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Abstract
The heterogeneity of brain imaging methods in neuroscience pro-

vides rich data that cannot be captured by a single technique, and
our interpretations benefit from approaches that enable easy com-
parison both within and across different data types. For example,
comparing brain-wide neural dynamics across experiments and
aligning such data to anatomical resources, such as gene expression
patterns or connectomes, requires precise alignment to a common
set of anatomical coordinates. However, this is challenging because
registering in vivo functional imaging data to ex vivo reference
atlases requires accommodating differences in imaging modality,
microscope specification, and sample preparation. We overcome
these challenges in Drosophila by building an in vivo reference atlas
from multiphoton-imaged brains, called the Functional Drosophila
Atlas (FDA). We then develop a two-step pipeline, BrIdge For Reg-
istering Over Statistical Templates (BIFROST), for transforming
neural imaging data into this common space and for importing ex
vivo resources such as connectomes. Using genetically labeled cell
types as ground truth, we demonstrate registration with a preci-
sion of less than 10 microns. Overall, BIFROST provides a pipeline
for registering functional imaging datasets in the fly, both within
and across experiments.

Significance
Large-scale functional imaging experiments in Drosophila have

given us new insights into neural activity in various sensory and
behavioral contexts. However, precisely registering volumetric im-
ages from different studies has proven challenging, limiting quan-
titative comparisons of data across experiments. Here, we address
this limitation by developing BIFROST, a registration pipeline ro-
bust to differences across experimental setups and datasets. We
benchmark this pipeline by genetically labeling cell types in the fly
brain and demonstrate sub-10 micron registration precision, both
across specimens and across laboratories. We further demonstrate
accurate registration between in-vivo brain volumes and ultra-
structural connectomes, enabling direct structure-function com-
parisons in future experiments.
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Main1

Calcium imaging studies of neural activity have provided cen-2

tral insights into brain function in multiple model systems, in-3

cluding the nematode C. elegans [1–6], the larval zebrafish [7– 4

11], the fruit fly [12–18], and the mouse [19]. In order to com- 5

pare such volumetric imaging datasets across individual ani- 6

mals, data from individual animals is often aligned within a 7

common set of spatial coordinates defining an atlas, an approach 8

that has been widely used in fish, rodents and humans [20–23]. 9

In this approach, the precision with which data can be regis- 10

tered to such a “local atlas” places limits on the effective spatial 11

resolution of aggregated data, defining the spatial scale of quan- 12

titative comparisons. As it has proven challenging to precisely 13

register data from different experiments in the same space, these 14

atlases have generally been restricted to the bounds of a single 15

project, where data was acquired using the same experimental 16

apparatus and protocol [24–26]. 17

The adult fruit fly Drosophila melanogaster is a well- 18

established platform for circuits neuroscience and recent ad- 19

vances have enabled large-scale functional imaging in this sys- 20

tem [12, 15–18, 27]. Such studies have revealed widespread 21

sensory responses and movement-related neural activity, probed 22

the relationships between neural activity and metabolism, and 23

have led to the discovery of novel circuits. Each of these studies 24

registered volumetric neural activity data either onto an in vivo 25

local atlas or an extant ex vivo fixed-tissue atlas [28–35]. How- 26

ever, different in vivo datasets have not been cross-registered, 27

precluding direct comparisons, as well as a wealth of ex vivo 28

neuroanatomical datasets [29], including gene expression pat- 29

terns [36–38] and synapse-level wiring diagrams (connectomes) 30

[32, 39–41]. Cross-registration of these ex vivo resources has 31

enhanced their utility as, for example, spatial registration has al- 32

lowed morphologically defined cell types identified in the con- 33

nectome to be associated with specific genetic driver lines [33, 34

35, 42, 43]. However, it has been difficult to align in vivo func- 35

tional data to ex vivo atlases with cell-type precision (∼ 5µm) 36

[12, 15] due to the markedly different image statistics inherent 37

to in vivo microscopy and fixed tissue imaging using light and 38

electron microscopy. 39

Here, we present a robust and generalizable image regis- 40

tration pipeline, BrIdge For Registering Over Statistical Tem- 41

plates (BIFROST), that enables quantitative comparisons in 42

Drosophila, across individuals and experimental setups. We 43

created an in vivo atlas, the Functional Drosophila Atlas (FDA), 44

that can accommodate functional datasets from different exper- 45

iments and labs. An in vivo atlas allows us to represent func- 46

tional activity in a common space which better reflects the ge- 47
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ometry of the brain inside the head. We then aligned the FDA48

