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Abstract

The heterogeneity of brain imaging methods in neuroscience pro-
vides rich data that cannot be captured by a single technique, and
our interpretations benefit from approaches that enable easy com-
parison both within and across different data types. For example,
comparing brain-wide neural dynamics across experiments and
aligning such data to anatomical resources, such as gene expression
patterns or connectomes, requires precise alignment to a common
set of anatomical coordinates. However, this is challenging because
registering in vivo functional imaging data to ex vivo reference
atlases requires accommodating differences in imaging modality,
microscope specification, and sample preparation. We overcome
these challenges in Drosophila by building an ir vivo reference atlas
from multiphoton-imaged brains, called the Functional Drosophila
Atlas (FDA). We then develop a two-step pipeline, Brldge For Reg-
istering Over Statistical Templates (BIFROST), for transforming
neural imaging data into this common space and for importing ex
vivo resources such as connectomes. Using genetically labeled cell
types as ground truth, we demonstrate registration with a preci-
sion of less than 10 microns. Overall, BIFROST provides a pipeline
for registering functional imaging datasets in the fly, both within
and across experiments.

Significance

Large-scale functional imaging experiments in Drosophila have
given us new insights into neural activity in various sensory and
behavioral contexts. However, precisely registering volumetric im-
ages from different studies has proven challenging, limiting quan-
titative comparisons of data across experiments. Here, we address
this limitation by developing BIFROST, a registration pipeline ro-
bust to differences across experimental setups and datasets. We
benchmark this pipeline by genetically labeling cell types in the fly
brain and demonstrate sub-10 micron registration precision, both
across specimens and across laboratories. We further demonstrate
accurate registration between in-vivo brain volumes and ultra-
structural connectomes, enabling direct structure-function com-
parisons in future experiments.

Drosophila melanogaster | Whole-brain imaging | image processing
Correspondence: mmurthy@princeton. edu
Correspondence: trc@stanford. edu

Main

Calcium imaging studies of neural activity have provided cen-
tral insights into brain function in multiple model systems, in-

cluding the nematode C. elegans [1-6], the larval zebrafish [7—
11], the fruit fly [12—18], and the mouse [19]. In order to com-
pare such volumetric imaging datasets across individual ani-
mals, data from individual animals is often aligned within a
common set of spatial coordinates defining an atlas, an approach
that has been widely used in fish, rodents and humans [20-23].
In this approach, the precision with which data can be regis-
tered to such a “local atlas” places limits on the effective spatial
resolution of aggregated data, defining the spatial scale of quan-
titative comparisons. As it has proven challenging to precisely
register data from different experiments in the same space, these
atlases have generally been restricted to the bounds of a single
project, where data was acquired using the same experimental
apparatus and protocol [24-26].

The adult fruit fly Drosophila melanogaster is a well-
established platform for circuits neuroscience and recent ad-
vances have enabled large-scale functional imaging in this sys-
tem [12, 15-18, 27]. Such studies have revealed widespread
sensory responses and movement-related neural activity, probed
the relationships between neural activity and metabolism, and
have led to the discovery of novel circuits. Each of these studies
registered volumetric neural activity data either onto an in vivo
local atlas or an extant ex vivo fixed-tissue atlas [28-35]. How-
ever, different in vivo datasets have not been cross-registered,
precluding direct comparisons, as well as a wealth of ex vivo
neuroanatomical datasets [29], including gene expression pat-
terns [36—38] and synapse-level wiring diagrams (connectomes)
[32, 39-41]. Cross-registration of these ex vivo resources has
enhanced their utility as, for example, spatial registration has al-
lowed morphologically defined cell types identified in the con-
nectome to be associated with specific genetic driver lines [33,
35, 42, 43]. However, it has been difficult to align in vivo func-
tional data to ex vivo atlases with cell-type precision (~ 5um)
[12, 15] due to the markedly different image statistics inherent
to in vivo microscopy and fixed tissue imaging using light and
electron microscopy.

Here, we present a robust and generalizable image regis-
tration pipeline, Brldge For Registering Over Statistical Tem-
plates (BIFROST), that enables quantitative comparisons in
Drosophila, across individuals and experimental setups. We
created an in vivo atlas, the Functional Drosophila Atlas (FDA),
that can accommodate functional datasets from different exper-
iments and labs. An in vivo atlas allows us to represent func-
tional activity in a common space which better reflects the ge-
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ometry of the brain inside the head. We then aligned the FDA
with extant ex vivo templates [28-31, 33-35], thereby importing
atlas labels [30], neuropil annotations [30], information from
the connectomes [32, 39-41], and powerful tools for neuron
identification [33, 35, 42, 43]. Using these atlas labels, we
demonstrate that our registration pipeline outperforms existing
methods [44, 45]. We further validate our method by registering
in vivo volumes collected on different microscopes in which the
same cell types are fluorescently labeled to the FDA. Comparing
these datasets in FDA space, we demonstrate that our cross-lab
registration is precise to 5 microns. We also demonstrate that
BIFROST can be used to align partial sub-volumes of the brain
into FDA space, allowing users the flexibility to image particu-
lar regions of interest while retaining the ability to align to the
atlas. Finally, we show that our pipeline can be used to register
functional imaging data to connectomes with a precision of 5
microns. Thus, BIFROST creates a common space for in vivo
neural imaging data, provides easy-to-use tools for accurate reg-
istration, and enables direct comparisons of functional data and
ex vivo anatomical resources.

