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Abstract
Brains comprise complex networks of neurons and connections.

Network analysis applied to the wiring diagrams of brains can of-
fer insights into how brains support computations and regulate
information flow. The completion of the first whole-brain con-
nectome of an adult Drosophila, the largest connectome to date,
containing 130,000 neurons and millions of connections, offers an
unprecedented opportunity to analyze its network properties and
topological features. To gain insights into local connectivity, we
computed the prevalence of two- and three-node network motifs,
examined their strengths and neurotransmitter compositions, and
compared these topological metrics with wiring diagrams of other
animals. We discovered that the network of the fly brain displays
rich club organization, with a large population (30% percent of the
connectome) of highly connected neurons. We identified subsets of
rich club neurons that may serve as integrators or broadcasters of
signals. Finally, we examined subnetworks based on 78 anatomi-
cally defined brain regions or neuropils. These data products are
shared within the FlyWire Codex and will serve as a foundation for
models and experiments exploring the relationship between neural
activity and anatomical structure.
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Introduction1

Mathematical network theory has been applied to connectomes2

at multiple scales (from detailed synaptic-resolution wiring dia-3

grams to putative connectivity between brain regions) to under-4

stand brainwide organization (1–7). Network analyses quantify5

the interconnectivity and robustness of a network(8–10), and6

can identify highly connected nodes in the brain that may act7

as hubs (11). Such analyses can also serve as a basis for com-8

parison across brain regions, individuals, developmental stages,9

or species, enabling researchers to uncover commonalities and10

differences in brain organization.11

Mesoscale connectomes have been constructed for the12

brains of humans and other mammals from, for example, MRI13

and MEG data, which assess connectivity at millimeter scale14

(1, 12–15), relying on functional correlations in activity to in-15

fer mesoscale connectivity. Rich club organization has been ob-16

served in several mesoscale connectomes, including Drosophila17

(16, 17), humans, and other mammals (3, 4, 14). It has been sug- 18

gested that such a network architecture contributes to the ability 19

of brains to efficiently integrate and disseminate information. 20

Advancements in electron microscopy and dense volumet- 21

ric reconstruction have enabled researchers to examine increas- 22

ingly larger brain networks at the microscale. These methods 23

do not make assumptions about the relationship between neu- 24

ron connectivity and functional correlations. In network analy- 25

ses performed at the microscale, nodes and edges can be directly 26

related to neurons and synaptic connections. For instance, in the 27

rich club regime observed in the C. elegans connectome, many 28

rich club neurons are known to be important in motor control 29

(2, 18, 19). Recurring patterns of connectivity between neu- 30

rons, known as network motifs, have been proposed as “build- 31

ing blocks" of networks (20, 21), and their prevalence in neu- 32

ronal networks has been studied to uncover organizational prin- 33

ciples of neural networks (2, 5–7, 22–24). Specific motifs such 34

as reciprocal connections (2, 6, 7, 19, 25), feedforward loops 35

(2, 22, 23), and 3-unicycles (7, 26) have received significant at- 36

tention in neuroscience because of their implications for local 37

computation and information flow. 38

In this study, we characterize the network properties of 39

the FlyWire synapse-resolution connectome, the first complete 40

wiring diagram of an adult fly brain (27–30). We explore the 41

interconnectivity of the brain, including path lengths between 42

neurons, frequently traversed neural sub-populations, motif fre- 43

quencies, and more. We draw statistical comparisons between 44

the network of the fly brain and other biological wiring dia- 45

grams. We find that the fly brain has rich club organization and 46

examine several sub-populations of these well-connected neu- 47

rons, including those which may act as integrators or broadcast- 48

ers of signals. Finally, we uncover differences in connectivity 49

between 78 anatomically defined brain regions. The data de- 50

rived in this work offer a quantitative summary of the network 51

of the adult fly brain, and lay the groundwork for future studies 52

exploring connectivity in the fly. They also serve as a valu- 53

able foundation for future experimental and theoretical work. A 54

summary of computed statistics and neuron populations can be 55

found in Table 1. 56
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Table 1. Data availability. List of data products in this work, including statistics computed in this paper (left) and neuron populations (right). Complete, interactive neuron lists are
available online as “Connectivity Tags” on Codex (codex.flywire.ai). Definitions for each of these neuron populations can be found in the text, and in Table S1.

Results57

Summary of the dataset and definitions58

To perform large-scale network analyses, we summarized the59

synaptic connections between neurons into the following data60

structure. For each pair of neurons, we sum the total num-61

ber of synaptic connections to return the weight of their con-62

nection. Repeating for all neuron pairs gives us a weighted63

graph describing the connectome, with 127,978 neurons and64

2,613,129 total thresholded connections, representing the com-65

plete Drosophila brain (28) (Figure 1a, Methods). In this pa-66

per, we will be using the term “connection” to denote an edge67

that exists in the network between two neurons, consisting of68

one or more synapses. The synapses in this dataset were de-69

tected automatically (31, 32). To minimize the impact of spuri-70

ous synapses, we applied a threshold of 5 synapses per connec-71

tion for all of the analyses conducted in this study, unless oth-72

erwise noted (Methods). The exceptions are the distribution of73

synapses per connection, which is presented without threshold74

(Figure 1b), and controls to confirm that our qualitative obser-75

vations are robust to threshold choice (Figure S1b-c, Table S2).76

We will be using synapse count as a proxy for edge strength in77

this paper: “stronger” and “weaker” will refer to higher or lower78

synapse counts, respectively.79

The FlyWire connectome also contains synapse-level neu-80

rotransmitter predictions (33). The classifier applied to the81

dataset discriminates between six neurotransmitters: the fast-82

acting classical neurotransmitters acetylcholine (ach), GABA83

(gaba), and glutamate (glut) and the monoamines dopamine84

(da), octopamine (oct), and seratonin (ser). In the Drosophila85

nervous system, acetylcholine is excitatory and GABA is in- 86

hibitory. Glutamate can be either excitatory or inhibitory, but 87

within the brain of the fly it has largely been observed to be 88

inhibitory (34–36). 89

A key characteristic of the network is the distribution of de- 90

grees, which reflects the amount of connectivity between neu- 91

rons. For any given neuron, the in-degree is defined as the num- 92

ber of presynaptic neurons (neurons it receives inputs from), and 93

the out-degree is defined as the number of postsynaptic neurons 94

(neurons it sends outputs to). With a threshold of 5 synapses per 95

connection, the average in/out-degree of an intrinsic neuron in 96

the brain is 20.5 (28), but the distributions of in-degree and out- 97

degree are not highly correlated (Pearson R = 0.76, p < 0.001) 98

(Figure 1c). On average, each connection in the brain consists 99

of approximately 12.6 synapses after the threshold is applied 100

(28). Across the connectome, the probability that any two neu- 101

rons is connected is 0.000161. This makes the wiring diagram 102

of the fly brain a very sparse matrix when compared to, for ex- 103

ample, the C. elegans nervous system or the partial wiring di- 104

agrams of brain regions of larval zebrafish and mouse (Table 105

2). This sparsity is due in part the size of the fly brain. The 106

connection probability is highest among neurons whose arbors 107

are close to each other. Over 71% of connections occur be- 108

tween neuron pairs located within 50 microns of each other, de- 109

spite these pairs constituting less than 3% of the total number 110

of pairs. (Figure S1d). We note, however, that even in the close 111

regime the connection probability in the fly remains lower than 112

what has been observed in other wiring diagrams. The long- 113

range sparsity is partially a consequence of the segregation of 114
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Figure 1. Whole-brain network properties. (a) The FlyWire dataset (27, 28, 30) is an EM reconstruction of the complete brain of an adult female Drosophila melanogaster, with
both hemispheres of the brain and both optic lobes. The volume contains 127,978 neurons and 32 million synapses with a threshold of 5 synapses/connection applied
(subsample of synapse locations shown in the inset). (b) The distribution of the number of synapses per connected neuron pair. (c) The in-degree (number of presynaptic
partners) plotted against the out-degree (number of post-synaptic partners), with log-scale x and y-axes. (d) Strongly connected components (SCCs) consist of a subset of nodes
in a network which are mutually reachable via directed edges. In the fly brain there exists one giant SCC containing 93.3% of all neurons after thresholding at 5 synapses per
connection. The distribution of shortest path lengths between neuron pairs within this SCC is plotted. (e) Weakly connected components (WCCs) consist of a subset of nodes in
a network which are mutually reachable, regardless of edge direction. In the fly brain there exists one giant WCC containing 98.8% of all neurons. The distribution of path lengths
between neuron pairs within this WCC is plotted. (f) We examine the role high-degree neurons play in connecting the brain by plotting the sizes of the first two strongly connected
components (SCCs) as nodes are removed by total degree (2500 neurons per step). Removal of neurons starting with those with largest degree results in the brain splitting into
two SCCs when neurons of approximately degree 50 start to be removed, a deviation from when neurons are removed in a random order (dotted lines). The largest surviving total
degree as a function of the number of remaining nodes is plotted in gray. (g) Removal of neurons starting with those with smallest degree results in a single giant SCC until all
neurons are removed (2500 neurons per step). The smallest surviving total degree as a function of the number of remaining nodes is plotted in gray. (h) The relative rich club
coefficient as a function of total degree, computed relative to CFG null models. The range over which the relative rich club coefficient is greater than 1.01 is 37 to 93. We take all
neurons with total degree > 37 to be within the rich club regime.