with extant ex vivo templates [28–31, 33–35], thereby importing49

atlas labels [30], neuropil annotations [30], information from50

the connectomes [32, 39–41], and powerful tools for neuron51

identification [33, 35, 42, 43]. Using these atlas labels, we52

demonstrate that our registration pipeline outperforms existing53

methods [44, 45]. We further validate our method by registering54

in vivo volumes collected on different microscopes in which the55

same cell types are fluorescently labeled to the FDA. Comparing56

these datasets in FDA space, we demonstrate that our cross-lab57

registration is precise to 5 microns. We also demonstrate that58

BIFROST can be used to align partial sub-volumes of the brain59

into FDA space, allowing users the flexibility to image particu-60

lar regions of interest while retaining the ability to align to the61

atlas. Finally, we show that our pipeline can be used to register62

functional imaging data to connectomes with a precision of 563

microns. Thus, BIFROST creates a common space for in vivo64

neural imaging data, provides easy-to-use tools for accurate reg-65

istration, and enables direct comparisons of functional data and66

ex vivo anatomical resources.67

Results68

Overview69

Functional imaging datasets collected using fluorescence mi-70

croscopy often comprise two separate channels, with one chan-71

nel recording neuronal activity using one sensor (such as a cal-72

cium indicator), and one channel recording signals associated73

with a structural marker that broadly labels the brain. In our ap-74

proach, the structural signals from individual brains in a single75

experiment are first registered together to form a template. The76

warp parameters derived from this transformation are then ap-77

plied to the neuronal activity channel from each brain, thereby78

bringing these signals into the template space. Next, templates79

derived from each experiment or laboratory are aligned to the80

Functional Drosophila Atlas (FDA), allowing all datasets to be81

quantitatively compared to each other, and to other resources82

that are registered to the FDA.83

Developing the Functional Drosophila Atlas84

Our goal was to develop an accurate pipeline for registering85

brain-wide imaging data to a single atlas. In flies, previous86

work has described atlases that span the entire brain using ex87

vivo datasets, and as well as atlases that span the central brain88

in vivo [12, 15, 29, 35]. However, no in vivo atlas spanning89

the entire brain has been described in either sex. To develop an90

atlas that best captures the structure of the female fly brain in91

vivo, a widely used model, we sought to suppress both individ-92

ual and technical variation. To do this, we first imaged each93

individual brain, inside the head of the living fly, 100 times94

at a resolution of 0.6 x 0.6 x 1 µm, capturing expression of95

a pan-neuronally expressed cell surface marker (myristylated96

tdTomato) using two photon microscopy. These 100 volumes97

were then aligned using linear (affine) and non-linear (Symmet-98

ric Normalization (SyN)) transformations, as implemented in99

Advanced Normalization Tools (ANTs) [44, 45]. These were100

then averaged to define a single volumetric image of each brain101

that suppressed technical variation in each collected volume. 102

This process was repeated for 30 individuals, and based on a 103

qualitative assessment, 16 were selected for further image pro- 104

cessing. Each of these images were normalized, sharpened, and 105

iteratively aligned using linear and non-linear transformations 106

to construct the FDA (Fig. S1A, Fig. S2, see Methods). 107

We next tried to align ex vivo resources, including 108

JRC2018F anatomical labels and genetic tools, the hemibrain 109

connectome and the FlyWire Connectome to the FDA [35, 39, 110

41]. This is a challenging registration problem because the im- 111

age statistics associated with these imaging modalities have sub- 112

stantial differences that reflect (1) changes in brain morphology 113

due to physical constraints of the head, (2) distortion created by 114

fixation, and changes in the angle of the imaging axis (3) differ- 115

ences in the spatial distribution of fluorescence signals due to 116

in vivo labeling of cell membranes versus ex-vivo immunohis- 117

tochemistical labeling of synaptic antigens and (4) differences 118

in SNR characteristics associated with single and two-photon 119

microscopy. We initially attempted this alignment using ANTs; 120

however, many regions of the brain aligned poorly.Therefore, 121

to improve the registration, we adapted SynthMorph, a learned 122

contrast-invariant registration method, and used it in sequence 123

with linear and non-linear SyN transformations to improve reg- 124

istration of the ex vivo resources to the FDA [44, 46]. 125

Registering individual datasets to FDA 126

We collected neural activity (nSyb>GCaMP6s; the dependent 127

channel) and anatomical data (nSyb>myr::tdTomato; the align- 128

ment channel) at brain wide scale in different labs using dif- 129

ferent imaging systems (Fig. 1, Methods). To register these 130

datasets to the FDA, we first generated a dataset template by it- 131

eratively aligning the anatomical scan from each animal using 132

linear and non-linear transformations (Fig. S1B, see Methods). 133

We next used the combination of linear, non-linear SyN, and 134

SynthMorph to register these anatomical scans to the FDA. The 135

transformations that best align each anatomical scan were then 136

applied to the corresponding neural activity data, thereby regis- 137

tering the functional signals to the FDA (Fig. S1C, see Meth- 138

ods). 139

Quantifying registration performance 140

Making quantitative measurements of registration accuracy is 141

challenging [47]. To address this challenge, we took two inde- 142

pendent approaches. First, we quantified the performance of 143

our method by measuring the overlap of small, well-defined 144

anatomical regions that were manually labeled independently 145

in both the ex vivo and in vivo atlases. Second, we expressed a 146

fluorescent marker in cell-type specific sub-populations of neu- 147

rons, and quantified their alignment within and across labs, and 148

to connectomes. 149

BIFROST outperforms existing methods for registration 150

across modalities 151

We first quantified registration performance by measuring the 152

alignment of neuropils labeled in the FDA space to the corre- 153

sponding neuropils labeled in an established ex vivo anatomical 154

atlas, JRC2018F (Fig. 2)[35]. Alignment accuracy was quan- 155
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Figure 1. Overview of the BIFROST pipeline. (Step 1) Collect whole-brain volumetric data from multiple animals, with a pan-neuronal anatomical label used for alignment and
an orthogonal dependent neural activity label. (Step 2) A dataset template is constructed, warping individual brains in the dataset to a common space. The template is
constructed from the anatomical channels and the resulting transforms are applied to the neural data to register them into the template space. (Step 3) Dataset templates are
aligned to the Functional Drosophila Atlas (FDA), in which all such datasets can be directly compared. Other resources have been registered to this space, including anatomical
labels and connectomes.

