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The interactions between bacteria and phages—viruses that infect bacteria—play critical roles in agriculture,
ecology, and medicine; however, how these interactions influence the spatial organization of both bacteria and
phages remain largely unexplored. Here, we address this gap in knowledge by developing a theoretical model of
motile, proliferating bacteria that aggregate via motility-induced phase separation (MIPS) and encounter phage
that infect and lyse the cells. We find that the non-reciprocal predator-prey interactions between phage and
bacteria strongly alter spatial organization, in some cases giving rise to a rich array of finite-scale stationary
and dynamic patterns in which bacteria and phage coexist. We establish principles describing the onset and
characteristics of these diverse behaviors, thereby helping to provide a biophysical basis for understanding
pattern formation in bacteria-phage systems, as well as in a broader range of active and living systems with
similar predator-prey or other non-reciprocal interactions.

Bacteriophages (“phages”) are viruses that infect bacteria.
This predator-prey relationship regulates how bacterial com-
munities form and function in diverse environments, ranging
from the ground beneath our feet to the tissues and organs in
our bodies [1–6]. Thus, it is important to understand how in-
teractions with phages shape bacterial populations. Indeed,
these interactions are of fundamental interest in biology, ecol-
ogy, and physics, and have critical implications for agricul-
ture, ecology, and medicine [4–19].

Studies using continuously-mixed liquid cultures have
yielded crucial insights into bacteria-phage interactions [5,
20–27]. However, many bacteria inhabit more quiescent en-
vironments where the cells can collectively self-organize into
spatially structured populations. Despite the pivotal influence
of bacterial spatial organization on diverse biological func-
tions, how such organization is influenced by, and in turn in-
fluences, interactions with phages remains poorly understood.

Here, we address this gap in knowledge by developing
a minimal theoretical model that incorporates essential bio-
physical features of bacterial spatial organization and inter-
actions with phage. In particular, we describe the bacterial
population as a collection of actively-moving and proliferat-
ing particles that tend to undergo motility-induced phase sep-
aration (MIPS). In this collective self-trapping process, the
bacterial cells slow down where they form aggregates, and
aggregate where they are slower. This feedback loop makes
the bacterial population unstable to density fluctuations, lead-
ing it to spatially organize into dense aggregates in a man-
ner reminiscent of phase separation via spinodal decompo-
sition [28–30]. In addition to being a well-studied canoni-
cal model of active matter, MIPS-like behavior has been re-
ported in many different bacterial systems [31–39], making
it a useful model of bacterial spatial organization. We intro-
duce phage into this model as additional passive particles that
can diffuse, infect bacteria, proliferate inside them, and kill
cells via lysis, generating a burst of new phage progeny (Fig-
ure 1a). These bacteria-phage interactions are therefore in-

herently non-reciprocal: an asymmetrical relationship exists
between the two entities, in which bacteria (the prey) are ben-
eficial to phage, but phage (the predators) are detrimental to
bacteria. Since other forms of non-reciprocal interactions can
lead to pattern formation, dynamical spatial structures, and
phase transitions [40–42], e.g., flocking phenomena [43–46]
and synchronization of living and synthetic systems [47–50],
we asked: how might interactions with phages impact bacte-
rial aggregation?

Using linear stability analysis and full numerical simula-
tions of our model, we find that the dynamics of bacterial
MIPS are dramatically altered by interactions with phage.
At very low or very high cell densities, the bacteria remain
uniformly dispersed. By contrast, over a wide range of in-
termediate densities, bacteria-phage interactions engender a
wealth of finite-sized patterns in the bacterial population that
are fundamentally distinct from the spinodal decomposition
observed in conventional MIPS. In some cases, these are sta-
tionary patterns of dense bacterial aggregates, with geometries
ranging from hexagonal lattices of round aggregates to disor-
dered stripes, that coexist with phage. In others, the patterns
are highly dynamic, ranging from ordered round aggregate
that oscillate asynchronously to migrating threads to large do-
mains that oscillate quasi-independently of each other.

Our analysis establishes quantitative principles describing
the onset of these diverse behaviors, and elucidates the under-
lying cause: they arise due to the competition between MIPS,
which drives bacteria to aggregate into dense phases, and the
non-reciprocal predator-prey interactions caused by phage,
which cause dense aggregates of bacteria to disintegrate.
Furthermore, comparison to a related, but distinct, model in
which bacteria are killed by a self-secreted toxin instead of by
phage shows that the auto-catalytic proliferation mechanism
specific to phage is essential to the advent of these dynamic
patterns. Finally, we demonstrate another consequence of
the nonlinear interactions between bacteria and phage: once
established, the emergent bacterial patterns persist far beyond
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a
Bacteria aggregate via motility-induced 

phase separation (MIPS), and grow at 
low phage concentration
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Phage diffuse into bacterial 
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Fig. 1. Overview of our model of bacteria-phage interactions in a spatially-extended environment. a. (Top) Bacteria proliferate at a rate
g. (Middle) Phage infect bacteria at a rate γ and induce lysis, generating a burst β of phage progeny. (Bottom) Phage decay at a rate δ. b.
Schematic of bacteria aggregating via MIPS at sufficiently low phage density, upon which phage can diffuse in, infect and lyse the cells, and
thereby release more phage.

the critical phase boundaries predicted by linear stability
analysis, and exhibit excitable behavior in these regions.
Thus, not only does our illustrative model uncover the rich
pattern formation that can arise from bacteria-phage inter-
actions, but it also demonstrates that such interactions give
rise to two hallmarks, hysteresis and excitability, of many
other complex and living systems. Taken together, these
results elucidate a simple biophysical mechanism that can
give rise to spatial organization in bacteria-phage systems—
complementing other interesting biological mechanisms such
as phage hitchhiking [7] and coevolution [10]. Moreover, this
model could help provide a foundation for explaining pattern
formation in a broader range of active and living systems
whose constituents also exhibit predator-prey relations or
other non-reciprocal interactions [40, 42, 51–55].