the neurons of the Drosophila brain into a large number (78) of115

brain regions (neuropils), and we further investigate connectiv-116

ity within neuropils below (Figures 5-6, S5-S8).117

Neurons in the brain form a single connected component118

To assess the interconnectivity of the neurons in the brain, we119

searched the connectome for connected components using two120

sets of criteria. First, we looked for strongly connected compo-121

nents (SCCs). All neurons within an SCC are mutually reach-122

able via directed pathways (37). Second, we looked for weakly123

connected components (WCCs), a relaxed criterion in which all 124

neurons within a WCC are mutually reachable, ignoring the di- 125

rectionality of connections. 126

Despite its sparsity, the brain is highly connected under ei- 127

ther criteria – 93.3% of neurons are contained in a single SCC, 128

while 98.8% of neurons are contained in a single WCC (Figure 129

1d-e). These giant connected components, which contain the 130

overwhelming majority of neurons in the brain, persist when ei- 131

ther the strongest connections or the weakest connections are 132

pruned (Figure S1a-b), indicating that connectivity in the brain 133
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is robust: many paths connect neuron pairs. We will refer to134

these extremely large connected components as the giant SCC135

and giant WCC, respectively. Within the giant SCC, the aver-136

age shortest directed path length between neuron pairs is 4.42137

hops, with every neuron reachable within 13 hops (Figure 1d).138

In the giant WCC, the average shortest undirected path length139

between neuron pairs is 3.91 hops, with every neuron reachable140

within 11 hops (Figure 1e). These numbers are comparable to141

those found in a similar analysis of the hemibrain dataset (38).142

The short path lengths within both connected components show143

that despite its size, the fly brain is still relatively shallow when144

compared to artificial networks (39).145

Is the high interconnectivity observed in the fly brain a con-146

sequence of a relatively large number of interconnected neu-147

rons, or is it dependent on a small number of very highly con-148

nected “hub" neurons? To assess this, we constructed survival149

curves, observing for how long the connected components of the150

network persist when neurons are removed from the network.151

Here, we plot the sizes of the two largest SCCs as we remove152

neurons from the directed network, starting with those of largest153

total degree (Figure 1f). We find that the first giant SCC persists154

until a total degree of 50, at which point the network splits into155

two SCCs of roughly equal size. These two SCCs correspond to156

a split between the left and right hemispheres, and demonstrate157

that despite the hemispheric anatomy of the brain, the two hemi-158

spheres are highly interconnected: they do not split into separate159

networks until about 60% of all neurons are removed. Remov-160

ing neurons from the network by smallest total degree does not161

result in division of the first giant connected component (Figure162

1g). This indicates that the interconnectivity of the brain is ro-163

bust, and not dependent on a small number of highly connected164

neurons. We observe similar behavior in the WCCs when re-165

moving neurons from the undirected network (Figure S2a-b).166

These results also remain qualitatively consistent when neurons167

are pruned in either the directed or undirected network by either168

in-degree or out-degree alone (Figure S2c-d).169

The SCC criteria is more biologically realistic, since con-170

nections between real neurons are directed. Note, however, that171

the similarities in size and path length distribution between the172

first SCC and first WCC indicate the prevalence of recurrent173

connections in the brain. In a mostly feedforward network, one174

would expect a smaller SCC with longer path lengths. This is175

not what we observe in the fly brain—instead, across the pop-176

ulation of all neuron pairs, the distribution of shortest directed177

path lengths is comparable to the distribution of shortest undi-178

rected path lengths.179

Spectral analysis of the whole-brain network180

To better understand the network topology of the brain, we per-181

formed a spectral analysis of a random walk in the giant SCC.182

In this random walk, the transition probability from neuron α183

to neuron β is pα→β = δα→β/d−α , where d−α is the out-degree184

of neuron α, and δα→β ∈ {0,1} indicates the existence of a185

connection. Such a random walk converges to a stationary dis-186

tribution over all neurons in the giant SCC (Figure S1f). We187

found that in this random walk, 3% of neurons were visited188

61.2% of the time—the remaining 97% of neurons were visited189

only 38.8% of the time. These top visited neurons can therefore 190

be classified as attractor nodes (40) in the network. These at- 191

tractor nodes typically make connections in the gnathal ganglia 192

(GNG), a large midline neuropil which both sends and receives 193

information from the periphery and contains a large number of 194

neurons that connect to the ventral nerve cord (VNC). 195

We also performed a “reverse" walk within the giant SCC, 196

reversing edge directionality so that the transition probability 197

from neuron α to neuron β is prev
α→β = δβ→α/d+

α , where d+
α is 198

the in-degree of neuron α. The reversed walk also converges 199

to a stationary distribution in which 3% of neurons were visited 200

42.4% of the time (Figure S1g). These highly visited neurons in 201

a reverse random walk are repeller nodes in the network. Many 202

of these neurons make synapses in the antennal lobes (AL) and 203

medullae (ME), brain regions close to the olfactory and visual 204

periphery, respectively. This suggests that these neuropils en- 205

gage in local (rather than integrative) computations. 206

The fly brain has a large rich club 207

Many networks exhibit the “rich club” property (3, 11, 18), 208

in which well connected nodes are preferentially connected to 209

other well connected nodes (see Methods). We find that there 210

exists a rich club regime in the FlyWire connectome, in which 211

neurons are more highly interconnected than one would expect 212

from a randomly connected network (Figure 1h). We will take 213

this cutoff to be a total degree of 37, though we note that the ex- 214

act choice of rich club cutoff is arbitrary (Methods). This large 215

rich club regime contains 40,218 neurons, approximately 30% 216

of all neurons in the brain. The connection probability within 217

this rich club is 0.000870, 5.4 times higher than the overall con- 218

nection probability in the brain. Such a large rich club suggests 219

that the topology of the fly wiring diagram is fairly distributed. 220

This is consistent with the connected component observations, 221

which also suggest a degree of robustness. A rich club analy- 222

sis considering in-degree alone returns an in-degree threshold of 223

10, while no rich club is observed when considering out-degree 224

alone (Figure S2e). 225

The fraction of neurons in the rich club regime in the fly is 226

substantially larger in the fly than in C. elegans, which has a 227

rich club of 11 neurons (4% of the neurons in the worm) (18). 228

We caution that this difference in rich club size is sensitive to 229

the criteria used to determine the rich club cutoff, and may also 230

be a consequence of the different scales of these two networks. 231

Nonetheless, it is interesting to note that while the worm rich 232

club contains known hub neurons, such as the command neu- 233

rons AVA and AVB, such highly connected hub neurons do not 234

seem to be present in the fly brain—while there are neurons with 235

very high degrees, there also exist alternate paths between most 236

neuron pairs. We further examine the properties of this large 237

rich club population in the section: Large-scale connectivity 238

in the brain. 239

Reciprocal and recurrent motifs are over-represented in 240

the brain 241

Connection reciprocity is a measure of the amount of direct 242

feedback in the brain: given that neuron α is connected to neu- 243

ron β, what is the probability that neuron β is connected back to 244
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neuron α? Across the whole brain, this connection reciprocity245

probability is 0.138 (Table 2). The connection reciprocity in the246

brain is significantly higher than in both the Erdős-Rényi (ER)247

and configuration (CFG) random null models (Methods). The248

over-representation of reciprocal connections in brains relative249

to null models is well established, and our results are consistent250

with previous observations both in Drosophila (38, 41, 42) and251

in other species (2, 6, 19, 22, 23, 43).252

We also computed the clustering coefficient, a higher-order253

connectivity metric which assesses the prevalence of triplet254

structures in the network irrespective of edge direction: if neu-255

ron α and neuron β are connected and neuron α and neuron γ256

are connected, what is the probability that neuron β and neuron257

γ are also connected? The clustering coefficient in the brain is258

0.0477 (Table 2). As was the case with reciprocity, this value259

of clustering coefficient is higher than in both ER and CFG null260

models. The high clustering coefficient demonstrates that the261

network of the fly brain is highly connected and is nonrandom262

in its structure.263

We compared these metrics with two existing whole-animal264

connectomes, the hermaphrodite and male C. elegans (2, 19,265

44), and with two sub-volume wiring diagrams, the hindbrain266

of a larval zebrafish (7) and a region of L2/3 mouse visual cor-267

tex (6) (Table 2). Despite differences in sparsity of the different268

brain networks, the values of reciprocity and clustering coeffi-269

cient are comparable across all five datasets.270

The fly brain is physically much larger than other previously271

studied biological networks, such as those in C. elegans, and it272

is divided into distinct brain regions. However, ER and CFG273

null models do not contain any spatial information, instead as-274

suming that any neuron pairs may randomly connect. We there-275

fore constructed a spatial null model to account for some of276

the physical constraints. Informed by the distribution of con-277

nections as a function of distance, we built a two-zone spatial278

null model, where the probability of randomly forming a con-279

nection between neurons is dependent on the distance between280

them (Figure S1e) (Methods). We computed the reciprocity281

and clustering coefficient for the spatial null model and found282

that reciprocity and clustering coefficient in the real network283

were also higher than this null model, suggesting that the non-284

random nature of connectivity in the fly is not solely a conse-285

quence of spatial or morphological constraints.286

We note that interpretations of these direct comparisons of287

metrics across different datasets should be made with caution.288

While the fly and worm datasets represent complete brains and289

nervous systems, respectively, the zebrafish and mouse datasets290

are derived from brain sub-volumes, with order 100s of neu-291

rons. Because many neurons in the fish and mouse sub-volumes292

are truncated, measures of reciprocity and clustering coefficient293

are incomplete. Additionally, differences in synapse detection294

and synapse thresholding will impact topological metrics such295

as connection probability and reciprocity. While connectomes296

in C. elegans have been proofread to the level of individual297

synapses (2, 25, 44), it is not feasible to manually proofread ev-298

ery synapse in larger connectomics datasets such as Drosophila.299

Varying the synapse threshold in the fly did not significantly300

alter reciprocity and clustering coefficient values (Figure S1c,301

Table S2). 302

Small-worldness of the fly brain 303

A “small-world” network is one in which nodes are highly clus-
tered and path lengths are short (10). High small-worldness co-
efficients are associated with efficient communication between
nodes (45, 46). We quantified the small-worldness of the con-
nectome by comparing it to an Erdős-Rényi (ER) graph (47).
The average undirected path length in the ER graph, denoted as
ℓrand, is estimated to be 3.57 hops, similar to the observed aver-
age path length in the fly brain’s WCC (ℓobs = 3.91). The clus-
tering coefficient (C∆

rand) of the ER graph is only 0.0003, much
smaller than the observed clustering coefficient (C∆

obs = 0.0463)
(Table 2, Methods). The small-worldness coefficient of the fly
connectome is:

S∆ =
C∆

obs/C∆
rand

ℓobs/ℓrand
= 141, (1)

significantly higher than that of the C. elegans connectome 304

(S∆ = 3.21) and close to that of the internet (S∆ = 98.1) (10), 305

implying highly effective global communication among neu- 306

rons in the brain. 307

Strength and neurotransmitter composition of reciprocal 308

connections 309

The average strength of edges participating in reciprocal con- 310

nections is higher than the average strength of unidirectional 311

connections (Figure 2a). The majority of unidirectional con- 312

nections are cholinergic (excitatory), while edges participat- 313

ing in reciprocal connections contain fewer cholinergic neu- 314

rons and more GABAergic neurons (Figure 2b). Inhibitory 315

connections in the brain have more synapses on average than 316

excitatory connections (28), which may partially explain the 317

higher average strength of reciprocal connections. The most 318

common reciprocal pairing is between a cholinergic neu- 319

ron and a GABAergic neuron and the second most com- 320

mon pairing is acetylcholine-glutamate (Figure 2c). Both 321

of these reciprocal motifs are excitatory-inhibitory (E-I), and 322

both are over-represented when compared to the neurotrans- 323

mitter frequencies observed for reciprocal connections (Figure 324

2b). Excitatory-excitatory (E-E) acetylcholine-acetylcholine 325

pairs are in contrast under-represented, as are inhibitory- 326

inhibitory (I-I) GABA-GABA pairs. We observed reciprocal 327

E-I (acetylcholine-GABA and acetylcholine-glutamate) con- 328

nection strengths to be only weakly correlated, while E-E 329

(acetylcholine-acetylcholine) pairs were uncorrelated (Figure 330

2d). Examples of reciprocal neuron pairs are shown in Figure 331

2g. 332

Reciprocal degree across the neuronal population 333

Of the 127,978 neurons in the whole brain, 77,607 participate 334

in at least one reciprocal connection: approximately 2 in every 335

3 neurons, even with the synapse threshold we applied (Meth- 336

ods). Many neurons participate in multiple reciprocal connec- 337

tions. To characterize these neurons, we define the reciprocal 338

degree as the number of reciprocal connections made by a given 339

neuron (Figure S3a). Plotting the distributions of reciprocal 340
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Table 2. Connection probabilities, reciprocity, and clustering coefficient in the fly brain. The probability that any two neurons in the fly brain are connected is 0.000160.
Connection reciprocity (the probability that two connected neurons are reciprocally connected) in the fly is 0.138, larger than in either an ER, CFG, or spatial null model
(Methods) with the same sparsity. The clustering coefficient (the probability that if neuron α and neuron β are connected and neuron α and neuron γ are connected, then
neuron β and neuron γ are also connected, irrespective of directionality) in the fly is 0.0463. Both reciprocity and clustering coefficient are higher than expected with ER, CFG,
and spatial null models. Values for thresholds from 0 to 50 are plotted in Figure S1c. Statistics for C. elegans were computed for the chemical networks of neurons in
hermaphrodite and male worms (19). Statistics for larval zebrafish hindbrain (7) and mouse visual cortex (6) were computed excluding any truncated neurons.