tified for each pair of neuropils using the Sørenson-Dice co-156

efficient, which captures the normalized fraction of voxels that157

overlap across both neuropil masks [48, 49]. For these analyses,158

we are calculating the transformation using the JRC2018F and159

FDA templates, and applying the transformations to the neu-160

ropil masks. As a control, we first used a linear transform to161

align the JRC2018F template to the FDA, and achieved an av-162

erage Sørenson-Dice score of 0.52 (range: 0.13 to 0.75). Next,163

we added a non-linear transformation step (SyN), the core non-164

linear transformation embedded in the widely used registration165

pipeline ANTs. However, SyN achieved only a modest in-166

crease in performance, with an average Sørenson-Dice score of167

0.54 (range: 0.18 to 0.77), emphasizing the challenge of cross-168

modal registration. However, by adding SynthMorph to com-169

plete the BIFROST pipeline and perform the same alignment,170

we achieved an average Sørenson-Dice score of 0.65 (range:171

0.45 to 0.84). We note that precision of registration did not de-172

teriorate with tissue depth (Fig. S3). Thus, BIFROST provides173

an effective tool for registering signals across the brain.174

Quantifying registration accuracy using sparse cell pop-175

ulations176

While the Sørenson-Dice coefficient of labeled anatomical ROIs177

is widely used to estimate the precision of registration, this178

approach also has limitations [47]. The stereotyped architec-179

ture of the fly brain, combined with cell-type specific genetic180

labelling, make possible a quantitative assessment of registra-181

tion precision, giving access to ground truth measurements that182

are generally not possible in other experimental systems. We183

first expressed a fluorescent indicator in a single genetically- 184

identifiable cell type, Lobula Columnar 11 neurons (LC11). We 185

chose the LC11 population because LC11 axons converge onto 186

a single glomerulus, facilitating precise estimation of glomeru- 187

lus position in 3D (Fig. 3 and Fig. S4). This glomerulus lies 188

in the posterior ventral lateral protocerebrum (PVLP) and pos- 189

terior lateral protocerebrum (PLP), two large neuropils that dis- 190

played relatively low contrast in the structural imaging channel. 191

Thus, aligning LC11 within and across laboratories provides a 192

challenging test-case for the BIFROST pipeline. As above, we 193

compared the performance of the BIFROST pipeline to alter- 194

native, truncated pipelines that omitted various alignment steps, 195

and included images collected independently in two laborato- 196

ries (Fig. 3B). Each image was from the same strain, and ex- 197

pressed the neural activity marker GCaMP6s only in LC11 (as 198

the dependent channel), as well as myristylated-td-Tomato in 199

all neurons (as the structural channel). Qualitatively, individual 200

LC11 glomeruli from both laboratories were similar in appear- 201

ance after registration (Fig. 3C). 202

We quantified alignment precision by measuring the brain- 203

to-brain variation in the position of the centroid for each 204

glomerulus, independently for both hemispheres , a feature that 205

was robust and not strongly affected by threshold choice (Fig. 206

S4A). The average pairwise displacement of any two centroids 207

was 5.2 µm in Laboratory 1, 6.1 µm in Laboratory 2, and 7.3 208

µm across laboratories (Fig. 3D,E and Fig. S4B-D). We ob- 209

served a nearly uniform error distribution, even including along 210

the Z axis (corresponding to the anterior to posterior axis of the 211

brain), the axis that generally suffers most from image distor- 212
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Figure 2. BIFROST registers neuropils across the brain with high precision. (A) Schematization of the registration steps of the BIFROST pipeline. (left) The FDA was
transformed into the space of JRC2018F through successive applications of one linear and two non-linear SyN and SynthMorph steps. (right) The transformations computed at
each step were applied to ROI annotations. Only a subset of the 13 labeled ROIs are illustrated. (B) Selected neuropil boundaries at successive steps of the pipeline. (C)
Quantification of neuropil boundary overlap using the Sørenson-Dice coefficient. Box center line indicates median over all neuropils, box limits indicate quartiles, whiskers
indicate minimum and maximum.