Model for bacteria and phage. We consider a system of
motile bacteria and lytic phage in two spatial dimensions
(2D). The number densities of bacteria and phage are denoted
by b(r, t) and p(r, t), respectively, where r is position and t is
time. The conservation equations for bacteria and phage read:

Bacteria: ∂tb = −∇ · Jb︸ ︷︷ ︸
MIPS

+ gb︸︷︷︸
Proliferation

− γbp︸︷︷︸
Infection

, (1a)

Phage: ∂tp = −∇ · Jp︸ ︷︷ ︸
Diffusion

+βγbp︸ ︷︷ ︸
Burst

− δp︸︷︷︸
Degradation

. (1b)

The first terms on the right in Equations (1a) and (1b) rep-
resent bacterial motility and phage diffusion, where Jb and
Jp are fluxes of bacteria and phage, respectively. The second
term in Eq. (1a) describes the proliferation of bacterial cells
at a constant rate g reflecting nutrient-replete conditions. The
third term in Eq. (1a) models bacterial infection and thus ly-
sis and death caused by phage, where γ is the infection rate.
For simplicity, we assume that bacterial lysis is instantaneous

following infection. Hence, the second term in Eq. (1b) de-
scribes the burst of β + 1 phage particles arising from a lysed
bacterial cell; the effective burst size is β since the original in-
fecting phage is lost. Finally, the last term in Eq. (1b) reflects
degradation of phage at a rate δ. Taken together, these last
four terms describing the proliferation and removal of phage
and bacteria correspond to the nonreciprocal Lotka-Volterra
predator-prey model for two species [56, 57], with phage as
the “predator” and bacteria as the “prey”.

The diffusive fluxes of bacteria and phage are given by:

Jb = −Db(b)∇b+ κ∇∇2b, Jp = −Dp∇p. (2)

In this description, the phage diffuse uniformly across space
with a diffusion coefficient Dp. By contrast, the diffusive
flux of bacteria is given by an established continuum model
of MIPS [28, 30, 38] where Db(b) is an effective active diffu-
sion coefficient reflecting undirected cellular motility, and the
characteristic length scale κ determines the width of the inter-
face between dense bacterial aggregates and dilute regions in
MIPS.

In particular, treating the bacterial cells as run-and-
tumble particles with spatially varying average speed
v(r, t) and uniform tumbling time τ , the first con-
tribution to the bacterial diffusive flux is given by
Jb,MIPS = −Db(b)∇b = −v2τ∇b/d − bvτ∇v/d,
where d is the spatial dimension, and we have assumed
that the density is slowly varying [28, 58]. The first term
represents standard Fickian diffusion, while the second
term reflects the tendency of the cells to drift toward re-
gions of low speed with a drift velocity vτ∇v/d. For
simplicity, we assume that the spatial dependence of v
arises only from the spatial dependence of the bacterial
density b. Hence, Jb,MIPS = −D(b)∇b − bD′(b)∇b/2,
i.e., Db(b) = D(b) + bD′(b)/2, where D(b) = v(b)2τ/d
is a density-dependent diffusion coefficient, and the prime
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denotes a derivative with respect to b. In the absence
of phage, such a diffusive flux gives rise to MIPS when
v′(b0)/v(b0) < −1/b0, or equivalently Db(b0) < 0, where
b0 is the spatially uniform density. As a concrete exam-
ple, to obtain the numerical results presented below, we
follow previous work and consider an exponential decay
of the average bacterial speed with respect to density, i.e.,
v = v0 exp(−αb/2), where v0 is the average speed at vanish-
ingly small density [30, 38, 59, 60]. This distribution results
in an effective diffusivity Db(b) = Db,0 exp(−αb)(1−αb/2),
where Db,0 is the maximal bacteria diffusivity at vanishingly
small density. However, the theoretical analysis presented
below is more general, and not restricted to this choice.

Dimensionless parameters governing our system. Before
investigating how interactions with phage influence bacterial
spatial organization in this model, we first reduce the num-
ber of parameters via non-dimensionalization. To this end, we
choose tc = g−1, ℓc = (κ/g)1/4, bc = α−1, and pc = g/γ as
characteristic time, length, bacterial density, and phage den-
sity scales, respectively. Non-dimensionalizing Eqs. (1a)–(1b)
then yields the dimensionless Eqs. (S1a)–(S1b), revealing four
key dimensionless parameters:

β̃ ≡ βγ

αg
:

Phage proliferation
Bacterial proliferation

, (3)

δ̃ ≡ δ

g
:

Phage decay rate
Bacterial proliferation rate

, (4)

D̃b,0 ≡ Db,0√
κg

:
Bacterial diffusivity

Bacterial proliferation rate
, (5)

D̃p ≡ Dp√
κg

:
Phage diffusivity

Bacterial proliferation rate
, (6)

where tildes (∼) indicate dimensionless quantities. A
uniform, albeit potentially unstable, solution of Eqs. (1a)–
(1b) in which bacteria and phage coexist is given by
(b0, p0) = (δ/(βγ), g/γ). In dimensionless form, this solu-
tion is (b̃0, p̃0) = (δ̃/β̃, 1), and for our subsequent analysis,
we linearize the non-dimensionalized Eqs. (S1) around this
solution.

Linear stability analysis. At low phage densities, we still
expect bacteria to be able to spatially organize into dense ag-
gregates via MIPS and proliferate; however, the phage can
then diffuse into these aggregates, infect and proliferate in the
cells, and lyse them, releasing more phage—as depicted in
Fig. 1b. What are the possible outcomes for such bacterial
aggregates and what are the consequences for the large-scale
spatial organization of bacteria and phage over time?

To address this question, we analyze the linear stability
of Eqs. (S1) by considering small-amplitude perturbations
to the bacterial and phage densities of amplitude ϵ̃ ≪ 1:
(b̃, p̃) = (b̃0, p̃0) + (ϵ̃b̂, ϵ̃p̂) exp(iq̃ · r̃ + ω̃t̃), where q̃ is
the wave vector of a given perturbation and ω̃ is its growth
rate. Thus, the perturbation will grow if Re(ω̃) > 0, or
alternatively decay if Re(ω̃) < 0. If the growth rate has an

imaginary component, Im(ω̃) ̸= 0, perturbations oscillate
while growing or decaying over time. Introducing this
expression into Eqs. (S1) yields the following dispersion
relation:

δ̃ + (ω̃ + D̃pq̃
2)

[
D̃b(b̃0)q̃

2 + q̃4 + ω̃
]

︸ ︷︷ ︸
Conventional MIPS dispersion relation

= 0, (7)

where the spatial wavenumber q̃ = |q̃|. In the absence of both
bacterial and phage proliferation, Eq. (7) reduces to the con-
ventional MIPS dispersion relation, ω̃ = −q̃2(D̃b(b̃0) + q̃2).
In this case, the bacterial population remains uniform below
a critical density where the effective diffusivity is positive,
D̃b(b̃0) > 0, but phase separates via spinodal decomposition
and coarsens over time above this density where D̃b(b̃0) < 0.
Above the critical bacterial density b̃0, only wavenumbers
q̃ < [D̃b(b̃0)]

1/2 have Re(ω̃) > 0 and give rise to conven-
tional MIPS [30], as expected.