Results

Overview

Functional imaging datasets collected using fluorescence mi-
croscopy often comprise two separate channels, with one chan-
nel recording neuronal activity using one sensor (such as a cal-
cium indicator), and one channel recording signals associated
with a structural marker that broadly labels the brain. In our ap-
proach, the structural signals from individual brains in a single
experiment are first registered together to form a template. The
warp parameters derived from this transformation are then ap-
plied to the neuronal activity channel from each brain, thereby
bringing these signals into the template space. Next, templates
derived from each experiment or laboratory are aligned to the
Functional Drosophila Atlas (FDA), allowing all datasets to be
quantitatively compared to each other, and to other resources
that are registered to the FDA.

Developing the Functional Drosophila Atlas

Our goal was to develop an accurate pipeline for registering
brain-wide imaging data to a single atlas. In flies, previous
work has described atlases that span the entire brain using ex
vivo datasets, and as well as atlases that span the central brain
in vivo [12, 15, 29, 35]. However, no in vivo atlas spanning
the entire brain has been described in either sex. To develop an
atlas that best captures the structure of the female fly brain in
vivo, a widely used model, we sought to suppress both individ-
ual and technical variation. To do this, we first imaged each
individual brain, inside the head of the living fly, 100 times
at a resolution of 0.6 x 0.6 x 1 pym, capturing expression of
a pan-neuronally expressed cell surface marker (myristylated
tdTomato) using two photon microscopy. These 100 volumes
were then aligned using linear (affine) and non-linear (Symmet-
ric Normalization (SyN)) transformations, as implemented in
Advanced Normalization Tools (ANTSs) [44, 45]. These were
then averaged to define a single volumetric image of each brain

that suppressed technical variation in each collected volume.
This process was repeated for 30 individuals, and based on a
qualitative assessment, 16 were selected for further image pro-
cessing. Each of these images were normalized, sharpened, and
iteratively aligned using linear and non-linear transformations
to construct the FDA (Fig. S1A, Fig. S2, see Methods).

We next tried to align ex vivo resources, including
JRC2018F anatomical labels and genetic tools, the hemibrain
connectome and the FlyWire Connectome to the FDA [35, 39,
41]. This is a challenging registration problem because the im-
age statistics associated with these imaging modalities have sub-
stantial differences that reflect (1) changes in brain morphology
due to physical constraints of the head, (2) distortion created by
fixation, and changes in the angle of the imaging axis (3) differ-
ences in the spatial distribution of fluorescence signals due to
in vivo labeling of cell membranes versus ex-vivo immunohis-
tochemistical labeling of synaptic antigens and (4) differences
in SNR characteristics associated with single and two-photon
microscopy. We initially attempted this alignment using ANTsS;
however, many regions of the brain aligned poorly.Therefore,
to improve the registration, we adapted SynthMorph, a learned
contrast-invariant registration method, and used it in sequence
with linear and non-linear SyN transformations to improve reg-
istration of the ex vivo resources to the FDA [44, 46].

Registering individual datasets to FDA

We collected neural activity (nSyb>GCaMP6s; the dependent
channel) and anatomical data (nSyb>myr::tdTomato; the align-
ment channel) at brain wide scale in different labs using dif-
ferent imaging systems (Fig. 1, Methods). To register these
datasets to the FDA, we first generated a dataset template by it-
eratively aligning the anatomical scan from each animal using
linear and non-linear transformations (Fig. S1B, see Methods).
We next used the combination of linear, non-linear SyN, and
SynthMorph to register these anatomical scans to the FDA. The
transformations that best align each anatomical scan were then
applied to the corresponding neural activity data, thereby regis-
tering the functional signals to the FDA (Fig. S1C, see Meth-
ods).

Quantifying registration performance

Making quantitative measurements of registration accuracy is
challenging [47]. To address this challenge, we took two inde-
pendent approaches. First, we quantified the performance of
our method by measuring the overlap of small, well-defined
anatomical regions that were manually labeled independently
in both the ex vivo and in vivo atlases. Second, we expressed a
fluorescent marker in cell-type specific sub-populations of neu-
rons, and quantified their alignment within and across labs, and
to connectomes.