tion (Fig. S4E). Notably, the BIFROST pipeline outperformed213

all truncated variations of the pipeline, particularly for com-214

parisons between labs (Fig. 3E and Fig. S4D). In addition to215

quantifying LC11 glomerulus registration using measurements216

of centroids, we manually labeled three additional glomerulus217

landmarks: the lateral tip, the medial tip, and the stalk. After218

registration, brain-to-brain variation in the position of the me-219

dial tip and the stalk was approximately equivalent to that seen220

with the centroids (Fig. S4F). However, brain-to-brain variation221

in the position of the lateral tip was increased across all sam-222

ples, and across labs, all three landmarks were somewhat less223

precisely aligned than the centroid with an average pairwise dis-224

placement of 16.3 µm for the lateral tip, 10.3 µm for the medial225

tip, and 8.5 µm for the stalk (Fig. S4F). Some of this increased226

variation likely reflects the challenges of manual labeling; how-227

ever, we also note that the lateral tip of LC11 glomerulus is228

relatively superficial and might be more affected by variation in229

the surgical preparation. Nonetheless, as discussed further be-230

low, the LC11 datasets derived from both labs aligned well with231

connectomic resources (Fig. 5).232

To test whether this registration precision could be extended233

to a different brain region, we repeated this experiment using an234

additional cell population labelled by doublesex (DSX), a neu- 235

ronal population that extends throughout many neuropils and 236

comprises only fine <10 µm diameter) processes (Fig. S5A,B). 237

Again, BIFROST achieved comparable results, displaying 5.5 238

µm average pairwise displacements between centroids in a read- 239

ily identifiable structure within the DSX-expressing neuronal 240

population (Fig. S5C,D). 241

Registration of brain sub-volumes 242

Many experiments capture neural activity signals from only 243

a sub-region of the brain and would benefit from registration 244

across animals. We therefore adapted the BIFROST pipeline to 245

align sub-volumes into the FDA (see Methods). To test the ac- 246

curacy of sub-volume alignment, we generated a simulated sub- 247

volume dataset by selecting a 95 x 95 x 38 µm sub-region of one 248

hemisphere from each LC11 brain (Fig. 4). Importantly, this 249

sub-volume was not selected from the LC11 template; rather, 250

it was selected independently for each fly, blind to variation 251

in brain orientation and position. We then constructed a sub- 252

volume template from the individual sub-volumes (Fig. 4B,C). 253

We aligned this sub-volume mean to the FDA using BIFROST 254

(Fig. 4D,E) then assessed the accuracy of alignment as be- 255
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Figure 3. BIFROST registers brains within and across laboratories. (A) A single brain from each laboratory expressing an alignment channel (pan-neuronally expressed
myr-tdtomato) and dependent channel (LC11-expressed GcAMP6s). The LC11 glomerulus region is highlighted. (B) Schematic flow chart of the BIFROST pipeline, as well as
truncated versions that omit individual steps. (C) High magnification views of LC11 glomeruli in individual animals from both laboratories after registration into the FDA using
BIFROST. Dot denotes centroid of each glomerulus. (D), As in (C), but individual glomeruli are overlaid and projections along each axis are shown. For comparison, glomeruli
transformed by the linear-only pipeline and the full BIFROST pipeline are overlaid(Lab 1 n=9; Lab 2 n=8). (E) Quantification of the distribution of pairwise centroid distances within
and across laboratories, for each pipeline variant. Box center line indicates median, box limits indicate quartiles, whiskers indicate 1.5x the inter-quartile range.

fore (Fig. 4F-H). We found good agreement between the two256

sets of aligned data, with an average pairwise displacement be-257

tween centroids of approximately 6 µm, demonstrating that the258

BIFROST pipeline can align partial brain volumes to the FDA.259

Registration of the FDA with connectomes260

Our goal was to align neuronal skeletons and synapse posi-261

tions derived from connectomes to the FDA. Prior work has262

described the coordinate transformations from both the hemi-263

brain connectome and the FlyWire connectome to JRC2018F264

[32, 41, 50]; therefore, we created a coordinate transformation265

from JRC2018F to FDA using BIFROST. This allows the co-266

ordinates of neuronal skeletons and synapses to be transformed267

to the FDA space through the path Hemibrain to JRC2018F to268

FDA, and FlyWire to JRC2018F to FDA. We note that Syn-269

thMorph does not provide methods for transforming the coor- 270

dinates of a point cloud, which is required for a connectome. 271

Therefore, after calculating the SynthMorph transformation, we 272

recalculated it using ANTs (Fig. S1D, Methods). 273

We next examined the accuracy of this coordinate transfor- 274

mation by comparing the positions of the LC11 glomeruli mea- 275

sured in our in vivo datasets to that identified in both the hemi- 276

brain and FlyWire (Fig. 5). Remarkably, this cross-modal align- 277

ment was as precise as the alignment across in vivo datasets, 278

with a precision of approximately 5 µm (Fig. 5C-F) for LC11, 279

and 7 µm for DSX (Fig. S5D). Thus direct comparisons be- 280

tween anatomical wiring diagrams and functional volumetric 281

images are now feasible with high precision. 282
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Figure 4. Sub-volumes of the brain can be accurately registered (A) Example fly showing the alignment channel (pan-neuronally expressed myr-tdtomato, gray) and the
dependent channel (LC11 expressed GcAMP6s, cyan). Dashed white box indicates LC11 glomerulus region. (B) Each brain sub-volume from each individual animal. (C) The
dataset template generated from sub-volumes. (D) The template sub-volume (red) was aligned to the FDA (grey) using BIFROST. (E) High magnification view of the aligned mean
sub-volume. FDA (left, grey) and aligned sub-volume (right, red) are shown. (F) High magnification view of each LC11 glomerulus after registration to FDA. Aligned LC11
glomeruli from either the whole brain (cyan) or subvolume imaging (orange). Dot denotes centroid of each glomerulus. (G) As in (F), but overlaid across animals and projected
along each axis. (H) Quantification of pair-wise centroid distances after alignment using either the full brain image or the sub-volume. Box center line indicates median, box limits
indicate quartiles, whiskers indicate 1.5x the inter-quartile range.

