

Network Statistics of the Whole-Brain Connectome of *Drosophila*

Albert Lin^{*1,2}, Runzhe Yang^{*1,3}, Sven Dorkenwald^{1,3}, Arie Matsliah¹, Amy R. Sterling¹, Philipp Schlegel^{4,5}, Szi-chieh Yu¹, Claire E. McKellar¹, Marta Costa⁵, Katharina Eichler⁵, Alexander Shakeel Bates^{4,5,6}, Nils Eckstein⁷, Jan Funke⁷, Gregory S.X.E. Jefferis^{4,5}, and Mala Murthy^{1,✉}

¹Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA

²Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA

³Computer Science Department, Princeton University, Princeton, NJ, USA

⁴Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK

⁵Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK

⁶Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK

⁷Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA

*These authors contributed equally to this work

Abstract

Brains comprise complex networks of neurons and connections. Network analysis applied to the wiring diagrams of brains can offer insights into how brains support computations and regulate information flow. The completion of the first whole-brain connectome of an adult *Drosophila*, the largest connectome to date, containing 130,000 neurons and millions of connections, offers an unprecedented opportunity to analyze its network properties and topological features. To gain insights into local connectivity, we computed the prevalence of two- and three-node network motifs, examined their strengths and neurotransmitter compositions, and compared these topological metrics with wiring diagrams of other animals. We discovered that the network of the fly brain displays rich club organization, with a large population (30% percent of the connectome) of highly connected neurons. We identified subsets of rich club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex and will serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.

Drosophila melanogaster | connectomics | brainwide network analysis

Correspondence: mmurthy@princeton.edu

(16, 17), humans, and other mammals (3, 4, 14). It has been suggested that such a network architecture contributes to the ability of brains to efficiently integrate and disseminate information.

Advancements in electron microscopy and dense volumetric reconstruction have enabled researchers to examine increasingly larger brain networks at the microscale. These methods do not make assumptions about the relationship between neuron connectivity and functional correlations. In network analyses performed at the microscale, nodes and edges can be directly related to neurons and synaptic connections. For instance, in the rich club regime observed in the *C. elegans* connectome, many rich club neurons are known to be important in motor control (2, 18, 19). Recurring patterns of connectivity between neurons, known as network motifs, have been proposed as “building blocks” of networks (20, 21), and their prevalence in neuronal networks has been studied to uncover organizational principles of neural networks (2, 5–7, 22–24). Specific motifs such as reciprocal connections (2, 6, 7, 19, 25), feedforward loops (2, 22, 23), and 3-unicycles (7, 26) have received significant attention in neuroscience because of their implications for local computation and information flow.

In this study, we characterize the network properties of the FlyWire synapse-resolution connectome, the first complete wiring diagram of an adult fly brain (27–30). We explore the interconnectivity of the brain, including path lengths between neurons, frequently traversed neural sub-populations, motif frequencies, and more. We draw statistical comparisons between the network of the fly brain and other biological wiring diagrams. We find that the fly brain has rich club organization and examine several sub-populations of these well-connected neurons, including those which may act as integrators or broadcasters of signals. Finally, we uncover differences in connectivity between 78 anatomically defined brain regions. The data derived in this work offer a quantitative summary of the network of the adult fly brain, and lay the groundwork for future studies exploring connectivity in the fly. They also serve as a valuable foundation for future experimental and theoretical work. A summary of computed statistics and neuron populations can be found in Table 1.

1 Introduction

2 Mathematical network theory has been applied to connectomes
3 at multiple scales (from detailed synaptic-resolution wiring dia-
4 grams to putative connectivity between brain regions) to under-
5 stand brainwide organization (1–7). Network analyses quantify
6 the interconnectivity and robustness of a network (8–10), and
7 can identify highly connected nodes in the brain that may act
8 as hubs (11). Such analyses can also serve as a basis for com-
9 parison across brain regions, individuals, developmental stages,
10 or species, enabling researchers to uncover commonalities and
11 differences in brain organization.

12 Mesoscale connectomes have been constructed for the
13 brains of humans and other mammals from, for example, MRI
14 and MEG data, which assess connectivity at millimeter scale
15 (1, 12–15), relying on functional correlations in activity to in-
16 fer mesoscale connectivity. Rich club organization has been ob-
17 served in several mesoscale connectomes, including *Drosophila*

Computed network statistics		
Connected components	strongly connected components	Figure 1d
	weak connected components	Figure 1e
Path length analysis	directed shortest path lengths	Figure 1d
	undirected shortest path lengths	Figure 1e
Survival analysis	neuron removal survival curves	Figures 1f-g, S2a-d
	edge removal survival curves	Figure S1a
Rich-club analysis	total degree rich club	Figures 1h, 4, S4
	in-degree rich club	Figure S2e
	out-degree rich club	Figure S2e
Small-world analysis	clustering coefficient	Table 2
	small-worldness	Equation 1
Large-scale connectivity	degree distribution	Figure 1c
	cell categories	Figure 4
Spectral analysis	forward random walk	Figure S1f
	reversed random walk	Figure S1g
2-neuron motifs	reciprocity	Table 2
	connection strength	Figures 2a,d, S3a,c
	neurotransmitter types	Figures 2c,e-f, S3b,d
3-neuron motifs	motif frequencies	Figure 3a
	motif strength	Figure 3b
	neurotransmitter types	Figures 3c-e
Neuropils	internal/external connection weights	Figure S4
	reciprocity	Figures 5, S6, S7
	3-neuron motifs	Figures 6, C8
	inter-neuropil reciprocal connections	Figures 5h, S7e-f

	Neuron lists available on Codex	# of neurons
2-neuron motifs	reciprocal connection participants	77,607
3-neuron motifs	feedforward loop participants	113,978
	3-unicycle participants	66,835
N-neuron motifs	highly reciprocal neurons	2,183
	neuropil-specific highly reciprocal neurons (NSRNs)	704
Rich-club analysis	rich-club neurons	40,218
	broadcasters	676
	integrators	638
Spectral analysis	attractors	3,469
	repellers	3,469

Table 1. Data availability. List of data products in this work, including statistics computed in this paper (left) and neuron populations (right). Complete, interactive neuron lists are available online as “Connectivity Tags” on Codex (codex.flywire.ai). Definitions for each of these neuron populations can be found in the text, and in **Table S1**.

57 Results

58 Summary of the dataset and definitions

59 To perform large-scale network analyses, we summarized the
60 synaptic connections between neurons into the following data
61 structure. For each pair of neurons, we sum the total number
62 of synaptic connections to return the weight of their connection.
63 Repeating for all neuron pairs gives us a weighted graph
64 describing the connectome, with 127,978 neurons and
65 2,613,129 total thresholded connections, representing the
66 complete *Drosophila* brain (28) (**Figure 1a, Methods**). In this paper,
67 we will be using the term “connection” to denote an edge
68 that exists in the network between two neurons, consisting of
69 one or more synapses. The synapses in this dataset were de-
70 tected automatically (31, 32). To minimize the impact of spuri-
71 ous synapses, we applied a threshold of 5 synapses per connec-
72 tion for all of the analyses conducted in this study, unless oth-
73 erwise noted (**Methods**). The exceptions are the distribution of
74 synapses per connection, which is presented without threshold
75 (**Figure 1b**), and controls to confirm that our qualitative obser-
76 vations are robust to threshold choice (**Figure S1b-c, Table S2**).
77 We will be using synapse count as a proxy for edge strength in
78 this paper: “stronger” and “weaker” will refer to higher or lower
79 synapse counts, respectively.

80 The FlyWire connectome also contains synapse-level neu-
81 rotransmitter predictions (33). The classifier applied to the
82 dataset discriminates between six neurotransmitters: the fast-
83 acting classical neurotransmitters acetylcholine (ach), GABA
84 (gaba), and glutamate (glut) and the monoamines dopamine
85 (da), octopamine (oct), and serotonin (ser). In the *Drosophila*

86 nervous system, acetylcholine is excitatory and GABA is in-
87 hibitory. Glutamate can be either excitatory or inhibitory, but
88 within the brain of the fly it has largely been observed to be
89 inhibitory (34–36).

90 A key characteristic of the network is the distribution of de-
91 grees, which reflects the amount of connectivity between neu-
92 rons. For any given neuron, the *in-degree* is defined as the num-
93 ber of presynaptic neurons (neurons it receives inputs from), and
94 the *out-degree* is defined as the number of postsynaptic neurons
95 (neurons it sends outputs to). With a threshold of 5 synapses per
96 connection, the average in/out-degree of an intrinsic neuron in
97 the brain is 20.5 (28), but the distributions of in-degree and out-
98 degree are not highly correlated (Pearson $R = 0.76$, $p < 0.001$)
99 (**Figure 1c**). On average, each connection in the brain consists
100 of approximately 12.6 synapses after the threshold is applied
101 (28). Across the connectome, the probability that any two neu-
102 rons are connected is 0.000161. This makes the wiring diagram
103 of the fly brain a very sparse matrix when compared to, for ex-
104 ample, the *C. elegans* nervous system or the partial wiring dia-
105 grams of brain regions of larval zebrafish and mouse (**Table**
106 **2**). This sparsity is due in part the size of the fly brain. The
107 connection probability is highest among neurons whose arbors
108 are close to each other. Over 71% of connections occur be-
109 tween neuron pairs located within 50 microns of each other, de-
110 spite these pairs constituting less than 3% of the total number
111 of pairs. (**Figure S1d**). We note, however, that even in the close
112 regime the connection probability in the fly remains lower than
113 what has been observed in other wiring diagrams. The long-
114 range sparsity is partially a consequence of the segregation of