degree by neurotransmitter, we observe that the overwhelming341

majority of neurons with high reciprocal degree (drec > 100)342

are GABAergic (Figures 2e, S3b), while at lower reciprocal343

degrees (drec < 100), all three primary neurotransmitter types344

are well represented.345

What fraction of a neuron’s connections are reciprocal?346

Note that here, we are not considering reciprocity between cell347

types, but rather between pairs of individual neurons. For most348

neurons these fractions are low—on average 23% of incoming349

and 18% of outgoing connections are reciprocal. Plotting the350

fraction of reciprocal incoming connections against the fraction351

of reciprocal outgoing connections, we observe only a weak cor-352

relation (Figure S3c), suggesting that a given neuron’s recipro-353

cal degree is not strongly coupled to either its in-degree or its354

out-degree. Comparing the number of reciprocal connections355

neurons make to the total number of connections they make356

by plotting 2× the reciprocal degree against the total degree357

of neurons (in-degree + out-degree), we again see no relation-358

ship (Figure 2f). Dividing the neuron population by neurotrans-359

mitter, however, we find that neurons of high total degree are360

mostly GABAergic, and that for many of these neurons, more361

than half of their total connections are reciprocal (Figure S3d).362

Many of these highly reciprocal neurons provide feedback inhi-363

bition within specific neuropils (Identifying neuropil-specific364

reciprocal neurons). Examples of neurons which form recip-365

rocal connections are shown in Figure 2g.366

Strength and neurotransmitter composition of three-367

node motifs368

The high clustering coefficient of the brain implies an over-369

representation of triplet structures. We determined the fre-370

quency at which each of the 12 directed three-node motifs oc-371

cur in the brain (Figure 3a). Feedforward motifs (motifs #1-3)372

are under-represented when compared to both ER and CFG null 373

models, while all others, including the highly recurrent motifs 374

(motifs #7-13), are over-represented. The strengths of edges 375

participating in 3-node motifs are higher than the average edge 376

strength (Figure 3b). Complex 3-node motifs which contain re- 377

ciprocal connections tend to be stronger than feedforward mo- 378

tifs. 379

Examining the neurotransmitter composition of two of 380

these three-node motifs, feedforward loops (motif #4) and 3- 381

unicycles (motif #7) (Figure 3c), we found that edges which 382

participate in feedforward loops were predominantly choliner- 383

gic, and that the most common neurotransmitter composition 384

for a feedforward loop is three cholinergic neurons, a feed- 385

forward excitatory configuration (Figure 3d). The next most 386

common compositions contain either one or two inhibitory 387

(GABAergic or glutamatergic) edges. Feedforward loops with 388

one inhibitory edge are likely feedforward inhibition motifs, 389

while loops with two inhibitory edges are likely disinhibition 390

motifs. 3-unicycles in contrast contain a higher proportion of 391

inhibitory GABAergic and glutamatergic neurons, and the three 392

most common 3-unicycle compositions all contain at least one 393

inhibitory neuron (Figure 3e). These cycles may act as indirect 394

feedback inhibition circuits. It is interesting to note that the ob- 395

served neurotransmitter composition frequencies are closer to 396

what may be expected by chance for feedforward loops than 397

they are for 3-unicycles. Examples of neurons which form 3- 398

node motifs are shown in Figure 3f. 399

The fly brain exhibits a high clustering coefficient and an 400

over-representation of highly connected 3-neuron motifs. These 401

observations suggest that the local structure of the brain displays 402

a high degree of non-randomness, in line with previous studies 403

in C. elegans (2, 19) and in mouse cortex (6, 22, 23). The over- 404

representation of feedforward loops (motif #4) has been widely 405

Lin, Yang et al. | Network Statistics of the Whole-Brain Connectome of Drosophila bioRχiv | 6

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.07.29.551086doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.29.551086
http://creativecommons.org/licenses/by-nd/4.0/


ach neurons gaba neurons glut neurons

Av
g.

 s
tre

ng
th

 (s
yn

ap
se

s)

102

10

103

c

d

a b

achach
f

g

e

achgaba achglut

ach neuron
(pSP7)

110 syn

101 syn

glut neuron
(LHPD5c1)

ach neuron
(DP1m_adPN)

108 syn

 222 syn

gaba neuron
(ovilN)

Fr
eq

ue
nc

y

0.5

0.4

0.3

0.2

0.1

0

Observation
Expectation

ach neuron
(cM15)

250 syn

711 syn

Unidirectional edges Reciprocal edges

ac
h 

co
nn

ec
tio

n 
st

re
ng

th

102

10

103

gaba connection strength
10210 103

ac
h 

co
nn

ec
tio

n 
st

re
ng

th

102

10

103

glut connection strength
10210 103

ac
h 

co
nn

ec
tio

n 
st

re
ng

th

102

10

103

ach connection strength
10210 103

102

no. of reciprocal connections
1

ne
ur

on
 c

ou
nt 105

104 102

no. of reciprocal connections
1

ne
ur

on
 c

ou
nt 105

104 102

no. of reciprocal connections
1

ne
ur

on
 c

ou
nt 105

104

2 
x 

re
ci

pr
oc

al
 d

eg
re

e

102

10

103

total degree
1021 103

104

10 104

ach
gaba
glut
da
oct
ser

gaba neuron
(Pm->C2)

Figure 2. Characterizing reciprocal connections in the brain. (a) Edges that are part of reciprocal connections (reciprocal edges) are stronger on average than unidirectional
connections. (b) Breakdown of unidirectional and reciprocal edges by neurotransmitter. Unidirectional connections are most likely to be cholinergic. Reciprocal connections are
more likely than unidirectional connections to contain a GABAergic neuron. (c) The frequency of neurotransmitter pairs forming reciprocal connections, compared to the expected
frequency of neurotransmitter pairs under the assumption of independent neurotransmitter choice (red). A majority of reciprocal connections are formed by acetylcholine-GABA
pairs. The next most common reciprocal connection type is acetylcholine-glutamate, with acetylcholine-acetylcholine pairs under-represented. (d) Heatmaps of the relative
strengths (synapse counts) of the two connections forming acetylcholine-GABA reciprocal pairs (left), acetylcholine-glutamate reciprocal pairs (center), and
acetylcholine-acetylcholine reciprocal pairs (right). The strengths of the edges of reciprocal pairs are uncorrelated. Excitatory-inhibitory pairs (acetylcholine-GABA and
acetylcholine-glutamate) have higher average strengths than excitatory-excitatory (acetylcholine-acetylcholine) pairs. (e) Distributions of reciprocal degree (the number of
reciprocal connections a given neuron makes) for cholinergic neurons (left), GABAergic neurons (middle), and glutamatergic neurons (right). GABAergic neurons are more likely
to make large numbers of reciprocal connections, while cholingeric neurons are more likely to have smaller numbers of reciprocal connections. (f) Scatterplot of 2 times the
reciprocal degree of neurons versus their total degree (in-degree + out-degree). Dotted lines indicate a factor of 2 around the x = y line. Large neurons for which reciprocal
connections form the majority of their total connections are most likely to be GABAergic. (g) Visualizations of exemplar reciprocal neuron pairs. Cell labels are listed where
available.

observed in other biological networks, such as in rat cortex and406

C. elegans (2, 19, 22, 23). This over-representation is present407

in most neuropils in the brain. It is possible that these feed-408

forward loops, which are predominantly excitatory, may form409

large-scale feedforward structures which span brain regions. 3-410

unicycles (motif #7) may form recurrent local circuits capable411

of generating persistent oscillatory neural activity (7).412

Large-scale connectivity in the brain413

Within the adult brain, the in-degree and out-degree of neurons414

are not tightly correlated. Neurons with few inputs and many415

outputs may serve as broadcasters of signals, while those with416

many inputs and few outputs may act as integrators. To examine417

these populations of neurons, we divided the intrinsic rich club 418

neuron population into three categories based on their in-degree 419

and out-degree (Figure 4a). We divided the rich club neurons 420

by defining broadcaster neurons as those for which out-degree 421

≥ 5× in-degree, and integrator neurons as those for which in- 422

degree ≥ 5× out-degree. The boundaries defining broadcaster 423

and integrator neurons are arbitrary, and intended to aid in com- 424

parisons of neurons with unbalanced inputs and outputs. In the 425

FlyWire connectome we find 676 broadcasters and 638 integra- 426

tors. The remaining intrinsic rich club neurons (37,093) fall into 427

the balanced category (Region 3), including most highly recip- 428

rocal neurons. Some examples of broadcasters, integrators, and 429

balanced neurons are shown in Figure 4d. 430
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Figure 3. Examining 3-node motifs. (a) The distribution of three-node motifs across the whole brain. Absolute counts of each motif are on the left, and the frequency of each
motif relative to that in an ER null model is plotted to the right, together with the average motif frequencies of 100 CFG models (gray violin plots). When we compare the
whole-brain network to both ER and CFG null models, we observe an under-representation of simple motifs (#1-3) and an over-representation of other motifs, particularly highly
recurrent motifs (#10, 12, 13). (b) The average strength of edges that are part of the 3-node motifs. The dotted line is the average connection strength in the brain. (c) Breakdown
by neurotransmitter of edges participating in two motifs: feed-forward loops (motif #4) and 3-unicycles (motif #7). Edges in feed-forward loops are more likely to be cholinergic. (d)
Further examining the neurotransmitter composition of these motifs, we find that feed-forward loops (motif #4) are most likely to be acetylcholine-acetylcholine-acetylcholine, (e)
while 3-unicycles (motif #7) tend to contain at least one inhibitory edge (glutamate or GABA). (f) Visualizations of exemplar 3-node motifs. Cell labels are listed where available.