Discussion283

We developed BrIdge For Registering Over Statistical Tem-284

plates (BIFROST), a pipeline for registering volumetric neural285

activity data across specimens and in vivo imaging systems. To286

complement BIFROST, we created the Functional Drosophila287

Atlas (FDA), an in vivo atlas that defines a common space for288

registering neural datasets. As an additional resource, we also289

provide the codebase needed to generate FDA-like templates.290

Using genetically-labeled neuron populations as ground truth,291

we show that BIFROST registers neural data across functional292

datasets at a scale of less than 10 microns, comparable to pre-293

vious fixed-tissue registrations [51]. We further register con-294

nectomes, anatomical labels, and genetic resources to the FDA,295

thereby relating functional neural data to these resources. This296

toolkit addresses the longstanding challenge of precisely regis- 297

tering brain volumes across experiments, and will allow quan- 298

titative comparisons of neural activity in Drosophila across di- 299

verse datasets. 300

Enabling comparisons across experiments 301

Comparing signals across experimental conditions and animals 302

is critical for understanding large scale patterns of neural activ- 303

ity across genetic backgrounds, sensory contexts and behavioral 304

states. In the fly, large-scale imaging experiments have uncov- 305

ered brainwide activity patterns correlated with metabolic pro- 306

cesses, sensory processing, locomotion, and feeding [12, 14– 307

17, 27, 52]. By facilitating statistical comparisons through pre- 308

cise cross-registration of these data types, BIFROST enhances 309

quantitative comparisons of neural activity across conditions, an 310
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Figure 5. BIFROST enables registration of connectomes to in vivo imaging data (A) Maximum projections of brains after alignment to the FDA. Template image of the LC11
channel for laboratory 1 (cyan), laboratory 2 (magenta), brain sub-volume (orange), LC11 skeletons from the flywire connectome (green), and LC11 skeletons from the hemibrain
connectome (red), are shown. (B) Example of a single LC11 skeleton and synapses after being aligned to the FDA. (C) Comparing alignment accuracy of Laboratory 1 with the
hemibrain and flywire connectomes. Left: high magnification view of the LC11 glomerulus; projections along each axis are shown. Cyan contour demarks the edges of the
template image of LC11 from laboratory 1, while red and green denote the edge of LC11 skeletons from the hemibrain and flywire connectomes registered into the FDA. Right:
quantification of the distribution of pair-wise centroid distances between each individual LC11 glomerulus and the hemibrain and flywire connectomes. Box center line indicates
median, box limits indicate quartiles, whiskers indicate 1.5x the inter-quartile range. (D) As in (C), but for Laboratory 2. (E) As in (C), but using the sub-volume. (F) Overlay of
LC11 centroids from all brains.
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essential step toward building more comprehensive representa-311