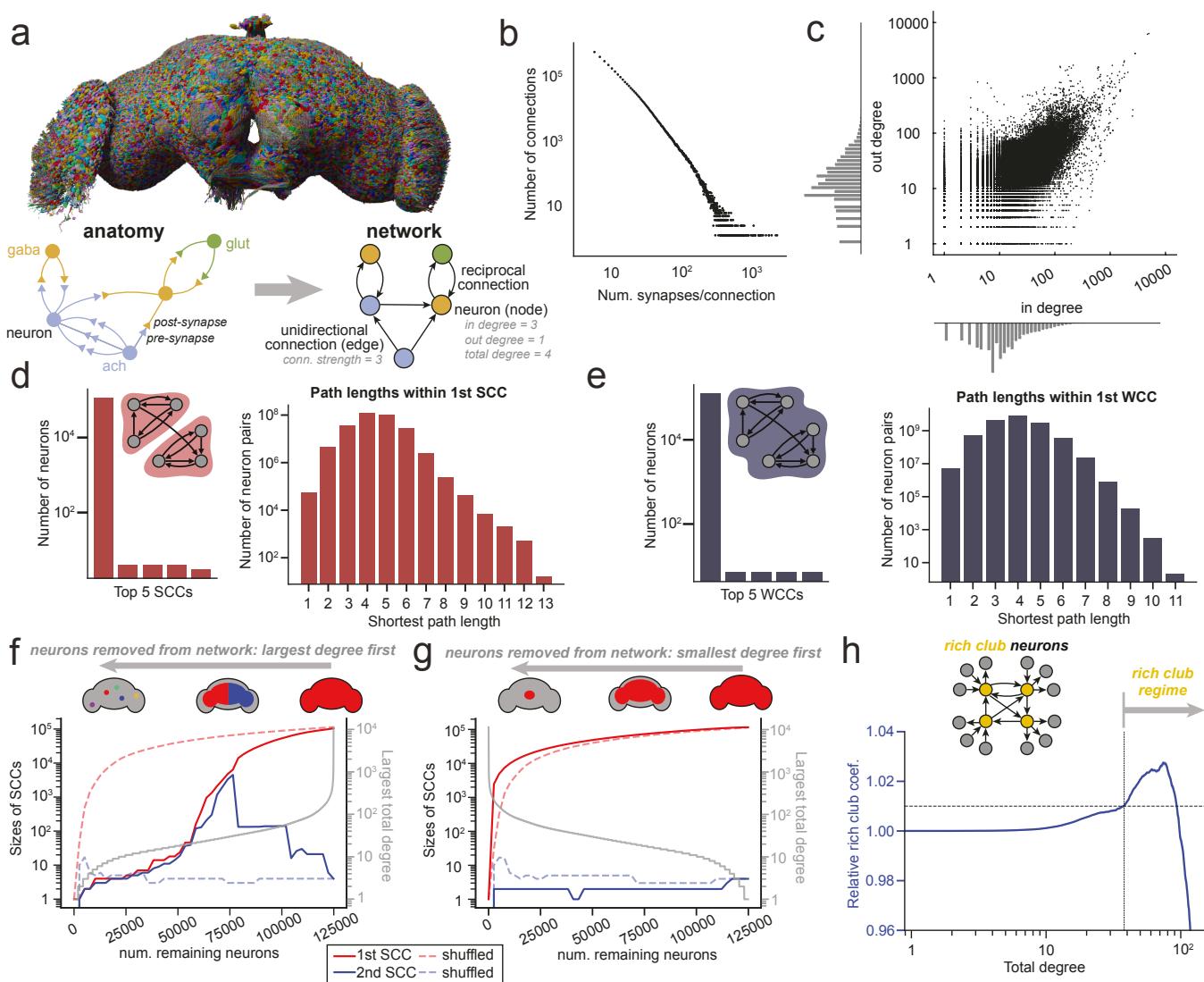


Figure 1. Whole-brain network properties. (a) The FlyWire dataset (27, 28, 30) is an EM reconstruction of the complete brain of an adult female *Drosophila melanogaster*, with both hemispheres of the brain and both optic lobes. The volume contains 127,978 neurons and 32 million synapses with a threshold of 5 synapses/connection applied (subsample of synapse locations shown in the inset). (b) The distribution of the number of synapses per connected neuron pair. (c) The in-degree (number of presynaptic partners) plotted against the out-degree (number of post-synaptic partners), with log-scale x and y-axes. (d) Strongly connected components (SCCs) consist of a subset of nodes in a network which are mutually reachable via directed edges. In the fly brain there exists one giant SCC containing 93.3% of all neurons after thresholding at 5 synapses per connection. The distribution of shortest path lengths between neuron pairs within this SCC is plotted. (e) Weakly connected components (WCCs) consist of a subset of nodes in a network which are mutually reachable, regardless of edge direction. In the fly brain there exists one giant WCC containing 98.8% of all neurons. The distribution of path lengths between neuron pairs within this WCC is plotted. (f) We examine the role high-degree neurons play in connecting the brain by plotting the sizes of the first two strongly connected components (SCCs) as nodes are removed by total degree (2500 neurons per step). Removal of neurons starting with those with largest degree results in the brain splitting into two SCCs when neurons of approximately degree 50 start to be removed, a deviation from when neurons are removed in a random order (dotted lines). The largest surviving total degree as a function of the number of remaining nodes is plotted in gray. (g) Removal of neurons starting with those with smallest degree results in a single giant SCC until all neurons are removed (2500 neurons per step). The smallest surviving total degree as a function of the number of remaining nodes is plotted in gray. (h) The relative rich club coefficient as a function of total degree, computed relative to CFG null models. The range over which the relative rich club coefficient is greater than 1.01 is 37 to 93. We take all neurons with total degree > 37 to be within the rich club regime.

115 the neurons of the *Drosophila* brain into a large number (78) of
 116 brain regions (neuropils), and we further investigate connectivity-
 117 ity within neuropils below (Figures 5-6, S5-S8).

118 Neurons in the brain form a single connected component

119 To assess the interconnectivity of the neurons in the brain, we
 120 searched the connectome for connected components using two
 121 sets of criteria. First, we looked for *strongly connected compo-*
 122 *nents* (SCCs). All neurons within an SCC are mutually reach-
 123 able via directed pathways (37). Second, we looked for *weakly*

124 *connected components* (WCCs), a relaxed criterion in which all
 125 neurons within a WCC are mutually reachable, ignoring the
 126 directionality of connections.

127 Despite its sparsity, the brain is highly connected under ei-
 128 ther criteria – 93.3% of neurons are contained in a single SCC,
 129 while 98.8% of neurons are contained in a single WCC (Figure
 130 1d-e). These giant connected components, which contain the
 131 overwhelming majority of neurons in the brain, persist when ei-
 132 ther the strongest connections or the weakest connections are
 133 pruned (Figure S1a-b), indicating that connectivity in the brain

134 is robust: many paths connect neuron pairs. We will refer to
135 these extremely large connected components as the giant SCC
136 and giant WCC, respectively. Within the giant SCC, the aver-
137 age shortest directed path length between neuron pairs is 4.42
138 hops, with every neuron reachable within 13 hops (**Figure 1d**).
139 In the giant WCC, the average shortest undirected path length
140 between neuron pairs is 3.91 hops, with every neuron reachable
141 within 11 hops (**Figure 1e**). These numbers are comparable to
142 those found in a similar analysis of the hemibrain dataset (38).
143 The short path lengths within both connected components show
144 that despite its size, the fly brain is still relatively shallow when
145 compared to artificial networks (39).

146 Is the high interconnectivity observed in the fly brain a con-
147 sequence of a relatively large number of interconnected neu-
148 rons, or is it dependent on a small number of very highly con-
149 nected "hub" neurons? To assess this, we constructed survival
150 curves, observing for how long the connected components of the
151 network persist when neurons are removed from the network.
152 Here, we plot the sizes of the two largest SCCs as we remove
153 neurons from the directed network, starting with those of largest
154 total degree (**Figure 1f**). We find that the first giant SCC persists
155 until a total degree of 50, at which point the network splits into
156 two SCCs of roughly equal size. These two SCCs correspond to
157 a split between the left and right hemispheres, and demonstrate
158 that despite the hemispheric anatomy of the brain, the two hemi-
159 spheres are highly interconnected: they do not split into separate
160 networks until about 60% of all neurons are removed. Remov-
161 ing neurons from the network by smallest total degree does not
162 result in division of the first giant connected component (**Figure**
163 **1g**). This indicates that the interconnectivity of the brain is ro-
164 bust, and not dependent on a small number of highly connected
165 neurons. We observe similar behavior in the WCCs when re-
166 moving neurons from the undirected network (**Figure S2a-b**).
167 These results also remain qualitatively consistent when neurons
168 are pruned in either the directed or undirected network by either
169 in-degree or out-degree alone (**Figure S2c-d**).

170 The SCC criteria is more biologically realistic, since con-
171 nections between real neurons are directed. Note, however, that
172 the similarities in size and path length distribution between the
173 first SCC and first WCC indicate the prevalence of recurrent
174 connections in the brain. In a mostly feedforward network, one
175 would expect a smaller SCC with longer path lengths. This is
176 not what we observe in the fly brain—instead, across the pop-
177 ulation of all neuron pairs, the distribution of shortest directed
178 path lengths is comparable to the distribution of shortest undi-
179 rected path lengths.

180 **Spectral analysis of the whole-brain network**

181 To better understand the network topology of the brain, we per-
182 formed a spectral analysis of a random walk in the giant SCC.
183 In this random walk, the transition probability from neuron α
184 to neuron β is $p_{\alpha \rightarrow \beta} = \delta_{\alpha \rightarrow \beta} / d_{\alpha}^+$, where d_{α}^+ is the in-degree
185 of neuron α , and $\delta_{\alpha \rightarrow \beta} \in \{0, 1\}$ indicates the existence of a
186 connection. Such a random walk converges to a stationary dis-
187 tribution over all neurons in the giant SCC (**Figure S1f**). We
188 found that in this random walk, 3% of neurons were visited
189 61.2% of the time—the remaining 97% of neurons were visited

190 only 38.8% of the time. These top visited neurons can therefore
191 be classified as *attractor nodes* (40) in the network. These at-
192 tractor nodes typically make connections in the gnathal ganglia
193 (GNG), a large midline neuropil which both sends and receives
194 information from the periphery and contains a large number of
195 neurons that connect to the ventral nerve cord (VNC).

196 We also performed a "reverse" walk within the giant SCC,
197 reversing edge directionality so that the transition probability
198 from neuron α to neuron β is $p_{\alpha \rightarrow \beta}^{\text{rev}} = \delta_{\beta \rightarrow \alpha} / d_{\alpha}^+$, where d_{α}^+ is
199 the in-degree of neuron α . The reversed walk also converges
200 to a stationary distribution in which 3% of neurons were visited
201 42.4% of the time (**Figure S1g**). These highly visited neurons in
202 a reverse random walk are *repeller nodes* in the network. Many
203 of these neurons make synapses in the antennal lobes (AL) and
204 medullae (ME), brain regions close to the olfactory and visual
205 periphery, respectively. This suggests that these neuropils en-
206 gage in local (rather than integrative) computations.

207 **The fly brain has a large rich club**

208 Many networks exhibit the "rich club" property (3, 11, 18),
209 in which well connected nodes are preferentially connected to
210 other well connected nodes (see **Methods**). We find that there
211 exists a rich club regime in the FlyWire connectome, in which
212 neurons are more highly interconnected than one would expect
213 from a randomly connected network (**Figure 1h**). We will take
214 this cutoff to be a total degree of 37, though we note that the ex-
215 act choice of rich club cutoff is arbitrary (**Methods**). This large
216 rich club regime contains 40,218 neurons, approximately 30%
217 of all neurons in the brain. The connection probability within
218 this rich club is 0.000870, 5.4 times higher than the overall con-
219 nection probability in the brain. Such a large rich club suggests
220 that the topology of the fly wiring diagram is fairly distributed.
221 This is consistent with the connected component observations,
222 which also suggest a degree of robustness. A rich club analy-
223 sis considering in-degree alone returns an in-degree threshold of
224 10, while no rich club is observed when considering out-degree
225 alone (**Figure S2e**).

226 The fraction of neurons in the rich club regime in the fly is
227 substantially larger in the fly than in *C. elegans*, which has a
228 rich club of 11 neurons (4% of the neurons in the worm) (18).
229 We caution that this difference in rich club size is sensitive to
230 the criteria used to determine the rich club cutoff, and may also
231 be a consequence of the different scales of these two networks.
232 Nonetheless, it is interesting to note that while the worm rich
233 club contains known hub neurons, such as the command neu-
234 rons AVA and AVB, such highly connected hub neurons do not
235 seem to be present in the fly brain—while there are neurons with
236 very high degrees, there also exist alternate paths between most
237 neuron pairs. We further examine the properties of this large
238 rich club population in the section: **Large-scale connectivity**
239 **in the brain**.

240 **Reciprocal and recurrent motifs are over-represented in** 241 **the brain**

242 Connection reciprocity is a measure of the amount of direct
243 feedback in the brain: given that neuron α is connected to neu-
244 ron β , what is the probability that neuron β is connected back to

245 neuron α ? Across the whole brain, this connection reciprocity
246 probability is 0.138 (**Table 2**). The connection reciprocity in the
247 brain is significantly higher than in both the Erdős-Rényi (ER)
248 and configuration (CFG) random null models (**Methods**). The
249 over-representation of reciprocal connections in brains relative
250 to null models is well established, and our results are consistent
251 with previous observations both in *Drosophila* (38, 41, 42) and
252 in other species (2, 6, 19, 22, 23, 43).

253 We also computed the clustering coefficient, a higher-order
254 connectivity metric which assesses the prevalence of triplet
255 structures in the network irrespective of edge direction: if neu-
256 ron α and neuron β are connected and neuron α and neuron γ
257 are connected, what is the probability that neuron β and neuron
258 γ are also connected? The clustering coefficient in the brain is
259 0.0477 (**Table 2**). As was the case with reciprocity, this value
260 of clustering coefficient is higher than in both ER and CFG null
261 models. The high clustering coefficient demonstrates that the
262 network of the fly brain is highly connected and is nonrandom
263 in its structure.

