure 2 that 
the values of ‍κ‍ obtained via this method are consistent with the results reported in Figure 3C.

We show in Appendix 2—figure 3, a few representative trajectories of A6B6 (top) and A10B6 
(bottom) polymers ‘bouncing’ off the interface between dilute and dense phases. More bouncing 
events per unit time are observed in the A6B6 system compared to A10B6 system, consistent with 
the presence of a larger interface resistance in the A6B6 system.

https://doi.org/10.7554/eLife.91680
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Appendix 2—figure 1. Interface conductance inferred from average survival time of particles initially in the dilute 
phase for different criteria for having ‘joined’ the dense phase (Figure 3). The interface conductance is shown 
for three criteria: a polymer is considered to have joined the dense phase if it is in the dense-phase cluster for a 
continuous duration of ‍τ ‍, ‍10τ ‍, or ‍20τ ‍, where ‍τ ‍ is the average bond lifetime of an isolated A-B sticker pair.

Eq. (54)
( 

 m
/s

)

Appendix 2—figure 2. Comparison of interface conductance ‍κ‍ obtained with the flux method and with Equation 
54 as reported in Figure 3C.

https://doi.org/10.7554/eLife.91680
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Appendix 2—figure 3. Representative trajectories of molecules ‘bouncing’ multiple times at the interface of the 
A6B6 system (top) and A10B6 system (bottom).

Details of simulation and theory of FRAP recovery of an A6B6 droplet
Simulations of the A6B6 droplet system largely follow their counterparts in the slab geometry. 2000 
polymers were placed inside a cubic box with periodic boundary conditions. Half of the polymers 
are initially confined in a sphere of radius 55 nm and the other half kept outside. The attraction 
between A and B stickers is gradually turned on from ‍U0 = 0‍ to 14 over ‍4 × 107‍ time steps. The 
system is equilibrated at fixed ‍U0 = 14‍ for another ‍1 × 107‍ steps and then the spherical confinement 
is removed. The above procedures ensure the formation of a single droplet and a uniform dilute 
phase at a desired concentration. We started with simulation boxes of side lengths 300 nm and 275 
nm, which correspond to initial dilute-phase concentrations of 0.06 mM and 0.08 mM. The droplets 
shrank and grew accordingly over time in these simulations, which allowed us to extrapolate to the 
correct box size of side length 286 nm for a stable droplet (Appendix 2—figure 4). The system is 
equilibrated for ‍5 × 107‍ more time steps to allow equilibration between the dilute and dense phases. 
We then record the positions of all particles every ‍1 × 106‍ steps for 600 recordings. 10 simulation 
replicates were performed.

https://doi.org/10.7554/eLife.91680
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Appendix 2—figure 4. A simulation box of side length 286 nm stabilizes the droplet size. Number of polymers 
in the droplet as a function of time averaged over 10 simulation replicates for simulation boxes of side length 275 
nm, 286 nm, and 300 nm.

To obtain the concentration profile in Figure 4B, we identify the center of mass of the droplet and 
recenter the simulation box to this center of mass in each recording. We then compute the time- and 
ensemble-averaged polymer concentration histogram along the radial direction with a bin size 5.5 
nm. The dilute- and dense-phase concentrations (‍c

d
dil‍ and ‍c

d
den‍) of the droplet system are calculated 

by averaging the concentration profile over the regions ‍r ≥ 55 nm‍ and ‍r ≤ 12.5 nm‍, respectively. 
To obtain the concentration profile of the bleached population at time ‍t‍ after photobleaching in 
Figure 4C, we label all polymers in the droplet at time ‍t0‍ as bleached and track the concentration 
profile of these polymers at a later time ‍t0 + t‍. Results are averaged over all possible choices of ‍t0‍ and 
over 10 simulation replicates. Interface conductance of the droplet system is determined using the 
flux method. We count the total number of entering events, N, in which a polymer starts from the 
dilute phase and joins the droplet for a duration longer than 10τ (‍6 × 106‍ steps). ‍κd‍ is then ‍N/(AT)‍, 
where ‍A‍ is the surface area of the droplet and ‍T ‍ is the duration of the simulation.

To obtain the theory curve in Figure 4D, we numerically integrate Equation 1 using a finite-
difference method. We used the modified initial and boundary conditions:

	﻿‍

c(r, 0) =




cd
den, r ≤ R;

0, R < r ≤ Rbox,‍�
(65)

and

	﻿‍

∂

∂r
c(r, t)

∣∣∣∣
r=0

= ∂

∂r
c(r, t)

∣∣∣∣
r=Rbox

= 0,
‍�

(66)

to account for the system’s finite size with parameters: ‍c
d
den = 8.1 mM‍, ‍c

d
dil = 0.073 mM‍, ‍Dden = 0.013 µm2/s‍, 

‍Ddil = 17 µm2/s‍, ‍R = 0.037 µm‍, and ‍κ
d = 0.20 µm/s‍ directly extracted from simulations, and a spherical 

confinement of radius ‍Rbox = 0.177 µm‍, which corresponds to the same volume as the cubic 
simulation box. Equation 1 was integrated over time with a forward Euler scheme with a radial step 
of ‍0.5 nm‍ and a time step of ‍5 ns‍ to ensure numerical stability and accuracy. The resulting bleached 
concentration profile is then used in conjunction with Equation 4 to obtain the FRAP recovery curve.

To derive Equation 16 in the main text, we note that in the interface-resistance-dominant 
regime diffusion in the dilute and dense phases are both fast, therefore the bleached molecules 
can be assumed to have uniform concentration profiles, ‍cin(t)‍ and ‍cout(t)‍, inside and outside 
of the droplet, respectively. The net outward flux across the interface can then be written as 

‍j(t) = κ[cin(t) − (cden/cdil)cout(t)]‍, which reduces the total number of bleached molecules inside the 
droplet according to:

	﻿‍
4πR3

3
dcin(t)

dt
= −4πR2j(t).

‍�
(67)

The above equation together with the total number of bleached molecules
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	﻿‍

4πR3

3
cden = 4πR3

3
cin(t) +

(
4πR3

box
3

− 4πR3

3

)
cout(t)

‍�
(68)

and the initial condition ‍cin(0) = cden‍ can be solved to yield an analytical solution for ‍cin(t)‍:

	﻿‍

cin(t) = cden


1 − A


1 − e

−
t

Aτ




 ,

‍�
(69)

where

	﻿‍
A =

(
R3

box − R3
)

cdil(
R3

box − R3
)

cdil + R3cden ‍�
(70)

corresponds to the maximum recovery intensity and ‍τ = R/(3κ)‍ corresponds to the recovery time for 
a system of infinite size in the interface-resistance-dominant regime. The FRAP recovery curve is then

	﻿‍

f(t) = 1 − cin(t)
cden

= A


1 − e

−
t

Aτ


 .

‍�
(71)

We note that in the limit where the system is infinite in size (‍Rbox → ∞‍), we recover the familiar 
fluorescence recovery curve in Equation 5.

https://doi.org/10.7554/eLife.91680
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