When compared to the population of all neurons, rich club431

neurons are less likely to be cholinergic and more likely to be432

GABAergic (Figures 4b, S4a). Integrator neurons are even433

less likely to be cholinergic (49%), and include a large frac-434

tion of dopaminergic neurons, suggesting that these neurons435

may be engaged during learning. In contrast, broadcaster neu-436

rons are predominantly cholinergic (75%). Central brain neu-437

rons are dramatically over-represented in the rich club, while438

optic lobe intrinsic neurons are under-represented (Figures 4c,439

S4b). Many integrators are either central brain intrinsic neu-440

rons or visual projection neurons. In contrast, few broadcast-441

ers are intrinsic to the central brain—many are visual centrifu-442

gal neurons or optic lobe intrinsic neurons. These include a443

large number of Mi1 and Tm3 neurons, excitatory cells in the444

medullae (ME) known to play key roles in the motion detec-445

tion circuit (41, 49, 50). Most neurons are restricted to a single446

hemisphere—just 11% of neurons have inputs in both hemi- 447

spheres and 11% have outputs in both hemispheres (Figure 448

S4c)(28). In comparison, rich club neurons are more likely to 449

have inputs or outputs spanning both hemispheres: 18% and 450

17%, respectively. This is more common for integrator neurons 451

(23%) than it is for broadcaster neurons (16%). 452

Rich club neurons are closer on average to sensory in- 453

puts 454

To assess the distance of the rich club neurons from sensory 455

inputs, we employed a probabilistic information flow model to 456

determine the relative distance of each neuron (in hops) from 457

a set of seed neurons (Methods) (28, 48). The model was run 458

with different sets of seed neurons, each corresponding to a spe- 459

cific set of sensory neurons (olfactory, gustatory, etc.), as well 460

as on the complete set of all sensory inputs, giving us the dis- 461

tance from each neuron in the dataset to each sensory modal- 462
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Figure 4. Large-scale neuron connectivity in the brain. (a) Using the in-degree vs. out-degree scatterplot, we can divide the intrinsic rich club neurons into three distinct
categories: broadcasters, integrators, and large balanced neurons. Comparing the prevalence of (b) neurotransmitters and (c) intrinsic superclasses (optic lobe intrinsic, visual
projection, visual centrifugal, and central brain intrinsic) of all intrinsic neurons, rich club neurons, integrators, and broadcasters. (d) Examples of rich club neurons in these three
categories. (e) Applying the information flow model from Schlegel et al. 2021 (28, 48), we determined the percentile rank distributions of rich club, integrator, and broadcaster
neuron populations from all inputs to the brain (above), as well as to specific modalities (Figure S4d). (f) Average percentile rank of rich club, integrator, and broadcaster neurons
for different modalities. Across all modalities, rich club neurons are closer than average to sensory inputs.

ity. We excluded the visual photoreceptors from this analysis463

(Methods). Ranking these distances and normalizing returned464

the percentile rank of each neuron with respect to each modality.465

Neurons with percentile rank less than 50% are closer than av-466

erage to the given sensory input, while neurons with percentile467

rank greater than 50% are farther. 468

The rich club neurons have a mean percentile rank of 44% 469

relative to the set of all sensory inputs (Figure 4e). Integrators 470

have a mean percentile rank of 43%, while broadcasters have 471

a mean percentile rank of 53%. Integrator neurons are closest, 472
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with many having a percentile rank of less than 10%. The distri-473

bution of broadcasters is bifurcated, with one peak closer to in-474

puts and another peak far from inputs. Examining the ranks with475

respect to individual sensory modalities, we find that rich club476

neurons are again closer than average to each modality (Figures477

4f, S4d). Broadcasters tend to be closer to single sensory inputs478

than they are to the set of all inputs. This is likely because rank-479

ing from a seed population of all inputs will rank integrators480

before many broadcasters. In contrast, when looking at a sin-481

gle modality, neurons which are predominantly connected to a482

different modality will be farther than average.483

We examine the distance of neurons to multiple sensory484

modalities by plotting the percentile rank of neurons with re-485

spect to one modality against the percentile rank of neurons486

of another modality (Figure S4e). Broadcaster and integrator487

neurons are scattered throughout these distributions, but tend to488

be closer than average to multiple sensory inputs. These rich489

club neurons may be a fruitful starting point when searching490

for neurons to characterize experimentally. In particular, inte-491

grator and broadcaster neurons which are low in rank relative492

to multiple sensory modalities may be good candidate sites of493

multi-sensory integration and information propagation.494

Differences in connectivity across brain regions495

The fly brain consists of a large number of distinct anatomi-496

cal brain regions, or neuropils (51). The FlyWire connectome497

has been segmented into 78 neuropils (Figure 5a), each with498

different average connection strengths (28). To understand in-499

formation flow between neuropils, we employed a fractional500

weighting method accounting for each neuron’s projections to501

and from every neuropil (Methods)(28). From these, we com-502

puted for each neuropil the relative fraction of internal, external503

incoming, and external outgoing connection weights (Figure504

S5a-b). These fractions reflect, respectively, the net number505

of connections within, being received, and being sent from each506

neuropil.507

We find significant differences in these fractions across508

brain regions: the ellipsoid body (EB) and fan-shaped body509

(FB) of the central complex have the highest fraction of internal510

connections, while in other regions, such as the compartments511

of the mushroom body (MB), the majority of connections are512

external (Figure S5b). Some regions such as the lateral horn513

(LH) send more external connections than they receive, while514

others such as the lobula plate (LOP) receive more external515

connections than they send. The fraction of internal connec-516

tion weights is not correlated with neuropil size: while large517

neuropils such as the anterior and posterior ventrolateral pro-518

tocerebra (AVLP and PVLP) have significant fractions of in-519

ternal weights, they do not rank the highest. We note that un-520

der this classification, internal weights include any neurons with521

endings outside the brain, such as sensory, ascending, and de-522

scending neurons. This likely accounts for the high fraction of523

internal weights in regions such as the medullae (ME), which524

receive inputs from R7 and R8 photoreceptors, and the gnathal525

ganglia (GNG), which connects with large numbers of both as-526

cending and descending neurons. Across the brain, 52% of all527

connection weights can be classified as internal. Comparing the528

putative neurotransmitters of the neurons contributing connec- 529

tion weights, we see that internal connections are more likely 530

than external ones to be inhibitory (GABAergic or glutamater- 531

gic) (Figure S5c). We also see differences in neurotransmitter 532

composition across brain regions (Figure S5d). 533

Prevalence and neurotransmitter composition of recip- 534

rocal connections differ across neuropils 535

To perform motif analyses within each neuropil, we first iden- 536

tified a subnetwork for each neuropil which treats all connec- 537

tions made within that neuropil as edges and includes all neu- 538

rons connected to these edges (Figures 5b, S6a). Different 539

neuropil subnetworks differ notably in both connection strength 540

and density (Figure S6b). We computed the reciprocity in each 541

neuropil subnetwork (Figures 5c, S6c). Neuropils with partic- 542

ularly high reciprocity probabilities include those in the central 543

complex (FB, EB, and NO) and the two antennal lobes (AL). 544

The relative number of reciprocal connections (reciprocity nor- 545

malized by neuropil connection density) is high in the mush- 546

room bodies (MB) and medullae (ME) (Figure S6b). Note that 547

for these motif analyses, the results for small neuropils such as 548

the cantles (CAN), bulbs (BU), galls (GA), accessory medullae 549

(AME), and ocellar ganglion (OCG) are less interpretable due 550

to the small number of samples. 551

In most neuropils, as in the whole brain, reciprocal connec- 552

tions are stronger than unidirectional connections, though the 553

ratio of average strengths varies across neuropils (Figure S6d). 554

Exceptions include the protocerebral bridge (PB), mushroom 555

body calyces (MB-CA), and bulbs (BU), which have stronger 556

unidirectional connections than reciprocal connections. Com- 557

paring the relative prevalence of each neurotransmitter in recip- 558

rocal and unidirectional connections, we again see differences 559

between neuropils (Figures 5d-e, S6d-h). While reciprocal 560

connections in most neuropils contain fewer cholinergic edges 561

and more GABAergic edges than unidirectional connections, 562

there are notable exceptions, such as in the neuropils of the cen- 563

tral complex (FB, EB, PB, and NO). In the compartments of 564

the mushroom body (MB) we find especially large differences 565

in neurotransmitter composition between unidirectional and re- 566

ciprocal connections. Comparing the strengths of the edges of 567

reciprocal excitatory-inhibitory (acetylcholine-GABA) connec- 568

tions within neuropil subnetworks, we observe that E-I connec- 569

tion strengths are more strongly correlated in some neuropils 570

(such as the FB and NO) than in others (Figures 5f, S7a-b). 571

These correlations do not appear to be dependent on neuropil 572

size (Figure S7c). 573

Identifying neuropil-specific reciprocal neurons 574

We performed a comprehensive search for intrinsic highly re- 575

ciprocal rich club neurons that make the majority of their 576

connections within a single neuropil, and found 1,863 neu- 577

rons that meet these criteria (Figure 5g). These neuropil- 578

specific highly reciprocal neurons (NSRNs) are predominantly 579

inhibitory: 54% are GABAergic and another 10% are gluta- 580

matergic (Figure S7d). In some neuropils, such as the anten- 581

nal lobes (AL), medullae (MB), and ellipsoid body (EB), there 582

are many NSRNs, while in other neuropils, such as the superior 583
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Figure 5. Neuropil-specific differences in connectivity. (a) An exploded view of the brain showing the brain regions, or neuropils, that the FlyWire dataset is divided into. Each
synapse is assigned to a neuropil based on synapse location. (b) A schematic showing how neuropil subnetworks are identified for motif analyses. With the standard threshold of
5 synapses per edge applied, all connections composed of synapses within the neuropil of interest (Neuropil A) are treated as edges of the Neuropil A subnetwork. All neurons
reached by this set of edges are included in the subnetwork. However connections composed of synapses outside of Neuropil A are not included, even if those connections
involve neurons included in the subnetwork. (c) The reciprocity within each neuropil subnetwork. Differences in the percentage of (d) cholinergic and (e) GABAergic edges
between reciprocal and unidirectional connections, across different neuropils. Refer to Figure S6 for the absolute percentages. (f) Heatmaps showing the relationship between
excitatory and inhibitory connection strengths in reciprocal connections in different brain regions. (g) Assessing the number of large (rich club), highly reciprocal neurons which
span specific neuropils: making most of their incoming and outgoing connections within a single neuropil and also having a high reciprocal degree. Examples of neurons which
meet these criteria are shown. (h) Map of the total number of reciprocal pairs between different neuropils. Examples of such pairs are shown in Figure S7e.
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each motif relative to that in an ER null model is plotted to the right, together with the average motif frequencies of 100 CFG models (gray violin plots). Further examples of other
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posterior slopes (SPS) and posteriorlateral protocerebra (PLP),584