264 We compared these metrics with two existing whole-animal
265 connectomes, the hermaphrodite and male *C. elegans* (2, 19,
266 44), and with two sub-volume wiring diagrams, the hindbrain
267 of a larval zebrafish (7) and a region of L2/3 mouse visual cor-
268 tex (6) (**Table 2**). Despite differences in sparsity of the different
269 brain networks, the values of reciprocity and clustering coeffi-
270 cient are comparable across all five datasets.

271 The fly brain is physically much larger than other previously
272 studied biological networks, such as those in *C. elegans*, and it
273 is divided into distinct brain regions. However, ER and CFG
274 null models do not contain any spatial information, instead as-
275 suming that any neuron pairs may randomly connect. We there-
276 fore constructed a spatial null model to account for some of
277 the physical constraints. Informed by the distribution of con-
278 nections as a function of distance, we built a two-zone spatial
279 null model, where the probability of randomly forming a con-
280 nection between neurons is dependent on the distance between
281 them (**Figure S1e**) (**Methods**). We computed the reciprocity
282 and clustering coefficient for the spatial null model and found
283 that reciprocity and clustering coefficient in the real network
284 were also higher than this null model, suggesting that the non-
285 random nature of connectivity in the fly is not solely a conse-
286 quence of spatial or morphological constraints.

287 We note that interpretations of these direct comparisons of
288 metrics across different datasets should be made with caution.
289 While the fly and worm datasets represent complete brains and
290 nervous systems, respectively, the zebrafish and mouse datasets
291 are derived from brain sub-volumes, with order 100s of neu-
292 rons. Because many neurons in the fish and mouse sub-volumes
293 are truncated, measures of reciprocity and clustering coefficient
294 are incomplete. Additionally, differences in synapse detection
295 and synapse thresholding will impact topological metrics such
296 as connection probability and reciprocity. While connectomes
297 in *C. elegans* have been proofread to the level of individual
298 synapses (2, 25, 44), it is not feasible to manually proofread ev-
299 ery synapse in larger connectomics datasets such as *Drosophila*.
300 Varying the synapse threshold in the fly did not significantly
301 alter reciprocity and clustering coefficient values (**Figure S1c**,

302 **Table S2**).

303 Small-worldness of the fly brain

304 A “small-world” network is one in which nodes are highly clus-
305 tered and path lengths are short (10). High small-worldness co-
306 efficients are associated with efficient communication between
307 nodes (45, 46). We quantified the small-worldness of the con-
308 nectome by comparing it to an Erdős-Rényi (ER) graph (47).
309 The average undirected path length in the ER graph, denoted as
310 ℓ_{rand} , is estimated to be 3.57 hops, similar to the observed aver-
311 age path length in the fly brain’s WCC ($\ell_{\text{obs}} = 3.91$). The clus-
312 tering coefficient (C_{rand}^{Δ}) of the ER graph is only 0.0003, much
313 smaller than the observed clustering coefficient ($C_{\text{obs}}^{\Delta} = 0.0463$)
314 (**Table 2**, **Methods**). The small-worldness coefficient of the fly
315 connectome is:

$$316 S^{\Delta} = \frac{C_{\text{obs}}^{\Delta}/C_{\text{rand}}^{\Delta}}{\ell_{\text{obs}}/\ell_{\text{rand}}} = 141, \quad (1)$$

317 significantly higher than that of the *C. elegans* connectome
318 ($S^{\Delta} = 3.21$) and close to that of the internet ($S^{\Delta} = 98.1$) (10),
319 implying highly effective global communication among neu-
320 rons in the brain.

321 Strength and neurotransmitter composition of reciprocal 322 connections

323 The average strength of edges participating in reciprocal con-
324 nections is higher than the average strength of unidirectional
325 connections (**Figure 2a**). The majority of unidirectional con-
326 nections are cholinergic (excitatory), while edges participat-
327 ing in reciprocal connections contain fewer cholinergic neu-
328 rons and more GABAergic neurons (**Figure 2b**). Inhibitory
329 connections in the brain have more synapses on average than
330 excitatory connections (28), which may partially explain the
331 higher average strength of reciprocal connections. The most
332 common reciprocal pairing is between a cholinergic neu-
333 ron and a GABAergic neuron and the second most com-
334 mon pairing is acetylcholine-glutamate (**Figure 2c**). Both
335 of these reciprocal motifs are excitatory-inhibitory (E-I), and
336 both are over-represented when compared to the neurotrans-
337 mitter frequencies observed for reciprocal connections (**Figure**
338 **2b**). Excitatory-excitatory (E-E) acetylcholine-acetylcholine
339 pairs are in contrast under-represented, as are inhibitory-
340 inhibitory (I-I) GABA-GABA pairs. We observed reciprocal
341 E-I (acetylcholine-GABA and acetylcholine-glutamate) con-
342 nection strengths to be only weakly correlated, while E-E
343 (acetylcholine-acetylcholine) pairs were uncorrelated (**Figure**
344 **2d**). Examples of reciprocal neuron pairs are shown in **Figure**
345 **2g**.

346 Reciprocal degree across the neuronal population

347 Of the 127,978 neurons in the whole brain, 77,607 participate
348 in at least one reciprocal connection: approximately 2 in every
349 3 neurons, even with the synapse threshold we applied (**Methods**).
350 Many neurons participate in multiple reciprocal connec-
351 tions. To characterize these neurons, we define the *reciprocal*
352 *degree* as the number of reciprocal connections made by a given
353 neuron (**Figure S3a**). Plotting the distributions of reciprocal
354

Neuronal wiring diagrams	Fly <i>Drosophila melanogaster</i> (Dorkenwald <i>et al.</i> , 2023)	Nematode <i>Hermaphrodite C. elegans</i> (Cook <i>et al.</i> , 2019)	Nematode <i>Male C. elegans</i> (Cook <i>et al.</i> , 2019)	Zebrafish (sub-vol.) Larval <i>Danio rerio</i> (hindbrain) (Yang <i>et al.</i> , 2023)	Mouse (sub-vol.) <i>Mus musculus</i> (V1 L2/3) (Turner <i>et al.</i> , 2022)
Network size	127,978 neurons 2,613,129 connections	302 neurons 3,242 connections	364 neurons 3,467 connections	419 neurons 5,605 connections	111 neurons 659 connections
Avg. connection strength	12.61 synapses 5 ~ 2358	3.15 synapses 1 ~ 36	3.59 synapses 1 ~ 63	1.69 synapses 1 ~ 21	1.14 synapses 1 ~ 5
Connection probability	α β \Pr	0.000160 x1	0.0356 x222 denser than fly	0.0262 x164 denser than fly	0.0320 x200 denser than fly
Connection reciprocity	α β \Pr	0.138 x858 than ER x43.8 than CFG x45.9 than spatial model	0.372 x10.4 than ER x5.03 than CFG	0.386 x14.7 than ER x6.02 than CFG	0.113 x3.53 than ER x2.64 than CFG
Clustering coefficient	α β γ \Pr	0.0463 x144 than ER x7.57 than CFG x10.9 than spatial model	0.284 x4.06 than ER x1.86 than CFG	0.331 x6.39 than ER x2.40 than CFG	0.182 x2.89 than ER x1.90 than CFG
					0.159 x1.51 than ER x1.06 than CFG

Table 2. Connection probabilities, reciprocity, and clustering coefficient in the fly brain. The probability that any two neurons in the fly brain are connected is 0.000160. Connection reciprocity (the probability that two connected neurons are reciprocally connected) in the fly is 0.138, larger than in either an ER, CFG, or spatial null model (**Methods**) with the same sparsity. The clustering coefficient (the probability that if neuron α and neuron β are connected and neuron α and neuron γ are connected, then neuron β and neuron γ are also connected, irrespective of directionality) in the fly is 0.0463. Both reciprocity and clustering coefficient are higher than expected with ER, CFG, and spatial null models. Values for thresholds from 0 to 50 are plotted in **Figure S1c**. Statistics for *C. elegans* were computed for the chemical networks of neurons in hermaphrodite and male worms (19). Statistics for larval zebrafish hindbrain (7) and mouse visual cortex (6) were computed excluding any truncated neurons.

degree by neurotransmitter, we observe that the overwhelming majority of neurons with high reciprocal degree ($d^{\text{rec}} > 100$) are GABAergic (**Figures 2e, S3b**), while at lower reciprocal degrees ($d^{\text{rec}} < 100$), all three primary neurotransmitter types are well represented.

What fraction of a neuron's connections are reciprocal? Note that here, we are not considering reciprocity between cell types, but rather between pairs of individual neurons. For most neurons these fractions are low—on average 23% of incoming and 18% of outgoing connections are reciprocal. Plotting the fraction of reciprocal incoming connections against the fraction of reciprocal outgoing connections, we observe only a weak correlation (**Figure S3c**), suggesting that a given neuron's reciprocal degree is not strongly coupled to either its in-degree or its out-degree. Comparing the number of reciprocal connections neurons make to the total number of connections they make by plotting $2 \times$ the reciprocal degree against the total degree of neurons (in-degree + out-degree), we again see no relationship (**Figure 2f**). Dividing the neuron population by neurotransmitter, however, we find that neurons of high total degree are mostly GABAergic, and that for many of these neurons, more than half of their total connections are reciprocal (**Figure S3d**). Many of these highly reciprocal neurons provide feedback inhibition within specific neuropils (**Identifying neuropil-specific reciprocal neurons**). Examples of neurons which form reciprocal connections are shown in **Figure 2g**.

Strength and neurotransmitter composition of three-node motifs

The high clustering coefficient of the brain implies an over-representation of triplet structures. We determined the frequency at which each of the 12 directed three-node motifs occur in the brain (**Figure 3a**). Feedforward motifs (motifs #1-3)

are under-represented when compared to both ER and CFG null models, while all others, including the highly recurrent motifs (motifs #7-13), are over-represented. The strengths of edges participating in 3-node motifs are higher than the average edge strength (**Figure 3b**). Complex 3-node motifs which contain reciprocal connections tend to be stronger than feedforward motifs.

Examining the neurotransmitter composition of two of these three-node motifs, feedforward loops (motif #4) and 3-unicycles (motif #7) (**Figure 3c**), we found that edges which participate in feedforward loops were predominantly cholinergic, and that the most common neurotransmitter composition for a feedforward loop is three cholinergic neurons, a feed-forward excitatory configuration (**Figure 3d**). The next most common compositions contain either one or two inhibitory (GABAergic or glutamatergic) edges. Feedforward loops with one inhibitory edge are likely feedforward inhibition motifs, while loops with two inhibitory edges are likely disinhibition motifs. 3-unicycles in contrast contain a higher proportion of inhibitory GABAergic and glutamatergic neurons, and the three most common 3-unicycle compositions all contain at least one inhibitory neuron (**Figure 3e**). These cycles may act as indirect feedback inhibition circuits. It is interesting to note that the observed neurotransmitter composition frequencies are closer to what may be expected by chance for feedforward loops than they are for 3-unicycles. Examples of neurons which form 3-node motifs are shown in **Figure 3f**.