How would interactions with phage influence the spatial
organization of bacteria in the case of a constant bacterial
diffusivity D̃b that does not depend on cell density—that
is, in a population that does not undergo MIPS? Despite
superficial similarity to a Turing system [61]—with bacteria
as “activator” and phage as “inhibitor”—the bacterial popu-
lation remains stable, since Re(ω̃) < 0 for all q̃. However,
modes with q̃ < [4δ̃/(D̃p − 1)2]1/4, where q̃ = q(Db/g)

1/2,
have Im(ω̃) ̸= 0, indicating that these perturbations decay
over time by oscillating toward the uniform solution. This
observation hints that, while in the non-MIPS case patterns
do not form in the bacterial population, in the unstable case
of MIPS, interactions with phage may give rise to dynamic
patterns of both bacteria and phage.

Bacteria-phage interactions can lead to the formation of
stationary or dynamic patterns. To test this hypothesis, we
obtain the linear stability conditions of Eq. (7). As detailed
below, we first find the critical condition at which the system
transitions from being stable, i.e., Re(ω̃) < 0 for all modes q̃,
to unstable, i.e., Re(ω̃) > 0 for some modes, leading to pattern
formation. Then, we obtain the conditions under which unsta-
ble modes also oscillate over time, i.e. Im(ω̃) ̸= 0. Finally,
we compute the condition that determines the stability of long
wavelength modes, q̃ ≪ 1. If these long-wavelength modes
are unstable, dense aggregates will coalesce and coarsen over
time during the linear stages when perturbations are small.
Conversely, if the long-wavelength modes are stable, coars-
ening is prevented from progressing even within the linear
regime. Nonetheless, linear stability cannot predict the full
nonlinear behavior and ultimate fate of the system—therefore,
to explore these fates, we also perform full time-dependent
numerical simulations of Eqs. (S1).

We find that the conventional stability condition for bac-
terial MIPS, D̃b(b̃0) < 0, does not hold in the presence of
phage. Instead, from Eq. (7) we find two distinct regions in
which the uniform solution is unstable, leading to pattern for-
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Fig. 2. Bacteria-phage interactions can give rise to stationary or dynamic patterns. a. Linear stability phase diagram as a function of
the dimensionless phage diffusivity D̃p and phage decay rate δ̃. We use the bacterial density-dependent diffusivity evaluated at the uniform
solution, D̃b(b̃0) = D̃b,0 exp(−δ̃/β̃)[1 − δ̃/(2β̃)], with D̃b,0 = 300, and a dimensionless phage:bacteria proliferation ratio β̃ = 2; we
employ these physically reasonable parameter values of β̃ and D̃b,0 for all numerical simulations (Supplementary Information). The shaded
blue and orange show regions where the system is unstable, with patterns that are, respectively, stationary or dynamic, and in both cases
exhibit arrested coarsening. The left and right are regions where phage or bacterial proliferation, respectively, suppresses phase separation.
Diamonds indicate simulations shown in panels b-e and Fig. 3. b. Local bacteria and phage densities as a function of dimensionless time t̃
for the linearly-unstable stationary case indicated in panel a (δ̃, D̃p) = (6.67, 10). Solid and dashed curves indicate the density of bacteria
and phage at the center of an aggregate and between aggregates, respectively. Insets: left, characteristic pattern length scale R̃ as a function of
time; middle and right, bacterial and phage densities and net birth-minus-death rates across a stationary round aggregate. c. Same as in panel
b, but for the linearly-unstable, dynamic case indicated in panel a (δ̃, D̃p) = (6.67, 1). d. Two-dimensional plot of the bacterial and phage
densities b̃(r̃, t̃) and p̃(r̃, t̃), respectively, at steady state for the stationary case shown in panel b. The symbol marks where the densities in
panel b are measured. e. Same as in panel d, but for the dynamic case shown in panel c, at times t̃ = 4.7 and 5.
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Fig. 3. Bacteria-phage interactions give rise to a diverse array of dynamic patterns. Snapshots show bacteria and phage densities as
a function of time. a. Ordered oscillatory round aggregates emerge when the phage lifetime is short compared to bacterial doubling time
(δ̃ = 9.5, D̃p = 1). b. Same as in panel a but for a longer phage lifetime δ̃ = 5; in this case, large domains of striped patterns emerge and
oscillate in amplitude. c, Same as in panel a, but for lower phage diffusivity D̃p = 0.05 and δ̃ = 6.66; in this case, aggregates become motile
and ultimately form migrating strands.

mation. First, in the region where

D̃p[D̃b(b̃0)]
3 > −27

4
δ̃ and D̃p > −D̃b(b̃0), (8)

Re(ω̃) > 0 for a range of q̃ with Im(ω̃) = 0—indicating that
the unstable modes are stationary. Moreover, in this region,
Re[ω̃(q̃ = 0)] = 0 and ω̃′′(q̃ = 0) < 0, which implies
that long wavelength perturbations are suppressed and will not
grow; thus, we expect coarsening to be arrested in this region.
Second, in the region where

D̃p < −D̃b(b̃0), (9)

a range of unstable modes with Re(ω̃) > 0 exhibit a nonzero
imaginary part Im(ω̃) ̸= 0, implying they are oscillatory.
Since Re[ω̃(q̃ = 0)] = 0 and ω̃′′(q̃ = 0) > 0, we expect the
oscillating patterns that arise in this region to coarsen in the
linear regime. These two linearly-unstable regions are shown
by the blue and orange regions in Fig. 2a, respectively, which

characterizes the stability of the system as a function of di-
mensionless phage decay rate δ̃ and diffusion coefficient D̃p.

These results make sense intuitively. Phase separation via
MIPS consists of a positive feedback loop as bacteria tend to
accumulate where they slow down and slow down where they
have accumulated, resulting in non-oscillatory aggregates that
coarsen over time. However, the presence of phage introduces
a negative feedback loop: aggregation and proliferation cre-
ate dense regions of bacteria, favoring rapid proliferation of
phage which reduces the density of bacteria. The combina-
tion of these mechanisms can, in principle, give rise to either
stationary or dynamic patterns.

What happens as the instabilities grow into the nonlinear
regime? To obtain the full nonlinear spatio-temporal patterns
in the different linearly-unstable regimes of Fig. 2a, we
perform numerical simulations of Eqs. (S1) (Supplementary
Information). As we describe next, we find both station-
ary and dynamic patterns, but in all cases, coarsening is
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arrested—in contrast to conventional MIPS.

Stationary patterns emerge from the interplay of bacte-
rial MIPS and lysis by rapidly-diffusing phage. Station-
ary patterns of bacteria and phage always emerge in the up-
per linearly-unstable region of the phase diagram in Fig. 2a,
i.e., when phage diffusivity is sufficiently high. Far inside
this region, the patterns consist of a hexagonal lattice of sta-
tionary round aggregates in which bacteria and phage coexist
at high density, as shown in Figs. 2b and d (Supplementary
Movies 1 and 2). The mean aggregate size R̃(t̃), computed
from Eq. (S15), plateaus at a constant value, shown in the left
inset to Fig. 2b, as expected.