BIFROST outperforms existing methods for registration
across modalities

We first quantified registration performance by measuring the
alignment of neuropils labeled in the FDA space to the corre-
sponding neuropils labeled in an established ex vivo anatomical
atlas, JRC2018F (Fig. 2)[35]. Alignment accuracy was quan-
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Figure 1. Overview of the BIFROST pipeline. (Step 1) Collect whole-brain volumetric data from multiple animals, with a pan-neuronal anatomical label used for alignment and
an orthogonal dependent neural activity label. (Step 2) A dataset template is constructed, warping individual brains in the dataset to a common space. The template is
constructed from the anatomical channels and the resulting transforms are applied to the neural data to register them into the template space. (Step 3) Dataset templates are
aligned to the Functional Drosophila Atlas (FDA), in which all such datasets can be directly compared. Other resources have been registered to this space, including anatomical

labels and connectomes.

tified for each pair of neuropils using the Sgrenson-Dice co-
efficient, which captures the normalized fraction of voxels that
overlap across both neuropil masks [48, 49]. For these analyses,
we are calculating the transformation using the JRC2018F and
FDA templates, and applying the transformations to the neu-
ropil masks. As a control, we first used a linear transform to
align the JRC2018F template to the FDA, and achieved an av-
erage Sgrenson-Dice score of 0.52 (range: 0.13 to 0.75). Next,
we added a non-linear transformation step (SyN), the core non-
linear transformation embedded in the widely used registration
pipeline ANTs. However, SyN achieved only a modest in-
crease in performance, with an average Sgrenson-Dice score of
0.54 (range: 0.18 to 0.77), emphasizing the challenge of cross-
modal registration. However, by adding SynthMorph to com-
plete the BIFROST pipeline and perform the same alignment,
we achieved an average Sgrenson-Dice score of 0.65 (range:
0.45 to 0.84). We note that precision of registration did not de-
teriorate with tissue depth (Fig. S3). Thus, BIFROST provides
an effective tool for registering signals across the brain.

Quantifying registration accuracy using sparse cell pop-
ulations

While the Sgrenson-Dice coefficient of labeled anatomical ROIs
is widely used to estimate the precision of registration, this
approach also has limitations [47]. The stereotyped architec-
ture of the fly brain, combined with cell-type specific genetic
labelling, make possible a quantitative assessment of registra-
tion precision, giving access to ground truth measurements that
are generally not possible in other experimental systems. We

first expressed a fluorescent indicator in a single genetically-
identifiable cell type, Lobula Columnar 11 neurons (LC11). We
chose the LC11 population because LC11 axons converge onto
a single glomerulus, facilitating precise estimation of glomeru-
lus position in 3D (Fig. 3 and Fig. S4). This glomerulus lies
in the posterior ventral lateral protocerebrum (PVLP) and pos-
terior lateral protocerebrum (PLP), two large neuropils that dis-
played relatively low contrast in the structural imaging channel.
Thus, aligning LC11 within and across laboratories provides a
challenging test-case for the BIFROST pipeline. As above, we
compared the performance of the BIFROST pipeline to alter-
native, truncated pipelines that omitted various alignment steps,
and included images collected independently in two laborato-
ries (Fig. 3B). Each image was from the same strain, and ex-
pressed the neural activity marker GCaMP6s only in LC11 (as
the dependent channel), as well as myristylated-td-Tomato in
all neurons (as the structural channel). Qualitatively, individual
LC11 glomeruli from both laboratories were similar in appear-
ance after registration (Fig. 3C).

We quantified alignment precision by measuring the brain-
to-brain variation in the position of the centroid for each
glomerulus, independently for both hemispheres , a feature that
was robust and not strongly affected by threshold choice (Fig.
S4A). The average pairwise displacement of any two centroids
was 5.2 pm in Laboratory 1, 6.1 um in Laboratory 2, and 7.3
pm across laboratories (Fig. 3D,E and Fig. S4B-D). We ob-
served a nearly uniform error distribution, even including along
the Z axis (corresponding to the anterior to posterior axis of the
brain), the axis that generally suffers most from image distor-
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Figure 2. BIFROST registers neuropils across the brain with high precision. (A) Schematization of the registration steps of the BIFROST pipeline. (left) The FDA was
transformed into the space of JRC2018F through successive applications of one linear and two non-linear SyN and SynthMorph steps. (right) The transformations computed at
each step were applied to ROI annotations. Only a subset of the 13 labeled ROIs are illustrated. (B) Selected neuropil boundaries at successive steps of the pipeline. (C)
Quantification of neuropil boundary overlap using the Sarenson-Dice coefficient. Box center line indicates median over all neuropils, box limits indicate quartiles, whiskers

indicate minimum and maximum.

tion (Fig. S4E). Notably, the BIFROST pipeline outperformed
all truncated variations of the pipeline, particularly for com-
parisons between labs (Fig. 3E and Fig. S4D). In addition to
quantifying LC11 glomerulus registration using measurements
of centroids, we manually labeled three additional glomerulus
landmarks: the lateral tip, the medial tip, and the stalk. After
registration, brain-to-brain variation in the position of the me-
dial tip and the stalk was approximately equivalent to that seen
with the centroids (Fig. S4F). However, brain-to-brain variation
in the position of the lateral tip was increased across all sam-
ples, and across labs, all three landmarks were somewhat less
precisely aligned than the centroid with an average pairwise dis-
placement of 16.3 um for the lateral tip, 10.3 pm for the medial
tip, and 8.5 pm for the stalk (Fig. S4F). Some of this increased
variation likely reflects the challenges of manual labeling; how-
ever, we also note that the lateral tip of LC11 glomerulus is
relatively superficial and might be more affected by variation in
the surgical preparation. Nonetheless, as discussed further be-
low, the LC11 datasets derived from both labs aligned well with
connectomic resources (Fig. 5).