The fly brain exhibits a high clustering coefficient and an over-representation of highly connected 3-neuron motifs. These observations suggest that the local structure of the brain displays a high degree of non-randomness, in line with previous studies in *C. elegans* (2, 19) and in mouse cortex (6, 22, 23). The over-representation of feedforward loops (motif #4) has been widely

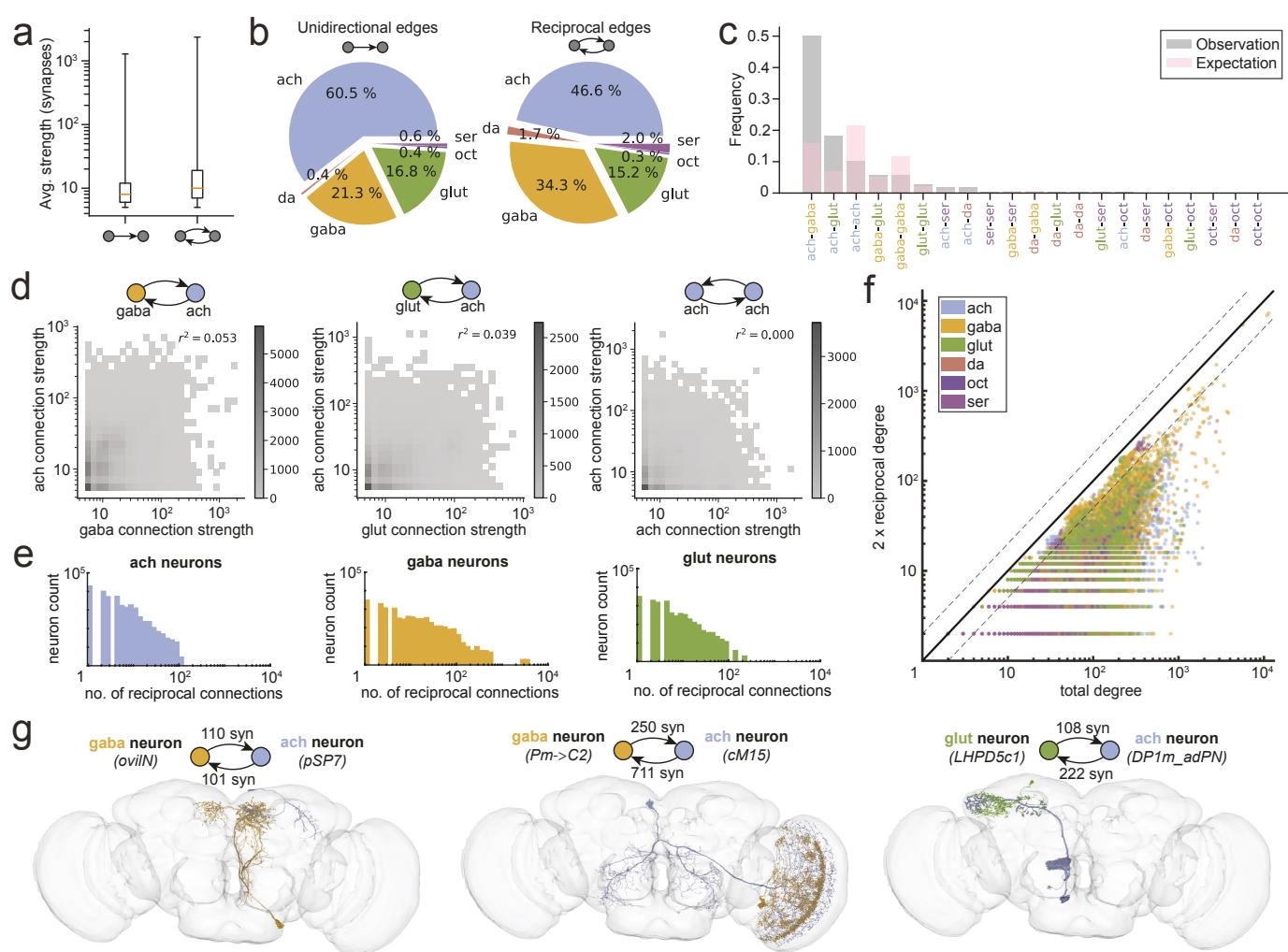


Figure 2. Characterizing reciprocal connections in the brain. (a) Edges that are part of reciprocal connections (reciprocal edges) are stronger on average than unidirectional connections. (b) Breakdown of unidirectional and reciprocal edges by neurotransmitter. Unidirectional connections are most likely to be cholinergic. Reciprocal connections are more likely than unidirectional connections to contain a GABAergic neuron. (c) The frequency of neurotransmitter pairs forming reciprocal connections, compared to the expected frequency of neurotransmitter pairs under the assumption of independent neurotransmitter choice (red). A majority of reciprocal connections are formed by acetylcholine-GABA pairs. The next most common reciprocal connection type is acetylcholine-glutamate, with acetylcholine-acetylcholine pairs under-represented. (d) Heatmaps of the relative strengths (synapse counts) of the two connections forming acetylcholine-GABA reciprocal pairs (left), acetylcholine-glutamate reciprocal pairs (center), and acetylcholine-acetylcholine reciprocal pairs (right). The strengths of the edges of reciprocal pairs are uncorrelated. Excitatory-inhibitory pairs (acetylcholine-GABA and acetylcholine-glutamate) have higher average strengths than excitatory-excitatory (acetylcholine-acetylcholine) pairs. (e) Distributions of reciprocal degree (the number of reciprocal connections a given neuron makes) for cholinergic neurons (left), GABAergic neurons (middle), and glutamatergic neurons (right). GABAergic neurons are more likely to make large numbers of reciprocal connections, while cholinergic neurons are more likely to have smaller numbers of reciprocal connections. (f) Scatterplot of 2 times the reciprocal degree of neurons versus their total degree (in-degree + out-degree). Dotted lines indicate a factor of 2 around the $x = y$ line. Large neurons for which reciprocal connections form the majority of their total connections are most likely to be GABAergic. (g) Visualizations of exemplar reciprocal neuron pairs. Cell labels are listed where available.

406 observed in other biological networks, such as in rat cortex and
 407 *C. elegans* (2, 19, 22, 23). This over-representation is present
 408 in most neuropils in the brain. It is possible that these feed-
 409 forward loops, which are predominantly excitatory, may form
 410 large-scale feedforward structures which span brain regions. 3-
 411 unicycles (motif #7) may form recurrent local circuits capable
 412 of generating persistent oscillatory neural activity (7).

413 Large-scale connectivity in the brain

414 Within the adult brain, the in-degree and out-degree of neurons
 415 are not tightly correlated. Neurons with few inputs and many
 416 outputs may serve as broadcasters of signals, while those with
 417 many inputs and few outputs may act as integrators. To examine

418 these populations of neurons, we divided the intrinsic rich club
 419 neuron population into three categories based on their in-degree
 420 and out-degree (Figure 4a). We divided the rich club neurons
 421 by defining *broadcaster neurons* as those for which out-degree
 422 $\geq 5 \times$ in-degree, and *integrator neurons* as those for which in-
 423 degree $\geq 5 \times$ out-degree. The boundaries defining broadcaster
 424 and integrator neurons are arbitrary, and intended to aid in com-
 425 parisons of neurons with unbalanced inputs and outputs. In the
 426 FlyWire connectome we find 676 broadcasters and 638 integrat-
 427 tors. The remaining intrinsic rich club neurons (37,093) fall into
 428 the *balanced* category (Region 3), including most highly recip-
 429 rocal neurons. Some examples of broadcasters, integrators, and
 430 balanced neurons are shown in Figure 4d.

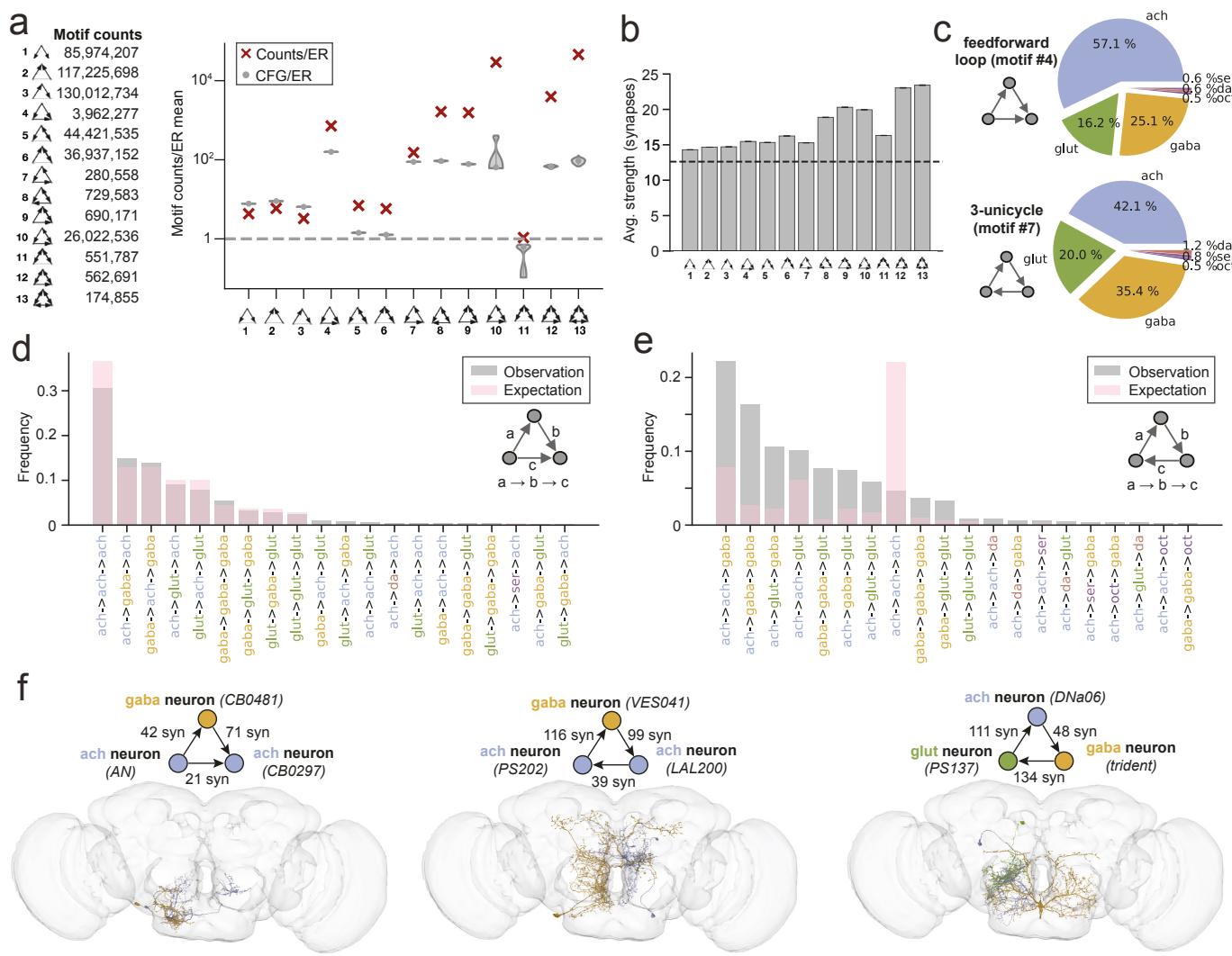


Figure 3. Examining 3-node motifs. (a) The distribution of three-node motifs across the whole brain. Absolute counts of each motif are on the left, and the frequency of each motif relative to that in an ER null model is plotted to the right, together with the average motif frequencies of 100 CFG models (gray violin plots). When we compare the whole-brain network to both ER and CFG null models, we observe an under-representation of simple motifs (#1-3) and an over-representation of other motifs, particularly highly recurrent motifs (#10, 12, 13). (b) The average strength of edges that are part of the 3-node motifs. The dotted line is the average connection strength in the brain. (c) Breakdown by neurotransmitter of edges participating in two motifs: feed-forward loops (motif #4) and 3-unicycles (motif #7). Edges in feed-forward loops are more likely to be cholinergic. (d) Further examining the neurotransmitter composition of these motifs, we find that feed-forward loops (motif #4) are most likely to be acetylcholine-acetylcholine-acetylcholine, (e) while 3-unicycles (motif #7) tend to contain at least one inhibitory edge (glutamate or GABA). (f) Visualizations of exemplar 3-node motifs. Cell labels are listed where available.