there exist only a handful of such neurons.585

Some NSRNs, like the APL neurons in the MB (52, 53),586

CT1 neurons in the LO (41, 54, 55), or antennal lobe local neu-587

rons (ALLNs) (56, 57), have been previously characterized as588

providing global feedback inhibition in different regions. These589

neurons tend to be highly branched, with individual processes590

making reciprocal connections with different feedforward neu-591

rons. Some have been shown to have compartmentalized activ-592

ity, raising the possibility of local computation within these neu-593

rons (58–60). Many of the NSRNs identified here have yet to be594

characterized. They may play similar roles in other circuits—595

for instance, it is likely that some of the NSRNs found in the596

AVLP provide feedback to the auditory circuits which span this597

brain region (61).598

Identifying inter-neuropil reciprocal connections 599

While many reciprocal connections occur within single neu- 600

ropils, 12.1% of all reciprocal pairs are formed by connections 601

made by synapses in two neuropils (Methods). We mapped 602

the reciprocal connections that exist between the 78 neuropils 603

(Figure 5h). The diagonal terms consist of the intra-neuropil re- 604

ciprocal connections described above (Figure 5b-c), while the 605

off-diagonal terms reflect the number of reciprocal pairs which 606

connect across neuropils. Examples of such neuron pairs are 607

shown in Figure S7e. 608

From the map, we see that reciprocal connections exist be- 609

tween many neuropil pairs. The compartments of the mush- 610

room body (MB) are linked by many reciprocal connections, 611

while the neuropils of the SEZ, including the GNG, SAD, and 612

PRW, form a connected block. Strong reciprocal connectivity 613
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also occurs across the midline. For instance, there is strong re-614

ciprocal connectivity between the two antenna lobes (AL(L) and615

AL(R)). Neuropils close to the midline, such as SMP, SPS, and616

IPS, tend to have many cross-hemispheric reciprocal connec-617

tions. There also exist reciprocal connections which span from618

one edge of the central brain to the other, such as those between619

AOTU(L) and AOTU(R) and between LAL(L) and LAL(R).620

The prevalence of such inter-neuropil reciprocal connections621

demonstrates that the recurrent motifs we observe in the brain622

are not limited to local connections—they can also exist at large623

spatial scales.624

Additional insight can be gleaned by comparing the map625

of reciprocal connections to the projectome matrix of all neu-626

rons in the brain (Dorkenwald et al., Figure 4 (28)). Comparing627

the two maps, we can identify regions which are connected by628

many neurons, but have disproportionately few reciprocal con-629

nections. For instance, neuropils SLP and SIP are connected to630

the FB in the projectome, but share no reciprocal connections.631

Similarly, the LA boasts many neurons but very few reciprocal632

connections.633

Examining ach-gaba reciprocal connections, we can iden-634

tify deviations from symmetry that represent a net imbalance of635

excitatory-inhibitory reciprocal connections (Figure S7f). For636

example, between the LO and PVLP, all ach-gaba reciprocal637

connections share the same directionality: the ach connections638

are in the LO and the gaba connections are in the PVLP.639

Three-node motifs differ across neuropils in their preva-640

lence and strength641

We computed the prevalence of three-node motifs in each642

neuropil subnetwork, and compared the motif frequencies to643

ER and CFG random null models constructed for each sub-644

network (Figures 6a, S8a). Across most neuropils, we ob-645

served the same trend as we do across the entire brain: an646

under-representation of feedforward motifs (#1-3) and an over-647

representation of complex motifs (Figure 6b). However, there648

are notable differences between neuropils. In the cantles649

(CAN), epaulettes (EPA), and gorgets (GOR), for example, the650

frequency of 3-node motifs was closer to that expected in a651

CFG null model, while in other neuropils like the ellipsoid body652

(EB), complex motifs are highly over-represented (Figure 6b).653

Feedforward loops (motif #4) are over-represented in most654

neuropils, excepting in the fan-shaped body (FB), ellipsoid655

body (EB), noduli (NO), and mushroom body compartments656

(MB). This suggests a relative under-representation of both657

feedforward excitatory and feedforward inhibitory circuits in658

these brain regions. 3-unicycles (motif #7), an indirect feed-659

back inhibition circuit, are over-represented across the whole660

brain (Figure 3c) but are under-represented in most neuropils.661

The notable exceptions, the medullae (ME) and gnathal ganglia662

(GNG), are very large neuropils and have many sensory inputs.663

The over-representation of 3-unicycles in the ME implies the664

existence of localized cyclic structures within the early visual665

circuitry. Interestingly, this motif is also over-represented in666

the zebrafish oculomotor circuit (7). Motifs #7-10 are under-667

represented in the antennal lobes (AL), perhaps a result of the668

small number of unidirectional edges in these regions. The669

most highly connected motifs (#12-13) are particularly over- 670

represented in the ellipsoid body (EB) and fan-shaped body 671

(FB), consistent with their high reciprocity. 672

In most neuropils, we find that edges participating in under- 673

represented motifs are also weaker on average than edges partic- 674

ipating in over-represented motifs (Figure 6c). We also observe 675

that in most neuropil subnetworks, edges participating in 3-node 676

motifs are stronger than the average subnetwork edge (Figure 677

S8b). This is broadly consistent with the whole-brain 3-node 678

motif strength results. A notable exception is in the laminae 679

(LA), where feedforward connections are strong despite being 680

under-represented. 681

Discussion 682

Here, we have provided a broad overview of the network prop- 683

erties of the Drosophila brain, laying the groundwork for iden- 684

tifying neurons and circuit motifs of biological interest and for 685

modeling of particular circuits. In addition to the topology of 686

the neural network, we have taken advantage of spatial infor- 687

mation (innervation in different neuropils), neuron class distinc- 688

tions (sensory versus descending, for example), cell type labels, 689

and neurotransmitter predictions to better contextualize and in- 690

terpret the network features we uncovered. We compared the 691

statistics of the fly connectome to other wiring diagrams, car- 692

ried out a comprehensive brain-wide search for 2- and 3-node 693

connectivity motifs, identified highly connected broadcaster and 694

integrator neurons, and identified differences in connectivity 695

in different brain regions. The complete FlyWire dataset is 696

freely available online via Codex (Connectome Data Explorer: 697

codex.flywire.ai), along with interactive lists of the neu- 698

rons discussed in this work. These data will allow researchers 699

to profile neurons by their connectivity features and identify key 700

neurons within their circuits or brain regions of interest, a use- 701

ful resource for hypothesis generation or model development. 702

Experimentally examining highly connected neurons, such as 703

the attractors, repellers, integrators, broadcasters, and NSRNs 704

identified here, may also prove fruitful for linking circuit-level 705

findings with broader activity patterns. Our results reveal that 706

despite its sparsity, the neurons of the brain form a robust and 707

highly interconnected network. This network is not predomi- 708

nantly feedforward, with over-represented reciprocal and recur- 709

rent motifs which can span multiple brain regions. Additionally, 710

different brain regions in the fly differ in their network proper- 711

ties. 712

An understanding of how the whole-brain network shapes 713

brain function is particularly important in light of recent exper- 714

imental findings. A common approach in modern experimen- 715

tal neuroscience is to use anatomical wiring diagrams to gen- 716

erate circuit-level hypotheses, and to test these hypotheses by 717

imaging and perturbing single cells or cell types. However, re- 718

cent whole-brain imaging experiments, both in the fly (62–64) 719

and in other species (65–72), have revealed brain-wide activ- 720

ity patterns related to both sensory processing (of individual 721

modalities) and simple behaviors (like locomotion). To fully 722

understand distributed computations and information flow in 723

the brain, we must consider interactions not just at the scale of 724

tens of neurons, but at the brain scale. Availability of network 725

Lin, Yang et al. | Network Statistics of the Whole-Brain Connectome of Drosophila bioRχiv | 13

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2023.07.29.551086doi: bioRxiv preprint 

codex.flywire.ai
https://doi.org/10.1101/2023.07.29.551086
http://creativecommons.org/licenses/by-nd/4.0/