To test whether this registration precision could be extended
to a different brain region, we repeated this experiment using an

additional cell population labelled by doublesex (DSX), a neu-
ronal population that extends throughout many neuropils and
comprises only fine <10 um diameter) processes (Fig. S5A,B).
Again, BIFROST achieved comparable results, displaying 5.5
um average pairwise displacements between centroids in a read-
ily identifiable structure within the DSX-expressing neuronal
population (Fig. S5C,D).

Registration of brain sub-volumes

Many experiments capture neural activity signals from only
a sub-region of the brain and would benefit from registration
across animals. We therefore adapted the BIFROST pipeline to
align sub-volumes into the FDA (see Methods). To test the ac-
curacy of sub-volume alignment, we generated a simulated sub-
volume dataset by selecting a 95 x 95 x 38 pm sub-region of one
hemisphere from each LC11 brain (Fig. 4). Importantly, this
sub-volume was not selected from the LC11 template; rather,
it was selected independently for each fly, blind to variation
in brain orientation and position. We then constructed a sub-
volume template from the individual sub-volumes (Fig. 4B,C).
We aligned this sub-volume mean to the FDA using BIFROST
(Fig. 4D,E) then assessed the accuracy of alignment as be-
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Figure 3. BIFROST registers brains within and across laboratories. (A) A single brain from each laboratory expressing an alignment channel (pan-neuronally expressed
myr-tdtomato) and dependent channel (LC11-expressed GcAMP6s). The LC11 glomerulus region is highlighted. (B) Schematic flow chart of the BIFROST pipeline, as well as
truncated versions that omit individual steps. (C) High magnification views of LC11 glomeruli in individual animals from both laboratories after registration into the FDA using
BIFROST. Dot denotes centroid of each glomerulus. (D), As in (C), but individual glomeruli are overlaid and projections along each axis are shown. For comparison, glomeruli
transformed by the linear-only pipeline and the full BIFROST pipeline are overlaid(Lab 1 n=9; Lab 2 n=8). (E) Quantification of the distribution of pairwise centroid distances within
and across laboratories, for each pipeline variant. Box center line indicates median, box limits indicate quartiles, whiskers indicate 1.5x the inter-quartile range.

fore (Fig. 4F-H). We found good agreement between the two
sets of aligned data, with an average pairwise displacement be-
tween centroids of approximately 6 um, demonstrating that the
BIFROST pipeline can align partial brain volumes to the FDA.

Registration of the FDA with connectomes

Our goal was to align neuronal skeletons and synapse posi-
tions derived from connectomes to the FDA. Prior work has
described the coordinate transformations from both the hemi-
brain connectome and the FlyWire connectome to JRC2018F
[32, 41, 50]; therefore, we created a coordinate transformation
from JRC2018F to FDA using BIFROST. This allows the co-
ordinates of neuronal skeletons and synapses to be transformed
to the FDA space through the path Hemibrain to JRC2018F to
FDA, and FlyWire to JRC2018F to FDA. We note that Syn-

thMorph does not provide methods for transforming the coor-
dinates of a point cloud, which is required for a connectome.
Therefore, after calculating the SynthMorph transformation, we
recalculated it using ANTs (Fig. S1D, Methods).

We next examined the accuracy of this coordinate transfor-
mation by comparing the positions of the LC11 glomeruli mea-
sured in our in vivo datasets to that identified in both the hemi-
brain and FlyWire (Fig. 5). Remarkably, this cross-modal align-
ment was as precise as the alignment across in vivo datasets,
with a precision of approximately 5 pm (Fig. 5C-F) for LC11,
and 7 ym for DSX (Fig. S5D). Thus direct comparisons be-
tween anatomical wiring diagrams and functional volumetric
images are now feasible with high precision.
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Discussion

We developed Brldge For Registering Over Statistical Tem-
plates (BIFROST), a pipeline for registering volumetric neural
activity data across specimens and in vivo imaging systems. To
complement BIFROST, we created the Functional Drosophila
Atlas (FDA), an in vivo atlas that defines a common space for
registering neural datasets. As an additional resource, we also
provide the codebase needed to generate FDA-like templates.
Using genetically-labeled neuron populations as ground truth,
we show that BIFROST registers neural data across functional
datasets at a scale of less than 10 microns, comparable to pre-
vious fixed-tissue registrations [51]. We further register con-
nectomes, anatomical labels, and genetic resources to the FDA,
thereby relating functional neural data to these resources. This

toolkit addresses the longstanding challenge of precisely regis-
tering brain volumes across experiments, and will allow quan-
titative comparisons of neural activity in Drosophila across di-
verse datasets.

