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Abstract

Brains comprise complex networks of neurons and connections.
Network analysis applied to the wiring diagrams of brains can of-
fer insights into how brains support computations and regulate
information flow. The completion of the first whole-brain con-
nectome of an adult Drosophila, the largest connectome to date,
containing 130,000 neurons and millions of connections, offers an
unprecedented opportunity to analyze its network properties and
topological features. To gain insights into local connectivity, we
computed the prevalence of two- and three-node network motifs,
examined their strengths and neurotransmitter compositions, and
compared these topological metrics with wiring diagrams of other
animals. We discovered that the network of the fly brain displays
rich club organization, with a large population (30 % percent of the
connectome) of highly connected neurons. We identified subsets of
rich club neurons that may serve as integrators or broadcasters of
signals. Finally, we examined subnetworks based on 78 anatomi-
cally defined brain regions or neuropils. These data products are
shared within the FlyWire Codex and will serve as a foundation for
models and experiments exploring the relationship between neural
activity and anatomical structure.

Drosophila melanogaster | connectomics | brainwide network analysis
Correspondence: mmurthy@princeton.edu

Introduction

Mathematical network theory has been applied to connectomes
at multiple scales (from detailed synaptic-resolution wiring dia-
grams to putative connectivity between brain regions) to under-
stand brainwide organization (1-7). Network analyses quantify
the interconnectivity and robustness of a network(8—10), and
can identify highly connected nodes in the brain that may act
as hubs (11). Such analyses can also serve as a basis for com-
parison across brain regions, individuals, developmental stages,
or species, enabling researchers to uncover commonalities and
differences in brain organization.

Mesoscale connectomes have been constructed for the
brains of humans and other mammals from, for example, MRI
and MEG data, which assess connectivity at millimeter scale
(1, 12-15), relying on functional correlations in activity to in-
fer mesoscale connectivity. Rich club organization has been ob-
served in several mesoscale connectomes, including Drosophila

(16, 17), humans, and other mammals (3, 4, 14). It has been sug-
gested that such a network architecture contributes to the ability
of brains to efficiently integrate and disseminate information.

Advancements in electron microscopy and dense volumet-
ric reconstruction have enabled researchers to examine increas-
ingly larger brain networks at the microscale. These methods
do not make assumptions about the relationship between neu-
ron connectivity and functional correlations. In network analy-
ses performed at the microscale, nodes and edges can be directly
related to neurons and synaptic connections. For instance, in the
rich club regime observed in the C. elegans connectome, many
rich club neurons are known to be important in motor control
(2, 18, 19). Recurring patterns of connectivity between neu-
rons, known as network motifs, have been proposed as “build-
ing blocks" of networks (20, 21), and their prevalence in neu-
ronal networks has been studied to uncover organizational prin-
ciples of neural networks (2, 5-7, 22-24). Specific motifs such
as reciprocal connections (2, 6, 7, 19, 25), feedforward loops
(2,22, 23), and 3-unicycles (7, 26) have received significant at-
tention in neuroscience because of their implications for local
computation and information flow.

In this study, we characterize the network properties of
the FlyWire synapse-resolution connectome, the first complete
wiring diagram of an adult fly brain (27-30). We explore the
interconnectivity of the brain, including path lengths between
neurons, frequently traversed neural sub-populations, motif fre-
quencies, and more. We draw statistical comparisons between
the network of the fly brain and other biological wiring dia-
grams. We find that the fly brain has rich club organization and
examine several sub-populations of these well-connected neu-
rons, including those which may act as integrators or broadcast-
ers of signals. Finally, we uncover differences in connectivity
between 78 anatomically defined brain regions. The data de-
rived in this work offer a quantitative summary of the network
of the adult fly brain, and lay the groundwork for future studies
exploring connectivity in the fly. They also serve as a valu-
able foundation for future experimental and theoretical work. A
summary of computed statistics and neuron populations can be
found in Table 1.
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Computed network statistics

Connected strongly connected components Figure 1d
components weak connected components Figure 1e
Path length directed shortest path lengths Figure 1d
analysis undirected shortest path lengths Figure 1e
Survival neuron removal survival curves Figures 1f-g, S2a-d
analysis edge removal survival curves Figure S1a
total degree rich club Figures 1h, 4, S4
Rich-club . . .
analysis in-degree rich club Figure S2e
out-degree rich club Figure S2e
Small-word clustering coefficient Table 2
analysis small-wordness Equation 1
Large-scale degree distribution Figure 1c
connectivity cell categories Figure 4
Spectral forward random walk Figure S1f
analysis reversed random walk Figure S1g
reciprocity Table 2
2;:?):;:" connection strength Figures 2a,d, S3a,c
neurotransmitter types Figures 2c,e-f, S3b,d
motif frequencies Figure 3a
3;:2:;:" motif strength Figure 3b
neurotransmitter types Figures 3c-e
internal/external connection weights Figure S4
. reciprocity Figures 5, S6, S7
Neuropils 3-neuron motifs Figures 6, C8

inter-neuropil reciprocal connections Figures 5h, S7e-f

Neuron lists available on Codex # of neurons

2-neuron reciprocal connection

o
motifs participants 0 ﬂ 77,607
feedforward loop @
L 113,978
rt t ’
3-neuron participants B ‘t'. v
motifs . «
3-unicycle
participants ﬂ Jq—. Y 66,835
highly reciprocal K 2183
neurons
N-neuron !
motifs  neuropil-specific highly
reciprocal neurons K 704
(NSRNs) *
rich-club neurons ?&:& 40,218
Rich-club
analysis broadcasters 676
w4
integrators 43‘( 638
attractors lﬂ;\ 3,469
Spectral
analysis
repellers ‘ ; 3,469

Table 1. Data availability. List of data products in this work, including statistics computed in this paper (left) and neuron populations (right). Complete, interactive neuron lists are
available online as “Connectivity Tags” on Codex (codex . flywire.ai). Definitions for each of these neuron populations can be found in the text, and in Table S1.

Results

Summary of the dataset and definitions

To perform large-scale network analyses, we summarized the
synaptic connections between neurons into the following data
structure. For each pair of neurons, we sum the total num-
ber of synaptic connections to return the weight of their con-
nection. Repeating for all neuron pairs gives us a weighted
graph describing the connectome, with 127,978 neurons and
2,613,129 total thresholded connections, representing the com-
plete Drosophila brain (28) (Figure 1a, Methods). In this pa-
per, we will be using the term “connection” to denote an edge
that exists in the network between two neurons, consisting of
one or more synapses. The synapses in this dataset were de-
tected automatically (31, 32). To minimize the impact of spuri-
ous synapses, we applied a threshold of 5 synapses per connec-
tion for all of the analyses conducted in this study, unless oth-
erwise noted (Methods). The exceptions are the distribution of
synapses per connection, which is presented without threshold
(Figure 1b), and controls to confirm that our qualitative obser-
vations are robust to threshold choice (Figure S1b-c, Table S2).
We will be using synapse count as a proxy for edge strength in
this paper: “stronger’” and “weaker” will refer to higher or lower
synapse counts, respectively.

The FlyWire connectome also contains synapse-level neu-
rotransmitter predictions (33). The classifier applied to the
dataset discriminates between six neurotransmitters: the fast-
acting classical neurotransmitters acetylcholine (ach), GABA
(gaba), and glutamate (glut) and the monoamines dopamine
(da), octopamine (oct), and seratonin (ser). In the Drosophila
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nervous system, acetylcholine is excitatory and GABA is in-
hibitory. Glutamate can be either excitatory or inhibitory, but
within the brain of the fly it has largely been observed to be
inhibitory (34-36).

A key characteristic of the network is the distribution of de-
grees, which reflects the amount of connectivity between neu-
rons. For any given neuron, the in-degree is defined as the num-
ber of presynaptic neurons (neurons it receives inputs from), and
the out-degree is defined as the number of postsynaptic neurons
(neurons it sends outputs to). With a threshold of 5 synapses per
connection, the average in/out-degree of an intrinsic neuron in
the brain is 20.5 (28), but the distributions of in-degree and out-
degree are not highly correlated (Pearson R = 0.76, p < 0.001)
(Figure 1c). On average, each connection in the brain consists
of approximately 12.6 synapses after the threshold is applied
(28). Across the connectome, the probability that any two neu-
rons is connected is 0.000161. This makes the wiring diagram
of the fly brain a very sparse matrix when compared to, for ex-
ample, the C. elegans nervous system or the partial wiring di-
agrams of brain regions of larval zebrafish and mouse (Table
2). This sparsity is due in part the size of the fly brain. The
connection probability is highest among neurons whose arbors
are close to each other. Over 71% of connections occur be-
tween neuron pairs located within 50 microns of each other, de-
spite these pairs constituting less than 3% of the total number
of pairs. (Figure S1d). We note, however, that even in the close
regime the connection probability in the fly remains lower than
what has been observed in other wiring diagrams. The long-
range sparsity is partially a consequence of the segregation of
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Figure 1. Whole-brain network properties. (a) The FlyWire dataset (27, 28, 30) is an EM reconstruction of the complete brain of an adult female Drosophila melanogaster, with
both hemispheres of the brain and both optic lobes. The volume contains 127,978 neurons and 32 million synapses with a threshold of 5 synapses/connection applied
(subsample of synapse locations shown in the inset). (b) The distribution of the number of synapses per connected neuron pair. (¢) The in-degree (number of presynaptic
partners) plotted against the out-degree (number of post-synaptic partners), with log-scale x and y-axes. (d) Strongly connected components (SCCs) consist of a subset of nodes
in a network which are mutually reachable via directed edges. In the fly brain there exists one giant SCC containing 93.3% of all neurons after thresholding at 5 synapses per
connection. The distribution of shortest path lengths between neuron pairs within this SCC is plotted. (e) Weakly connected components (WCCs) consist of a subset of nodes in
a network which are mutually reachable, regardless of edge direction. In the fly brain there exists one giant WCC containing 98.8% of all neurons. The distribution of path lengths
between neuron pairs within this WCC is plotted. (f) We examine the role high-degree neurons play in connecting the brain by plotting the sizes of the first two strongly connected
components (SCCs) as nodes are removed by total degree (2500 neurons per step). Removal of neurons starting with those with largest degree results in the brain splitting into
two SCCs when neurons of approximately degree 50 start to be removed, a deviation from when neurons are removed in a random order (dotted lines). The largest surviving total
degree as a function of the number of remaining nodes is plotted in gray. (g) Removal of neurons starting with those with smallest degree results in a single giant SCC until all
neurons are removed (2500 neurons per step). The smallest surviving total degree as a function of the number of remaining nodes is plotted in gray. (h) The relative rich club
coefficient as a function of total degree, computed relative to CFG null models. The range over which the relative rich club coefficient is greater than 1.01 is 37 to 93. We take all
neurons with total degree > 37 to be within the rich club regime.

the neurons of the Drosophila brain into a large number (78) of  connected components (WCCs), a relaxed criterion in which all
brain regions (neuropils), and we further investigate connectiv-  neurons within a WCC are mutually reachable, ignoring the di-
ity within neuropils below (Figures 5-6, S5-S8). rectionality of connections.