statistics at the scale of brain regions, coupled with the broad726

mesoscale connectivity between brain regions (28), will enable727

hypothesis generation at the whole-brain scale. Different neu-728

ropils serve different functions, and our work now highlights729

how these different functions are subserved by differences in730

connection strength, internal connectivity, motif frequency, and731

neurotransmitter composition. For example, the central com-732

plex (neuropils FB, EB, PB, and NO), which has persistent ac-733

tivity associated with an internal representation of heading (73–734

78), contains some of the most reciprocal brain regions and has735

a large number of internal connections. Examination of other736

neuropil subnetworks may help us generate hypotheses regard-737

ing the function of less well-studied neuropils.738

In this work, we comprehensively explored 2-node and739

3-node motifs, and highlighted several large-scale connectiv-740

ity patterns by exploring broadcaster (few-to-many), integrator741

(many-to-few), and highly reciprocal neurons. There remains,742

of course, a space of larger network motifs to explore. We have743

integrated the network motif search and visualization tool Vimo744

(79) into Codex, which allows users to query the FlyWire con-745

nectome for any network motif of interest.746

Limitations747

The availability of neurotransmitter predictions greatly en-748

hanced our ability to interpret the circuit motifs we found in749

the connectome. However, while these predictions are 94% ac-750

curate when compared to a set of ground truth neurons, there are751

cases where the predicted neurotransmitter does not align with752

the known transmitter. In this iteration of the dataset, we man-753

ually corrected the Kenyon cells to be cholinergic (Methods).754

There may exist other populations of neurons which are likewise755

systematically mis-identified, but which currently lack ground756

truth neurotransmitter information. When interpreting results757

on the network scale, we must keep this error rate in mind. Also,758

monoamines beyond dopamine, octopamine, and seratonin are759

not accounted for in these predictions. More details on the neu-760

rotransmitter predictions are discussed in Eckstein et al. (33).761

In this work, we assume that neurons in the fly obey Dale’s762

law—each releasing only one neurotransmitter. However, there763

are several known examples of co-transmission in Drosophila764

(80–83). How widespread neurotransmitter co-transmission is765

remains unclear.766

It should also be noted that the synaptic connectome does767

not provide a complete picture of information flow in the brain.768

We currently do not have a complete map of gap junctions in the769

fly, and the extent to which extrasynaptic communication (via770

non-synaptic release of amines or neuropeptides) shapes neural771

activity in the Drosophila brain remains an open question (84–772

86).773

We also acknowledge that some of the statistics presented774

here, particularly those metrics dependent on network topol-775

ogy, such as neuron degree or reciprocity and motif frequen-776

cies, may be sensitive to our choice of synapse threshold. While777

connectomes in C. elegans have been proofread to the level of778

individual synapses (2, 19, 25, 44), it is not feasible to man-779

ually proofread every synapse in larger connectomics datasets780

(27, 28, 38). We must therefore rely on automated synapse de-781

tection algorithms with a non-negligible error rate (32). Not all 782

synapses are successfully attached to neurons, and this comple- 783

tion rate varies across animals and brain regions (24, 28, 38). 784

To avoid false positive connections, we applied a threshold on 785

the number of synapses a connection between neurons must 786

have. While some of these low synapse number connections 787

may be spurious, it is also likely that a significant number of 788

these weak connections are real and reliable across individuals, 789

as has been found when comparing multiple individuals in C. el- 790

egans (25). In this work, we employed a consistent and conser- 791

vative threshold of five synapses per connection between neu- 792

rons, and demonstrated that our qualitative conclusions are not 793

dependent on this threshold. We therefore analyzed a sparser 794

network of high-confidence connections, containing 2.6 million 795

connections instead of 14.7 million un-thresholded connections 796

(Table S2). It is likely that the fly brain is even more strongly 797

interconnected than the results here indicate. 798

Local circuit motifs are often inferred to be feedforward or 799

feedback connections, with different theorized roles. While we 800

are able to make such inferences on the population level, it can 801

be difficult to place local circuits in the context of global direc- 802

tionality from sensory input to motor output. In shallow net- 803

works such as in C. elegans, the directionality of the wiring dia- 804

gram from sensory input to motor output is clear. However, the 805

larger the network becomes, the more difficult it becomes to es- 806

tablish directionality from sensory input to motor output. In this 807

work, we employed an information flow method to rank the neu- 808

rons by an effective difference from various sensory modalities 809

(28). Ultimately, however, directionality of information flow 810

in particular circuits, especially those in regions of the brain 811

far from sensory inputs or motor outputs, must be determined 812

through functional activity experiments and modeling. 813

The rich club compensates for anatomical bottlenecks 814

The anatomy of the fly brain suggests several potential network 815

bottlenecks: one between left hemisphere and right hemisphere 816

and one between the central brain and optic lobes. Only 12% 817

of neurons cross hemispheres and 6% of neurons cross between 818

the central brain and optic lobes (28, 29). Despite these bot- 819

tlenecks, the brain is robustly interconnected with short path 820

lengths. The large rich club regime in the fly brain may ex- 821

plain these short path lengths. When compared to the average 822

neuron in the brain, rich club neurons are more likely to con- 823

tain synapses in both hemispheres, and are also more likely to 824

connect the optic lobes to the central brain. The broad reach 825

of these rich club neurons also keeps path lengths short across 826

these bottlenecks. In mesoscale functional connectome work in 827

the human brain, it has similarly been proposed that rich-club 828

hubs act to keep path lengths short (87, 88). Future functional 829

imaging experiments in the fly focusing on the population of 830

rich club neurons may shed light on whether this this is the case 831

at neuron-scale. 832

We may also expect the ascending and descending neurons 833

which form a bottleneck between the brain and the ventral nerve 834

cord (VNC) will also be part of a rich club of the central ner- 835

vous system. Many ascending and descending neurons appear 836

to have high degrees when examined either within the brain or 837
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within the VNC. While a wiring diagram of the VNC is now838

available (89), we await the completion of a complete CNS con-839

nectome to determine whether the ascending and descending840

neurons are members of the rich club.841

Comparing connectomes across animals842

Comparing network properties across wiring diagrams from dif-843

ferent species has the potential to uncover global properties of844

brain organization. We make several such comparisons in Ta-845

ble 2, and have commented on other comparisons throughout846

the text. The similarities in reciprocity and clustering coeffi-847

cient across animals, which vary dramatically in both size and848

connection density, hint at the possibility that some features of849

circuit architecture may be broadly conserved across biological850

nervous systems. Comparisons of metrics which are dependent851

on network topology, however, such as neuron degree or reci-852

procity and motif frequencies, must be interpreted with care due853

to differences in proofreading and data resolution. While con-854

nectomes in C. elegans have been proofread to the level of indi-855

vidual synapses (2, 19, 25, 44), in larger connectomics datasets856

individual synapses are not proofread and instead a threshold857

on synapses per connection is applied to filter out spurious con-858

nections (24, 27, 28, 38). Threshold choice impacts topological859

metrics, which treat all edges as equivalent. Applying the same860

threshold across datasets does not resolve this conundrum, as a861

given number of synapses per connection may have different bi-862

ological implications across species. It has also been observed,863

both in this work and in past studies, that different parts of the864

brain of the fly differ in their connectivity properties (38, 42).865

It is likely that the same is true in larger, more complex brains866

as well, meaning that statistics derived from partial wiring dia-867

grams may not be representative.868

It has been demonstrated in C. elegans that there is substan-869

tial variability in the connectomes of individuals of the same870

species (25). Comparisons between the FlyWire connectome871

and hemibrain wiring diagram have already revealed interest-872

ing similarities and differences between individual flies, as out-873

lined in our companion paper (29), but more datasets will be874

needed before we fully understand the amount of variability be-875

tween individuals in Drosophila. The same is expected to be876

true for zebrafish and mouse connectomes. More whole-brain877

connectomes are on the horizon, both in Drosophila and in other878

species (90). The network analysis of the fly brain presented879

here will be a valuable baseline for comparison, both to the880

connectomes of other Drosophila individuals and to the connec-881

tomes of other species. As the efficiency of electron microscopy882

and neural reconstruction continue to increase, it will become883

possible to better understand which features of these networks884

are common and which are species- or individual-specific. Such885

comparative connectomics studies within a single species may886

shed light on brain development, stereotypy, and learning, while887

future studies across multiple organisms may elucidate princi-888

ples of brain evolution, organization, and computation.889

Methods 890

Dataset 891

The FlyWire connectome is the reconstruction of a 7-day-old 892

adult female Drosophila melanogaster, genotype [iso] w1118 893

x [iso] Canton-S G1 (30). The EM images were aligned and 894

neurons were automatically reconstructed using deep learning 895

and computer vision methods, then proofread by the commu- 896

nity (27, 28). Neuron cell types and community labels were 897

also attached to these data (29, 91). All analyses presented in 898

this paper were performed on the v630 Snapshot of the Fly- 899

Wire dataset. The v630 snapshot contains 127,978 neurons and 900

2,613,129 thresholded connections, the central brain of the fly 901

was fully proofread, with the optic lobes ∼80% complete. Most 902

of the neurons missing from the v630 Snapshot were photore- 903

ceptors, and we do not expect that the addition of these neu- 904

rons would significantly change our whole-brain network re- 905

sults. At time of publication, the most up-to-date version of the 906

FlyWire dataset is the v783 Snapshot, containing 139,255 neu- 907

rons, 2,701,601 thresholded connections, and completed optic 908

lobes. Both data snapshots are available at Codex (Connectome 909

Data Explorer): codex.flywire.ai. 910

Synaptic connections and thresholding 911

Synapses were detected algorithmically (31, 32), with each 912

synapse receiving a confidence score. We then removed 913

synapses if (1) either the pre- or postsynaptic location of the 914

synapse was not assigned to a segment, or (2) the synapse had 915

a confidence score of less than 50. We then set a threshold of 5 916

synapses per connection between neurons for most of our analy- 917

ses to reduce the impact of spurious connections. This threshold 918

is also consistent across our companion papers on the FlyWire 919

connectome (28, 29). We employed a threshold because manual 920

proofreading of the FlyWire dataset did not extend to individ- 921

ual synapses (28). Thresholding connections by synapse num- 922

ber was previously implemented in the hemibrain connectome, 923

with similar rationale (38). We acknowledge that this is a con- 924

servative threshold and is likely to result in an undercounting of 925

true connections. We assessed key statistics as a function the 926

threshold to ensure that our qualitative observations hold over a 927

range of threshold choices (Figure S1b-c). 928

Assignment of neurotransmitters to neurons 929

The neurotransmitter at each synapse was predicted directly 930

from the EM images using a trained convolutional neural net- 931

work with per-synapse accuracy of 87% (28, 33). The algo- 932

rithm returns a 1×6 probability vector containing the odds that 933

a given synapse is each of the six primary neurotransmitters in 934

Drosophila: ach, gaba, glut, da, oct, or ser. We then averaged 935

these probabilities across all of a neuron’s outgoing synapses, 936

under the assumption that each neuron expresses a single out- 937

going neurotransmitter, to obtain a 1×6 probability vector rep- 938

resenting the odds that a given neuron expresses a given neu- 939

rotransmitter. We then assigned the highest-probability neuro- 940

transmitter as the putative neurotransmitter for that neuron. The 941

per-neuron accuracy is 94%. 942

In cases where the highest probability is p1 < 0.2 and the 943

difference between the top two probabilities p1 − p2 < 0.1, we 944
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classified the neuron as having an uncertain neurotransmitter. In945

the ∼1600 Kenyon cells, where the neurotransmitter of a neuron946

is known to be acetylcholine but the algorithm often returned er-947

roneous predictions, the neurotransmitter prediction associated948

with that neuron was overwritten by the known neurotransmit-949

ter.950

Cell classifications and labels951

84% of neurons are intrinsic to the brain, meaning that their952

projections are fully contained in the brain volume (28). Central953

brain neurons are fully contained in the central brain, while op-954

tic lobe intrinsic neurons are fully contained in the optic lobes.955

Visual projection neurons have inputs in the optic lobes and out-956

puts in the central brain. Visual centrifugal neurons have inputs957

in the central brain and outputs in the optic lobe. Sensory neu-958

rons are those which are entering the brain from the periphery,959

and are divided into classes by modality. Refer to our com-960

panion paper, Schlegel et al., for more details on classification961

criteria (29). We also employed annotation labels contributed962

by the FlyWire community (28).963

Definitions of in-degree, out-degree, total degree and re-964

ciprocal degree965

For a given neuron i, the in-degree d+
i is the number of incom-

ing synaptic partners the neuron has and the out-degree d−i is
the number of outgoing synaptic partners the neuron has. The
total degree of a neuron i is the sum of in-degree and out-degree:

dtot
i := d+

i +d−i . (2)

The reciprocal degree drec
i is the number of partners a given966

neuron form reciprocal connections with. Since each reciprocal967

connection consists of two edges, we can determine the frac-968

tion of reciprocal inputs and outputs as drec
i /d+

i and drec
i /d−i ,969

respectively (Figure S3c).970

Definitions of connection probability, reciprocity and971

clustering coefficient972

Given the observed wiring diagram as a simple (no self-edges)
directed graph G(V,E), the “connection probability" or “den-
sity" is the probability that, given an ordered pair of neurons α
and β, a directed connection exists from one to the other:

pconn := P [α → β] = |E|
|V |(|V |− 1) . (3)