tions of brainwide dynamics.312

Enabling function-structure comparisons313

By achieving precise registration between functional volumes314

and connectomes, BIFROST allows population-level activity315

signals to be associated with particular candidate cell types.316

While previous work in the fly has compared function to struc-317

ture at the level of brain regions (neuropils) [15, 53], the sub-318

10 micron alignment demonstrated here will enable function-319

structure comparisons at an unprecedented spatial scale. For320

example, this precision will enhance the interpretation of func-321

tional data by using the connectome to constrain local and322

mesoscale cell connectivity, putative neurotransmitters, and la-323

beled cell types [54, 55]. Additionally, registering such data324

at brain scale will enable users to move between testing both325

small and large-scale circuit and computational models, includ-326

ing those that link neural activity to sensory input, internal327

states, and behavior.328

Limitations329

Although the BIFROST pipeline is flexible with regard to the330

particular structural marker used, some method to record the331

anatomical structure of the brain is required. This will mostly332

likely mean that an imaging channel is reserved for structural333

measurements of the in-vivo brain using pan-neuronal expres-334

sion of a fluorescent label, precluding the use of this channel335

for recording a functional signal.336

BIFROST achieves a registration accuracy of less than 10337

µm, which surpasses existing methods, but is still non-zero,338

constraining interpretation of registered data. For example, if339

in-vivo data is collected at single micron resolution, registra-340

tion will reduce its spatial precision to the 7 µm accuracy of341

BIFROST. Therefore, any spatial structure that existed in the342

neural data at a spatial resolution of less than the precision343

of BIFROST will be blurred. This is particularly important344

when attempting to assign neural identities based on connec-345

tome alignment, where it will typically be impossible to assign346

a single functional voxel signal to a particular neuron. However,347

at the same time, if functional signals span multiple imaging348

voxels, these correlated voxels can be assigned to small popu-349

lations of candidate neurons that can be functionally validated350

using other approaches [16]. Finally, additional strategies to351

limit or sparsen expression of the functional effector can likely352

be implemented in parallel with large scale imaging to facilitate353

single-neuron identification [56].354

Finally, we note that the flies used to create FDA were col-355

lected from a particular imaging axis that falls between the356

anterior-posterior and dorsal-ventral axes. Given the point-357

spread-function of the excitation beam inherent in two-photon-358

microscopy, this results in a slight reduction in imaging resolu-359

tion along this axis, which is visible from the medial-lateral axis360

(Figure S2). Despite this imaging artifact, registration accuracy361

does not deteriorate along this axis (Figure S4E).362

Conclusions 363

BIFROST, together with the codebase for constructing func- 364

tional atlases, can be adapted for future use in other model or- 365

ganisms. Large-scale functional imaging experiments, as well 366

as whole-brain anatomical studies, are increasingly feasible in 367

many systems, including worms, flies, fish, mice, and primates. 368

Direct comparisons between such functional data and anatomi- 369

cal wiring diagrams have advanced our understanding of com- 370

putation [3, 57]. Moreover, there is broad interest in using con- 371

nectomic constraints to inform computational models of neural 372

activity [53, 54, 58–60]. Tools capable of bridging functional 373

and anatomical imaging modalities via precise volumetric reg- 374

istration will enable finer structure-function comparisons. 375

Methods 376

Genotypes 377

Flies were grown at 25°C on molasses (Clandinin Lab) or 378

cornmeal (Murthy Lab) media, and imaged at 3-5 days post 379

eclosion. The flies used to generate the FDA were w+/w+;UAS- 380

myr::tdTomato/UAS-GCaMP6f; nSyb-Gal4/+. The flies used 381

to label LC11 neurons were w+/w-;nSyb-LexA,LexAop- 382

myr::tdTomato/R22H02-p65ADZp;UAS-GCaMP6s/R20G06- 383

ZpGAL4DBD. The flies used to label DSX neurons were 384

w+/w+;brp>STOP>v5-LexA,LexAop-myr::tdTomato/UAS- 385

myr::tdTomato;DSX-FLP,LexAop-GCaMP6s/nSyb-Gal4. 386

Mounting and Dissection - Clandinin Lab 387

Flies were immobilized using a chilled Peltier plate, then fit- 388

ted into a mount comprising a 3D-printed plastic dish holding a 389

steel shim to secure the head and thorax. To reveal the posterior 390

surface of the head, the head was pitched forward around the 391

medial-lateral axis by approximately 70° relative to the thorax. 392

UV curable glue was applied to the dorsal part of the head, and 393

on the dorsal thorax. A saline solution was added to the dish 394

for dissection (103 mM NaCl, 3 mM KCl, 5 mMTES, 1 mM 395

NaH2PO4, 4 mM MgCl2, 1.5 mM CaCl2, 10 mM trehalose, 396

10 mM glucose, 7 mM sucrose, and 26 mM NaHCO3). The 397

posterior head cuticle was cut using a tungsten needle and re- 398

moved to expose the whole brain. Dissection forceps were used 399

to remove fat and trachea. 400

Mounting and Dissection - Murthy Lab 401

Flies were chilled on ice and placed in a Peltier-cooled "sar- 402

cophagus" held at 4°C, with the head of the animal restrained in 403

a 3D printed holder. We positioned the head at a 90° angle rel- 404

ative to the thorax and restrained it via UV-cured glue and wax. 405

The holder was then filled with saline, and the cuticle on the 406

posterior side of the head was removed using fine forceps (Du- 407

mont 5SF) and a sharp needle. Fat and trachea were removed 408

before imaging. 409

Two-Photon Imaging - Clandinin Lab 410

Imaging data was collected using a resonant scanning Bruker 411

Ultima IV system with a piezo drive and a Leica 20x HCX 412

APO 1.0 NA water immersion objective. Either a Chameleon 413
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Vision II femtosecond laser (Coherent), or a MaiTai BB (Spect-414