Despite its sparsity, the brain is highly connected under ei-
Neurons in the brain form a single connected component  ther criteria — 93.3% of neurons are contained in a single SCC,
To assess the interconnectivity of the neurons in the brain, we ~ while 98.8% of neurons are contained in a single WCC (Figure
searched the connectome for connected components using two ~ 1d-e). These giant connected components, which contain the
sets of criteria. First, we looked for strongly connected compo- ~ overwhelming majority of neurons in the brain, persist when ei-
nents (SCCs). All neurons within an SCC are mutually reach-  ther the strongest connections or the weakest connections are
able via directed pathways (37). Second, we looked for weakly ~ pruned (Figure Sla-b), indicating that connectivity in the brain
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is robust: many paths connect neuron pairs. We will refer to
these extremely large connected components as the giant SCC
and giant WCC, respectively. Within the giant SCC, the aver-
age shortest directed path length between neuron pairs is 4.42
hops, with every neuron reachable within 13 hops (Figure 1d).
In the giant WCC, the average shortest undirected path length
between neuron pairs is 3.91 hops, with every neuron reachable
within 11 hops (Figure 1e). These numbers are comparable to
those found in a similar analysis of the hemibrain dataset (38).
The short path lengths within both connected components show
that despite its size, the fly brain is still relatively shallow when
compared to artificial networks (39).

Is the high interconnectivity observed in the fly brain a con-
sequence of a relatively large number of interconnected neu-
rons, or is it dependent on a small number of very highly con-
nected “hub" neurons? To assess this, we constructed survival
curves, observing for how long the connected components of the
network persist when neurons are removed from the network.
Here, we plot the sizes of the two largest SCCs as we remove
neurons from the directed network, starting with those of largest
total degree (Figure 1f). We find that the first giant SCC persists
until a total degree of 50, at which point the network splits into
two SCCs of roughly equal size. These two SCCs correspond to
a split between the left and right hemispheres, and demonstrate
that despite the hemispheric anatomy of the brain, the two hemi-
spheres are highly interconnected: they do not split into separate
networks until about 60% of all neurons are removed. Remov-
ing neurons from the network by smallest total degree does not
result in division of the first giant connected component (Figure
1g). This indicates that the interconnectivity of the brain is ro-
bust, and not dependent on a small number of highly connected
neurons. We observe similar behavior in the WCCs when re-
moving neurons from the undirected network (Figure S2a-b).
These results also remain qualitatively consistent when neurons
are pruned in either the directed or undirected network by either
in-degree or out-degree alone (Figure S2c-d).

The SCC criteria is more biologically realistic, since con-
nections between real neurons are directed. Note, however, that
the similarities in size and path length distribution between the
first SCC and first WCC indicate the prevalence of recurrent
connections in the brain. In a mostly feedforward network, one
would expect a smaller SCC with longer path lengths. This is
not what we observe in the fly brain—instead, across the pop-
ulation of all neuron pairs, the distribution of shortest directed
path lengths is comparable to the distribution of shortest undi-
rected path lengths.

Spectral analysis of the whole-brain network

To better understand the network topology of the brain, we per-
formed a spectral analysis of a random walk in the giant SCC.
In this random walk, the transition probability from neuron «
to neuron S is po—, 8 = da—8/dy , Where d; is the out-degree
of neuron «, and 04,3 € {0,1} indicates the existence of a
connection. Such a random walk converges to a stationary dis-
tribution over all neurons in the giant SCC (Figure S1f). We
found that in this random walk, 3% of neurons were visited
61.2% of the time—the remaining 97% of neurons were visited
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only 38.8% of the time. These top visited neurons can therefore
be classified as attractor nodes (40) in the network. These at-
tractor nodes typically make connections in the gnathal ganglia
(GNG), a large midline neuropil which both sends and receives
information from the periphery and contains a large number of
neurons that connect to the ventral nerve cord (VNC).

We also performed a “reverse” walk within the giant SCC,
reversing edge directionality so that the transition probability
from neuron o to neuron 3 is pis*, 5 = dps0/dY, where df is
the in-degree of neuron o. The reversed walk also converges
to a stationary distribution in which 3% of neurons were visited
42.4% of the time (Figure S1g). These highly visited neurons in
a reverse random walk are repeller nodes in the network. Many
of these neurons make synapses in the antennal lobes (AL) and
medullae (ME), brain regions close to the olfactory and visual
periphery, respectively. This suggests that these neuropils en-
gage in local (rather than integrative) computations.

The fly brain has a large rich club

Many networks exhibit the “rich club” property (3, 11, 18),
in which well connected nodes are preferentially connected to
other well connected nodes (see Methods). We find that there
exists a rich club regime in the FlyWire connectome, in which
neurons are more highly interconnected than one would expect
from a randomly connected network (Figure 1h). We will take
this cutoff to be a total degree of 37, though we note that the ex-
act choice of rich club cutoff is arbitrary (Methods). This large
rich club regime contains 40,218 neurons, approximately 30%
of all neurons in the brain. The connection probability within
this rich club is 0.000870, 5.4 times higher than the overall con-
nection probability in the brain. Such a large rich club suggests
that the topology of the fly wiring diagram is fairly distributed.
This is consistent with the connected component observations,
which also suggest a degree of robustness. A rich club analy-
sis considering in-degree alone returns an in-degree threshold of
10, while no rich club is observed when considering out-degree
alone (Figure S2e).

The fraction of neurons in the rich club regime in the fly is
substantially larger in the fly than in C. elegans, which has a
rich club of 11 neurons (4% of the neurons in the worm) (18).
We caution that this difference in rich club size is sensitive to
the criteria used to determine the rich club cutoff, and may also
be a consequence of the different scales of these two networks.
Nonetheless, it is interesting to note that while the worm rich
club contains known hub neurons, such as the command neu-
rons AVA and AVB, such highly connected hub neurons do not
seem to be present in the fly brain—while there are neurons with
very high degrees, there also exist alternate paths between most
neuron pairs. We further examine the properties of this large
rich club population in the section: Large-scale connectivity
in the brain.

Reciprocal and recurrent motifs are over-represented in
the brain

Connection reciprocity is a measure of the amount of direct
feedback in the brain: given that neuron « is connected to neu-
ron 3, what is the probability that neuron /3 is connected back to
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neuron «? Across the whole brain, this connection reciprocity
probability is 0.138 (Table 2). The connection reciprocity in the
brain is significantly higher than in both the Erd6s-Rényi (ER)
and configuration (CFG) random null models (Methods). The
over-representation of reciprocal connections in brains relative
to null models is well established, and our results are consistent
with previous observations both in Drosophila (38, 41, 42) and
in other species (2, 6, 19, 22, 23, 43).

We also computed the clustering coefficient, a higher-order
connectivity metric which assesses the prevalence of triplet
structures in the network irrespective of edge direction: if neu-
ron « and neuron J are connected and neuron « and neuron 7y
are connected, what is the probability that neuron 5 and neuron
~ are also connected? The clustering coefficient in the brain is
0.0477 (Table 2). As was the case with reciprocity, this value
of clustering coefficient is higher than in both ER and CFG null
models. The high clustering coefficient demonstrates that the
network of the fly brain is highly connected and is nonrandom
in its structure.

We compared these metrics with two existing whole-animal
connectomes, the hermaphrodite and male C. elegans (2, 19,
44), and with two sub-volume wiring diagrams, the hindbrain
of a larval zebrafish (7) and a region of L2/3 mouse visual cor-
tex (6) (Table 2). Despite differences in sparsity of the different
brain networks, the values of reciprocity and clustering coeffi-
cient are comparable across all five datasets.

The fly brain is physically much larger than other previously
studied biological networks, such as those in C. elegans, and it
is divided into distinct brain regions. However, ER and CFG
null models do not contain any spatial information, instead as-
suming that any neuron pairs may randomly connect. We there-
fore constructed a spatial null model to account for some of
the physical constraints. Informed by the distribution of con-
nections as a function of distance, we built a two-zone spatial
null model, where the probability of randomly forming a con-
nection between neurons is dependent on the distance between
them (Figure Sle) (Methods). We computed the reciprocity
and clustering coefficient for the spatial null model and found
that reciprocity and clustering coefficient in the real network
were also higher than this null model, suggesting that the non-
random nature of connectivity in the fly is not solely a conse-
quence of spatial or morphological constraints.

We note that interpretations of these direct comparisons of
metrics across different datasets should be made with caution.
While the fly and worm datasets represent complete brains and
nervous systems, respectively, the zebrafish and mouse datasets
are derived from brain sub-volumes, with order 100s of neu-
rons. Because many neurons in the fish and mouse sub-volumes
are truncated, measures of reciprocity and clustering coefficient
are incomplete. Additionally, differences in synapse detection
and synapse thresholding will impact topological metrics such
as connection probability and reciprocity. While connectomes
in C. elegans have been proofread to the level of individual
synapses (2, 25, 44), it is not feasible to manually proofread ev-
ery synapse in larger connectomics datasets such as Drosophila.
Varying the synapse threshold in the fly did not significantly
alter reciprocity and clustering coefficient values (Figure Slc,
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Table S2).

Small-worldness of the fly brain

A “small-world” network is one in which nodes are highly clus-
tered and path lengths are short (10). High small-worldness co-
efficients are associated with efficient communication between
nodes (45, 46). We quantified the small-worldness of the con-
nectome by comparing it to an Erdés-Rényi (ER) graph (47).
The average undirected path length in the ER graph, denoted as
lrand, 18 estimated to be 3.57 hops, similar to the observed aver-
age path length in the fly brain’s WCC ({ops = 3.91). The clus-
tering coefficient (Cr%nd) of the ER graph is only 0.0003, much
smaller than the observed clustering coefficient (C'3, = 0.0463)
(Table 2, Methods). The small-worldness coefficient of the fly
connectome is:
A C(?bs/ C’rénd
5 Eobs/érand 1417 (1)

significantly higher than that of the C. elegans connectome
(S2 =3.21) and close to that of the internet (S2 = 98.1) (10),
implying highly effective global communication among neu-
rons in the brain.

Strength and neurotransmitter composition of reciprocal
connections

The average strength of edges participating in reciprocal con-
nections is higher than the average strength of unidirectional
connections (Figure 2a). The majority of unidirectional con-
nections are cholinergic (excitatory), while edges participat-
ing in reciprocal connections contain fewer cholinergic neu-
rons and more GABAergic neurons (Figure 2b). Inhibitory
connections in the brain have more synapses on average than
excitatory connections (28), which may partially explain the
higher average strength of reciprocal connections. The most
common reciprocal pairing is between a cholinergic neu-
ron and a GABAergic neuron and the second most com-
mon pairing is acetylcholine-glutamate (Figure 2c¢). Both
of these reciprocal motifs are excitatory-inhibitory (E-I), and
both are over-represented when compared to the neurotrans-
mitter frequencies observed for reciprocal connections (Figure
2b). Excitatory-excitatory (E-E) acetylcholine-acetylcholine
pairs are in contrast under-represented, as are inhibitory-
inhibitory (I-[) GABA-GABA pairs. We observed reciprocal
E-I (acetylcholine-GABA and acetylcholine-glutamate) con-
nection strengths to be only weakly correlated, while E-E
(acetylcholine-acetylcholine) pairs were uncorrelated (Figure
2d). Examples of reciprocal neuron pairs are shown in Figure

2g.