The reciprocity is the probability that, given a pair of neurons
which are connected α to β, there exists a returning β to α con-
nection:

prec := P [β → α|α → β]. (4)

The (global) clustering coefficient is the probability that for
three neurons α, β and γ, given that neurons α and β are con-
nected and neurons α and γ are connected (regardless of direc-
tionality), neurons β and γ are connected:

C∆ := P [β ∼ γ|α ∼ β ∧α ∼ γ]. (5)

We computed these metrics both across the whole brain and 973

within brain region (neuropil) subnetworks. 974

We also systematically quantified the occurrence of distinct 975

directed 3-node motifs within the network, ensuring that dupli- 976

cates are eliminated: any subgraph involving three unique nodes 977

is counted only once in our analysis. To compute the expected 978

prevalence of specific neurotransmitter motifs (Figures 2c, 3d- 979

e) we multiplied the relevant neurotransmitter probabilities for 980

the motif of interest, under the assumption the neurons connect 981

independent of neurotransmitter. We then compared this expec- 982

tation to the true frequency of motifs with these neurotransmit- 983

ter combinations. 984

ER and CFG null models 985

We probed different statistics of the wiring diagram G(V,E) by
comparing them with the statistics of various null models. The
simplest null model we employed was a directed version of the
Erdős–Rényi model (ER) G(V,p), where all edges are drawn
independently at random, and the connection probability p is
set such that the expected number of edges in the ER model
equals that observed in the wiring diagram (47). For any nodes
i, j ∈ V , the connection probability is constant:

P [i → j] = p = |E|
|V |(|V |− 1) . (6)

Since reciprocal edges in the wiring diagram are over-
represented when compared to a standard Erdős-Rényi (ER)
model, we adopted a generalized Erdős–Rényi model (gER),
which preserves the expected number of reciprocal edges. The
gER model G(V,puni,pbi) has two parameters, uni-directional
connection probability puni and bi-directional connection prob-
ability pbi, both of which are set to match the wiring diagram.
To do this, we defined the sets of unidirectional and bidirec-
tional edges as:

Euni := {(i, j)|(i, j) ∈ E ∧ (j, i) /∈ E}, (7)

Ebi := {(i, j)|(i, j) ∈ E ∧ (j, i) ∈ E}. (8)

For any nodes i and j:

P [i↛←j] = P [i↚→j] = puni = |Euni|
|V |(|V |− 1) , (9)

P [i←→j] = pbi = |Ebi|
|V |(|V |− 1) , (10)

P [i ̸↚→j] = 1 −2puni −pbi. (11)

All edges between unordered node pairs were drawn indepen- 986

dently and at random. 987

In line with previous work (7, 63), we also employed a di- 988

rected configuration model (CFG), G(V,{d+
i }, {d−i }), which 989

preserves degree sequences during random rewiring. We sam- 990

pled 1,000 random graphs uniformly from a configuration space 991

of graphs with the same degree sequences as the observed graph 992

by applying the switch-and-hold algorithm (92), where we ran- 993

domly select two edges in each iteration and swap their target 994

endpoints under the condition that doing so does not introduce 995

self-loops or multiple edges (switch), or else keep them un- 996

changed (hold). 997
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Computing pairwise distances between neuronal arbors998

To determine the connection probability distribution as a func-999

tion of distance between neurons, we first had to distill the avail-1000

able spatial information into a handful of points. This was the1001

only practical way to enable distance comparisons between all1002

neurons—a total of 14 billion pairs.1003

For each neuron, we defined two coordinates based on the1004

location of their incoming and outgoing synapses. We com-1005

puted the average 3D position of all of the neuron’s incoming1006

synapses to approximate the position of the neuron’s dendritic1007

arbor, and did the same to approximate the position of the neu-1008

ron’s axonal arbor. We then computed for all neuron pairs the1009

pairwise distances between the axonal arbor of neuron A and1010

the dendritic arbor of neuron B. Binning by distance and com-1011

paring the number of true connections to the number of neuron1012

pairs allowed us to compute connection probability as a func-1013

tion of space (Figure S1d).1014

Spatial null model1015

Informed by the distribution of connection probability as a1016

function of distance, we constructed a spatial null model with1017

two zones of probability—a “close" zone (0 to 50 microns)1018

where connections are possible with a relatively high prob-1019

ability (pclose = 0.00418) and a “distant" zone (more than1020

50 microns) where connections occur with lower probability1021

(pdistant = 0.00418) (Figure S1e). The probabilities in these1022

two zones were derived from the real network.1023

Spectral analysis1024

Given a strongly connected graph G(V,E) and its 0-1 adja-1025

cency matrix A ∈ Rn×n
≥0 , where Aij indicates the existence of a1026

connection from neuron j to neuron i, one can construct an ir-1027

reducible Markov chain on the strongly connected graph with1028

a transition matrix Pij := Aij/
∑

k Akj giving the transition1029

probability from j to i. The Perron-Frobenius theorem guaran-1030

tees that P has a unique positive right eigenvector π with eigen-1031

value 1, and therefore that π is the stationary distribution of the1032

Markov chain. We constructed such a transition matrix for the1033

connectome and determined the eigenvector π.1034

We also defined a “reverse” Markov chain with a transition1035

matrix P rev
ij := Aji/

∑
k Ajk giving the transition probability1036

from j to i. P rev also has a unique positive right eigenvector1037

πrev with eigenvalue 1. Figures S1f and S1g show the station-1038

ary distribution of forward and reversed Markov chains, respec-1039

tively.1040

The normalized symmetric Laplacian of the Markov chain
P is

L = I − 1
2

(
Π1/2PαΠ−1/2 +Π−1/2P ⊺Π1/2

)
, (12)

where Π := Diag(π) and I is the identity matrix. Similarly, we1041

defined Lrev for the reverse Markov chain. The eigen-spectra of1042

L and Lrev are shown in Figures S1f and S1g, respectively. The1043

gaps between eigenvalues indicate the conductance properties1044

of the graph.1045

Finding rich club neurons 1046

We employed the standard rich club formulation to quantify the
rich club effect (11). The rich club coefficient Φ(k) at a given
degree value (k), with all nodes with degree < k pruned, is the
number of existing connections in the surviving subnetwork di-
vided by the total possible connections in the surviving subnet-
work:

Φ(k) = Mk

Nk(Nk −1) , (13)

where Nk neurons in the network with degree ≥ k and Mk is 1047

the number of connections between such neurons. 1048

To control for the fact that high-degree nodes have a higher
probability of connecting to each other by chance, we normal-
ized the rich club coefficient to the average rich club value of
100 samples from a CFG null model (Figure 1h):

Φnorm(k) = Φ(k)
⟨ΦCF G(k)⟩ . (14)

The standard method of determining the rich club threshold is to 1049

look for values of k for which Φnorm(k) > 1 + nσ, where σ is 1050

the standard deviation of ΦCF G(k) and n is chosen arbitrarily 1051

(18). However, since the standard deviation from our samples is 1052

extremely small near the bump in relative rich club coefficient, 1053

we chose instead to define the onset threshold of the rich club as 1054

Φnorm(k) > 1.01 (1% denser than the CFG random networks). 1055

We computed the rich club coefficient in three different 1056

ways, by sweeping by total degree (Figure 1h), in-degree, and 1057

out-degree (Figure S2c), progressively moving from small to 1058

large values. As we observed, when the total degrees of the 1059

remaining nodes surpass 37, the network becomes denser com- 1060

pared to randomized networks. Once the minimal total degree 1061

reaches 93, the network becomes as sparse as the randomized 1062

counterpart. Therefore, we classified neurons with total degrees 1063

above 37 as "rich club" neurons because they exhibit denser in- 1064

terconnections when considered as a subnetwork. In terms of 1065

in-degree, the range for denser-than-random connectivity is be- 1066

tween 10 and 54. Considering out-degree alone did not reveal 1067

any specific onset or offset threshold for rich club behavior, as 1068

the subnetwork always remains sparser than random. 1069

Definitions of broadcaster neurons, integrator neurons, 1070

and neuropil-specific recurrent neurons 1071

To identify broadcaster neurons, we filtered the intrinsic rich
club neurons (dtot > 37) for those which had an out-degree was
at least 5 times higher than their in-degree:

d− ≥ 5×d+. (15)

Similarly, we identified integrator neurons by filtering the
intrinsic rich club neurons for those which had an in-degree was
at least 5 times higher than their out-degree:

d+ ≥ 5×d−. (16)

Rich club neurons which did not fall into either category were 1072

defined as “large balanced” neurons. This analysis was limited 1073
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to intrinsic neurons–those which have all of their inputs and out-1074