When compared to the population of all neurons, rich club neurons are less likely to be cholinergic and more likely to be GABAergic (Figures 4b, S4a). Integrator neurons are even less likely to be cholinergic (49%), and include a large fraction of dopaminergic neurons, suggesting that these neurons may be engaged during learning. In contrast, broadcaster neurons are predominantly cholinergic (75%). Central brain neurons are dramatically over-represented in the rich club, while optic lobe intrinsic neurons are under-represented (Figures 4c, S4b). Many integrators are either central brain intrinsic neurons or visual projection neurons. In contrast, few broadcasters are intrinsic to the central brain—many are visual centrifugal neurons or optic lobe intrinsic neurons. These include a large number of Mi1 and Tm3 neurons, excitatory cells in the medulla (ME) known to play key roles in the motion detection circuit (41, 49, 50). Most neurons are restricted to a single

hemisphere—just 11% of neurons have inputs in both hemispheres and 11% have outputs in both hemispheres (Figure S4c)(28). In comparison, rich club neurons are more likely to have inputs or outputs spanning both hemispheres: 18% and 17%, respectively. This is more common for integrator neurons (23%) than it is for broadcaster neurons (16%).

Rich club neurons are closer on average to sensory inputs

To assess the distance of the rich club neurons from sensory inputs, we employed a probabilistic information flow model to determine the relative distance of each neuron (in hops) from a set of seed neurons (Methods) (28, 48). The model was run with different sets of seed neurons, each corresponding to a specific set of sensory neurons (olfactory, gustatory, etc.), as well as on the complete set of all sensory inputs, giving us the distance from each neuron in the dataset to each sensory modal-

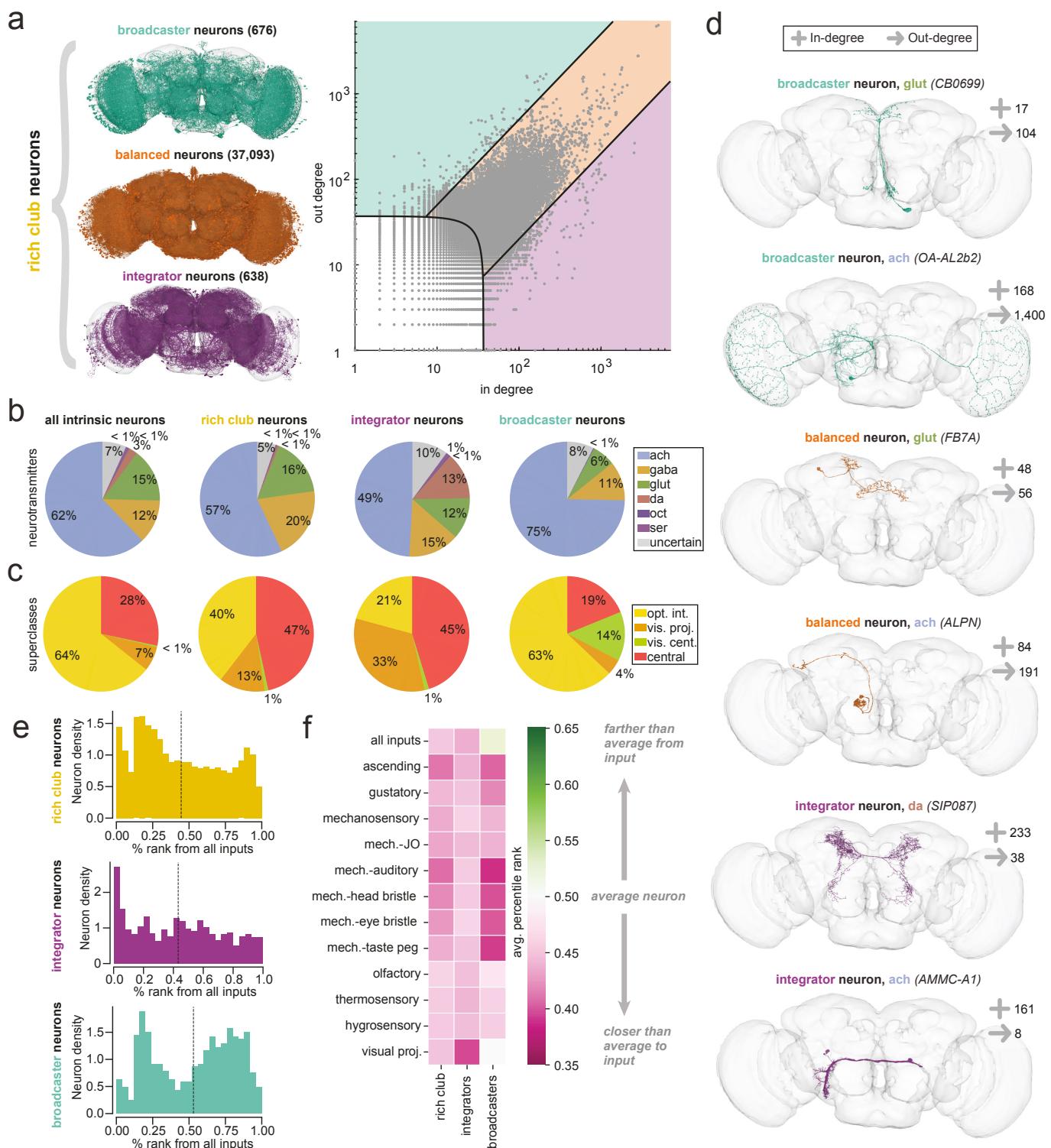


Figure 4. Large-scale neuron connectivity in the brain. (a) Using the in-degree vs. out-degree scatterplot, we can divide the intrinsic rich club neurons into three distinct categories: broadcasters, integrators, and large balanced neurons. Comparing the prevalence of (b) neurotransmitters and (c) intrinsic superclasses (optic lobe intrinsic, visual projection, visual centrifugal, and central brain intrinsic) of all intrinsic neurons, rich club neurons, integrators, and broadcasters. (d) Examples of rich club neurons in these three categories. (e) Applying the information flow model from Schlegel et al. 2021 (28, 48), we determined the percentile rank distributions of rich club, integrator, and broadcaster neuron populations from all inputs to the brain (above), as well as to specific modalities (Figure S4d). (f) Average percentile rank of rich club, integrator, and broadcaster neurons for different modalities. Across all modalities, rich club neurons are closer than average to sensory inputs.

ity. We excluded the visual photoreceptors from this analysis (**Methods**). Ranking these distances and normalizing returned the percentile rank of each neuron with respect to each modality. Neurons with percentile rank less than 50% are closer than average to the given sensory input, while neurons with percentile

rank greater than 50% are farther.

The rich club neurons have a mean percentile rank of 44% relative to the set of all sensory inputs (Figure 4e). Integrators have a mean percentile rank of 43%, while broadcasters have a mean percentile rank of 53%. Integrator neurons are closest,

473 with many having a percentile rank of less than 10%. The distribution
474 of broadcasters is bifurcated, with one peak closer to inputs and another peak far from inputs. Examining the ranks with
475 respect to individual sensory modalities, we find that rich club
476 neurons are again closer than average to each modality (**Figures**
477 **4f, S4d**). Broadcasters tend to be closer to single sensory inputs
478 than they are to the set of all inputs. This is likely because ranking
479 from a seed population of all inputs will rank integrators
480 before many broadcasters. In contrast, when looking at a single
481 modality, neurons which are predominantly connected to a
482 different modality will be farther than average.
483

484 We examine the distance of neurons to multiple sensory
485 modalities by plotting the percentile rank of neurons with re-
486 spect to one modality against the percentile rank of neurons
487 of another modality (**Figure S4e**). Broadcaster and integrator
488 neurons are scattered throughout these distributions, but tend to
489 be closer than average to multiple sensory inputs. These rich
490 club neurons may be a fruitful starting point when searching
491 for neurons to characterize experimentally. In particular, inte-
492 grator and broadcaster neurons which are low in rank relative
493 to multiple sensory modalities may be good candidate sites of
494 multi-sensory integration and information propagation.

495 **Differences in connectivity across brain regions**

496 The fly brain consists of a large number of distinct anatomical
497 brain regions, or neuropils (51). The FlyWire connectome
498 has been segmented into 78 neuropils (**Figure 5a**), each with
499 different average connection strengths (28). To understand in-
500 formation flow between neuropils, we employed a fractional
501 weighting method accounting for each neuron's projections to
502 and from every neuropil (**Methods**) (28). From these, we com-
503 puted for each neuropil the relative fraction of internal, external
504 incoming, and external outgoing connection weights (**Figure**
505 **S5a-b**). These fractions reflect, respectively, the net number
506 of connections within, being received, and being sent from each
507 neuropil.

508 We find significant differences in these fractions across
509 brain regions: the ellipsoid body (EB) and fan-shaped body
510 (FB) of the central complex have the highest fraction of internal
511 connections, while in other regions, such as the compartments
512 of the mushroom body (MB), the majority of connections are
513 external (**Figure S5b**). Some regions such as the lateral horn
514 (LH) send more external connections than they receive, while
515 others such as the lobula plate (LOP) receive more external
516 connections than they send. The fraction of internal connec-
517 tion weights is not correlated with neuropil size: while large
518 neuropils such as the anterior and posterior ventrolateral pro-
519 totcerebra (AVLP and PVLP) have significant fractions of in-
520 ternal weights, they do not rank the highest. We note that un-
521 der this classification, internal weights include any neurons with
522 endings outside the brain, such as sensory, ascending, and de-
523 scending neurons. This likely accounts for the high fraction of
524 internal weights in regions such as the medulla (ME), which
525 receive inputs from R7 and R8 photoreceptors, and the gnathal
526 ganglia (GNG), which connects with large numbers of both as-
527 cending and descending neurons. Across the brain, 52% of all
528 connection weights can be classified as internal. Comparing the

529 putative neurotransmitters of the neurons contributing connec-
530 tion weights, we see that internal connections are more likely
531 than external ones to be inhibitory (GABAergic or glutamater-
532 gic) (**Figure S5c**). We also see differences in neurotransmitter
533 composition across brain regions (**Figure S5d**).

534 **Prevalence and neurotransmitter composition of recip- 535 rocal connections differ across neuropils**

536 To perform motif analyses within each neuropil, we first iden-
537 tified a subnetwork for each neuropil which treats all connec-
538 tions made within that neuropil as edges and includes all neu-
539 rons connected to these edges (**Figures 5b, S6a**). Different
540 neuropil subnetworks differ notably in both connection strength
541 and density (**Figure S6b**). We computed the reciprocity in each
542 neuropil subnetwork (**Figures 5c, S6c**). Neuropils with partic-
543 ularly high reciprocity probabilities include those in the central
544 complex (FB, EB, and NO) and the two antennal lobes (AL).
545 The relative number of reciprocal connections (reciprocity nor-
546 malized by neuropil connection density) is high in the mush-
547 room bodies (MB) and medulla (ME) (**Figure S6b**). Note that
548 for these motif analyses, the results for small neuropils such as
549 the cantles (CAN), bulbs (BU), galls (GA), accessory medulla (AME),
550 and ocellar ganglion (OCG) are less interpretable due
551 to the small number of samples.