Enabling comparisons across experiments

Comparing signals across experimental conditions and animals
is critical for understanding large scale patterns of neural activ-
ity across genetic backgrounds, sensory contexts and behavioral
states. In the fly, large-scale imaging experiments have uncov-
ered brainwide activity patterns correlated with metabolic pro-
cesses, sensory processing, locomotion, and feeding [12, 14—
17, 27, 52]. By facilitating statistical comparisons through pre-
cise cross-registration of these data types, BIFROST enhances
quantitative comparisons of neural activity across conditions, an
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Figure 5. BIFROST enables registration of connectomes to in vivo imaging data (A) Maximum projections of brains after alignment to the FDA. Template image of the LC11
channel for laboratory 1 (cyan), laboratory 2 (magenta), brain sub-volume (orange), LC11 skeletons from the flywire connectome (green), and LC11 skeletons from the hemibrain
connectome (red), are shown. (B) Example of a single LC11 skeleton and synapses after being aligned to the FDA. (C) Comparing alignment accuracy of Laboratory 1 with the
hemibrain and flywire connectomes. Left: high magnification view of the LC11 glomerulus; projections along each axis are shown. Cyan contour demarks the edges of the
template image of LC11 from laboratory 1, while red and green denote the edge of LC11 skeletons from the hemibrain and flywire connectomes registered into the FDA. Right:
quantification of the distribution of pair-wise centroid distances between each individual LC11 glomerulus and the hemibrain and flywire connectomes. Box center line indicates
median, box limits indicate quartiles, whiskers indicate 1.5x the inter-quartile range. (D) As in (C), but for Laboratory 2. (E) As in (C), but using the sub-volume. (F) Overlay of
LC11 centroids from all brains.
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essential step toward building more comprehensive representa-
tions of brainwide dynamics.

Enabling function-structure comparisons

By achieving precise registration between functional volumes
and connectomes, BIFROST allows population-level activity
signals to be associated with particular candidate cell types.
While previous work in the fly has compared function to struc-
ture at the level of brain regions (neuropils) [15, 53], the sub-
10 micron alignment demonstrated here will enable function-
structure comparisons at an unprecedented spatial scale. For
example, this precision will enhance the interpretation of func-
tional data by using the connectome to constrain local and
mesoscale cell connectivity, putative neurotransmitters, and la-
beled cell types [54, 55]. Additionally, registering such data
at brain scale will enable users to move between testing both
small and large-scale circuit and computational models, includ-
ing those that link neural activity to sensory input, internal
states, and behavior.

Limitations

Although the BIFROST pipeline is flexible with regard to the
particular structural marker used, some method to record the
anatomical structure of the brain is required. This will mostly
likely mean that an imaging channel is reserved for structural
measurements of the in-vivo brain using pan-neuronal expres-
sion of a fluorescent label, precluding the use of this channel
for recording a functional signal.

BIFROST achieves a registration accuracy of less than 10
pm, which surpasses existing methods, but is still non-zero,
constraining interpretation of registered data. For example, if
in-vivo data is collected at single micron resolution, registra-
tion will reduce its spatial precision to the 7 um accuracy of
BIFROST. Therefore, any spatial structure that existed in the
neural data at a spatial resolution of less than the precision
of BIFROST will be blurred. This is particularly important
when attempting to assign neural identities based on connec-
tome alignment, where it will typically be impossible to assign
a single functional voxel signal to a particular neuron. However,
at the same time, if functional signals span multiple imaging
voxels, these correlated voxels can be assigned to small popu-
lations of candidate neurons that can be functionally validated
using other approaches [16]. Finally, additional strategies to
limit or sparsen expression of the functional effector can likely
be implemented in parallel with large scale imaging to facilitate
single-neuron identification [56].

Finally, we note that the flies used to create FDA were col-
lected from a particular imaging axis that falls between the
anterior-posterior and dorsal-ventral axes. Given the point-
spread-function of the excitation beam inherent in two-photon-
microscopy, this results in a slight reduction in imaging resolu-
tion along this axis, which is visible from the medial-lateral axis
(Figure S2). Despite this imaging artifact, registration accuracy
does not deteriorate along this axis (Figure S4E).

Conclusions

BIFROST, together with the codebase for constructing func-
tional atlases, can be adapted for future use in other model or-
ganisms. Large-scale functional imaging experiments, as well
as whole-brain anatomical studies, are increasingly feasible in
many systems, including worms, flies, fish, mice, and primates.
Direct comparisons between such functional data and anatomi-
cal wiring diagrams have advanced our understanding of com-
putation [3, 57]. Moreover, there is broad interest in using con-
nectomic constraints to inform computational models of neural
activity [53, 54, 58-60]. Tools capable of bridging functional
and anatomical imaging modalities via precise volumetric reg-
istration will enable finer structure-function comparisons.

Methods

Genotypes

Flies were grown at 25°C on molasses (Clandinin Lab) or
cornmeal (Murthy Lab) media, and imaged at 3-5 days post
eclosion. The flies used to generate the FDA were w+/w+; UAS-
myr::tdTomato/UAS-GCaMP6f; nSyb-Gal4/+. The flies used
to label LCI1 neurons were w+/w-;nSyb-LexA,LexAop-
myr::tdTomato/R22H02-p65ADZp; UAS-GCaMP6s/R20G06-
ZpGAL4DBD. The flies used to label DSX neurons were
w+/w+;brp>STOP>v5-LexA, LexAop-myr: :tdTomato/UAS-
myr::tdTomato; DSX-FLP,LexAop-GCaMP6s/nSyb-Gal4.