What biophysical mechanism gives rise to these steady-
state patterns? In the absence of phage and of bacterial prolif-
eration, the bacterial aggregates formed by MIPS coarsen via
Ostwald ripening, with an average aggregate size that grows
as R̃(t̃) ∼ t̃1/3 [30, 62, 63]. The non-reciprocal predator-prey
interactions caused by phage modify this paradigm. In partic-
ular, after bacterial aggregates form via MIPS, phage already
present at those locations or that rapidly diffuse into the aggre-
gates kill the bacteria and proliferate. This process suppresses
further coarsening of the bacterial aggregates. However, it
does not completely annihilate the aggregates; there is a posi-
tive net birth rate of bacteria in the space between aggregates,
shown by the data spanning x̃ < 18 and x̃ > 22 in the right
inset to Fig. 2b. Thus, at steady state the killing of bacteria
in aggregates is compensated by a MIPS flux of bacteria from
the space between aggregates, as schematized in the inset to
Fig. 2a, along with fast diffusion of phage out of the aggre-
gates after they proliferate.

Interestingly, closer to the critical boundaries of this region
of the phase diagram in Fig. 2a, more intricate stationary
patterns emerge. For example, near the righthand boundary
where phage decay rapidly (large δ̃), we observe the disor-
dered bacteria-phage stripes shown in Fig. S3—reminiscent
of the patterns that have been reported to emerge in phage-
free models of MIPS that incorporate logistic growth of
bacteria [38].

Dynamic patterns emerge from the delay between bac-
terial MIPS and lysis by slowly-diffusing phage. Non-
stationary patterns always emerge in the lower linearly-
unstable region of the phase diagram in Fig. 2a, i.e., when
phage diffusivity is sufficiently low. A striking variety of dy-
namic patterns emerge in the different parts of this region as
perturbations grow into the nonlinear regime. One example is
a disordered array of round aggregates each of which forms
and disappears, as shown in Figs. 2c and e (Supplementary
Movies 3 and 4); intriguingly, these dynamics are chaotic,
showing no spatio-temporal correlations and exhibiting a pos-
itive maximum Lyapunov exponent (Supplementary Informa-
tion).

We again ask: What biophysical mechanism gives rise to
these patterns? As in the stationary case, bacteria aggregate
via MIPS and phage infect, proliferate in, and lyse the cells

in the MIPS aggregates. However, in this region of the phase
diagram in Fig. 2a, the low diffusivity of phage means that the
phage density in bacterial aggregates progressively increases
to the point that aggregates are split up or entirely destroyed.
Subsequent bacterial proliferation then drives the formation
of other bacterial aggregates later on, which are then infected
by phage again—leading to ongoing cycles of bacterial ag-
gregation followed by phage disruption, with a time delay be-
tween the two, as shown by the traces in Fig. 2c. Similar
mechanisms leading to travelling waves and migrating round
aggregates have been reported previously in the context of
binary mixtures with other forms of non-reciprocal interac-
tions [51, 52, 64, 65].

Although linear stability analysis suggests that these dy-
namical patterns can coarsen over time as long wavelength
perturbations are linearly-unstable, nonlinearities prevent the
system from coarsening. For example, in the simulation
shown in Figs. 2c and e (Supplementary Movies 3 and
4), the dynamic round aggregates have a characteristic size
that chaotically fluctuates around a constant value (inset to
Fig. 2c). Indeed, throughout the linearly-unstable oscillatory
region of the phase diagram in Fig. 2, we find that all pat-
terns have a bounded characteristic length scale. Notably, this
length scale is comparable to that of the mean aggregate size
in the stationary patterns, suggesting that the mechanisms re-
sponsible for arrested coarsening are related in both cases.

A rich variety of dynamic patterns emerges throughout
this region of the phase diagram in Fig. 2a. For instance,
when phage decay much faster than bacteria can aggregate
and proliferate (large δ̃), aggregates become ordered, os-
cillating quasi-independently in density and size, as shown
in Fig. 3a (Supplementary Movies 5 and 6). Conversely,
when phage are more stable (small δ̃), the system breaks up
into finite-sized domains each of which oscillates between a
uniform state in which bacterial density is low and a striped
pattern, as shown in Fig. 3b (Supplementary Movies 7 and 8).
Finally, when phage diffusivity is reduced further (small D̃p),
bacterial aggregates become motile, with phage pursuing the
aggregates, as shown in Fig. 3c (Supplementary Movies 9
and 10). As time progresses, these aggregates become more
elongated and thread-like, also reaching a finite size.

Persistence of patterns outside linearly-stable regions. Do
the observed stationary and dynamic patterns, once estab-
lished, persist outside the linearly-unstable regions of the
phase diagram shown in Fig. 2a? To address this question, we
conduct simulations starting just inside the rightmost phase
boundaries. Once a pattern is obtained, we abruptly increase
the phage decay rate δ̃, causing the system to cross the bound-
ary into the linearly-stable region (Fig. 4a). Beginning with
a stationary case, we find that the pattern initially established
indeed persists (Fig. 4b and c)—exhibiting a similar morphol-
ogy, but with a higher bacterial density within the bacterial
aggregates. This makes intuitive sense, since phage prolifer-
ation slows down with increasing δ̃. We repeat this process
of increasing δ̃ in steps, and find that stationary patterns with
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Fig. 4. Patterns persist outside linearly-unstable regions. a. Same linear stability diagram as in Fig. 2a, but showing different paths of
varying δ̃ taken to investigate hysteresis, as shown by the simulations in panels b–e and f–i. After a pattern is established in a linearly-unstable
region, δ̃ is increased suddenly and is kept constant until a new state is reached. b-e. Bacterial density b̃(r̃, t̃) for the different values of δ̃
corresponding to the symbols in panel a with D̃p = 10, showing that stationary patterns persist outside the linearly-unstable region. f-i. Same
as in panels b–e but for D̃p = 1, such that the system starts in the linearly-unstable dynamic region. The system transitions from a dynamic
pattern of oscillatory round aggregates, as shown in Fig. 3a, to stationary disordered stripes in the linearly-stable region. Panels g and h show
intermediate states before the stationary striped pattern of panel i is reached.

increasing bacterial density and thicker stripes persist up to a
considerable distance into the linearly-stable region (Fig. 4b-
e). Thus, this system exhibits hysteresis, a characteristic fea-
ture of many other complex and living systems.