raPhysics) was used to excite GCaMP and tdTomato at 920nm.415

A 525/50nm filter and a 595/50nm filter were applied to the416

GCaMP and tdTomato emission photons, respectively. Pho-417

tons in both channels were collected simultaneously using two418

GaAsP photomultiplier tubes (Hamamatsu). 100 imaging vol-419

umes were collected at 0.6 x 0.6 x 1 µm (1024 x 512 x 241 XYZ420

voxels).421

Two-Photon Imaging - Murthy Lab422

Imaging data was collected on a custom-built 2-photon reso-423

nant scanning microscope equipped with a Chameleon Ultra II424

Ti:sapphire laser (Coherent) and a 25x water immersion ob-425

jective (Olympus XLPLN25XWMP2). Dissected flies were426

placed below the objective and perfused with saline. The laser427

was used to excite GCaMP and tdTomato at 920 nm, with a428

520/70nm filter (Semrock) applied to the green channel and a429

617/73nm filter (Semrock) applied to the red channel. Note,430

the slightly wider band-pass of this green filter (compared to431

Clandinin Lab) likely contributed to additional bleed-through of432

photons from tdTomato, as can be seen in Figure 3. Photons in433

both channels were simultaneously collected using GASP pho-434

tomultiplier tubes (Hamamatsu). We recorded 100 whole-brain435

volumes at a resolution of 0.49 x 0.49 x 1 µm (1024 x 512 x 300436

XYZ voxels), to a sample depth of 300 µm. The microscope was437

controlled by ScanImage.438

Creation of FDA439

Each anatomical scan was created by first imaging the myr-440

tdTomato signal 100 times at 0.6 x 0.6 x 1 µm (1024 x 512441

x 241 XYZ voxels). These 100 volumes were averaged, then442

each volume was warped (linear and non-linear) to this mean443

using ANTs, thereby correcting for motion. These aligned444

volumes were then averaged, creating the anatomical scan for445

each brain. Scans were additionally processed with an inten-446

sity based masking (to remove any contaminating background447

signal outside of the brain), removal of non-contiguous blobs448

(to remove, for example, cuticle which is otherwise visible due449

to auto-fluorescence), and histogram equalization to brighten450

overly dark areas and darken overly-bright areas (which as-451

sists in allowing a more uniform registration, and not an over-452

emphasis on simply the brightest regions). Each brain was mir-453

rored across the Y axis, doubling our effective data to 32 brains.454

These 32 brains were all linearly aligned to a single seed brain455

chosen from the 32, and averaged ("linear0"). The 32 brains456

were linearly aligned to "linear0", and again averaged, produc-457

ing "linear1". Next, the individual anatomical scans were sharp-458

ened using the scikit-image implementation of unsharp mask-459

ing, and aligned again (linear and non-linear) to "linear", and460

averaged to produced "SyN0". The last step was repeated two461

more times to produce the final FDA. We found that sharpening462

the brains before "linear0" caused poor convergence of neuropil463

boundaries, while completely omitting it resulted in blurry neu-464

ropil boundaries.465

The BIFROST pipeline 466

The BIFROST pipeline comprises four steps. First, a dataset 467

template is created from structural volumes from each animal. 468

Second, this dataset template is registered to the FDA. Third, 469

each timepoint from each dependent channel is registered to the 470

dataset template. Finally, these registered data are transformed 471

into FDA space using the transformation calculated on step two. 472

We provide the BIFROST pipeline as a Snakemake work- 473

flow that describes the dependency structure of the whole 474

pipeline [61]. This facilitates parallel execution of independent 475

steps, and as a result BIFROST can be transparently scaled from 476

local execution on a single machine to thousands of parallel jobs 477

on a cluster. This parallelization is critical, because serial exe- 478

cution of the ANTs dependent steps over such large datasets 479

would take weeks to months to complete. BIFROST can be 480

executed on all common cluster scheduling systems including 481

Slurm, PBS and SGE and on cloud services via Kubernetes and 482

several common cloud APIs [61]. This implementation allows 483

a dataset over any number of animals with any number of chan- 484

nels, each imaged for an arbitrary number of timepoints and 485

stored following a particular directory structure to be quickly 486

submitted to a cluster for parallel execution with only minimal 487

customization. 488

The BIFROST pipeline: creation of dataset templates. 489

Dataset templates were constructed from structural volumes of 490

each animal following a standard procedure [35]. These vol- 491

umes were mirrored, doubling the effective sample size, and 492

pre-processed with the scikit-image implementation of contrast 493

limited adaptive histogram equalization (CLAHE) using a ker- 494

nel size of 64 [62, 63]. Template construction begins with a 495

single volume, chosen arbitrarily from the pre-processed vol- 496

umes to serve as the initial template. Linear (affine) transfor- 497

mations then aligned each pre-processed image to this initial 498

template. Next, the transformed volumes were averaged to ob- 499

tain a new template. Following this linear iteration, template 500

construction continued with several (typically four) iterations 501

of non-linear alignment and averaging. In each iteration, indi- 502

vidual images were non-linearly transformed to the current tem- 503

plate using SyN. Next, the transformed volumes were averaged 504

to obtain a mean volume and the transformations themselves 505

were also averaged. To complete each iteration, the next tem- 506

plate is obtained by transforming the mean volume through the 507

inverse of the mean transformation [64, 65]. The fourth iteration 508

of this cycle produces the final dataset template. The pipeline is 509

outlined in Fig. S1B. We have released our tooling for template 510

construction as part of our Python package. 511

The BIFROST pipeline: registration with SynthMorph. 512

We wrote a configurable tool for image registration which reg- 513

isters a "moving" image to a "fixed" image with successive lin- 514

ear, non-linear SyN and SynthMorph transforms. If necessary, 515

both "moving" and "fixed" images can be downsampled to re- 516

duce memory burden and computation time. As we found that 517

SynthMorph was essential to effective registration in the central 518

brain, but not the optic lobes, we also added support for masking 519

the SynthMorph transform and manually generated a mask for 520

the optic lobes using Fiji/ImageJ [66]. Next, we pre-processed 521
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the "moving" and "fixed" images by re-scaling intensities to the522