Reciprocal degree across the neuronal population

Of the 127,978 neurons in the whole brain, 77,607 participate
in at least one reciprocal connection: approximately 2 in every
3 neurons, even with the synapse threshold we applied (Meth-
ods). Many neurons participate in multiple reciprocal connec-
tions. To characterize these neurons, we define the reciprocal
degree as the number of reciprocal connections made by a given
neuron (Figure S3a). Plotting the distributions of reciprocal
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Fly
Drosophila melanogaster

Neuronal (Dorkenwald et al., 2023)

wiring diagrams

.

Network size
00
()

127,978 neurons
2,613,129 connections

Avg. connection strength
9 g 12.61 synapses

o=s0 5~ 2358
Connection probability
a._ 0 B 0.000160
Pr x1
Connection reciprocity 0.138
o x858 than ER
.:;’ p x43.8 than CFG

x45.9 than spatial model

Clustering coefficient
0.0463
x144 than ER
x7.57 than CFG
x10.9 than spatial model

(0%

b @97

Nematode
Hermaphrodite C. elegans
(Cook et al., 2019)

302 neurons
3,242 connections

3.15 synapses
1~36

0.0356
x222 denser than fly

0.372
x10.4 than ER
x5.03 than CFG

0.284
x4.06 than ER
x1.86 than CFG

Nematode
Male C. elegans
(Cook et al., 2019)

7 ;\,,,/T

364 neurons
3,467 connections

3.59 synapses
1~63

0.0262
x164 denser than fly

0.386
x14.7 than ER
x6.02 than CFG

0.331
x6.39 than ER
x2.40 than CFG

Zebrafish (sub-vol.)

Larval Danio rerio (hindbrain)

(Yang et al., 2023)
[}

419 neurons
5,605 connections

1.69 synapses
1~21

0.0320
x200 denser than fly

0.113
x3.53 than ER
x2.64 than CFG

0.182
x2.89 than ER
x1.90 than CFG

Mouse (sub-vol.)
Mus musculus (V1 L2/3)
(Turner et al., 2022)

g

111 neurons
659 connections

1.14 synapses
1~5

0.0540
x360 denser than fly

0.088
x1.63 than ER
x1.33 than CFG

0.159
x1.51 than ER
x1.06 than CFG

Table 2. Connection probabilities, reciprocity, and clustering coefficient in the fly brain. The probability that any two neurons in the fly brain are connected is 0.000160.

Connection reciprocity (the probability that two connected neurons are reciprocally connected) in the fly is 0.138, larger than in either an ER, CFG, or spatial null model
(Methods) with the same sparsity. The clustering coefficient (the probability that if neuron « and neuron 3 are connected and neuron « and neuron ~ are connected, then
neuron 3 and neuron ~ are also connected, irrespective of directionality) in the fly is 0.0463. Both reciprocity and clustering coefficient are higher than expected with ER, CFG,
and spatial null models. Values for thresholds from 0 to 50 are plotted in Figure S1c. Statistics for C. elegans were computed for the chemical networks of neurons in
hermaphrodite and male worms (19). Statistics for larval zebrafish hindbrain (7) and mouse visual cortex (6) were computed excluding any truncated neurons.

degree by neurotransmitter, we observe that the overwhelming
majority of neurons with high reciprocal degree (d"*° > 100)
are GABAergic (Figures 2e, S3b), while at lower reciprocal
degrees (d™° < 100), all three primary neurotransmitter types
are well represented.

What fraction of a neuron’s connections are reciprocal?
Note that here, we are not considering reciprocity between cell
types, but rather between pairs of individual neurons. For most
neurons these fractions are low—on average 23% of incoming
and 18% of outgoing connections are reciprocal. Plotting the
fraction of reciprocal incoming connections against the fraction
of reciprocal outgoing connections, we observe only a weak cor-
relation (Figure S3c), suggesting that a given neuron’s recipro-
cal degree is not strongly coupled to either its in-degree or its
out-degree. Comparing the number of reciprocal connections
neurons make to the total number of connections they make
by plotting 2x the reciprocal degree against the total degree
of neurons (in-degree + out-degree), we again see no relation-
ship (Figure 2f). Dividing the neuron population by neurotrans-
mitter, however, we find that neurons of high total degree are
mostly GABAergic, and that for many of these neurons, more
than half of their total connections are reciprocal (Figure S3d).
Many of these highly reciprocal neurons provide feedback inhi-
bition within specific neuropils (Identifying neuropil-specific
reciprocal neurons). Examples of neurons which form recip-
rocal connections are shown in Figure 2g.

Strength and neurotransmitter composition of three-
node motifs

The high clustering coefficient of the brain implies an over-
representation of triplet structures. We determined the fre-
quency at which each of the 12 directed three-node motifs oc-
cur in the brain (Figure 3a). Feedforward motifs (motifs #1-3)

Lin, Yang etal. | Network Statistics of the Whole-Brain Connectome of Drosophila

are under-represented when compared to both ER and CFG null
models, while all others, including the highly recurrent motifs
(motifs #7-13), are over-represented. The strengths of edges
participating in 3-node motifs are higher than the average edge
strength (Figure 3b). Complex 3-node motifs which contain re-
ciprocal connections tend to be stronger than feedforward mo-
tifs.

Examining the neurotransmitter composition of two of
these three-node motifs, feedforward loops (motif #4) and 3-
unicycles (motif #7) (Figure 3c), we found that edges which
participate in feedforward loops were predominantly choliner-
gic, and that the most common neurotransmitter composition
for a feedforward loop is three cholinergic neurons, a feed-
forward excitatory configuration (Figure 3d). The next most
common compositions contain either one or two inhibitory
(GABAergic or glutamatergic) edges. Feedforward loops with
one inhibitory edge are likely feedforward inhibition motifs,
while loops with two inhibitory edges are likely disinhibition
motifs. 3-unicycles in contrast contain a higher proportion of
inhibitory GABAergic and glutamatergic neurons, and the three
most common 3-unicycle compositions all contain at least one
inhibitory neuron (Figure 3e). These cycles may act as indirect
feedback inhibition circuits. It is interesting to note that the ob-
served neurotransmitter composition frequencies are closer to
what may be expected by chance for feedforward loops than
they are for 3-unicycles. Examples of neurons which form 3-
node motifs are shown in Figure 3f.

The fly brain exhibits a high clustering coefficient and an
over-representation of highly connected 3-neuron motifs. These
observations suggest that the local structure of the brain displays
a high degree of non-randomness, in line with previous studies
in C. elegans (2, 19) and in mouse cortex (6, 22, 23). The over-
representation of feedforward loops (motif #4) has been widely
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Figure 2. Characterizing reciprocal connections in the brain. (a) Edges that are part of reciprocal connections (reciprocal edges) are stronger on average than unidirectional
connections. (b) Breakdown of unidirectional and reciprocal edges by neurotransmitter. Unidirectional connections are most likely to be cholinergic. Reciprocal connections are
more likely than unidirectional connections to contain a GABAergic neuron. (¢) The frequency of neurotransmitter pairs forming reciprocal connections, compared to the expected
frequency of neurotransmitter pairs under the assumption of independent neurotransmitter choice (red). A majority of reciprocal connections are formed by acetylcholine-GABA
pairs. The next most common reciprocal connection type is acetylcholine-glutamate, with acetylcholine-acetylcholine pairs under-represented. (d) Heatmaps of the relative
strengths (synapse counts) of the two connections forming acetylcholine-GABA reciprocal pairs (left), acetylcholine-glutamate reciprocal pairs (center), and
acetylcholine-acetylcholine reciprocal pairs (right). The strengths of the edges of reciprocal pairs are uncorrelated. Excitatory-inhibitory pairs (acetylcholine-GABA and
acetylcholine-glutamate) have higher average strengths than excitatory-excitatory (acetylcholine-acetylcholine) pairs. (e) Distributions of reciprocal degree (the number of
reciprocal connections a given neuron makes) for cholinergic neurons (left), GABAergic neurons (middle), and glutamatergic neurons (right). GABAergic neurons are more likely
to make large numbers of reciprocal connections, while cholingeric neurons are more likely to have smaller numbers of reciprocal connections. (f) Scatterplot of 2 times the
reciprocal degree of neurons versus their total degree (in-degree + out-degree). Dotted lines indicate a factor of 2 around the = = y line. Large neurons for which reciprocal
connections form the majority of their total connections are most likely to be GABAergic. (g) Visualizations of exemplar reciprocal neuron pairs. Cell labels are listed where

available.

observed in other biological networks, such as in rat cortex and
C. elegans (2, 19, 22, 23). This over-representation is present
in most neuropils in the brain. It is possible that these feed-
forward loops, which are predominantly excitatory, may form
large-scale feedforward structures which span brain regions. 3-
unicycles (motif #7) may form recurrent local circuits capable
of generating persistent oscillatory neural activity (7).

Large-scale connectivity in the brain

Within the adult brain, the in-degree and out-degree of neurons
are not tightly correlated. Neurons with few inputs and many
outputs may serve as broadcasters of signals, while those with
many inputs and few outputs may act as integrators. To examine

Lin, Yang etal. | Network Statistics of the Whole-Brain Connectome of Drosophila

these populations of neurons, we divided the intrinsic rich club
neuron population into three categories based on their in-degree
and out-degree (Figure 4a). We divided the rich club neurons
by defining broadcaster neurons as those for which out-degree
> 5x in-degree, and integrator neurons as those for which in-
degree > 5x out-degree. The boundaries defining broadcaster
and integrator neurons are arbitrary, and intended to aid in com-
parisons of neurons with unbalanced inputs and outputs. In the
FlyWire connectome we find 676 broadcasters and 638 integra-
tors. The remaining intrinsic rich club neurons (37,093) fall into
the balanced category (Region 3), including most highly recip-
rocal neurons. Some examples of broadcasters, integrators, and
balanced neurons are shown in Figure 4d.

bioRxiv | 7

418

419

420

421

422

423

424

425

426

427

428

429

430


https://doi.org/10.1101/2023.07.29.551086
http://creativecommons.org/licenses/by-nd/4.0/

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.29.551086; this version posted February 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

a Motif counts
1 /\ 85,974,207 X Counts/ER X X
2 /N 117,225,698 10°-| | ® CFGIER
3 /\ 130,012,734 < X
4y 3962277 2 X X
s/\ 44421535 o x
o /N 36,937,152 % 402 - X - o (Pg ®
7/\ 280,558 <
s/\ 729583 8 -
oA 690,171 E x X% *Xx
0/ 26022536 = 1 Tox=
1 /N 551,787 ?
A 562,691 ‘
13 A 174,855 1 1 T 1 1 T T 1T T T T 1
AARAANDANANDBLANALD
d 1 2 3 4 5 6 7 8 9 10 11 12 13
Observation
0.34 Expectation
3
§ 0.2 4 (a)fo\b
g —>0
0.1 a—-b—oc
0 T T T T T T T T T T T T T T T T T T T T
A A 8 A A A A A A A I A /; N NN A /: A A
A A A A A AL A A
AN §OA A A AR A A
f neuron (CB0481)
42 syn
neuron
(AN)

21 syn

neuron (VES041)