Mounting and Dissection - Clandinin Lab

Flies were immobilized using a chilled Peltier plate, then fit-
ted into a mount comprising a 3D-printed plastic dish holding a
steel shim to secure the head and thorax. To reveal the posterior
surface of the head, the head was pitched forward around the
medial-lateral axis by approximately 70° relative to the thorax.
UV curable glue was applied to the dorsal part of the head, and
on the dorsal thorax. A saline solution was added to the dish
for dissection (103 mM NaCl, 3 mM KCI, 5 mMTES, 1 mM
NaH2PO4, 4 mM MgCl12, 1.5 mM CaCl2, 10 mM trehalose,
10 mM glucose, 7 mM sucrose, and 26 mM NaHCO3). The
posterior head cuticle was cut using a tungsten needle and re-
moved to expose the whole brain. Dissection forceps were used
to remove fat and trachea.

Mounting and Dissection - Murthy Lab

Flies were chilled on ice and placed in a Peltier-cooled "sar-
cophagus" held at 4°C, with the head of the animal restrained in
a 3D printed holder. We positioned the head at a 90° angle rel-
ative to the thorax and restrained it via UV-cured glue and wax.
The holder was then filled with saline, and the cuticle on the
posterior side of the head was removed using fine forceps (Du-
mont 5SF) and a sharp needle. Fat and trachea were removed
before imaging.

Two-Photon Imaging - Clandinin Lab

Imaging data was collected using a resonant scanning Bruker
Ultima IV system with a piezo drive and a Leica 20x HCX
APO 1.0 NA water immersion objective. Either a Chameleon
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Vision II femtosecond laser (Coherent), or a MaiTai BB (Spect-
raPhysics) was used to excite GCaMP and tdTomato at 920nm.
A 525/50nm filter and a 595/50nm filter were applied to the
GCaMP and tdTomato emission photons, respectively. Pho-
tons in both channels were collected simultaneously using two
GaAsP photomultiplier tubes (Hamamatsu). 100 imaging vol-
umes were collected at 0.6 x 0.6 x 1 pm (1024 x 512 x 241 XYZ
voxels).

Two-Photon Imaging - Murthy Lab

Imaging data was collected on a custom-built 2-photon reso-
nant scanning microscope equipped with a Chameleon Ultra II
Ti:sapphire laser (Coherent) and a 25x water immersion ob-
jective (Olympus XLPLN25XWMP2). Dissected flies were
placed below the objective and perfused with saline. The laser
was used to excite GCaMP and tdTomato at 920 nm, with a
520/70nm filter (Semrock) applied to the green channel and a
617/73nm filter (Semrock) applied to the red channel. Note,
the slightly wider band-pass of this green filter (compared to
Clandinin Lab) likely contributed to additional bleed-through of
photons from tdTomato, as can be seen in Figure 3. Photons in
both channels were simultaneously collected using GASP pho-
tomultiplier tubes (Hamamatsu). We recorded 100 whole-brain
volumes at a resolution of 0.49 x 0.49 x 1 um (1024 x 512 x 300
XYZ voxels), to a sample depth of 300 um. The microscope was
controlled by Scanlmage.

Creation of FDA

Each anatomical scan was created by first imaging the myr-
tdTomato signal 100 times at 0.6 x 0.6 x 1 pm (1024 x 512
x 241 XYZ voxels). These 100 volumes were averaged, then
each volume was warped (linear and non-linear) to this mean
using ANTs, thereby correcting for motion. These aligned
volumes were then averaged, creating the anatomical scan for
each brain. Scans were additionally processed with an inten-
sity based masking (to remove any contaminating background
signal outside of the brain), removal of non-contiguous blobs
(to remove, for example, cuticle which is otherwise visible due
to auto-fluorescence), and histogram equalization to brighten
overly dark areas and darken overly-bright areas (which as-
sists in allowing a more uniform registration, and not an over-
emphasis on simply the brightest regions). Each brain was mir-
rored across the Y axis, doubling our effective data to 32 brains.
These 32 brains were all linearly aligned to a single seed brain
chosen from the 32, and averaged ("linear0"). The 32 brains
were linearly aligned to "linearQ", and again averaged, produc-
ing "linear1". Next, the individual anatomical scans were sharp-
ened using the scikit-image implementation of unsharp mask-
ing, and aligned again (linear and non-linear) to "linear", and
averaged to produced "SyNQ". The last step was repeated two
more times to produce the final FDA. We found that sharpening
the brains before "linear0" caused poor convergence of neuropil
boundaries, while completely omitting it resulted in blurry neu-
ropil boundaries.

The BIFROST pipeline

The BIFROST pipeline comprises four steps. First, a dataset
template is created from structural volumes from each animal.
Second, this dataset template is registered to the FDA. Third,
each timepoint from each dependent channel is registered to the
dataset template. Finally, these registered data are transformed
into FDA space using the transformation calculated on step two.

We provide the BIFROST pipeline as a Snakemake work-
flow that describes the dependency structure of the whole
pipeline [61]. This facilitates parallel execution of independent
steps, and as a result BIFROST can be transparently scaled from
local execution on a single machine to thousands of parallel jobs
on a cluster. This parallelization is critical, because serial exe-
cution of the ANTs dependent steps over such large datasets
would take weeks to months to complete. BIFROST can be
executed on all common cluster scheduling systems including
Slurm, PBS and SGE and on cloud services via Kubernetes and
several common cloud APIs [61]. This implementation allows
a dataset over any number of animals with any number of chan-
nels, each imaged for an arbitrary number of timepoints and
stored following a particular directory structure to be quickly
submitted to a cluster for parallel execution with only minimal
customization.