We then apply the same numerical protocol starting instead
with a dynamic pattern. Surprisingly, in stark contrast to
the stationary case, we find that the system transitions from
a lattice of oscillatory round aggregates, as in Fig. 3a, to a
stationary labyrinthine pattern of stripes (Fig. 4f-i). In the
same linearly-stable regions, we also find that the system is
excitable in response to finite perturbations (Supplementary
Movies 11-14)—another hallmark of many complex and
living systems. This persistence of patterns outside the region
of linear instability is analogous to phase separation occurring
outside of the region of spontaneous spinodal decomposition
in other systems [41, 66–71]. Finding the corresponding
“binodal” boundaries beyond which patterned solutions no
longer exist for this intrinsically nonequilibrium system will
be a useful topic for future exploration.

The auto-catalytic nature of phage proliferation is neces-
sary for dynamic pattern formation. Bacteria can be killed
by many other agents beyond phages, such as self-secreted
toxins [72, 73] and waste products [74]. These other forms
of killing bear some similarities to killing by phage, in
particular increasing with bacterial density, but with one
notable difference: phage proliferate in an auto-catalytic
manner. How important is this feature of phage to the patterns
that emerge in our model? To address this question, we use
a similar approach to examine an alternate version of our
model: instead of being killed by phage with a resulting burst
of phage progeny, bacteria secrete a self-harming toxin at rate

ν (Supplementary Information). Hence, the only difference
between this model and our main bacteria-phage model lies
in the phage proliferation term, which is instead replaced by
a toxin production term proportional to the bacterial density
only, i.e., νb. In this alternate case, dynamic patterns do not
arise in the equivalent (D̃c, δ̃) parameter space (Fig. S1),
where D̃c is now the dimensionless toxin diffusivity. Instead,
we only observe stationary patterns with structures similar
to those found for the bacteria-phage model. Thus, the
auto-catalytic nature of phage proliferation is necessary for
the formation of the dynamic patterns shown in Figs. 2e and 3.

Discussion. In nature, bacteria and phages coexist in
spatially-extended environments, such as in hosts and terres-
trial and marine settings. Thus, phage predation can reshape
the spatial organization of a bacterial population, which in
turn alters subsequent phage infection—giving rise to an intri-
cate array of coupled nonreciprocal predator-prey interactions
across time and space whose implications remain largely un-
explored. In this paper, we developed a theoretically-tractable
model that describes how bacteria-phage interactions strongly
impact bacterial aggregation, using the canonical model of
MIPS as an illustrative example. Through a combination of
linear stability analysis and numerical simulations, we showed
that fascinating spatiotemporal patterns emerge from these
coupled processes, and established quantitative rules describ-
ing their onset and characteristics. Our work thus sheds light
on how spatial organization can arise from simple biophysical
interactions between bacteria and phage. It thus complements
other studies focusing on other interesting biological mecha-
nisms, such as phage hitchhiking [7] and coevolution between
bacteria and phages [7, 10]. Incorporating additional evo-
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lutionary steps—including the development of defense and
counter-defense mechanisms—will therefore be an interesting
extension of our model.

Our analysis provides an intuitive description of pattern
formation in our system. At high rates of bacterial or phage
proliferation, MIPS is suppressed, and bacteria and phage
coexist uniformly across space. By contrast, at sufficiently
low phage density and infection rate, bacteria can aggregate
via MIPS prior to phage infection, leading to multiple
possible outcomes. When phage diffusivity is sufficiently
large, stationary finite-sized patterns emerge, with aggregates
of bacteria and phage that coexist—in stark contrast to the
coarsening observed in conventional MIPS. In this scenario,
bacterial death inside aggregates is compensated by a MIPS
flux of bacteria from the space between aggregates, where
bacteria can proliferate. Conversely, when phage diffusivity is
sufficiently small, phage accumulate in and ultimately split or
destroy bacterial aggregates, after which continued bacterial
proliferation can generate new aggregates—leading to a rich
variety of dynamic patterns with intricate spatio-temporal
structure. Indeed, the auto-catalytic proliferation mechanism
of phage is essential for the emergence of these dynamic
patterns; they do not arise in an alternate model in which
bacteria are instead killed by a self-secreted toxin.

Limitations and extensions of our model. Our model pro-
vides a foundation for capturing the rich spatio-temporal or-
ganization of bacteria-phage populations in nature, and nec-
essarily relies on several simplifications and approximations.
For example, we assumed that bacteria undergo instantaneous
lysis upon phage infection. However, in reality, bacteria ex-
hibit a latent infection period before lysis, which can influence
how phage [9, 75, 76] or bacteria [7] collectively spread. We
anticipate that adding this feature to our model would be akin
to reducing the phage infection rate and/or burst size, resulting
in shifts to phase boundaries but without qualitatively altering
the nature of the patterns that emerge.

Another key assumption is that the bacteria aggregate via
MIPS. While this canonical model of active matter provides
a useful foundation for our work, and MIPS-like behavior
has been reported in many different bacterial systems [31–
39], it will not be generally applicable to all bacteria. Ad-
ditional complexities may arise due to e.g., hydrodynamic,
steric, and other mechanical interactions between cells [77–
80], quorum sensing [81, 82], chemotaxis [65, 83, 84], and
nutrient-dependent aggregation and proliferation [31, 85].

This study focused on lytic or virulent phages, which in-
fect bacterial cells by injecting genetic material, proliferating
inside the cytoplasm, and causing cell lysis to release more
phage. However, many natural phages are lysogenic or tem-
perate, meaning that they can integrate their genome into a
bacterial cell and thus its progeny without lysis. This pro-
cess renders the cells immune to future infections by the same
phage type, but also means they can potentially re-enter the
lytic pathway in some future generation. Recent studies indi-
cate that lysogeny can have a marked influence on bacteria-

phage dynamics in well-mixed conditions [86]; thus, studying
the impact of lysogeny on spatial organization in our model
will be an interesting extension of our work.

Previous studies of active mixtures and living systems have
demonstrated that noise can impact pattern formation [31, 87–
89]. The presence of noise is inherent to almost all natural
environments that bacteria and phage inhabit. Although noise
is present in the initial conditions of our simulations, we
do not include any additional sources of noise over time.
Exploring how the results presented here are modified by the
addition of different kinds of noise will be another useful
direction for future work.