39 syn

b ach
C feedforward 57.1 %
loop (motif #4)
?25- _ 0.6 :/oger
; A =i
g 207 - o—o0 9
] 16.2% 25.1%
> —
£ 154 = il glut gaba
E S Y € A . o o o - -
g 10 ach
3 5 3-unicycle 42.1%
(=2 .
> (motif #7)
“ 0 200% &3 9
AAADAAADADANDD EL g —
12 3 4 5 6 7 8 9 10 1112 13
©<+—0 35.4 %
gaba
0.2 4 Observation
Expectation
-
(8]
& a O\b
2 0.1
3 <0
- asboc
0 T T T T T T T T T T T T T T T T T T T T
A A NAA
R R
A C X928 R A
A A A A A A AMAROR A
NROA AA I A A

neuron (DNa06)

71 syn 116 syn O 99 syn 111 syn 48 syn
neuron neuron neuron neuron ‘neuron
(CB0297) (PS202) <_y (LAL200) (PS137) N (trident)

134 syn

Figure 3. Examining 3-node motifs. (a) The distribution of three-node motifs across the whole brain. Absolute counts of each motif are on the left, and the frequency of each
motif relative to that in an ER null model is plotted to the right, together with the average motif frequencies of 100 CFG models (gray violin plots). When we compare the
whole-brain network to both ER and CFG null models, we observe an under-representation of simple motifs (#1-3) and an over-representation of other motifs, particularly highly
recurrent motifs (#10, 12, 13). (b) The average strength of edges that are part of the 3-node motifs. The dotted line is the average connection strength in the brain. (c) Breakdown
by neurotransmitter of edges participating in two motifs: feed-forward loops (motif #4) and 3-unicycles (motif #7). Edges in feed-forward loops are more likely to be cholinergic. (d)
Further examining the neurotransmitter composition of these motifs, we find that feed-forward loops (motif #4) are most likely to be acetylcholine-acetylcholine-acetylcholine, (e)
while 3-unicycles (motif #7) tend to contain at least one inhibitory edge (glutamate or GABA). (f) Visualizations of exemplar 3-node motifs. Cell labels are listed where available.

When compared to the population of all neurons, rich club
neurons are less likely to be cholinergic and more likely to be
GABAergic (Figures 4b, S4a). Integrator neurons are even
less likely to be cholinergic (49%), and include a large frac-
tion of dopaminergic neurons, suggesting that these neurons
may be engaged during learning. In contrast, broadcaster neu-
rons are predominantly cholinergic (75%). Central brain neu-
rons are dramatically over-represented in the rich club, while
optic lobe intrinsic neurons are under-represented (Figures 4c,
S4b). Many integrators are either central brain intrinsic neu-
rons or visual projection neurons. In contrast, few broadcast-
ers are intrinsic to the central brain—many are visual centrifu-
gal neurons or optic lobe intrinsic neurons. These include a
large number of Mil and Tm3 neurons, excitatory cells in the
medullae (ME) known to play key roles in the motion detec-
tion circuit (41, 49, 50). Most neurons are restricted to a single

Lin, Yang etal. | Network Statistics of the Whole-Brain Connectome of Drosophila

hemisphere—just 11% of neurons have inputs in both hemi-
spheres and 11% have outputs in both hemispheres (Figure
S4¢)(28). In comparison, rich club neurons are more likely to
have inputs or outputs spanning both hemispheres: 18% and
17%, respectively. This is more common for integrator neurons
(23%) than it is for broadcaster neurons (16%).

Rich club neurons are closer on average to sensory in-
puts

To assess the distance of the rich club neurons from sensory
inputs, we employed a probabilistic information flow model to
determine the relative distance of each neuron (in hops) from
a set of seed neurons (Methods) (28, 48). The model was run
with different sets of seed neurons, each corresponding to a spe-
cific set of sensory neurons (olfactory, gustatory, etc.), as well
as on the complete set of all sensory inputs, giving us the dis-
tance from each neuron in the dataset to each sensory modal-
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Figure 4. Large-scale neuron connectivity in the brain. (a) Using the in-degree vs. out-degree scatterplot, we can divide the intrinsic rich club neurons into three distinct
categories: broadcasters, integrators, and large balanced neurons. Comparing the prevalence of (b) neurotransmitters and (c) intrinsic superclasses (optic lobe intrinsic, visual
projection, visual centrifugal, and central brain intrinsic) of all intrinsic neurons, rich club neurons, integrators, and broadcasters. (d) Examples of rich club neurons in these three
categories. (e) Applying the information flow model from Schlegel et al. 2021 (28, 48), we determined the percentile rank distributions of rich club, integrator, and broadcaster
neuron populations from all inputs to the brain (above), as well as to specific modalities (Figure S4d). (f) Average percentile rank of rich club, integrator, and broadcaster neurons
for different modalities. Across all modalities, rich club neurons are closer than average to sensory inputs.

ity. We excluded the visual photoreceptors from this analysis
(Methods). Ranking these distances and normalizing returned
the percentile rank of each neuron with respect to each modality.
Neurons with percentile rank less than 50% are closer than av-
erage to the given sensory input, while neurons with percentile

Lin, Yang etal. | Network Statistics of the Whole-Brain Connectome of Drosophila

rank greater than 50% are farther.

The rich club neurons have a mean percentile rank of 44%
relative to the set of all sensory inputs (Figure 4e). Integrators
have a mean percentile rank of 43%, while broadcasters have
a mean percentile rank of 53%. Integrator neurons are closest,
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with many having a percentile rank of less than 10%. The distri-
bution of broadcasters is bifurcated, with one peak closer to in-
puts and another peak far from inputs. Examining the ranks with
respect to individual sensory modalities, we find that rich club
neurons are again closer than average to each modality (Figures
4f, S4d). Broadcasters tend to be closer to single sensory inputs
than they are to the set of all inputs. This is likely because rank-
ing from a seed population of all inputs will rank integrators
before many broadcasters. In contrast, when looking at a sin-
gle modality, neurons which are predominantly connected to a
different modality will be farther than average.

We examine the distance of neurons to multiple sensory
modalities by plotting the percentile rank of neurons with re-
spect to one modality against the percentile rank of neurons
of another modality (Figure S4e). Broadcaster and integrator
neurons are scattered throughout these distributions, but tend to
be closer than average to multiple sensory inputs. These rich
club neurons may be a fruitful starting point when searching
for neurons to characterize experimentally. In particular, inte-
grator and broadcaster neurons which are low in rank relative
to multiple sensory modalities may be good candidate sites of
multi-sensory integration and information propagation.

Differences in connectivity across brain regions

The fly brain consists of a large number of distinct anatomi-
cal brain regions, or neuropils (51). The FlyWire connectome
has been segmented into 78 neuropils (Figure 5a), each with
different average connection strengths (28). To understand in-
formation flow between neuropils, we employed a fractional
weighting method accounting for each neuron’s projections to
and from every neuropil (Methods)(28). From these, we com-
puted for each neuropil the relative fraction of internal, external
incoming, and external outgoing connection weights (Figure
S5a-b). These fractions reflect, respectively, the net number
of connections within, being received, and being sent from each
neuropil.

We find significant differences in these fractions across
brain regions: the ellipsoid body (EB) and fan-shaped body
(FB) of the central complex have the highest fraction of internal
connections, while in other regions, such as the compartments
of the mushroom body (MB), the majority of connections are
external (Figure S5b). Some regions such as the lateral horn
(LH) send more external connections than they receive, while
others such as the lobula plate (LOP) receive more external
connections than they send. The fraction of internal connec-
tion weights is not correlated with neuropil size: while large
neuropils such as the anterior and posterior ventrolateral pro-
tocerebra (AVLP and PVLP) have significant fractions of in-
ternal weights, they do not rank the highest. We note that un-
der this classification, internal weights include any neurons with
endings outside the brain, such as sensory, ascending, and de-
scending neurons. This likely accounts for the high fraction of
internal weights in regions such as the medullae (ME), which
receive inputs from R7 and R8 photoreceptors, and the gnathal
ganglia (GNG), which connects with large numbers of both as-
cending and descending neurons. Across the brain, 52% of all
connection weights can be classified as internal. Comparing the
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putative neurotransmitters of the neurons contributing connec-
tion weights, we see that internal connections are more likely
than external ones to be inhibitory (GABAergic or glutamater-
gic) (Figure S5¢). We also see differences in neurotransmitter
composition across brain regions (Figure S5d).

Prevalence and neurotransmitter composition of recip-
rocal connections differ across neuropils

To perform motif analyses within each neuropil, we first iden-
tified a subnetwork for each neuropil which treats all connec-
tions made within that neuropil as edges and includes all neu-
rons connected to these edges (Figures Sb, S6a). Different
neuropil subnetworks differ notably in both connection strength
and density (Figure S6b). We computed the reciprocity in each
neuropil subnetwork (Figures Sc¢, S6¢). Neuropils with partic-
ularly high reciprocity probabilities include those in the central
complex (FB, EB, and NO) and the two antennal lobes (AL).
The relative number of reciprocal connections (reciprocity nor-
malized by neuropil connection density) is high in the mush-
room bodies (MB) and medullae (ME) (Figure S6b). Note that
for these motif analyses, the results for small neuropils such as
the cantles (CAN), bulbs (BU), galls (GA), accessory medullae
(AME), and ocellar ganglion (OCG) are less interpretable due
to the small number of samples.

In most neuropils, as in the whole brain, reciprocal connec-
tions are stronger than unidirectional connections, though the
ratio of average strengths varies across neuropils (Figure S6d).
Exceptions include the protocerebral bridge (PB), mushroom
body calyces (MB-CA), and bulbs (BU), which have stronger
unidirectional connections than reciprocal connections. Com-
paring the relative prevalence of each neurotransmitter in recip-
rocal and unidirectional connections, we again see differences
between neuropils (Figures 5d-e, S6d-h). While reciprocal
connections in most neuropils contain fewer cholinergic edges
and more GABAergic edges than unidirectional connections,
there are notable exceptions, such as in the neuropils of the cen-
tral complex (FB, EB, PB, and NO). In the compartments of
the mushroom body (MB) we find especially large differences
in neurotransmitter composition between unidirectional and re-
ciprocal connections. Comparing the strengths of the edges of
reciprocal excitatory-inhibitory (acetylcholine-GABA) connec-
tions within neuropil subnetworks, we observe that E-I connec-
tion strengths are more strongly correlated in some neuropils
(such as the FB and NO) than in others (Figures 5f, S7a-b).
These correlations do not appear to be dependent on neuropil
size (Figure S7¢).