The BIFROST pipeline: creation of dataset templates.

Dataset templates were constructed from structural volumes of
each animal following a standard procedure [35]. These vol-
umes were mirrored, doubling the effective sample size, and
pre-processed with the scikit-image implementation of contrast
limited adaptive histogram equalization (CLAHE) using a ker-
nel size of 64 [62, 63]. Template construction begins with a
single volume, chosen arbitrarily from the pre-processed vol-
umes to serve as the initial template. Linear (affine) transfor-
mations then aligned each pre-processed image to this initial
template. Next, the transformed volumes were averaged to ob-
tain a new template. Following this linear iteration, template
construction continued with several (typically four) iterations
of non-linear alignment and averaging. In each iteration, indi-
vidual images were non-linearly transformed to the current tem-
plate using SyN. Next, the transformed volumes were averaged
to obtain a mean volume and the transformations themselves
were also averaged. To complete each iteration, the next tem-
plate is obtained by transforming the mean volume through the
inverse of the mean transformation [64, 65]. The fourth iteration
of this cycle produces the final dataset template. The pipeline is
outlined in Fig. S1B. We have released our tooling for template
construction as part of our Python package.

The BIFROST pipeline: registration with SynthMorph.

We wrote a configurable tool for image registration which reg-
isters a "moving" image to a "fixed" image with successive lin-
ear, non-linear SyN and SynthMorph transforms. If necessary,
both "moving" and "fixed" images can be downsampled to re-
duce memory burden and computation time. As we found that
SynthMorph was essential to effective registration in the central
brain, but not the optic lobes, we also added support for masking
the SynthMorph transform and manually generated a mask for
the optic lobes using Fiji/ImageJ [66]. Next, we pre-processed
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the "moving" and "fixed" images by re-scaling intensities to the
interval [0,1] and applied the scikit-image implementation of
CLAHE [62, 63] with a kernel size of 64 and configurable clip
limit. By default CLAHE was applied to the "moving" image
but can be applied to the "fixed" image as well.

After this pre-processing, linear (affine) and non-linear
(SyN) transforms registering the "moving" image to the "fixed"
image were computed and applied in sequence using ANTSs.

Next, a non-linear SynthMorph transform was computed.
As SynthMorph is constrained by its architecture to a fixed in-
ference volume of 160 x 160 x 192 voxels, images were first
transposed to align the longest axis of the image with that of
the inference volume and then downsampled to 160 x 160 x 192
voxels. Finally, SynthMorph inference was run on the down-
sampled images yielding a warp field.

Next, the warp field was transposed back to the original axis
order and then optionally mirror symmetrized across an algo-
rithmically selected mirror plane, obtained by searching for the
plane that minimizes the root mean square distance between the
"moving" image and its mirror. This was performed on the
"moving" image after it was affine transformed to the "fixed"
image. In our experience, when the, "fixed" image is aligned
such that the dorsal-ventral axis lies along a principal axis of
voxel coordinates this procedure reliably recovers the intended
dorsal-ventral/anterior-posterior mirror plane of the Drosophila
brain.

Next, the (optional) mask was transformed through the lin-
ear and non-linear transformations. The warp field was then
up-sampled to the original size of the images and applied to the
"moving" image at all locations outside the mask, yielding the
final image. The pipeline is outlined in Fig. S1C. All transfor-
mations and meta-data needed to apply the full transform were
saved in a HDFS file [67]. All tooling for computing registra-
tions and applying the resulting transforms are provided as part
of our Python package.

Manual segmentation of neuropils

We used ITK-SNAP to manually draw regions of interest in
an early version of the FDA, and then registered into the fi-
nal FDA [68, 69]. We used ITK-SNAP’s built-in contrast-based
segmentation to delineate the boundaries of the whole brain. We
then hand-segmented the mushroom bodies (calyx, peduncles,
ventral lobes, and medial lobes), central complex (protocerebral
bridge), and optic lobes in each z-slice of the volume.

Calculation of Sgrenson-Dice coefficients for the cross-
modal quantification

Region of interest annotations in the space of JRC2018F were
obtained by registering a previous template that was published
with regional annotations into the space of JRC2018F [28].
Correspondences between these ROIs and those annotated in
the FDA were identified manually. Given sets X and Y, the
Sgrenson-Dice coefficient is defined as

21X NY|
| X|+1Y]
where |X| and |Y| are the cardinalities of the sets. The

10

Sgrenson-Dice coefficient was computed for each ROl in a vox-
elwise manner.