552 In most neuropils, as in the whole brain, reciprocal connec-
553 tions are stronger than unidirectional connections, though the
554 ratio of average strengths varies across neuropils (**Figure S6d**).
555 Exceptions include the protocerebral bridge (PB), mushroom
556 body calyces (MB-CA), and bulbs (BU), which have stronger
557 unidirectional connections than reciprocal connections. Com-
558 paring the relative prevalence of each neurotransmitter in recip-
559 rocal and unidirectional connections, we again see differences
560 between neuropils (**Figures 5d-e, S6d-h**). While reciprocal
561 connections in most neuropils contain fewer cholinergic edges
562 and more GABAergic edges than unidirectional connections,
563 there are notable exceptions, such as in the neuropils of the cen-
564 tral complex (FB, EB, PB, and NO). In the compartments of
565 the mushroom body (MB) we find especially large differences
566 in neurotransmitter composition between unidirectional and re-
567 ciprocal connections. Comparing the strengths of the edges of
568 reciprocal excitatory-inhibitory (acetylcholine-GABA) connec-
569 tions within neuropil subnetworks, we observe that E-I connec-
570 tion strengths are more strongly correlated in some neuropils
571 (such as the FB and NO) than in others (**Figures 5f, S7a-b**).
572 These correlations do not appear to be dependent on neuropil
573 size (**Figure S7c**).

574 **Identifying neuropil-specific reciprocal neurons**

575 We performed a comprehensive search for intrinsic highly re-
576 ciprocal rich club neurons that make the majority of their
577 connections within a single neuropil, and found 1,863 neu-
578 rons that meet these criteria (**Figure 5g**). These *neuropil-
579 specific highly reciprocal neurons* (NSRNs) are predominantly
580 inhibitory: 54% are GABAergic and another 10% are glutamater-
581 gic (**Figure S7d**). In some neuropils, such as the antennal
582 lobes (AL), medulla (MB), and ellipsoid body (EB), there
583 are many NSRNs, while in other neuropils, such as the superior

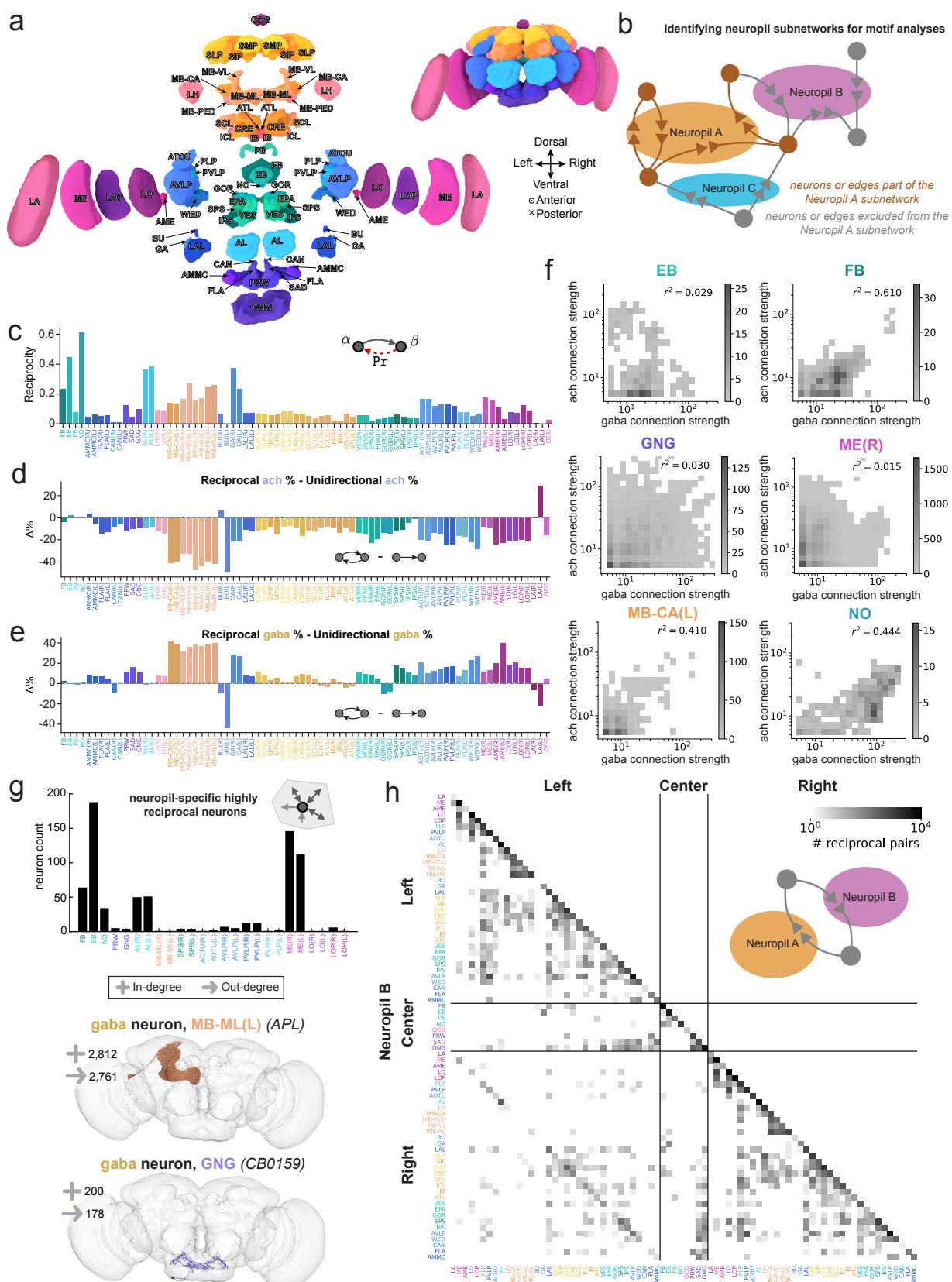


Figure 5. Neuropil-specific differences in connectivity. (a) An exploded view of the brain showing the brain regions, or neuropils, that the FlyWire dataset is divided into. Each synapse is assigned to a neuropil based on synapse location. (b) A schematic showing how neuropil subnetworks are identified for motif analyses. With the standard threshold of 5 synapses per edge applied, all connections composed of synapses within the neuropil of interest (Neuropil A) are treated as edges of the Neuropil A subnetwork. All neurons reached by this set of edges are included in the subnetwork. However connections composed of synapses outside of Neuropil A are not included, even if those connections involve neurons included in the subnetwork. (c) The reciprocity within each neuropil subnetwork. Differences in the percentage of (d) cholinergic and (e) GABAergic edges between reciprocal and unidirectional connections, across different neuropils. Refer to **Figure S6** for the absolute percentages. (f) Heatmaps showing the relationship between excitatory and inhibitory connection strengths in reciprocal connections in different brain regions. (g) Assessing the number of large (rich club), highly reciprocal neurons which span specific neuropils: making most of their incoming and outgoing connections within a single neuropil and also having a high reciprocal degree. Examples of neurons which meet these criteria are shown. (h) Map of the total number of reciprocal pairs between different neuropils. Examples of such pairs are shown in **Figure S7e**.

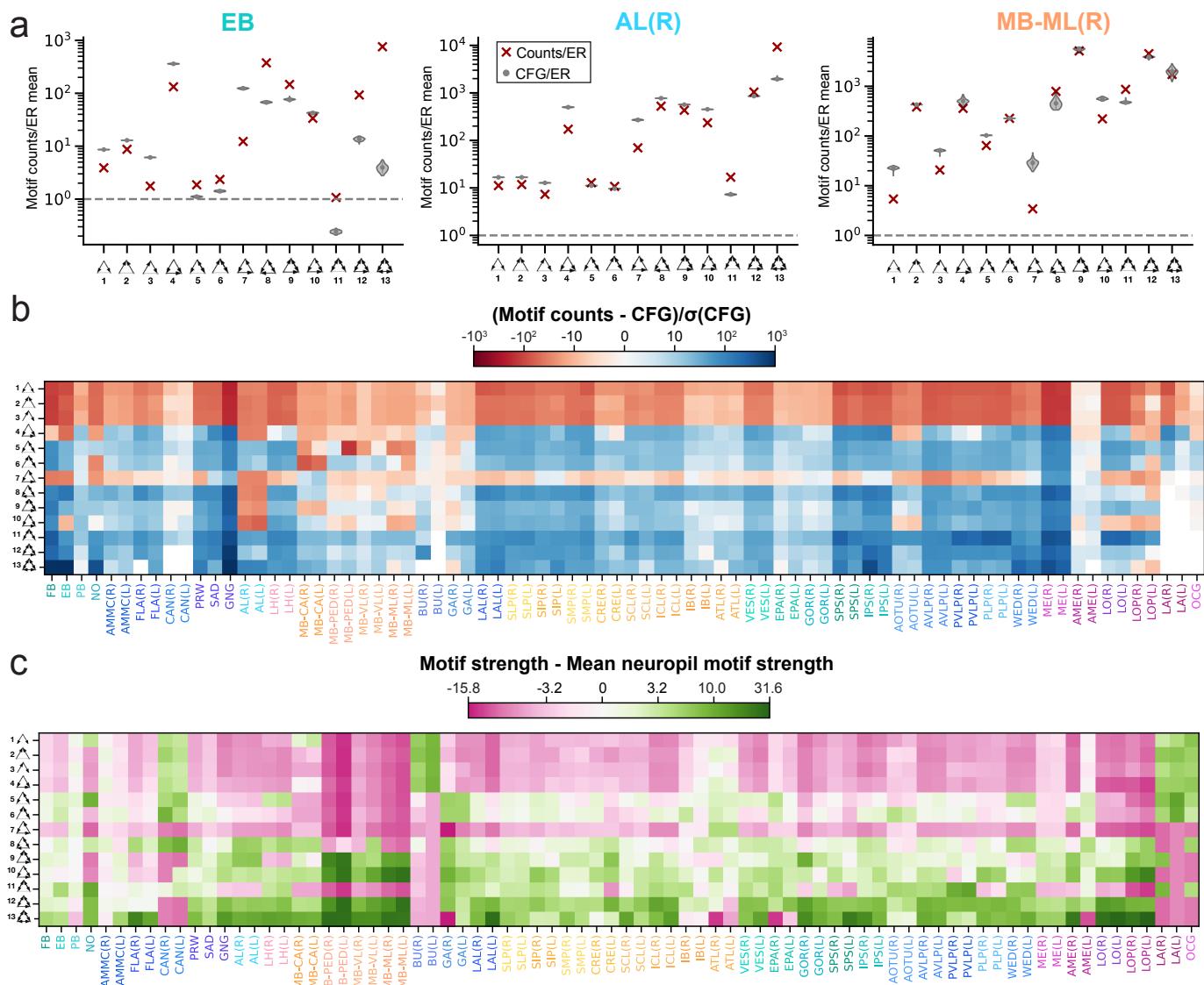


Figure 6. Differences in three-node motifs across neuropils. (a) Three-node motif distributions for three example neuropils: the EB, AL(R), and MB-ML(R). The frequency of each motif relative to that in an ER null model is plotted to the right, together with the average motif frequencies of 100 CFG models (gray violin plots). Further examples of other neuropils available in **Figure S8a**. (b) Motif frequencies for the 3-node motifs across all 78 neuropil subnetworks, normalized by their respective CFG null models. (c) Average strengths of edges participating in 3-node motifs in the different neuropil subnetworks relative to the average 3-node motif strength in each subnetwork. Refer to **Figure S8b** for average strengths relative to average neuropil subnetwork edge strength.

584 posterior slopes (SPS) and posteriorlateral protocerebra (PLP),
 585 there exist only a handful of such neurons.

586 Some NSRNs, like the APL neurons in the MB (52, 53),
 587 CT1 neurons in the LO (41, 54, 55), or antennal lobe local neu-
 588 rons (ALLNs) (56, 57), have been previously characterized as
 589 providing global feedback inhibition in different regions. These
 590 neurons tend to be highly branched, with individual processes
 591 making reciprocal connections with different feedforward neu-
 592 rons. Some have been shown to have compartmentalized activ-
 593 ity, raising the possibility of local computation within these neu-
 594 rons (58–60). Many of the NSRNs identified here have yet to be
 595 characterized. They may play similar roles in other circuits—
 596 for instance, it is likely that some of the NSRNs found in the
 597 AVLP provide feedback to the auditory circuits which span this
 598 brain region (61).