Identifying neuropil-specific reciprocal neurons

We performed a comprehensive search for intrinsic highly re-
ciprocal rich club neurons that make the majority of their
connections within a single neuropil, and found 1,863 neu-
rons that meet these criteria (Figure 5g). These neuropil-
specific highly reciprocal neurons (NSRNs) are predominantly
inhibitory: 54% are GABAergic and another 10% are gluta-
matergic (Figure S7d). In some neuropils, such as the anten-
nal lobes (AL), medullae (MB), and ellipsoid body (EB), there
are many NSRNs, while in other neuropils, such as the superior
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Figure 5. Neuropil-specific differences in connectivity. (a) An exploded view of the brain showing the brain regions, or neuropils, that the FlyWire dataset is divided into. Each
synapse is assigned to a neuropil based on synapse location. (b) A schematic showing how neuropil subnetworks are identified for motif analyses. With the standard threshold of
5 synapses per edge applied, all connections composed of synapses within the neuropil of interest (Neuropil A) are treated as edges of the Neuropil A subnetwork. All neurons
reached by this set of edges are included in the subnetwork. However connections composed of synapses outside of Neuropil A are not included, even if those connections
involve neurons included in the subnetwork. (c) The reciprocity within each neuropil subnetwork. Differences in the percentage of (d) cholinergic and (e) GABAergic edges
between reciprocal and unidirectional connections, across different neuropils. Refer to Figure S6 for the absolute percentages. (f) Heatmaps showing the relationship between
excitatory and inhibitory connection strengths in reciprocal connections in different brain regions. (g) Assessing the number of large (rich club), highly reciprocal neurons which
span specific neuropils: making most of their incoming and outgoing connections within a single neuropil and also having a high reciprocal degree. Examples of neurons which
meet these criteria are shown. (h) Map of the total number of reciprocal pairs between different neuropils. Examples of such pairs are shown in Figure S7e.
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Figure 6. Differences in three-node motifs across neuropils. (a) Three-node motif distributions for three example neuropils: the EB, AL(R), and MB-ML(R). The frequency of
each motif relative to that in an ER null model is plotted to the right, together with the average motif frequencies of 100 CFG models (gray violin plots). Further examples of other
neuropils available in Figure S8a. (b) Motif frequencies for the 3-node motifs across all 78 neuropil subnetworks, normalized by their respective CFG null models. (c) Average
strengths of edges participating in 3-node motifs in the different neuropil subnetworks relative to the average 3-node motif strength in each subnetwork. Refer to Figure S8b for

average strengths relative to average neuropil subnetwork edge strength.

posterior slopes (SPS) and posteriorlateral protocerebra (PLP),
there exist only a handful of such neurons.

Some NSRNs, like the APL neurons in the MB (52, 53),
CT1 neurons in the LO (41, 54, 55), or antennal lobe local neu-
rons (ALLNS) (56, 57), have been previously characterized as
providing global feedback inhibition in different regions. These
neurons tend to be highly branched, with individual processes
making reciprocal connections with different feedforward neu-
rons. Some have been shown to have compartmentalized activ-
ity, raising the possibility of local computation within these neu-
rons (58-60). Many of the NSRNSs identified here have yet to be
characterized. They may play similar roles in other circuits—
for instance, it is likely that some of the NSRNs found in the
AVLP provide feedback to the auditory circuits which span this
brain region (61).

Lin, Yang etal. | Network Statistics of the Whole-Brain Connectome of Drosophila

Identifying inter-neuropil reciprocal connections

While many reciprocal connections occur within single neu-
ropils, 12.1% of all reciprocal pairs are formed by connections
made by synapses in two neuropils (Methods). We mapped
the reciprocal connections that exist between the 78 neuropils
(Figure 5h). The diagonal terms consist of the intra-neuropil re-
ciprocal connections described above (Figure Sbh-c), while the
off-diagonal terms reflect the number of reciprocal pairs which
connect across neuropils. Examples of such neuron pairs are
shown in Figure S7e.

From the map, we see that reciprocal connections exist be-
tween many neuropil pairs. The compartments of the mush-
room body (MB) are linked by many reciprocal connections,
while the neuropils of the SEZ, including the GNG, SAD, and
PRW, form a connected block. Strong reciprocal connectivity
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also occurs across the midline. For instance, there is strong re-
ciprocal connectivity between the two antenna lobes (AL(L) and
AL(R)). Neuropils close to the midline, such as SMP, SPS, and
IPS, tend to have many cross-hemispheric reciprocal connec-
tions. There also exist reciprocal connections which span from
one edge of the central brain to the other, such as those between
AOTU(L) and AOTU(R) and between LAL(L) and LAL(R).
The prevalence of such inter-neuropil reciprocal connections
demonstrates that the recurrent motifs we observe in the brain
are not limited to local connections—they can also exist at large
spatial scales.

Additional insight can be gleaned by comparing the map
of reciprocal connections to the projectome matrix of all neu-
rons in the brain (Dorkenwald et al., Figure 4 (28)). Comparing
the two maps, we can identify regions which are connected by
many neurons, but have disproportionately few reciprocal con-
nections. For instance, neuropils SLP and SIP are connected to
the FB in the projectome, but share no reciprocal connections.
Similarly, the LA boasts many neurons but very few reciprocal
connections.

Examining ach-gaba reciprocal connections, we can iden-
tify deviations from symmetry that represent a net imbalance of
excitatory-inhibitory reciprocal connections (Figure S7f). For
example, between the LO and PVLP, all ach-gaba reciprocal
connections share the same directionality: the ach connections
are in the LO and the gaba connections are in the PVLP.

Three-node motifs differ across neuropils in their preva-
lence and strength

We computed the prevalence of three-node motifs in each
neuropil subnetwork, and compared the motif frequencies to
ER and CFG random null models constructed for each sub-
network (Figures 6a, S8a). Across most neuropils, we ob-
served the same trend as we do across the entire brain: an
under-representation of feedforward motifs (#1-3) and an over-
representation of complex motifs (Figure 6b). However, there
are notable differences between neuropils. In the cantles
(CAN), epaulettes (EPA), and gorgets (GOR), for example, the
frequency of 3-node motifs was closer to that expected in a
CFG null model, while in other neuropils like the ellipsoid body
(EB), complex motifs are highly over-represented (Figure 6b).

Feedforward loops (motif #4) are over-represented in most
neuropils, excepting in the fan-shaped body (FB), ellipsoid
body (EB), noduli (NO), and mushroom body compartments
(MB). This suggests a relative under-representation of both
feedforward excitatory and feedforward inhibitory circuits in
these brain regions. 3-unicycles (motif #7), an indirect feed-
back inhibition circuit, are over-represented across the whole
brain (Figure 3c) but are under-represented in most neuropils.
The notable exceptions, the medullae (ME) and gnathal ganglia
(GNGQG), are very large neuropils and have many sensory inputs.
The over-representation of 3-unicycles in the ME implies the
existence of localized cyclic structures within the early visual
circuitry. Interestingly, this motif is also over-represented in
the zebrafish oculomotor circuit (7). Motifs #7-10 are under-
represented in the antennal lobes (AL), perhaps a result of the
small number of unidirectional edges in these regions. The
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most highly connected motifs (#12-13) are particularly over-
represented in the ellipsoid body (EB) and fan-shaped body
(FB), consistent with their high reciprocity.

In most neuropils, we find that edges participating in under-
represented motifs are also weaker on average than edges partic-
ipating in over-represented motifs (Figure 6¢). We also observe
that in most neuropil subnetworks, edges participating in 3-node
motifs are stronger than the average subnetwork edge (Figure
S8b). This is broadly consistent with the whole-brain 3-node
motif strength results. A notable exception is in the laminae
(LA), where feedforward connections are strong despite being
under-represented.

Discussion

Here, we have provided a broad overview of the network prop-
erties of the Drosophila brain, laying the groundwork for iden-
tifying neurons and circuit motifs of biological interest and for
modeling of particular circuits. In addition to the topology of
the neural network, we have taken advantage of spatial infor-
mation (innervation in different neuropils), neuron class distinc-
tions (sensory versus descending, for example), cell type labels,
and neurotransmitter predictions to better contextualize and in-
terpret the network features we uncovered. We compared the
statistics of the fly connectome to other wiring diagrams, car-
ried out a comprehensive brain-wide search for 2- and 3-node
connectivity motifs, identified highly connected broadcaster and
integrator neurons, and identified differences in connectivity
in different brain regions. The complete FlyWire dataset is
freely available online via Codex (Connectome Data Explorer:
codex.flywire.ai), along with interactive lists of the neu-
rons discussed in this work. These data will allow researchers
to profile neurons by their connectivity features and identify key
neurons within their circuits or brain regions of interest, a use-
ful resource for hypothesis generation or model development.
Experimentally examining highly connected neurons, such as
the attractors, repellers, integrators, broadcasters, and NSRNs
identified here, may also prove fruitful for linking circuit-level
findings with broader activity patterns. Our results reveal that
despite its sparsity, the neurons of the brain form a robust and
highly interconnected network. This network is not predomi-
nantly feedforward, with over-represented reciprocal and recur-
rent motifs which can span multiple brain regions. Additionally,
different brain regions in the fly differ in their network proper-
ties.

An understanding of how the whole-brain network shapes
brain function is particularly important in light of recent exper-
imental findings. A common approach in modern experimen-
tal neuroscience is to use anatomical wiring diagrams to gen-
erate circuit-level hypotheses, and to test these hypotheses by
imaging and perturbing single cells or cell types. However, re-
cent whole-brain imaging experiments, both in the fly (62-64)
and in other species (65-72), have revealed brain-wide activ-
ity patterns related to both sensory processing (of individual
modalities) and simple behaviors (like locomotion). To fully
understand distributed computations and information flow in
the brain, we must consider interactions not just at the scale of
tens of neurons, but at the brain scale. Availability of network
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statistics at the scale of brain regions, coupled with the broad
mesoscale connectivity between brain regions (28), will enable
hypothesis generation at the whole-brain scale. Different neu-
ropils serve different functions, and our work now highlights
how these different functions are subserved by differences in
connection strength, internal connectivity, motif frequency, and
neurotransmitter composition. For example, the central com-
plex (neuropils FB, EB, PB, and NO), which has persistent ac-
tivity associated with an internal representation of heading (73—
78), contains some of the most reciprocal brain regions and has
a large number of internal connections. Examination of other
neuropil subnetworks may help us generate hypotheses regard-
ing the function of less well-studied neuropils.

In this work, we comprehensively explored 2-node and
3-node motifs, and highlighted several large-scale connectiv-
ity patterns by exploring broadcaster (few-to-many), integrator
(many-to-few), and highly reciprocal neurons. There remains,
of course, a space of larger network motifs to explore. We have
integrated the network motif search and visualization tool Vimo
(79) into Codex, which allows users to query the FlyWire con-
nectome for any network motif of interest.

Limitations

The availability of neurotransmitter predictions greatly en-
hanced our ability to interpret the circuit motifs we found in
the connectome. However, while these predictions are 94% ac-
curate when compared to a set of ground truth neurons, there are
cases where the predicted neurotransmitter does not align with
the known transmitter. In this iteration of the dataset, we man-
ually corrected the Kenyon cells to be cholinergic (Methods).
There may exist other populations of neurons which are likewise
systematically mis-identified, but which currently lack ground
truth neurotransmitter information. When interpreting results
on the network scale, we must keep this error rate in mind. Also,
monoamines beyond dopamine, octopamine, and seratonin are
not accounted for in these predictions. More details on the neu-
rotransmitter predictions are discussed in Eckstein et al. (33).
In this work, we assume that neurons in the fly obey Dale’s
law—each releasing only one neurotransmitter. However, there
are several known examples of co-transmission in Drosophila
(80-83). How widespread neurotransmitter co-transmission is
remains unclear.

It should also be noted that the synaptic connectome does
not provide a complete picture of information flow in the brain.
We currently do not have a complete map of gap junctions in the
fly, and the extent to which extrasynaptic communication (via
non-synaptic release of amines or neuropeptides) shapes neural
activity in the Drosophila brain remains an open question (84—
86).