Similarities and differences to other nonequilibrium sys-
tems. Pattern formation is ubiquitous in nature, arising in both
non-living [87, 90–98] and living systems [87, 93, 94, 96, 97,
99–103]. Indeed, systems as diverse as proteins, amoeba, and
even animal skin exhibit patterns that are remarkably similar
to those revealed by our work [36–38, 90, 91, 95, 102, 104–
117], but which arise from a Turing-like instability due to
differential diffusivity between two different species [61].
Our work provides a counterpoint to this paradigm: in our
case, patterns do not rely on the Turing mechanism, but in-
stead arise from a combination of aggregation via MIPS and
non-reciprocal predator-prey interactions. Moreover, we find
that such patterns, once established, persist beyond the phase
boundaries predicted by linear stability theory, implying hys-
teresis. In the same regions, the system exhibits excitabil-
ity in response to finite perturbations. While many biologi-
cal systems are excitable via a Turing-type mechanism [104–
110, 118–120], excitability in the context of the non-Turing-
type context of bacteria and phage is essentially unexplored.
These two phenomena—hysteresis and excitability—emerge
as consequences of nonlinear interactions in bacteria-phage
populations. Further exploration of the nonlinear phases,
phase boundaries, and excitable behavior will therefore be
useful future research directions building on our work.

To our knowledge, ours is the first study of the influence
of non-reciprocal predator-prey interactions on MIPS. Other
forms of non-reciprocity, typically introduced by means of
asymmetric cross-diffusive fluxes, have recently been ex-
plored in the context of active matter [40–52, 64, 121]. Here,
we found a broader range of static and dynamic patterns.
Thus, motivated by the comparison between this body of
work and ours, unraveling the similarities and differences
between the rich patterns and phase behaviors that emerge
from different forms of non-reciprocity will be intriguing in
future work.

Implications for biology. As noted above, recent experi-
ments involving swimming and growing bacteria in the pres-
ence of lytic phage in a 2D environment have revealed rich
spatio-temporal patterns that bear similarities to those re-
vealed by our model [10]. In the experiments, the patterns
were characterized by prolonged coexistence of bacteria and
phage, which underwent multiple evolutionary cycles. Given
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that our model does not account for bacteria and phage muta-
tions, it is likely relevant only to short-term patterning, which
could then influence longer-term co-evolution. Nevertheless,
in both the experiments and in our model, when bacterial col-
lective motility exceeds phage diffusivity, aggregates of bac-
teria migrate and are then annihilated by phage; the bacte-
ria then require a “refractory” period to regrow, aggregate,
and collectively migrate once again. This similarity between
our model predictions and experimental observations suggest
the tantalizing idea that some of the patterns observed in ex-
periments might be triggered by a coupling between a posi-
tive feedback loop that promotes bacterial aggregation—such
as MIPS, chemotaxis, or quorum sensing—and a negative
feedback loop induced by the inherently non-reciprocal na-
ture of bacteria-phage interactions. Ultimately, incorporating
mutations into our model and obtaining the spatial patterns
of co-evolved bacteria and phage could provide insights into
bacteria-phage co-evolutionary experiments in extended spa-
tial environments.

Our results are not restricted to the case of bacteria and
phage; they are also relevant to a broader range of active
and living systems that are similarly characterized by non-
reciprocal predator-prey interactions. For example, many
ecological niches are inhabited by predatory bacteria that
prey and feed on other prokaryotic organisms. This is the
case of Myxococcus xanthus, which preys on Escherichia
coli by secreting bacteriocins [122], or Bdellovibrio bacte-
riovorus, which consumes Gram-negative bacteria by using
pili to penetrate into the periplasm, feed and proliferate
in the periplasmic space, and lyse their prey to release
offspring [123]. Our results could inform and motivate
new experiments on such predator-prey systems in extended
spatial environments. On a larger scale, multicellular organ-
isms like fire ants are known to aggregate via a MIPS-like
mechanism in laboratory settings [53], yet the effect of
predator-prey interactions on these aggregation patterns
remains unexplored. By deepening our understanding of how
the interactions between an aggregating prey and its predators
manifest in intricate spatio-temporal patterns, we hope to
inspire and inform experiments in areas as diverse as ecology,
phage-based therapies, and proliferating active matter.
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SUPPLEMENTARY INFORMATION

Estimation of phage infection rate γ. To estimate the rate
at which bacteria lyse due to phage infectivity per phage
density γ, we first solve the steady-state phage diffusion
equation, i.e., Dp∇2p = 0, in spherical coordinates, as-
suming that a bacterium is a perfectly absorbing sphere
of radius Rb. The steady-state phage concentration reads,
p = p∞(1 − Rb/r), where p∞ is a far-field phage con-
centration. The flux of phage at the sphere’s surface reads
j =

∫
A

dADp∇p · n|r=Rb = 4πDpRbp∞, where A is
the sphere’s surface area. Assuming that a single phage
is sufficient to infect and kill a bacterium upon encounter,
the bacterium average radius is Rb ≃ 3µm, and using the
estimate of phage diffusivity in Table S1, we obtain an
infection rate of γ ≃ 9× 10−15 mL phage−1 min−1, in good
agreement with previous calculations [124, 125].

Dimensionless equations. Employing the characteristic
scales given in the Main Text, the dimensionless versions of
Eqs. (1a) and (1b) read:

Bacteria: ∂t̃b̃ = ∇ · (D̃b(b̃)∇b−∇∇2b̃)︸ ︷︷ ︸
Diffusion, MIPS

+ b̃︸︷︷︸
Proliferation

− b̃p̃︸︷︷︸
Infection

,

(S1a)

Phage: ∂t̃p̃ = D̃p∇2p̃︸ ︷︷ ︸
Diffusion

+ β̃b̃p̃︸︷︷︸
Burst

− δ̃p̃︸︷︷︸
Degradation

, (S1b)

where D̃b(b̃) = D̃b,0 exp(−b̃)(1 − b̃/2) is the dimensionless
bacterial effective diffusivity.

Dimensional stability conditions for the bacteria-phage
model. The stability conditions for the linearly-unstable
regimes in dimensional variables read:

Stationary : Dp[Db(b0)]
3 > −27

4
δgκ2 and Dp > −Db(b0),

(S2a)

Dynamic : Dp < −Db(b0), (S2b)

where Db(b0) = Db,0 exp[−δα/(βγ)][1 − δα/(2βγ)] is the
dimensional effective bacterial diffusivity evaluated at the
uniform solution.

Linear stability analysis in limiting cases. Here we ob-
tain the growth rate of small-amplitude perturbations by tak-
ing different limits of the more general dispersion relation,
Eq. (7).

Slow bacterial and phage diffusion. In the limit of slow
bacteria and phage diffusion, i.e., ∇· J̃p, ∇· J̃b → 0, the sys-
tem reduces to the Lotka-Volterra model [56, 57]. Small per-
turbations of bacterial and phage densities do not grow over
time but rather oscillate with a fixed amplitude that depends
on the initial perturbation, which is usually referred to as sta-
ble center in dynamical systems, and implies a purely imagi-
nary growth rate of perturbations, ω̃ = ±i

√
δ̃, or equivalently

ω = ±i
√
δg.