Identifying inter-neuropil reciprocal connections

599 While many reciprocal connections occur within single neu-
 600ropils, 12.1% of all reciprocal pairs are formed by connections
 601 made by synapses in two neuropils (**Methods**). We mapped
 602 the reciprocal connections that exist between the 78 neuropils
 603 (**Figure 5h**). The diagonal terms consist of the intra-neuropil re-
 604ciprocal connections described above (**Figure 5b-c**), while the
 605 off-diagonal terms reflect the number of reciprocal pairs which
 606 connect across neuropils. Examples of such neuron pairs are
 607 shown in **Figure S7e**.

608 From the map, we see that reciprocal connections exist be-
 609tween many neuropil pairs. The compartments of the mush-
 610room body (MB) are linked by many reciprocal connections,
 611 while the neuropils of the SEZ, including the GNG, SAD, and
 612 PRW, form a connected block. Strong reciprocal connectivity

614 also occurs across the midline. For instance, there is strong re-
615 reciprocal connectivity between the two antenna lobes (AL(L) and
616 AL(R)). Neuropils close to the midline, such as SMP, SPS, and
617 IPS, tend to have many cross-hemispheric reciprocal connec-
618 tions. There also exist reciprocal connections which span from
619 one edge of the central brain to the other, such as those between
620 AOTU(L) and AOTU(R) and between LAL(L) and LAL(R).
621 The prevalence of such inter-neuropil reciprocal connections
622 demonstrates that the recurrent motifs we observe in the brain
623 are not limited to local connections—they can also exist at large
624 spatial scales.

625 Additional insight can be gleaned by comparing the map
626 of reciprocal connections to the projectome matrix of all neu-
627 rons in the brain (Dorkenwald et al., Figure 4 (28)). Comparing
628 the two maps, we can identify regions which are connected by
629 many neurons, but have disproportionately few reciprocal con-
630 nections. For instance, neuropils SLP and SIP are connected to
631 the FB in the projectome, but share no reciprocal connections.
632 Similarly, the LA boasts many neurons but very few reciprocal
633 connections.

634 Examining ach-gaba reciprocal connections, we can iden-
635 tify deviations from symmetry that represent a net imbalance of
636 excitatory-inhibitory reciprocal connections (Figure S7f). For
637 example, between the LO and PVLP, all ach-gaba reciprocal
638 connections share the same directionality: the ach connections
639 are in the LO and the gaba connections are in the PVLP.

640 **Three-node motifs differ across neuropils in their preva- 641 lence and strength**

642 We computed the prevalence of three-node motifs in each
643 neuropil subnetwork, and compared the motif frequencies to
644 ER and CFG random null models constructed for each sub-
645 network (Figures 6a, S8a). Across most neuropils, we ob-
646 served the same trend as we do across the entire brain: an
647 under-representation of feedforward motifs (#1-3) and an over-
648 representation of complex motifs (Figure 6b). However, there
649 are notable differences between neuropils. In the cantles
650 (CAN), epaulets (EPA), and gorgets (GOR), for example, the
651 frequency of 3-node motifs was closer to that expected in a
652 CFG null model, while in other neuropils like the ellipsoid body
653 (EB), complex motifs are highly over-represented (Figure 6b).

654 Feedforward loops (motif #4) are over-represented in most
655 neuropils, excepting in the fan-shaped body (FB), ellipsoid
656 body (EB), noduli (NO), and mushroom body compartments
657 (MB). This suggests a relative under-representation of both
658 feedforward excitatory and feedforward inhibitory circuits in
659 these brain regions. 3-unicycles (motif #7), an indirect feed-
660 back inhibition circuit, are over-represented across the whole
661 brain (Figure 3c) but are under-represented in most neuropils.
662 The notable exceptions, the medulla (ME) and gnathal ganglia
663 (GNG), are very large neuropils and have many sensory inputs.
664 The over-representation of 3-unicycles in the ME implies the
665 existence of localized cyclic structures within the early visual
666 circuitry. Interestingly, this motif is also over-represented in
667 the zebrafish oculomotor circuit (7). Motifs #7-10 are under-
668 represented in the antennal lobes (AL), perhaps a result of the
669 small number of unidirectional edges in these regions. The

670 most highly connected motifs (#12-13) are particularly over-
671 represented in the ellipsoid body (EB) and fan-shaped body
672 (FB), consistent with their high reciprocity.

673 In most neuropils, we find that edges participating in under-
674 represented motifs are also weaker on average than edges particip-
675 ing in over-represented motifs (Figure 6c). We also observe
676 that in most neuropil subnetworks, edges participating in 3-node
677 motifs are stronger than the average subnetwork edge (Figure
678 S8b). This is broadly consistent with the whole-brain 3-node
679 motif strength results. A notable exception is in the laminae
680 (LA), where feedforward connections are strong despite being
681 under-represented.

682 **Discussion**

683 Here, we have provided a broad overview of the network prop-
684 erties of the *Drosophila* brain, laying the groundwork for iden-
685 tifying neurons and circuit motifs of biological interest and for
686 modeling of particular circuits. In addition to the topology of
687 the neural network, we have taken advantage of spatial infor-
688 mation (innervation in different neuropils), neuron class distinc-
689 tions (sensory versus descending, for example), cell type labels,
690 and neurotransmitter predictions to better contextualize and in-
691 terpret the network features we uncovered. We compared the
692 statistics of the fly connectome to other wiring diagrams, car-
693 ried out a comprehensive brain-wide search for 2- and 3-node
694 connectivity motifs, identified highly connected broadcaster and
695 integrator neurons, and identified differences in connectivity
696 in different brain regions. The complete FlyWire dataset is
697 freely available online via Codex (Connectome Data Explorer:
698 codex.flywire.ai), along with interactive lists of the neu-
699 rons discussed in this work. These data will allow researchers
700 to profile neurons by their connectivity features and identify key
701 neurons within their circuits or brain regions of interest, a use-
702 ful resource for hypothesis generation or model development.
703 Experimentally examining highly connected neurons, such as
704 the attractors, repellers, integrators, broadcasters, and NSRNs
705 identified here, may also prove fruitful for linking circuit-level
706 findings with broader activity patterns. Our results reveal that
707 despite its sparsity, the neurons of the brain form a robust and
708 highly interconnected network. This network is not predom-
709 inantly feedforward, with over-represented reciprocal and recur-
710 rent motifs which can span multiple brain regions. Additionally,
711 different brain regions in the fly differ in their network proper-
712 ties.

713 An understanding of how the whole-brain network shapes
714 brain function is particularly important in light of recent exper-
715 imental findings. A common approach in modern experimen-
716 tal neuroscience is to use anatomical wiring diagrams to gen-
717 erate circuit-level hypotheses, and to test these hypotheses by
718 imaging and perturbing single cells or cell types. However, re-
719 cent whole-brain imaging experiments, both in the fly (62–64)
720 and in other species (65–72), have revealed brain-wide activ-
721 ity patterns related to both sensory processing (of individual
722 modalities) and simple behaviors (like locomotion). To fully
723 understand distributed computations and information flow in
724 the brain, we must consider interactions not just at the scale of
725 tens of neurons, but at the brain scale. Availability of network

726 statistics at the scale of brain regions, coupled with the broad
727 mesoscale connectivity between brain regions (28), will enable
728 hypothesis generation at the whole-brain scale. Different neu-
729 ropils serve different functions, and our work now highlights
730 how these different functions are subserved by differences in
731 connection strength, internal connectivity, motif frequency, and
732 neurotransmitter composition. For example, the central com-
733 plex (neuropils FB, EB, PB, and NO), which has persistent ac-
734 tivity associated with an internal representation of heading (73–
735 78), contains some of the most reciprocal brain regions and has
736 a large number of internal connections. Examination of other
737 neuropil subnetworks may help us generate hypotheses regard-
738 ing the function of less well-studied neuropils.

739 In this work, we comprehensively explored 2-node and
740 3-node motifs, and highlighted several large-scale connectiv-
741 ity patterns by exploring broadcaster (few-to-many), integrator
742 (many-to-few), and highly reciprocal neurons. There remains,
743 of course, a space of larger network motifs to explore. We have
744 integrated the network motif search and visualization tool Vimo
745 (79) into Codex, which allows users to query the FlyWire con-
746 nectome for any network motif of interest.

747 Limitations

748 The availability of neurotransmitter predictions greatly en-
749 hanced our ability to interpret the circuit motifs we found in
750 the connectome. However, while these predictions are 94% ac-
751 curate when compared to a set of ground truth neurons, there are
752 cases where the predicted neurotransmitter does not align with
753 the known transmitter. In this iteration of the dataset, we man-
754 nually corrected the Kenyon cells to be cholinergic (**Methods**).
755 There may exist other populations of neurons which are likewise
756 systematically mis-identified, but which currently lack ground
757 truth neurotransmitter information. When interpreting results
758 on the network scale, we must keep this error rate in mind. Also,
759 monoamines beyond dopamine, octopamine, and serotonin are
760 not accounted for in these predictions. More details on the neu-
761 rotransmitter predictions are discussed in Eckstein *et al.* (33).
762 In this work, we assume that neurons in the fly obey Dale's
763 law—each releasing only one neurotransmitter. However, there
764 are several known examples of co-transmission in *Drosophila*
765 (80–83). How widespread neurotransmitter co-transmission is
766 remains unclear.

767 It should also be noted that the synaptic connectome does
768 not provide a complete picture of information flow in the brain.
769 We currently do not have a complete map of gap junctions in the
770 fly, and the extent to which extrasynaptic communication (via
771 non-synaptic release of amines or neuropeptides) shapes neural
772 activity in the *Drosophila* brain remains an open question (84–
773 86).

774 We also acknowledge that some of the statistics presented
775 here, particularly those metrics dependent on network topol-
776 ogy, such as neuron degree or reciprocity and motif frequen-
777 cies, may be sensitive to our choice of synapse threshold. While
778 connectomes in *C. elegans* have been proofread to the level of
779 individual synapses (2, 19, 25, 44), it is not feasible to man-
780 ually proofread every synapse in larger connectomics datasets
781 (27, 28, 38). We must therefore rely on automated synapse de-

782 tection algorithms with a non-negligible error rate (32). Not all
783 synapses are successfully attached to neurons, and this comple-
784 tion rate varies across animals and brain regions (24, 28, 38).
785 To avoid false positive connections, we applied a threshold on
786 the number of synapses a connection between neurons must
787 have. While some of these low synapse number connections
788 may be spurious, it is also likely that a significant number of
789 these weak connections are real and reliable across individuals,
790 as has been found when comparing multiple individuals in *C. el-
791 elegans* (25). In this work, we employed a consistent and conser-
792 vative threshold of five synapses per connection between neu-
793 rons, and demonstrated that our qualitative conclusions are not
794 dependent on this threshold. We therefore analyzed a sparser
795 network of high-confidence connections, containing 2.6 million
796 connections instead of 14.7 million un-thresholded connections
797 (**Table S2**). It is likely that the fly brain is even more strongly
798 interconnected than the results here indicate.

799 Local circuit motifs are often inferred to be feedforward or
800 feedback connections, with different theorized roles. While we
801 are able to make such inferences on the population level, it can
802 be difficult to place local circuits in the context of global direc-
803 tionality from sensory input to motor output. In shallow net-
804 works such as in *C. elegans*, the directionality of the wiring dia-
805 gram from sensory input to motor output is clear. However, the
806 larger the network becomes, the more difficult it becomes to es-
807 tablish directionality from sensory input to motor output. In this
808 work, we employed an information flow method to rank the neu-
809 rons by an effective difference from various sensory modalities
810 (28). Ultimately, however, directionality of information flow
811 in particular circuits, especially those in regions of the brain
812 far from sensory inputs or motor outputs, must be determined
813 through functional activity experiments and modeling.