We also acknowledge that some of the statistics presented
here, particularly those metrics dependent on network topol-
ogy, such as neuron degree or reciprocity and motif frequen-
cies, may be sensitive to our choice of synapse threshold. While
connectomes in C. elegans have been proofread to the level of
individual synapses (2, 19, 25, 44), it is not feasible to man-
ually proofread every synapse in larger connectomics datasets
(27, 28, 38). We must therefore rely on automated synapse de-
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tection algorithms with a non-negligible error rate (32). Not all
synapses are successfully attached to neurons, and this comple-
tion rate varies across animals and brain regions (24, 28, 38).
To avoid false positive connections, we applied a threshold on
the number of synapses a connection between neurons must
have. While some of these low synapse number connections
may be spurious, it is also likely that a significant number of
these weak connections are real and reliable across individuals,
as has been found when comparing multiple individuals in C. el-
egans (25). In this work, we employed a consistent and conser-
vative threshold of five synapses per connection between neu-
rons, and demonstrated that our qualitative conclusions are not
dependent on this threshold. We therefore analyzed a sparser
network of high-confidence connections, containing 2.6 million
connections instead of 14.7 million un-thresholded connections
(Table S2). It is likely that the fly brain is even more strongly
interconnected than the results here indicate.

Local circuit motifs are often inferred to be feedforward or
feedback connections, with different theorized roles. While we
are able to make such inferences on the population level, it can
be difficult to place local circuits in the context of global direc-
tionality from sensory input to motor output. In shallow net-
works such as in C. elegans, the directionality of the wiring dia-
gram from sensory input to motor output is clear. However, the
larger the network becomes, the more difficult it becomes to es-
tablish directionality from sensory input to motor output. In this
work, we employed an information flow method to rank the neu-
rons by an effective difference from various sensory modalities
(28). Ultimately, however, directionality of information flow
in particular circuits, especially those in regions of the brain
far from sensory inputs or motor outputs, must be determined
through functional activity experiments and modeling.

The rich club compensates for anatomical bottlenecks

The anatomy of the fly brain suggests several potential network
bottlenecks: one between left hemisphere and right hemisphere
and one between the central brain and optic lobes. Only 12%
of neurons cross hemispheres and 6% of neurons cross between
the central brain and optic lobes (28, 29). Despite these bot-
tlenecks, the brain is robustly interconnected with short path
lengths. The large rich club regime in the fly brain may ex-
plain these short path lengths. When compared to the average
neuron in the brain, rich club neurons are more likely to con-
tain synapses in both hemispheres, and are also more likely to
connect the optic lobes to the central brain. The broad reach
of these rich club neurons also keeps path lengths short across
these bottlenecks. In mesoscale functional connectome work in
the human brain, it has similarly been proposed that rich-club
hubs act to keep path lengths short (87, 88). Future functional
imaging experiments in the fly focusing on the population of
rich club neurons may shed light on whether this this is the case
at neuron-scale.

We may also expect the ascending and descending neurons
which form a bottleneck between the brain and the ventral nerve
cord (VNC) will also be part of a rich club of the central ner-
vous system. Many ascending and descending neurons appear
to have high degrees when examined either within the brain or
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within the VNC. While a wiring diagram of the VNC is now
available (89), we await the completion of a complete CNS con-
nectome to determine whether the ascending and descending
neurons are members of the rich club.

Comparing connectomes across animals

Comparing network properties across wiring diagrams from dif-
ferent species has the potential to uncover global properties of
brain organization. We make several such comparisons in Ta-
ble 2, and have commented on other comparisons throughout
the text. The similarities in reciprocity and clustering coeffi-
cient across animals, which vary dramatically in both size and
connection density, hint at the possibility that some features of
circuit architecture may be broadly conserved across biological
nervous systems. Comparisons of metrics which are dependent
on network topology, however, such as neuron degree or reci-
procity and motif frequencies, must be interpreted with care due
to differences in proofreading and data resolution. While con-
nectomes in C. elegans have been proofread to the level of indi-
vidual synapses (2, 19, 25, 44), in larger connectomics datasets
individual synapses are not proofread and instead a threshold
on synapses per connection is applied to filter out spurious con-
nections (24, 27, 28, 38). Threshold choice impacts topological
metrics, which treat all edges as equivalent. Applying the same
threshold across datasets does not resolve this conundrum, as a
given number of synapses per connection may have different bi-
ological implications across species. It has also been observed,
both in this work and in past studies, that different parts of the
brain of the fly differ in their connectivity properties (38, 42).
It is likely that the same is true in larger, more complex brains
as well, meaning that statistics derived from partial wiring dia-
grams may not be representative.

It has been demonstrated in C. elegans that there is substan-
tial variability in the connectomes of individuals of the same
species (25). Comparisons between the FlyWire connectome
and hemibrain wiring diagram have already revealed interest-
ing similarities and differences between individual flies, as out-
lined in our companion paper (29), but more datasets will be
needed before we fully understand the amount of variability be-
tween individuals in Drosophila. The same is expected to be
true for zebrafish and mouse connectomes. More whole-brain
connectomes are on the horizon, both in Drosophila and in other
species (90). The network analysis of the fly brain presented
here will be a valuable baseline for comparison, both to the
connectomes of other Drosophila individuals and to the connec-
tomes of other species. As the efficiency of electron microscopy
and neural reconstruction continue to increase, it will become
possible to better understand which features of these networks
are common and which are species- or individual-specific. Such
comparative connectomics studies within a single species may
shed light on brain development, stereotypy, and learning, while
future studies across multiple organisms may elucidate princi-
ples of brain evolution, organization, and computation.
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Methods

Dataset

The FlyWire connectome is the reconstruction of a 7-day-old
adult female Drosophila melanogaster, genotype [iso] w1118
x [iso] Canton-S G1 (30). The EM images were aligned and
neurons were automatically reconstructed using deep learning
and computer vision methods, then proofread by the commu-
nity (27, 28). Neuron cell types and community labels were
also attached to these data (29, 91). All analyses presented in
this paper were performed on the v630 Snapshot of the Fly-
Wire dataset. The v630 snapshot contains 127,978 neurons and
2,613,129 thresholded connections, the central brain of the fly
was fully proofread, with the optic lobes ~80% complete. Most
of the neurons missing from the v630 Snapshot were photore-
ceptors, and we do not expect that the addition of these neu-
rons would significantly change our whole-brain network re-
sults. At time of publication, the most up-to-date version of the
FlyWire dataset is the v783 Snapshot, containing 139,255 neu-
rons, 2,701,601 thresholded connections, and completed optic
lobes. Both data snapshots are available at Codex (Connectome
Data Explorer): codex.flywire.ai.

Synaptic connections and thresholding

Synapses were detected algorithmically (31, 32), with each
synapse receiving a confidence score. We then removed
synapses if (1) either the pre- or postsynaptic location of the
synapse was not assigned to a segment, or (2) the synapse had
a confidence score of less than 50. We then set a threshold of 5
synapses per connection between neurons for most of our analy-
ses to reduce the impact of spurious connections. This threshold
is also consistent across our companion papers on the FlyWire
connectome (28, 29). We employed a threshold because manual
proofreading of the FlyWire dataset did not extend to individ-
ual synapses (28). Thresholding connections by synapse num-
ber was previously implemented in the hemibrain connectome,
with similar rationale (38). We acknowledge that this is a con-
servative threshold and is likely to result in an undercounting of
true connections. We assessed key statistics as a function the
threshold to ensure that our qualitative observations hold over a
range of threshold choices (Figure S1b-c).

Assignment of neurotransmitters to neurons

The neurotransmitter at each synapse was predicted directly
from the EM images using a trained convolutional neural net-
work with per-synapse accuracy of 87% (28, 33). The algo-
rithm returns a 1 x 6 probability vector containing the odds that
a given synapse is each of the six primary neurotransmitters in
Drosophila: ach, gaba, glut, da, oct, or ser. We then averaged
these probabilities across all of a neuron’s outgoing synapses,
under the assumption that each neuron expresses a single out-
going neurotransmitter, to obtain a 1 x 6 probability vector rep-
resenting the odds that a given neuron expresses a given neu-
rotransmitter. We then assigned the highest-probability neuro-
transmitter as the putative neurotransmitter for that neuron. The
per-neuron accuracy is 94%.

In cases where the highest probability is p; < 0.2 and the
difference between the top two probabilities p; —p2 < 0.1, we
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classified the neuron as having an uncertain neurotransmitter. In
the ~1600 Kenyon cells, where the neurotransmitter of a neuron
is known to be acetylcholine but the algorithm often returned er-
roneous predictions, the neurotransmitter prediction associated
with that neuron was overwritten by the known neurotransmit-
ter.

Cell classifications and labels

84% of neurons are intrinsic to the brain, meaning that their
projections are fully contained in the brain volume (28). Central
brain neurons are fully contained in the central brain, while op-
tic lobe intrinsic neurons are fully contained in the optic lobes.
Visual projection neurons have inputs in the optic lobes and out-
puts in the central brain. Visual centrifugal neurons have inputs
in the central brain and outputs in the optic lobe. Sensory neu-
rons are those which are entering the brain from the periphery,
and are divided into classes by modality. Refer to our com-
panion paper, Schlegel et al., for more details on classification
criteria (29). We also employed annotation labels contributed
by the FlyWire community (28).

Definitions of in-degree, out-degree, total degree and re-
ciprocal degree

For a given neuron ¢, the in-degree dj is the number of incom-
ing synaptic partners the neuron has and the out-degree d; is
the number of outgoing synaptic partners the neuron has. The
total degree of a neuron ¢ is the sum of in-degree and out-degree:

dPt = df +d; . 2)

The reciprocal degree d;°° is the number of partners a given
neuron form reciprocal connections with. Since each reciprocal
connection consists of two edges, we can determine the frac-

: : : rec / J+ ec / J—
tion of .re01proca1 inputs and outputs as di*°/d;” and d;*°/d;",
respectively (Figure S3c).

Definitions of connection probability, reciprocity and
clustering coefficient
Given the observed wiring diagram as a simple (no self-edges)
directed graph G(V, E), the “connection probability" or “den-
sity" is the probability that, given an ordered pair of neurons «
and [, a directed connection exists from one to the other:
conn ,__ _ |E ‘

P = Pla — ] VIVI=1) 3)
The reciprocity is the probability that, given a pair of neurons
which are connected « to 3, there exists a returning 3 to a con-
nection:

p'¢:=P[B — ala— 0] ()]

The (global) clustering coefficient is the probability that for
three neurons «, 3 and ~, given that neurons « and 3 are con-
nected and neurons « and +y are connected (regardless of direc-
tionality), neurons 3 and -y are connected:

C2 = P[B~qla~BAa~7. )
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We computed these metrics both across the whole brain and
within brain region (neuropil) subnetworks.

We also systematically quantified the occurrence of distinct
directed 3-node motifs within the network, ensuring that dupli-
cates are eliminated: any subgraph involving three unique nodes
is counted only once in our analysis. To compute the expected
prevalence of specific neurotransmitter motifs (Figures 2¢, 3d-
e) we multiplied the relevant neurotransmitter probabilities for
the motif of interest, under the assumption the neurons connect
independent of neurotransmitter. We then compared this expec-
tation to the true frequency of motifs with these neurotransmit-
ter combinations.