Defining the positions of LC11 and DSX centroids

After alignment, whole-brain volumes were cropped to a region
that contained the feature of interest (the terminal glomerulus
for LC11, and a specific stalk for DSX). Box size was 95 x 57
x 76 pm for LC11, and 38 x 30 x 23 um for DSX. In addi-
tion, for LC11, fluorescence outside of the PLP and PVLP re-
gions were masked using the anatomical ROIs to avoid expres-
sion from LCI11 dendrites in the lobula. An intensity thresh-
old was then manually selected for each animal that best re-
moved background fluorescence while maintaining the shape of
the glomerulus. The image was then binarized and the center of
mass determined

Aligning JRC2018F and Connectomes to the FDA

The coordinates of the skeleton and synapses of LC11 were
fetched from the online resources for the Hemibrain and Fly-
Wire and were transformed into the space of JRC2018F using
the flybrains Python package [70-72]. In the flybrains pack-
age, the coordinate systems for the Hemibrain and FlyWire are
labeled as "JRCFIB2018Fraw" and "FLYWIRE" respectively.
These data were further transformed from JRC2018F into the
space of the FDA by application of a bridging transformation,
as follows. First, we applied the BIFROST pipeline to transform
JRC2018F to the FDA (see Methods, The BIFROST pipeline:
registration with SynthMorph). We next wished to apply this
tranformation to the connectomes. However, SynthMorph does
not support coordinate transformations, which is required for
a connectome. Therefore, we recapitulated the full BIFROST
transformation using only ANTs. We achieved this as follows.
First, the FDA was transformed to JRC2018F using BIFROST.
This FDA in JRC2018F space is now our new "fixed" target.
Since this is now a single modality problem, we were then able
to use ANTSs to transform the original FDA to this fixed target.
The pipeline is outlined in Fig. S1D.
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Figure S1. Creation of the Functional Drosophila Atlas (FDA) and BIFROST details. (A) Pipeline for creating FDA. (B) Pipeline for creating the dataset template. (C) Pipeline
for registering a moving volume to a fixed volume. The alignment channel is used to register to the fixed volume, and the generated transformation is applied to the dependent
channel, which is usually the functional imaging channel. (D) Pipeline for transforming the coordinates of a point cloud from JRC2018F to FDA. Note that 'JRC2018F in FDA’ is
JRC2018F registered to FDA using BIFROST pipeline outlined in (C). Full details in Methods.
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Figure S2. The Functional Drosophila Atlas (FDA). (A) Slices through FDA, moving along the anterior-posterior axis. Micron labels indicates depth along the axis. (B) Same as
(A), except along the dorsal-ventral axis. (C), Same as (A), except along the medial-lateral axis.
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Figure S3. Registration accuracy does not deteriorate with tissue depth. Scatter plot related to Fig. 2 showing the Sgrenson-Dice score of labeled neuropile versus their
depth in the brain. Abbreviations: MB CA, Mushroom Body Calyx Left and Right; PB, Protocerebral Bridge; OL, Optic Lobes Left and Right; FB, Fan-Shaped Body; MB PED,
Mushroom Body Peduncle; EB, Ellipsoid Body; MB VL, Mushroom Body Ventral Lobe Left and Right; NO, Nodulus; MB ML, Mushroom Body Medial Lobe.
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Figure S4. Quantifying LC11 registration accuracy. (A) Impact of threshold on centroid estimation. Throughout the manuscript, Otsu’s algorithm is used to select the threshold
used for each animal. Here, we assess the impact of threshold value on centroid estimation by scaling the Otsu threshold by a threshold multiplier. For each animal, a range of
threshold multipliers were applied, from 0.1 to 2.5. Top row, example LC11 glomerulus from a single animal as the threhold is adjusted. "1" is the original threshold. Bottom row,
the 3D Euclidean distance between the original centroid and the adjusted centroid is calculated independently for each animal. Box plots show the distribution of centroid
displacement from the original across animals. Box center line indicates median, box limits indicate quartiles, whiskers indicate 1.5x the inter-quartile range. Data from Lab 1 is
used for this analysis. (B) Same as Fig. 3D, except showing the pipeline truncated to only ANTs linear and ANTs SyN (See Fig. 3B for schematic of truncations). (C) Same,
except showing the pipeline truncated to only ANTSs linear, ANTs SyN, and the creation of a Dataset Template (See Fig. 3B for schematic of truncations). (D) Same as Fig. 3E,
except showing results from the other hemisphere. (E)Full pipeline, showing centroid distances along each orthogonal axis. Box center line indicates median, box limits indicate
quartiles, whiskers indicate 1.5x the inter-quartile range. (F) Quantification of additional glomerulus landmarks. Instead of using the glomerulus centroid, three structures of the

glomerulus are manually labeled for each animal: the lateral tip, the medial tip, and the point where the stalk meets the glomerulus. The distribution of pairwise distances is
plotted for data aligned using the full pipeline.
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Figure S5. Quantifying DSX registration accuracy. (A) Example DSX fly showing the alignment channel (myr-tdtomato) and dependent channel (DSX). Zoom shows DSX stalk
region that will be quantified. (B) Zoom in of DSX stalk region in FDA showing DSX expression of individual animals after the full pipeline was applied. Dot indicates centroid of
each stalk, which will be used to quantify distance. (C) Same as in (B), but animals are overlayed and projections along each axis are shown. (D) Quantification of pair-wise
centroid distances. Box center line indicates median, box limits indicate quartiles, whiskers indicate 1.5x the inter-quartile range.
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