Fast phage diffusion and kinetics. In the limit in which
phage rapidly relax to a stationary state where diffusion and
kinetics are in balance, i.e. ∂t̃p̃ → 0, we obtain the following
growth rate of perturbations: ω̃ = −δ̃/(q̃2D̃p)− q̃2D̃b(b̃0)−
q̃4. As expected from Fig. 2a, the growth rate is purely real,
and long wavelengths are suppressed which implies arrested
coarsening. In the limit δ̃/D̃p → 0, we recover the conven-
tional MIPS growth rate of perturbations, in which perturba-
tions are unstable when D̃b(b̃0) < 0, without oscillations and
with coarsening over time.

Slow phage diffusion. The limit of slow phage diffusion im-
plies D̃p → 0. Taking this limit in Eq. (7) yields the following
perturbation growth rate:

ω =
−q̃2D̃(b̃0)− q̃4 ±

√
(q̃2D̃(b̃0) + q̃4)2 − 4δ̃

2
. (S3)

In this limit, the condition for the system to become unstable
is the same as for conventional MIPS, i.e., D̃b(b̃0) < 0. Addi-
tionally, long-wavelength modes are always unstable. In this
case, certain wavenumbers are also oscillatory as shown by
Fig. 2a in the Main Text, since Im[ω̃] ̸= 0. In particular, some
long wavelengths are unstable and oscillatory, i.e. Re(ω̃) > 0
and Im(ω̃) ̸= 0. Depending on the parameter values, the
wavenumbers that satisfy these two conditions change. In par-
ticular:

If [D̃b(b̃0)]
2 > 8

√
δ̃,

q̃ <

√√√√−D̃(b̃0)−
√

[D̃(b̃0)]2 − 8
√
δ̃

2
, (S4)

while if [D̃b(b̃0)]
2 < 8

√
δ̃,

q̃ <

√√√√−D̃(b̃0) +

√
[D̃(b̃0)]2 + 8

√
δ̃

2
. (S5)

Bacteria that secrete a self-toxin. Some bacteria are known
to secrete self-destructive toxins [72, 73], and more gener-
ally bacteria may toxify their environment with waste prod-
ucts [74]. To unravel if the stationary and dynamic patterns
described in the Main Text are specific to bacteria-phage non-
reciprocal interactions, we investigate a similar model, with-
out phage, but in which bacteria secrete a toxin at rate ν (see
Fig. S1a). The only difference with respect to Eqs. (1) of
the Main Text lies in the term describing phage proliferation,
which is replaced by a toxin production term proportional to
the local density of bacteria only. Thus, the kinetic equations
for bacteria and toxin read:

Bacteria: ∂tb = − ∇ · Jb︸ ︷︷ ︸
Diffusion, MIPS

+ gb︸︷︷︸
Proliferation

− γbc︸︷︷︸
Death

, (S6a)

Toxin: ∂tc = −∇ · Jc︸ ︷︷ ︸
Diffusion

+ νb︸︷︷︸
Production

− δc︸︷︷︸
Degradation

. (S6b)
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Physical parameters Definition Range of values
g Bacteria proliferation rate 0.7 h−1

α Bacteria speed vs. decay rate 10−11 − 10−12 mL cells−1

Db Bacteria diffusivity 102 − 103 µm2 s−1

Dp Phage diffusivity 4 µm2 s−1 [9]
δ Phage decay rate 1.5× 10−3 − 2× 10−2 h−1 [126]
γ Infection rate 10−14 mL phage−1 min−1 [126]
β Phage burst size 50-400 [126]
Dimensionless parameters

β̃ ≡ βγ/(αg) Phage proliferation/Bacterial proliferation 3.9− 310

δ̃ ≡ δ/g Phage decay rate/Bacterial proliferation 2× 10−3 − 3× 10−2

D̃b,0/D̃p ≡ Db,0/Dp Bacterial diffusivity/Phage diffusivity 25− 250

Table S1. Estimates of the parameter values.

In this case, the uniform solution is given by (b0, c0) =
(δg/(νγ), g/γ). Before carrying out a stability analysis, we
reduce the number of parameters via non-dimensionalization.
To this end, we choose tc = g−1, ℓc = (κ/g)1/4, bc = α−1,
and cc = g/γ as characteristic time, length, bacterial density,
and toxin density scales, respectively. The resulting dimen-
sionless equations are:

Bacteria:

∂t̃b̃ = ∇ · (D̃b(b̃)∇b−∇∇2b̃)︸ ︷︷ ︸
Diffusion, MIPS

+ b̃︸︷︷︸
Proliferation

− b̃p̃︸︷︷︸
Death

,

(S7a)

Toxin:

∂t̃c̃ = D̃c∇2c̃︸ ︷︷ ︸
Diffusion

+ ν̃b̃︸︷︷︸
Production

− δ̃c̃︸︷︷︸
Degradation

, (S7b)

whose uniform solution is (b̃0, c̃0) = (δ̃/ν̃, 1). The dimen-
sionless parameters in Eqs. (S7) are:

ν̃ ≡ νγ

αg2
:

Toxin production
Bacterial proliferation

, (S8)

δ̃ ≡ δ

g
:

Toxin decay rate
Bacterial proliferation rate

, (S9)

D̃b,0 ≡ Db,0√
κg

:
Bacterial diffusivity

Bacterial proliferation rate
, (S10)

D̃c ≡
Dc√
κg

:
Toxin diffusivity

Bacterial proliferation rate
. (S11)

We carry out the same linear stability analysis as performed in
the Main Text for the bacteria-phage system. In this case, the
dispersion relation reads:

δ̃ + (ω̃ + δ̃ + D̃cq̃
2)

[
D̃b(b̃0)q̃

2 + q̃4 + ω̃
]

︸ ︷︷ ︸
Conventional MIPS dispersion relation

= 0. (S12)

We first obtain the condition under which the system becomes
unstable, i.e., Re(ω̃) > 0 for some modes:

δ̃ +
(F1 − 2δ̃ − F2)(F1 + δ̃ − F2)(2F1 − δ̃ + F2)

27D̃2
c

< 0,

(S13)

where F1 = D̃b(b̃0)D̃c, and F2 = [F1(F1 − δ̃) + δ̃2]1/2. Fur-
thermore, we find that all unstable modes are non-oscillatory,
i.e., Im(ω̃) = 0, and long wavelengths are stable for all pa-
rameter values, as Re[ω̃(q̃ = 0)] = [(δ̃(δ̃−4))1/2− δ̃]/2 < 0,
implying that coarsening is arrested in the linear regime.