puts within the brain–to avoid spurious identification of afferent1075

or efferent neurons as broadcasters or integrators.1076

When identifying large recurrent neuropil-specific neurons1077

(Figure 5g) we applied the following criteria. First, the neu-1078

rons were intrinsic and met the rich club criteria. Second, at1079

least 50% of the neuron’s incoming connections were contained1080

within the subnetwork of a single neuropil. Third, at least 50%1081

of the neuron’s outgoing connections were contained within the1082

same neuropil.1083

Neuron ranking1084

We employed a probabilistic connectome flow model previously1085

published in Schlegel et al. 2021 to determine the ranking of1086

neurons relative to various sensory neuron populations (28, 48).1087

This method ignores the sign of connections. Starting from a1088

set of user-defined seed neurons, the model traverses the wiring1089

diagram probabilistically: in each iteration the chance that a1090

neuron is added to the traversed set increases linearly with the1091

fractions of synapses it is receiving from neurons already in the1092

traversed set. When this likelihood reaches 30%, the neuron1093

is guaranteed to be added to the traversed set. The process is1094

then repeated until the entire network graph has been traversed.1095

The iteration in which a neuron was added corresponds to the1096

distance in hops it was from the seed neurons. For each set of1097

seed neurons, the model was run 10,000 times. The distance1098

used to determine the rank of any given neuron was the average1099

iteration in which it was added to the traversed set.1100

We ran this model using the following subsets of sensory1101

neurons as seeds: olfactory receptor neurons, gustatory recep-1102

tor neurons, mechanosensory Johnston’s Organ neurons, head1103

and neck bristle mechanosensory neurons, thermosensory neu-1104

rons, hygrosensory neurons, visual projection neurons, visual1105

photoreceptors, ocellar photoreceptors and ascending neurons.1106

We also ran the model using the set of all of the input neurons1107

as seed neurons. All neurons in the brain were then ranked by1108

their traversal distance from each set of starting neurons, and1109

this ranking was normalized to return a percentile rank.1110

Determining information flow between neuropils1111

To determine the contributions a single neuron makes to infor-1112

mation flow between neuropils, we first applied two simplifying1113

assumptions: (1) that information flow through the neuron can1114

be approximated by the fraction of synapses in a given region1115

and (2) that inputs and outputs can be treated independently.1116

Employing these two assumptions we constructed a matrix rep-1117

resenting the projections of a single neuron between neuropils.1118

The fractional inputs of a given neuron are a 1 × N vector con-1119

taining the fraction of incoming synapses the neuron has in each1120

of the N neuropils, and the fractional outputs are a similar vec-1121

tor containing the fraction of outgoing synapses in each of the1122

N neuropils. We multiplied these vectors against each other to1123

generate the N × N matrix of the neuron’s fractional weights,1124

with a total weight of one. Summing these matrices across all1125

neurons produced a matrix of neuropil-to-neuropil connectivity,1126

or projectome (see Figure 4 of Dorkenwald et al., 2023) (28).1127

From the neuropil-to-neuropil connectivity matrix we deter-1128

mined the total weight of internal connections—those within a 1129

given neuropil—by identifying the neurons which contribute to 1130

the diagonal of the matrix. We likewise determined the weight 1131

external connections—either incoming to the neuropil or outgo- 1132

ing from the neuropil—by looking at the off-diagonals. These 1133

data were used to construct the analyses in Figure S6a-c. 1134

Identifying neuropil subnetworks 1135

Most of the neurons in the Drosophila brain have soma at 1136

the surface of the brain. Therefore, they cannot be associ- 1137

ated to neuropils (brain regions) based on their soma locations. 1138

Synapses, however, can be associated with neuropils. To per- 1139

form motif analyses at the level of individual neuropils, we iden- 1140

tified neuropil subnetworks based on the the connections made 1141

by the synapses contained within each neuropil volume. All 1142

connections within the neuropil of interest are taken as edges of 1143

this subnetwork, and all neurons connected to these edges are 1144

included (Figure 5b). The number of neurons associated with 1145

each neuropil subnetwork is plotted in Figure S6d. Note that if 1146

two neurons both in a given neuropil subnetwork share a con- 1147

nection which occurs in a different neuropil, that connection is 1148

not included as an edge in the given subnetwork. 1149

Identifying inter-neuropil reciprocal pairs 1150

We constructed a map of reciprocal connections between neu- 1151

ropils in the form of a triangular matrix with the neuropils as 1152

axes. For clarity, here we will refer to a unidirectional connec- 1153

tion as an edge. A reciprocal connection contains two opposing 1154

edges. While some edges are composed of synapses in multi- 1155

ple neuropils, the majority of edges are composed of synapses 1156

in a single neuropil after thresholding. We therefore applied a 1157

winner-take-all approach to assigning edges to neuropils. 1158

Given two recipocally connected neurons X and Y, let us 1159

call the edge from X to Y Edge 1, and the edge from Y to X 1160

Edge 2. If the synapses that form Edge 1 are in Neuropil A, and 1161

the synapses that form Edge 2 are in Neuropil B, then we assign 1162

this reciprocal pair to the Neuropil A to Neuropil B square of 1163

the matrix. This was done for all reciprocal pairs, with each re- 1164

ciprocal pair is counted as 1 in the matrix. Note that this means 1165

that a given neuron can be represented multiple times if it has 1166

multiple reciprocal partners. 1167

Data availability 1168

The FlyWire data is available online via Codex (Connectome 1169

Data Explorer): codex.flywire.ai. Neuron annotations, 1170

neurotransmitter information, and compact data downloads are 1171

available via Codex, along with neuron lists generated in this 1172

work, including neurons participating in 2-node and selected 3- 1173

node motifs, rich club neurons, broadcaster and integrator neu- 1174

rons, and neuropil-specific reciprocal neurons. 1175

Software availability 1176

The analyses presented in this paper were performed in Python 1177

with the numpy and graph-tool (93) packages, and in MAT- 1178

LAB (standard toolboxes). Software written for this publi- 1179

cation is available at Github (github.com/murthylab/ 1180
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flywire-network-analysis). Some 3D renders were1181

generated in Cinema4D.1182
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Figure S1. Supplement for Figure 1. The effects of edge percolation on the size of the largest WCC when (a) large connections are removed first and when (b) small
connections are removed first. (c) The sizes of the first two SCCs as a function of the synapse threshold. (d) Synapse probability (left) and connection probability (right) as a
function of the average distance between neuronal arbors. Plots are of a drawn from a subsample of 700 million pairs (5% of the total 14 billion pairs). (e) The probability of
random connection of the two-zone spatial null model, with one close regime with high connection probability and a distant regime with low connection probability. Spectral
analysis of the whole-brain network with (f) forward and (g) reverse walks. In each case, the stationary probability distributions are shown, as well as the distribution of neuropils
in which the inputs and outputs of the top 3000 most visited neurons are located. Renders of the top 3% attractor (red) and repeller (green) neurons are also shown. The top
0.3% are rendered in darker colors.
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Figure S2. Additional supplement for Figure 1. (a) The sizes of the first two weakly connected components (WCCs) as nodes are removed by total degree (1 neuron per step).
Removal of neurons starting with those with largest degree results in the brain splitting into two WCCs when neurons of approximately degree 50 start to be removed, a deviation
from when neurons are removed in a random order (dotted lines). The largest surviving total degree as a function of the number of remaining nodes is plotted in gray. (b)
Removal of neurons starting with those with smallest degree results in a single giant WCC until all neurons are removed. The smallest surviving total degree as a function of the
number of remaining nodes is plotted in gray. (c) The sizes of the first two strongly connected components (SCCs) as nodes are removed by in-degree or out-degree (2500
neurons per step). Removal of neurons starting with those with largest in-degree (top left) or largest out-degree (top right) result in the brain splitting into two SCCs when neurons
of approximately degree 50 start to be removed, a deviation from when neurons are removed in a random order (dotted lines). Removal of neurons starting with those with
smallest in-degree (bottom left) or smallest out-degree (bottom right) results in a single giant SCC until all neurons are removed. (d) The sizes of the first two weakly connected
components (WCCs) as nodes are removed by in-degree or out-degree (1 neuron per step). Removal of neurons starting with those with largest in-degree (top left) or largest
out-degree (top right) result in the brain similarly splitting into two WCCs when neurons of approximately degree 50 start to be removed, a deviation from when neurons are
removed in a random order (dotted lines). Removal of neurons starting with those with smallest in-degree (bottom left) or smallest out-degree (bottom right) results in a single
giant WCC until all neurons are removed. (e) The rich club coefficient (red) as a function of total degree (left), in-degree (middle), and out-degree (right), compared to the
predicted rich-club coefficient of a CFG null model (dotted red). The relative rich club coefficient is plotted in blue.
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Neuron lists available on Codex Definitions

2-neuron  
motifs

reciprocal connection 
participants

all neurons that participate  
in reciprocal connections.

3-neuron  
motifs

feedforward loop 
participants

neurons that participate in feedforward loop motifs consisting of 
unidirectional connections:  

β→α, α→ γ and β→γ, precisely.

3-unicycle  
participants

neurons that participate in 3-unicycles  
consisting of unidirectional connections:  

β→α, α→ γ and γ→β, precisely.

N-neuron  
motifs

highly reciprocal  
neurons

neurons with the numbers of reciprocal  
edges ≥ 0.5 x total-degrees.

neuropil-specific highly  
reciprocal neurons 

(NSRNs)

intrinsic rich-club and highly reciprocal neurons with ≥ 50% of 
incoming connections, and ≥ 50% outgoing connections are 

contained in the same neuropils, respectively.

Rich-club 
analysis

rich-club neurons
high-degree neurons that are densely  

connected with other high-degree neurons  
(total-degree is higher than 37).

broadcasters intrinsic rich-club neurons with out-degrees ≥ 5 x in-degree.

integrators intrinsic rich-club neurons with in-degrees ≥ 5 x out-degrees.

Spectral 
analysis

attractors top 3% most visited neurons in a forward random walk over  
the largest strongly connected component.

repellers top 3% most visited neurons in a reversed random walk over 
the largest strongly connected component.
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Table S1. Supplement for Table 1. Definitions for all neuron populations identified in this paper.

Neuronal  
wiring diagrams

Fruit fly (no threshold) 
Drosophila melanogaster 
(Dorkenwald et al., 2023) 

 

Fruit fly (≥ 5 synapses) 
Drosophila melanogaster 
(Dorkenwald et al., 2023) 

 

Network size 127,978 neurons 
14,680,950 connections

127,978 neurons 
2,613,129 connections

Avg. connection strength
3.59 synapses 

1 ~ 2358
12.61 synapses 

5 ~ 2358

Connection probability
0.000896 

x5.62
0.000160 

x1

Connection reciprocity 0.265 
x293 than ER 

x46.1 than CFG

0.138 
x858 than ER 

x43.8 than CFG
Clustering coefficient

0.108 
x59.7 than ER 

x9.17 than CFG

0.0463 
x144 than ER 

x7.57 than CFG
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Table S2. Supplement for Table 2. Network statistics of the fly connectome with no threshold on the number of synapses per connection (left) and a threshold of 5 synapses per
connection.
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Figure S3. Supplement for Figure 2. (a) Distribution of reciprocal degree (gray) alongside distributions of in-degree (red) and out-degree (blue). (b) Distributions of reciprocal
degree for glut, da, oct, and ser neurons. (c) Heatmap showing the fraction of reciprocal incoming connections versus the fraction of reciprocal outgoing connections. Dotted lines
indicate a factor of 2 around the x = y line.
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Figure S5. Internal and external connections across neuropils. (a) The number and (b) relative fraction of neuron weights in each neuropil making connections internal to
that neuropil, external incoming connections, and external outgoing connections. Each neuron contributes a total weight of 1, computed based on the fraction of incoming and
outgoing synapses the neuron has in each neuropil. (c) Comparing the neurotransmitter composition of all internal and all external neuron weights across the whole brain and (d)
by neuropil.
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Figure S6. Supplement for Figure 5. (a) The number of neurons included in each neuropil subnetwork. (b) The average connection strength (no synapse threshold applied) of
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Figure S7. Additional supplement for Figure 5. (a) Heatmaps showing the relationship between excitatory (ach) and inhibitory (GABA) connection strengths in reciprocal
connections in different brain regions. (b) Ach-gaba reciprocal connection strength correlations (Pearson r-score) for all neuropils. (c) These correlations do not appear to be
correlated with neuropil subnetwork size. (d) The neurotransmitter composition of the population of neuropil-specific highly reciprocal neurons (NSRNs). (e) Examples of
inter-neuropil reciprocal neuron pairs, one neuron in blue and one neuron in gold. (f) Map of the total number of ach-gaba reciprocal pairs between different neuropils.
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Figure S8. Supplement for Figure 6. (a) Three-node motif distributions for additional neuropils. The frequency of each motif relative to that in an ER null model is plotted to the
right, together with the average motif frequencies of 100 CFG models (gray violin plots). (b) Average strengths of edges participating in 3-node motifs in the different neuropil
subnetworks relative to the average edge strength in each subnetwork.
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