ER and CFG null models

We probed different statistics of the wiring diagram G(V, E') by
comparing them with the statistics of various null models. The
simplest null model we employed was a directed version of the
Erds—Rényi model (ER) G(V,p), where all edges are drawn
independently at random, and the connection probability p is
set such that the expected number of edges in the ER model
equals that observed in the wiring diagram (47). For any nodes
1,7 € V, the connection probability is constant:

__ |E
VIAVI=1)

Since reciprocal edges in the wiring diagram are over-
represented when compared to a standard Erdds-Rényi (ER)
model, we adopted a generalized Erd6s—Rényi model (gER),
which preserves the expected number of reciprocal edges. The
gER model G(V,p" p) has two parameters, uni-directional
connection probability p*™ and bi-directional connection prob-
ability p, both of which are set to match the wiring diagram.
To do this, we defined the sets of unidirectional and bidirec-
tional edges as:

E™ = {(i,)|(i,5) € EA(j,i) ¢ E}, ©)
EP = {(i,5)|(i,§) € EA(j,i) € E}. )

For any nodes 7 and j:

Pli—jl=p (6)

. Euni|
P.—).:P.(—.:unlz |
iy 5] = Plipjl=p AEDE )
— 1 _ b _ ‘Ebi|
Pli%,5] = 1—2p™ —p". (11)

All edges between unordered node pairs were drawn indepen-
dently and at random.

In line with previous work (7, 63), we also employed a di-
rected configuration model (CFG), G(V,{d;"}, {d; }), which
preserves degree sequences during random rewiring. We sam-
pled 1,000 random graphs uniformly from a configuration space
of graphs with the same degree sequences as the observed graph
by applying the switch-and-hold algorithm (92), where we ran-
domly select two edges in each iteration and swap their target
endpoints under the condition that doing so does not introduce
self-loops or multiple edges (switch), or else keep them un-
changed (hold).
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Computing pairwise distances between neuronal arbors

To determine the connection probability distribution as a func-
tion of distance between neurons, we first had to distill the avail-
able spatial information into a handful of points. This was the
only practical way to enable distance comparisons between all
neurons—a total of 14 billion pairs.

For each neuron, we defined two coordinates based on the
location of their incoming and outgoing synapses. We com-
puted the average 3D position of all of the neuron’s incoming
synapses to approximate the position of the neuron’s dendritic
arbor, and did the same to approximate the position of the neu-
ron’s axonal arbor. We then computed for all neuron pairs the
pairwise distances between the axonal arbor of neuron A and
the dendritic arbor of neuron B. Binning by distance and com-
paring the number of true connections to the number of neuron
pairs allowed us to compute connection probability as a func-
tion of space (Figure S1d).

Spatial null model

Informed by the distribution of connection probability as a
function of distance, we constructed a spatial null model with
two zones of probability—a “close" zone (0 to 50 microns)
where connections are possible with a relatively high prob-
ability (pcose = 0.00418) and a “distant” zone (more than
50 microns) where connections occur with lower probability
(Pdistant = 0.00418) (Figure Sle). The probabilities in these
two zones were derived from the real network.

Spectral analysis

Given a strongly connected graph G(V, E) and its 0-1 adja-
cency matrix A € R’;é", where A;; indicates the existence of a
connection from neuron 7 to neuron ¢, one can construct an ir-
reducible Markov chain on the strongly connected graph with
a transition matrix P;; := A;;/ >, Ay; giving the transition
probability from j to . The Perron-Frobenius theorem guaran-
tees that P has a unique positive right eigenvector 7 with eigen-
value 1, and therefore that 7 is the stationary distribution of the
Markov chain. We constructed such a transition matrix for the
connectome and determined the eigenvector 7.

We also defined a “reverse” Markov chain with a transition
matrix Pj7¥ = Aj; /37, Ajp giving the transition probability
from j to ¢. P™ also has a unique positive right eigenvector
7' with eigenvalue 1. Figures S1f and S1g show the station-
ary distribution of forward and reversed Markov chains, respec-
tively.

The normalized symmetric Laplacian of the Markov chain
Pis

L‘:I—% (Hl/zPaH_1/2+H_1/2PTH1/2>, 12)
where IT:=Diag(r) and I is the identity matrix. Similarly, we
defined £ for the reverse Markov chain. The eigen-spectra of
L and £V are shown in Figures S1f and S1g, respectively. The
gaps between eigenvalues indicate the conductance properties
of the graph.
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Finding rich club neurons

We employed the standard rich club formulation to quantify the
rich club effect (11). The rich club coefficient (k) at a given
degree value (k), with all nodes with degree < k pruned, is the
number of existing connections in the surviving subnetwork di-
vided by the total possible connections in the surviving subnet-
work:

My,
"= N -1y 4
where Ny neurons in the network with degree > k and Mj is
the number of connections between such neurons.

To control for the fact that high-degree nodes have a higher
probability of connecting to each other by chance, we normal-
ized the rich club coefficient to the average rich club value of
100 samples from a CFG null model (Figure 1h):

®(k)
(Pcra(k)

The standard method of determining the rich club threshold is to
look for values of & for which ®,,5,1,, (k) > 1+ no, where o is
the standard deviation of ®¢ (k) and n is chosen arbitrarily
(18). However, since the standard deviation from our samples is
extremely small near the bump in relative rich club coefficient,
we chose instead to define the onset threshold of the rich club as
D orm (k) > 1.01 (1% denser than the CFG random networks).

We computed the rich club coefficient in three different
ways, by sweeping by total degree (Figure 1h), in-degree, and
out-degree (Figure S2c), progressively moving from small to
large values. As we observed, when the total degrees of the
remaining nodes surpass 37, the network becomes denser com-
pared to randomized networks. Once the minimal total degree
reaches 93, the network becomes as sparse as the randomized
counterpart. Therefore, we classified neurons with total degrees
above 37 as "rich club" neurons because they exhibit denser in-
terconnections when considered as a subnetwork. In terms of
in-degree, the range for denser-than-random connectivity is be-
tween 10 and 54. Considering out-degree alone did not reveal
any specific onset or offset threshold for rich club behavior, as
the subnetwork always remains sparser than random.

(I)norm(k) - (14)

Definitions of broadcaster neurons, integrator neurons,
and neuropil-specific recurrent neurons
To identify broadcaster neurons, we filtered the intrinsic rich
club neurons (d* > 37) for those which had an out-degree was
at least 5 times higher than their in-degree:
d”>5xdt. (15)
Similarly, we identified integrator neurons by filtering the
intrinsic rich club neurons for those which had an in-degree was
at least 5 times higher than their out-degree:
dt >5xd". (16)
Rich club neurons which did not fall into either category were
defined as “large balanced” neurons. This analysis was limited
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to intrinsic neurons—those which have all of their inputs and out-
puts within the brain—to avoid spurious identification of afferent
or efferent neurons as broadcasters or integrators.

When identifying large recurrent neuropil-specific neurons
(Figure 5g) we applied the following criteria. First, the neu-
rons were intrinsic and met the rich club criteria. Second, at
least 50% of the neuron’s incoming connections were contained
within the subnetwork of a single neuropil. Third, at least 50%
of the neuron’s outgoing connections were contained within the
same neuropil.

Neuron ranking

We employed a probabilistic connectome flow model previously
published in Schlegel et al. 2021 to determine the ranking of
neurons relative to various sensory neuron populations (28, 48).
This method ignores the sign of connections. Starting from a
set of user-defined seed neurons, the model traverses the wiring
diagram probabilistically: in each iteration the chance that a
neuron is added to the traversed set increases linearly with the
fractions of synapses it is receiving from neurons already in the
traversed set. When this likelihood reaches 30%, the neuron
is guaranteed to be added to the traversed set. The process is
then repeated until the entire network graph has been traversed.
The iteration in which a neuron was added corresponds to the
distance in hops it was from the seed neurons. For each set of
seed neurons, the model was run 10,000 times. The distance
used to determine the rank of any given neuron was the average
iteration in which it was added to the traversed set.

We ran this model using the following subsets of sensory
neurons as seeds: olfactory receptor neurons, gustatory recep-
tor neurons, mechanosensory Johnston’s Organ neurons, head
and neck bristle mechanosensory neurons, thermosensory neu-
rons, hygrosensory neurons, visual projection neurons, visual
photoreceptors, ocellar photoreceptors and ascending neurons.
We also ran the model using the set of all of the input neurons
as seed neurons. All neurons in the brain were then ranked by
their traversal distance from each set of starting neurons, and
this ranking was normalized to return a percentile rank.

Determining information flow between neuropils

To determine the contributions a single neuron makes to infor-
mation flow between neuropils, we first applied two simplifying
assumptions: (1) that information flow through the neuron can
be approximated by the fraction of synapses in a given region
and (2) that inputs and outputs can be treated independently.
Employing these two assumptions we constructed a matrix rep-
resenting the projections of a single neuron between neuropils.
The fractional inputs of a given neuron are a 1 X N vector con-
taining the fraction of incoming synapses the neuron has in each
of the NV neuropils, and the fractional outputs are a similar vec-
tor containing the fraction of outgoing synapses in each of the
N neuropils. We multiplied these vectors against each other to
generate the N x N matrix of the neuron’s fractional weights,
with a total weight of one. Summing these matrices across all
neurons produced a matrix of neuropil-to-neuropil connectivity,
or projectome (see Figure 4 of Dorkenwald et al., 2023) (28).
From the neuropil-to-neuropil connectivity matrix we deter-
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mined the total weight of internal connections—those within a
given neuropil—by identifying the neurons which contribute to
the diagonal of the matrix. We likewise determined the weight
external connections—either incoming to the neuropil or outgo-
ing from the neuropil—by looking at the off-diagonals. These
data were used to construct the analyses in Figure S6a-c.

Identifying neuropil subnetworks

Most of the neurons in the Drosophila brain have soma at
the surface of the brain. Therefore, they cannot be associ-
ated to neuropils (brain regions) based on their soma locations.
Synapses, however, can be associated with neuropils. To per-
form motif analyses at the level of individual neuropils, we iden-
tified neuropil subnetworks based on the the connections made
by the synapses contained within each neuropil volume. All
connections within the neuropil of interest are taken as edges of
this subnetwork, and all neurons connected to these edges are
included (Figure 5b). The number of neurons associated with
each neuropil subnetwork is plotted in Figure S6d. Note that if
two neurons both in a given neuropil subnetwork share a con-
nection which occurs in a different neuropil, that connection is
not included as an edge in the given subnetwork.

Identifying inter-neuropil reciprocal pairs
We constructed a map of reciprocal connections between neu-
ropils in the form of a triangular matrix with the neuropils as
axes. For clarity, here we will refer to a unidirectional connec-
tion as an edge. A reciprocal connection contains two opposing
edges. While some edges are composed of synapses in multi-
ple neuropils, the majority of edges are composed of synapses
in a single neuropil after thresholding. We therefore applied a
winner-take-all approach to assigning edges to neuropils.
Given two recipocally connected neurons X and Y, let us
call the edge from X to Y Edge 1, and the edge from Y to X
Edge 2. If the synapses that form Edge 1 are in Neuropil A, and
the synapses that form Edge 2 are in Neuropil B, then we assign
this reciprocal pair to the Neuropil A to Neuropil B square of
the matrix. This was done for all reciprocal pairs, with each re-
ciprocal pair is counted as 1 in the matrix. Note that this means
that a given neuron can be represented multiple times if it has
multiple reciprocal partners.