Numerical method. To unveil the full nonlinear behavior of
Eqs. (1), we perform two-dimensional numerical simulations
using the finite-element method. Thus, we write Eqs. (1) in
weak form by means of integral scalar products using test
functions φ̃b and φ̃p, for the bacterial density b̃(r̃, t̃) and
phage density p̃(r̃, t̃) fields, respectively. Using Green identi-
ties, we obtain an integral bilinear system of equations for the
variables and their test functions:

Bacteria:
∫
V

dV ∂t̃b̃ φ̃b −
∫
V

dV Jb · ∇φ̃b+∫
V

dV (p̃b̃− b̃) φ̃b = 0, (S14a)

Phage:
∫
V

dV ∂t̃p̃ φ̃p −
∫
V

dV Jp · ∇φ̃p+∫
V

dV (δ̃p̃− β̃b̃p̃) φ̃p = 0, (S14b)

Bacteria Laplacian:
∫
V

dV (ũbφ̃ub
+∇b̃ · ∇φ̃ub

) = 0

(S14c)

Phage Laplacian:
∫
V

dV (ũpφ̃up
+∇p̃ · ∇φ̃up

) = 0.

(S14d)

Here V is the 2D domain and dV are the surface elements.
We impose periodic boundary conditions for both bacteria
b̃(r̃, t̃) and phage p̃(r̃, t̃). To ensure numerical stability, the
equations are discretized in space using second-order La-
grange polynomials and triangular elements for the fields, and
evolved in time through a 4th-order variable-step backward
differentiation formula method. The relative tolerance of the
nonlinear method is always set below 10−6.

Characteristic length scale of the patterns. We obtain the
characteristic length scale of the emergent patterns over time
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Fig. S1. Bacteria-toxin interactions give rise to stationary patterns. a. Sketch of the main elements of the model. Bacteria proliferate at a
rate g. Bacteria secrete a toxin at a rate ν that kills bacteria at a rate γ. Toxin decays at a rate δ. b. Linear stability phase diagram as a function
of the dimensionless toxin diffusivity D̃c and toxin decay rate δ̃, for dimensionless toxin-production-to-bacteria-proliferation ratio ν̃ = 2 and
bacterial diffusivity D̃b,0 = 300. c. Two-dimensional plots of the bacterial density b̃(r̃, t̃) at steady state for different regions of the linear
stability phase diagram of panel b as indicated with symbols.

from the structure factor as [127–129]:

R̃(t̃) =

∫
dq̃S̃(q̃, t̃)∫

dq̃S̃(q̃, t̃)q̃
, (S15)

where S̃(q̃, t̃) = |∆˜̂
b(q̃, t̃)|2 is the structure factor of the

bacterial amplitude profile ∆b̃ = b̃ − b̃0, and ∆
˜̂
b(q̃, t̃) is its

Fourier transform.

Characterization of spatio-temporal chaos. Well inside the
critical boundaries of the region of dynamic instability shown
in Fig. 2a, the patterns that emerge are highly disordered
and irregular in space and time (Fig. 2c and e, and Fig. 3c).
This observation hints that the system could potentially ex-
hibit chaotic dynamics. To test this hypothesis, we compute
the maximum Lyapunov exponent λ of the bacterial density
fluctuations at different locations in space for the simulation
shown in Fig. 2e over a duration of 0 ≤ t̃ ≤ 5000; this quan-
tity provides a measure of the system’s sensitivity to small
perturbations, with a positive value implying chaotic behav-
ior. Indeed, as shown in Fig. S2a, we find that the Lyapunov
exponent is positive in all spatial locations. As an additional
characterization of these chaotic dynamics, we follow previ-
ous work [130] and compute the temporal correlation function
of the bacterial density fluctuations, also for the simulation
shown in Fig. 2e:

C̃r̃0(δr̃, δt̃) =

∫ T̃

0
dt̃ b̄(r̃0, t̃)b̄(r̃0 + δr̃, t̃+ δt̃)∫ T̃

0
dt̃ b̄(r̃0, t̃)2

, (S16)

where b̄(r̃0, t̃) = b̃(r̃0, t̃)−
1

T̃

∫ T̃

0

dt̃ b̃(r̃0, t̃), (S17)

T̃ is the temporal window over which C̃r̃0
is computed, and

r̃0 is an arbitrary point in space at which the correlation

function is centered. The azimuthally-averaged correlation
function C̃r̃0

is shown in Fig. S2b, which shows that density
correlations die away rapidly.
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Fig. S2. Bacteria-phage dynamic patterns are chaotic. a, Max-
imum Lyapunov exponent λ of the bacterial density fluctuations
at different locations in the 2D space for the simulation shown in
Fig. 2e. b, Azimuthally-averaged correlation function C̃r̃0(δr̃, δt̃)
of the bacterial density fluctuations as a function of the radial coordi-
nate r̃ at different time differences δt̃, computed at r̃0 = (L̃/2, L̃/2)

and over a time window of T̃ = 1000.

Parameter values of Supplementary Movies. The physi-
cally reasonable parameter values used in the simulations cor-
responding to Movies 1-10 are D̃b,0 = 300, β̃ = 2 and:

• Movies 1 and 2: D̃p = 10, δ̃ = 6.66.

• Movies 3 and 4: D̃p = 1, δ̃ = 6.66.

• Movies 5 and 6: D̃p = 1, δ̃ = 9.5.

• Movies 7 and 8: D̃p = 1, δ̃ = 5.
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• Movies 9 and 10: D̃p = 0.05, δ̃ = 6.66.

• Movies 11 and 12: D̃p = 1, δ̃ = 14.

• Movies 13 and 14: D̃p = 1, δ̃ = 16.

In all simulations the dimensionless size of the 2D domain
is set to L̃ = 50, except otherwise specified in the filename.
In the simulations corresponding to Movies 11-14, where we
show that the system exhibits excitability, instead of initially
perturbing the uniform solution with small-amplitude white
noise, we introduce a Gaussian perturbation at the center of

the 2D spatial domain with amplitude Ã = 4 and variance
σ̃ = 5:

b̃(r̃, t̃ = 0) = b̃0 + Ãf̃(r̃), (S18)

p̃(r̃, t̃ = 0) = p̃0 + Ãf̃(r̃), (S19)

where: f̃(r̃) = exp

[
− (x̃− L̃/2)2

2σ̃2
− (ỹ − L̃/2)2

2σ̃2

]
.

(S20)

The Supplementary Movies can be found at the following
Zenodo repository: https://doi.org/10.5281/zenodo.
8361388
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Fig. S3. MIPS and non-reciprocal predator-prey relations can
give rise to complex stationary patterns. Two-dimensional plot
of the bacterial and phage densities at steady state, for a linearly-
unstable non-oscillatory case close to the critical boundary in Fig. 2a,
where δ̃ = 10.75 and D̃p = 10. Bacteria and phage coexist in a
network of interconnected stripes.
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