interval [0,1] and applied the scikit-image implementation of523

CLAHE [62, 63] with a kernel size of 64 and configurable clip524

limit. By default CLAHE was applied to the "moving" image525

but can be applied to the "fixed" image as well.526

After this pre-processing, linear (affine) and non-linear527

(SyN) transforms registering the "moving" image to the "fixed"528

image were computed and applied in sequence using ANTs.529

Next, a non-linear SynthMorph transform was computed.530

As SynthMorph is constrained by its architecture to a fixed in-531

ference volume of 160 x 160 x 192 voxels, images were first532

transposed to align the longest axis of the image with that of533

the inference volume and then downsampled to 160 x 160 x 192534

voxels. Finally, SynthMorph inference was run on the down-535

sampled images yielding a warp field.536

Next, the warp field was transposed back to the original axis537

order and then optionally mirror symmetrized across an algo-538

rithmically selected mirror plane, obtained by searching for the539

plane that minimizes the root mean square distance between the540

"moving" image and its mirror. This was performed on the541

"moving" image after it was affine transformed to the "fixed"542

image. In our experience, when the, "fixed" image is aligned543

such that the dorsal-ventral axis lies along a principal axis of544

voxel coordinates this procedure reliably recovers the intended545

dorsal-ventral/anterior-posterior mirror plane of the Drosophila546

brain.547

Next, the (optional) mask was transformed through the lin-548

ear and non-linear transformations. The warp field was then549

up-sampled to the original size of the images and applied to the550

"moving" image at all locations outside the mask, yielding the551

final image. The pipeline is outlined in Fig. S1C. All transfor-552

mations and meta-data needed to apply the full transform were553

saved in a HDF5 file [67]. All tooling for computing registra-554

tions and applying the resulting transforms are provided as part555

of our Python package.556

Manual segmentation of neuropils557

We used ITK-SNAP to manually draw regions of interest in558

an early version of the FDA, and then registered into the fi-559

nal FDA [68, 69]. We used ITK-SNAP’s built-in contrast-based560

segmentation to delineate the boundaries of the whole brain. We561

then hand-segmented the mushroom bodies (calyx, peduncles,562

ventral lobes, and medial lobes), central complex (protocerebral563

bridge), and optic lobes in each z-slice of the volume.564

Calculation of Sørenson-Dice coefficients for the cross-565

modal quantification566

Region of interest annotations in the space of JRC2018F were567

obtained by registering a previous template that was published568

with regional annotations into the space of JRC2018F [28].569

Correspondences between these ROIs and those annotated in570

the FDA were identified manually. Given sets X and Y , the571

Sørenson-Dice coefficient is defined as572

2|X ∩Y |
|X|+ |Y |

where |X| and |Y | are the cardinalities of the sets. The573

Sørenson-Dice coefficient was computed for each ROI in a vox- 574

elwise manner. 575

Defining the positions of LC11 and DSX centroids 576

After alignment, whole-brain volumes were cropped to a region 577

that contained the feature of interest (the terminal glomerulus 578

for LC11, and a specific stalk for DSX). Box size was 95 x 57 579

x 76 µm for LC11, and 38 x 30 x 23 µm for DSX. In addi- 580

tion, for LC11, fluorescence outside of the PLP and PVLP re- 581

gions were masked using the anatomical ROIs to avoid expres- 582

sion from LC11 dendrites in the lobula. An intensity thresh- 583

old was then manually selected for each animal that best re- 584

moved background fluorescence while maintaining the shape of 585

the glomerulus. The image was then binarized and the center of 586

mass determined 587

Aligning JRC2018F and Connectomes to the FDA 588

The coordinates of the skeleton and synapses of LC11 were 589

fetched from the online resources for the Hemibrain and Fly- 590

Wire and were transformed into the space of JRC2018F using 591

the flybrains Python package [70–72]. In the flybrains pack- 592

age, the coordinate systems for the Hemibrain and FlyWire are 593

labeled as "JRCFIB2018Fraw" and "FLYWIRE" respectively. 594

These data were further transformed from JRC2018F into the 595

space of the FDA by application of a bridging transformation, 596

as follows. First, we applied the BIFROST pipeline to transform 597

JRC2018F to the FDA (see Methods, The BIFROST pipeline: 598

registration with SynthMorph). We next wished to apply this 599

tranformation to the connectomes. However, SynthMorph does 600

not support coordinate transformations, which is required for 601

a connectome. Therefore, we recapitulated the full BIFROST 602

transformation using only ANTs. We achieved this as follows. 603

First, the FDA was transformed to JRC2018F using BIFROST. 604

This FDA in JRC2018F space is now our new "fixed" target. 605

Since this is now a single modality problem, we were then able 606

to use ANTs to transform the original FDA to this fixed target. 607

The pipeline is outlined in Fig. S1D. 608
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Figure S1. Creation of the Functional Drosophila Atlas (FDA) and BIFROST details. (A) Pipeline for creating FDA. (B) Pipeline for creating the dataset template. (C) Pipeline
for registering a moving volume to a fixed volume. The alignment channel is used to register to the fixed volume, and the generated transformation is applied to the dependent
channel, which is usually the functional imaging channel. (D) Pipeline for transforming the coordinates of a point cloud from JRC2018F to FDA. Note that ’JRC2018F in FDA’ is
JRC2018F registered to FDA using BIFROST pipeline outlined in (C). Full details in Methods.
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Figure S2. The Functional Drosophila Atlas (FDA). (A) Slices through FDA, moving along the anterior-posterior axis. Micron labels indicates depth along the axis. (B) Same as
(A), except along the dorsal-ventral axis. (C), Same as (A), except along the medial-lateral axis.
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Figure S3. Registration accuracy does not deteriorate with tissue depth. Scatter plot related to Fig. 2 showing the Sørenson-Dice score of labeled neuropile versus their
depth in the brain. Abbreviations: MB CA, Mushroom Body Calyx Left and Right; PB, Protocerebral Bridge; OL, Optic Lobes Left and Right; FB, Fan-Shaped Body; MB PED,
Mushroom Body Peduncle; EB, Ellipsoid Body; MB VL, Mushroom Body Ventral Lobe Left and Right; NO, Nodulus; MB ML, Mushroom Body Medial Lobe.
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Figure S4. Quantifying LC11 registration accuracy. (A) Impact of threshold on centroid estimation. Throughout the manuscript, Otsu’s algorithm is used to select the threshold
used for each animal. Here, we assess the impact of threshold value on centroid estimation by scaling the Otsu threshold by a threshold multiplier. For each animal, a range of
threshold multipliers were applied, from 0.1 to 2.5. Top row, example LC11 glomerulus from a single animal as the threhold is adjusted. "1" is the original threshold. Bottom row,
the 3D Euclidean distance between the original centroid and the adjusted centroid is calculated independently for each animal. Box plots show the distribution of centroid
displacement from the original across animals. Box center line indicates median, box limits indicate quartiles, whiskers indicate 1.5x the inter-quartile range. Data from Lab 1 is
used for this analysis. (B) Same as Fig. 3D, except showing the pipeline truncated to only ANTs linear and ANTs SyN (See Fig. 3B for schematic of truncations). (C) Same,
except showing the pipeline truncated to only ANTs linear, ANTs SyN, and the creation of a Dataset Template (See Fig. 3B for schematic of truncations). (D) Same as Fig. 3E,
except showing results from the other hemisphere. (E)Full pipeline, showing centroid distances along each orthogonal axis. Box center line indicates median, box limits indicate
quartiles, whiskers indicate 1.5x the inter-quartile range. (F) Quantification of additional glomerulus landmarks. Instead of using the glomerulus centroid, three structures of the
glomerulus are manually labeled for each animal: the lateral tip, the medial tip, and the point where the stalk meets the glomerulus. The distribution of pairwise distances is
plotted for data aligned using the full pipeline.
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Figure S5. Quantifying DSX registration accuracy. (A) Example DSX fly showing the alignment channel (myr-tdtomato) and dependent channel (DSX). Zoom shows DSX stalk
region that will be quantified. (B) Zoom in of DSX stalk region in FDA showing DSX expression of individual animals after the full pipeline was applied. Dot indicates centroid of
each stalk, which will be used to quantify distance. (C) Same as in (B), but animals are overlayed and projections along each axis are shown. (D) Quantification of pair-wise
centroid distances. Box center line indicates median, box limits indicate quartiles, whiskers indicate 1.5x the inter-quartile range.
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