Data availability

The FlyWire data is available online via Codex (Connectome
Data Explorer): codex.flywire.ai. Neuron annotations,
neurotransmitter information, and compact data downloads are
available via Codex, along with neuron lists generated in this
work, including neurons participating in 2-node and selected 3-
node motifs, rich club neurons, broadcaster and integrator neu-
rons, and neuropil-specific reciprocal neurons.

Software availability

The analyses presented in this paper were performed in Python
with the numpy and graph-tool (93) packages, and in MAT-
LAB (standard toolboxes). Software written for this publi-
cation is available at Github (github.com/murthylab/
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flywire-network—analysis). Some 3D renders were
generated in Cinema4D.
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Figure S1. Supplement for Figure 1. The effects of edge percolation on the size of the largest WCC when (a) large connections are removed first and when (b) small
connections are removed first. (c) The sizes of the first two SCCs as a function of the synapse threshold. (d) Synapse probability (left) and connection probability (right) as a
function of the average distance between neuronal arbors. Plots are of a drawn from a subsample of 700 million pairs (5% of the total 14 billion pairs). (e) The probability of
random connection of the two-zone spatial null model, with one close regime with high connection probability and a distant regime with low connection probability. Spectral

analysis of the whole-brain network with (f) forward and (g) reverse walks. In each case, the stationary probability distributions are shown, as well as the distribution of neuropils
in which the inputs and outputs of the top 3000 most visited neurons are located. Renders of the top 3% attractor (red) and repeller (green) neurons are also shown. The top
0.3% are rendered in darker colors.
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Figure S2. Additional supplement for Figure 1. (a) The sizes of the first two weakly connected components (WCCs) as nodes are removed by total degree (1 neuron per step).
Removal of neurons starting with those with largest degree results in the brain splitting into two WCCs when neurons of approximately degree 50 start to be removed, a deviation
from when neurons are removed in a random order (dotted lines). The largest surviving total degree as a function of the number of remaining nodes is plotted in gray. (b)
Removal of neurons starting with those with smallest degree results in a single giant WCC until all neurons are removed. The smallest surviving total degree as a function of the
number of remaining nodes is plotted in gray. (c) The sizes of the first two strongly connected components (SCCs) as nodes are removed by in-degree or out-degree (2500
neurons per step). Removal of neurons starting with those with largest in-degree (top left) or largest out-degree (top right) result in the brain splitting into two SCCs when neurons
of approximately degree 50 start to be removed, a deviation from when neurons are removed in a random order (dotted lines). Removal of neurons starting with those with
smallest in-degree (bottom left) or smallest out-degree (bottom right) results in a single giant SCC until all neurons are removed. (d) The sizes of the first two weakly connected
components (WCCs) as nodes are removed by in-degree or out-degree (1 neuron per step). Removal of neurons starting with those with largest in-degree (top left) or largest
out-degree (top right) result in the brain similarly splitting into two WCCs when neurons of approximately degree 50 start to be removed, a deviation from when neurons are
removed in a random order (dotted lines). Removal of neurons starting with those with smallest in-degree (bottom left) or smallest out-degree (bottom right) results in a single
giant WCC until all neurons are removed. (e) The rich club coefficient (red) as a function of total degree (left), in-degree (middle), and out-degree (right), compared to the
predicted rich-club coefficient of a CFG null model (dotted red). The relative rich club coefficient is plotted in blue.
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Neuron lists available on Codex

Definitions
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motifs participants O in reciprocal connections.
feedforward loop % neurons that partlapgég |ntf_eedforward Igop motlfs consisting of
articipants 3 ~ unidirectional connections:
3-neuron P B—a, a— y and B—y, precisely.
motifs . (07 neurons that participate in 3-unicycles
3-unicycle isti f unidirectional i
articipants B vy consisting of unidirectional connections:
P B—a, a— y and y—f, precisely.
highly reciprocal v neurons with the numbers of reciprocal
N neurons A edges = 0.5 x total-degrees.
-neuron
motifs neuropil-specific highly intrinsic rich-club and highly reciprocal neurons with = 50% of
reciprocal neurons &{ incoming connections, and = 50% outgoing connections are
(NSRNs) contained in the same neuropils, respectively.
‘\‘2‘ high-degree neurons that are densely
rich-club neurons -0 i connected with other high-degree neurons
tele (total-degree is higher than 37).
Rich-club
analysis broadcasters % intrinsic rich-club neurons with out-degrees 2 5 x in-degree.
integrators % intrinsic rich-club neurons with in-degrees 2 5 x out-degrees.
'
top 3% most visited neurons in a forward random walk over
G the largest strongly connected component
Spectral TN 9 9y P :
analysis . .
repellers ),(: top 3% most visited neurons in a reversed random walk over
P V.«.\ the largest strongly connected component.

Table S1. Supplement for Table 1. Definitions for all neuron populations identified in this paper.

Fruit fly (no threshold)

Drosophila melanogaster
(Dorkenwald et al., 2023)

Fruit fly (2 5 synapses)
Drosophila melanogaster
(Dorkenwald et al., 2023)

A&
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wiring diagrams
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Clustering coefficient
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p Pr
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Table S2. Supplement for Table 2. Network statistics of the fly connectome with no threshold on the number of synapses per connection (left) and a threshold of 5 synapses per
connection.
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Figure S3. Supplement for Figure 2. (a) Distribution of reciprocal degree (gray) alongside distributions of in-degree (red) and out-degree (blue). (b) Distributions of reciprocal
degree for glut, da, oct, and ser neurons. (¢) Heatmap showing the fraction of reciprocal incoming connections versus the fraction of reciprocal outgoing connections. Dotted lines
indicate a factor of 2 around the =z = y line.
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Figure S4. Supplement for Figure 4. In-degree vs. out-degree scatterplots showing broadcaster, rich balanced, and integrator regimes, with neurons plotted by (a) the putative

neurotransmitter of each neuron and (b) the superclass of each neuron. (c) Comparing the input and output sides of all intrinsic neurons, rich club neurons, integrators, and
broadcasters. The asymmetry in L/R percentages for broadcaster neurons is due to the large number of medulla-intrinsic broadcasters which connect with photoreceptors

(Proofreading of photoreceptors was incomplete in Snapshot v630). (d) Percentile rank distributions of rich club, integrator, and broadcaster neuron populations from various

input modalities. (e) Scatterplots of percentile rank from one sensory modality on each axis. Broadcaster neurons are highlighted in teal and integrator neurons are highlighted in

purple.
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Figure S5. Internal and external connections across neuropils. (a) The number and (b) relative fraction of neuron weights in each neuropil making connections internal to
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outgoing synapses the neuron has in each neuropil. (¢) Comparing the neurotransmitter composition of all internal and all external neuron weights across the whole brain and (d)
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27

bioRxiv

Network Statistics of the Whole-Brain Connectome of Drosophila

Lin, Yang et al.


https://doi.org/10.1101/2023.07.29.551086
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.29.551086; this version posted February 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

a Number of neurons in each neuropil subnetwork
FB-Il3877 BU(L)-1333 L)l 0
EB-H1421 GA(R)-1384 R) - 604
PB-M1934 GA(L)-1500 L) -5 39
NO-H1230 LAL(R)-IN2748 R)-438
AMMC(R)-1933 LAL(L)-EN3093 L)-El446
AMMC(L;—IISGB - R)-H1828
FLA(R)-H2191 - L)-H1696
FLA(L;-IZOZI =14 R)-EEN6126
CAN(R)-11049 -1 L)-EN4981
CAN(L)-1603 - R)- 5402
PRW-H2350 - L)- 6142
SAD -7 691 - R)— NS 667
GNG-I11241 -1 L) O 169
AL(R)-EE3733 -1 R)-EE3464
AL(L)-EE3609 = Iﬁ;-3409
] -1 —
- E(L ) —
IB(R)—E3131 R;-|594
IB(L)-EN3170 L)-1556
21601 R;——23737
-H1666 L) - 307 0
VES(R)-2698 R) — I 1 0
VES(L)-I2649 L) — ] 5
EPA(R)-H1607 A(R) N7 745
EPA(L)-H1812 L)-m3992
GOR(R)-H1974 G-343
b,
6
=
Y
@ 4
c
c
82
5, |
< 7 psgoeneoezco Seoede
EERERS ==330533

<= == ==

o

Reciprocity/
Local conn. prob.
S
o
o

Avg. reciprocal edge strength/Avg. unidirectional edge strength

L
BU(L) ]

Reciprocal glut % - Unidirectional glut %

M_‘_,mlm_t,-l_T___«,.qu.lllllllnj__lllu_."_

e - 00

™

Unidirectional ach %

Unidirectional glut %

Reciprocal glut %

Figure S6. Supplement for Figure 5. (a) The number of neurons included in each neuropil subnetwork. (b) The average connection strength (no synapse threshold applied) of
connections made in each neuropil (above), and the connection probability of each neuropil (below). (¢) Reciprocity normalized by connection density for all 78 neuropils. (d)
Average reciprocal connection strength normalized by average unidirectional connection strength in all neuropils. (e) The relative fraction of glutamatergic neurons participating in
reciprocal and unidirectional connections. Absolute percentages of (f) acetylcholine, (g) GABA, and (h) glutamate occurrence in unidirectional and reciprocal connections within

each neuropil subnetwork.

Lin, Yang etal. | Network Statistics of the Whole-Brain Connectome of Drosophila

bioRxiv | 28


https://doi.org/10.1101/2023.07.29.551086
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.29.551086; this version posted February 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

as AVLP(R) < <
=] S £
jo2} j=2} (o))
S r2=0.078 S rr=0.011 Q40 5 r2=0.008 @30
= 100 & =
0n10? ® 102 30 #10%
5 75 5 8 20
© © 200 a
(5] r50 @ a Q
< € £ |- r10
10! . | 10! | B 10 1 u
S | 25 g10 —~ g10
S Lo & Ly § to
& 1ot 102 & 10t 102 ® 10 102
gaba connection strength gaba connection strength gaba connection strength
F= = =
§  AMMCR) % GAL) g
S r2=0.003 5 ?=0.024 % r7=0250 f125
= s & =
® 102 ® 102 o 02 100
c c la <
K] 3 S <] 75
= = =1
|| [ c >, © 50
- -y S0 o
g10t r 810 g o E 25
R Lo & Lo & to
@ 10* . 102 @ 10t . 102 ®© 10t . 102
gaba connection strength gaba connection strength gaba connection strength
ach-gaba strength correlation
© 0.75 9 9
0.50-

-0.25-

Pearson r-sco

°'2§j'|.,“lnﬂ,; ,,|||| 1 1|L||.||_IIII_...III.|

T

(@)

o
1

ach-gaba strength correlation

06{e®"
®e
04 %

5 &
2 R

10000 20000 30000
Subnetwork size

1%

54%

e

conn.)

Neuropil B (

Left

AME
o

Center

Right

Neuropil A (

conn.)

10°
# reciprocal pairs
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Figure S8. Supplement for Figure 6. (a) Three-node motif distributions for additional neuropils. The frequency of each motif relative to that in an ER null model is plotted to the

right, together with the average motif frequencies of 100 CFG models (gray violin plots). (b) Average strengths of edges participating in 3-node motifs in the different neuropil

subnetworks relative to the average edge strength in each subnetwork.
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