814 The rich club compensates for anatomical bottlenecks

815 The anatomy of the fly brain suggests several potential network
816 bottlenecks: one between left hemisphere and right hemisphere
817 and one between the central brain and optic lobes. Only 12%
818 of neurons cross hemispheres and 6% of neurons cross between
819 the central brain and optic lobes (28, 29). Despite these bot-
820 tlenecks, the brain is robustly interconnected with short path
821 lengths. The large rich club regime in the fly brain may ex-
822 plain these short path lengths. When compared to the average
823 neuron in the brain, rich club neurons are more likely to con-
824 tain synapses in both hemispheres, and are also more likely to
825 connect the optic lobes to the central brain. The broad reach
826 of these rich club neurons also keeps path lengths short across
827 these bottlenecks. In mesoscale functional connectome work in
828 the human brain, it has similarly been proposed that rich-club
829 hubs act to keep path lengths short (87, 88). Future functional
830 imaging experiments in the fly focusing on the population of
831 rich club neurons may shed light on whether this is the case
832 at neuron-scale.

833 We may also expect the ascending and descending neurons
834 which form a bottleneck between the brain and the ventral nerve
835 cord (VNC) will also be part of a rich club of the central ner-
836 vous system. Many ascending and descending neurons appear
837 to have high degrees when examined either within the brain or

838 within the VNC. While a wiring diagram of the VNC is now
839 available (89), we await the completion of a complete CNS con-
840 nectome to determine whether the ascending and descending
841 neurons are members of the rich club.

842 Comparing connectomes across animals

843 Comparing network properties across wiring diagrams from dif-
844 ferent species has the potential to uncover global properties of
845 brain organization. We make several such comparisons in Ta-
846 ble 2, and have commented on other comparisons throughout
847 the text. The similarities in reciprocity and clustering coeffi-
848 cient across animals, which vary dramatically in both size and
849 connection density, hint at the possibility that some features of
850 circuit architecture may be broadly conserved across biological
851 nervous systems. Comparisons of metrics which are dependent
852 on network topology, however, such as neuron degree or reci-
853 procity and motif frequencies, must be interpreted with care due
854 to differences in proofreading and data resolution. While con-
855 nectomes in *C. elegans* have been proofread to the level of indi-
856 vidual synapses (2, 19, 25, 44), in larger connectomics datasets
857 individual synapses are not proofread and instead a threshold
858 on synapses per connection is applied to filter out spurious con-
859 nections (24, 27, 28, 38). Threshold choice impacts topological
860 metrics, which treat all edges as equivalent. Applying the same
861 threshold across datasets does not resolve this conundrum, as a
862 given number of synapses per connection may have different bi-
863 ological implications across species. It has also been observed,
864 both in this work and in past studies, that different parts of the
865 brain of the fly differ in their connectivity properties (38, 42).
866 It is likely that the same is true in larger, more complex brains
867 as well, meaning that statistics derived from partial wiring dia-
868 grams may not be representative.

869 It has been demonstrated in *C. elegans* that there is substan-
870 tial variability in the connectomes of individuals of the same
871 species (25). Comparisons between the FlyWire connectome
872 and hemibrain wiring diagram have already revealed interest-
873 ing similarities and differences between individual flies, as out-
874 lined in our companion paper (29), but more datasets will be
875 needed before we fully understand the amount of variability be-
876 tween individuals in *Drosophila*. The same is expected to be
877 true for zebrafish and mouse connectomes. More whole-brain
878 connectomes are on the horizon, both in *Drosophila* and in other
879 species (90). The network analysis of the fly brain presented
880 here will be a valuable baseline for comparison, both to the con-
881 nectomes of other *Drosophila* individuals and to the connec-
882 tomes of other species. As the efficiency of electron microscopy
883 and neural reconstruction continue to increase, it will become
884 possible to better understand which features of these networks
885 are common and which are species- or individual-specific. Such
886 comparative connectomics studies within a single species may
887 shed light on brain development, stereotypy, and learning, while
888 future studies across multiple organisms may elucidate prin-
889 ciples of brain evolution, organization, and computation.

Methods

Dataset

The FlyWire connectome is the reconstruction of a 7-day-old adult female *Drosophila melanogaster*, genotype [iso] w1118 x [iso] Canton-S G1 (30). The EM images were aligned and neurons were automatically reconstructed using deep learning and computer vision methods, then proofread by the community (27, 28). Neuron cell types and community labels were also attached to these data (29, 91). All analyses presented in this paper were performed on the v630 Snapshot of the FlyWire dataset. The v630 snapshot contains 127,978 neurons and 2,613,129 thresholded connections, the central brain of the fly was fully proofread, with the optic lobes ~80% complete. Most of the neurons missing from the v630 Snapshot were photoreceptors, and we do not expect that the addition of these neurons would significantly change our whole-brain network results. At time of publication, the most up-to-date version of the FlyWire dataset is the v783 Snapshot, containing 139,255 neurons, 2,701,601 thresholded connections, and completed optic lobes. Both data snapshots are available at Codex (Connectome Data Explorer): codex.flywire.ai.

Synaptic connections and thresholding

Synapses were detected algorithmically (31, 32), with each synapse receiving a confidence score. We then removed synapses if (1) either the pre- or postsynaptic location of the synapse was not assigned to a segment, or (2) the synapse had a confidence score of less than 50. We then set a threshold of 5 synapses per connection between neurons for most of our analyses to reduce the impact of spurious connections. This threshold is also consistent across our companion papers on the FlyWire connectome (28, 29). We employed a threshold because manual proofreading of the FlyWire dataset did not extend to individual synapses (28). Thresholding connections by synapse number was previously implemented in the hemibrain connectome, with similar rationale (38). We acknowledge that this is a conservative threshold and is likely to result in an undercounting of true connections. We assessed key statistics as a function of the threshold to ensure that our qualitative observations hold over a range of threshold choices (Figure S1b-c).

Assignment of neurotransmitters to neurons

The neurotransmitter at each synapse was predicted directly from the EM images using a trained convolutional neural network with per-synapse accuracy of 87% (28, 33). The algorithm returns a 1×6 probability vector containing the odds that a given synapse is each of the six primary neurotransmitters in *Drosophila*: ach, gaba, glut, da, oct, or ser. We then averaged these probabilities across all of a neuron's outgoing synapses, under the assumption that each neuron expresses a single outgoing neurotransmitter, to obtain a 1×6 probability vector representing the odds that a given neuron expresses a given neurotransmitter. We then assigned the highest-probability neurotransmitter as the putative neurotransmitter for that neuron. The per-neuron accuracy is 94%.

In cases where the highest probability is $p_1 < 0.2$ and the difference between the top two probabilities $p_1 - p_2 < 0.1$, we

945 classified the neuron as having an uncertain neurotransmitter. In
 946 the ~1600 Kenyon cells, where the neurotransmitter of a neuron
 947 is known to be acetylcholine but the algorithm often returned er-
 948 roneous predictions, the neurotransmitter prediction associated
 949 with that neuron was overwritten by the known neurotransmit-
 950 ter.

951 Cell classifications and labels

952 84% of neurons are *intrinsic* to the brain, meaning that their
 953 projections are fully contained in the brain volume (28). Central
 954 brain neurons are fully contained in the central brain, while optic
 955 lobe intrinsic neurons are fully contained in the optic lobes.
 956 Visual projection neurons have inputs in the optic lobes and out-
 957 puts in the central brain. Visual centrifugal neurons have inputs
 958 in the central brain and outputs in the optic lobe. Sensory neu-
 959 rons are those which are entering the brain from the periphery,
 960 and are divided into classes by modality. Refer to our com-
 961 panion paper, Schlegel et al., for more details on classification
 962 criteria (29). We also employed annotation labels contributed
 963 by the FlyWire community (28).

964 Definitions of in-degree, out-degree, total degree and re- 965 ciprocal degree

966 For a given neuron i , the in-degree d_i^+ is the number of incom-
 967 ing synaptic partners the neuron has and the out-degree d_i^- is
 968 the number of outgoing synaptic partners the neuron has. The
 969 total degree of a neuron i is the sum of in-degree and out-degree:

$$970 d_i^{\text{tot}} := d_i^+ + d_i^- \quad (2)$$

971 The reciprocal degree d_i^{rec} is the number of partners a given
 972 neuron form reciprocal connections with. Since each reciprocal
 973 connection consists of two edges, we can determine the frac-
 974 tion of reciprocal inputs and outputs as d_i^{rec}/d_i^+ and d_i^{rec}/d_i^- ,
 975 respectively (Figure S3c).

976 Definitions of connection probability, reciprocity and 977 clustering coefficient

978 Given the observed wiring diagram as a simple (no self-edges)
 979 directed graph $G(V, E)$, the “connection probability” or “den-
 980 sity” is the probability that, given an ordered pair of neurons α
 981 and β , a directed connection exists from one to the other:

$$982 p^{\text{conn}} := P[\alpha \rightarrow \beta] = \frac{|E|}{|V|(|V| - 1)}. \quad (3)$$

983 The reciprocity is the probability that, given a pair of neurons
 984 which are connected α to β , there exists a returning β to α con-
 985 nection:

$$986 p^{\text{rec}} := P[\beta \rightarrow \alpha | \alpha \rightarrow \beta]. \quad (4)$$

987 The (global) clustering coefficient is the probability that for
 988 three neurons α , β and γ , given that neurons α and β are
 989 connected and neurons α and γ are connected (regardless of direc-
 990 tionality), neurons β and γ are connected:

$$991 C^\Delta := P[\beta \sim \gamma | \alpha \sim \beta \wedge \alpha \sim \gamma]. \quad (5)$$

992 We computed these metrics both across the whole brain and
 993 within brain region (neuropil) subnetworks.

994 We also systematically quantified the occurrence of distinct
 995 directed 3-node motifs within the network, ensuring that dupli-
 996 cates are eliminated: any subgraph involving three unique nodes
 997 is counted only once in our analysis. To compute the expected
 998 prevalence of specific neurotransmitter motifs (Figures 2c, 3d-
 999 e) we multiplied the relevant neurotransmitter probabilities for
 999 the motif of interest, under the assumption the neurons connect
 999 independent of neurotransmitter. We then compared this expec-
 999 tation to the true frequency of motifs with these neurotransmit-
 999 ter combinations.

999 ER and CFG null models

999 We probed different statistics of the wiring diagram $G(V, E)$ by
 999 comparing them with the statistics of various null models. The
 999 simplest null model we employed was a directed version of the
 999 Erdős–Rényi model (ER) $\mathcal{G}(V, p)$, where all edges are drawn
 999 independently at random, and the connection probability p is
 999 set such that the expected number of edges in the ER model
 999 equals that observed in the wiring diagram (47). For any nodes
 999 $i, j \in V$, the connection probability is constant:

$$999 P[i \rightarrow j] = p = \frac{|E|}{|V|(|V| - 1)}. \quad (6)$$

999 Since reciprocal edges in the wiring diagram are over-
 999 represented when compared to a standard Erdős–Rényi (ER)
 999 model, we adopted a generalized Erdős–Rényi model (gER),
 999 which preserves the expected number of reciprocal edges. The
 999 gER model $\mathcal{G}(V, p^{\text{uni}}, p^{\text{bi}})$ has two parameters, uni-directional
 999 connection probability p^{uni} and bi-directional connection prob-
 999 ability p^{bi} , both of which are set to match the wiring diagram.
 999 To do this, we defined the sets of unidirectional and bidirec-
 999 tional edges as:

$$999 E^{\text{uni}} := \{(i, j) | (i, j) \in E \wedge (j, i) \notin E\}, \quad (7)$$

$$999 E^{\text{bi}} := \{(i, j) | (i, j) \in E \wedge (j, i) \in E\}. \quad (8)$$

999 For any nodes i and j :

$$999 P[i \xrightarrow{\text{uni}} j] = P[i \xleftarrow{\text{uni}} j] = p^{\text{uni}} = \frac{|E^{\text{uni}}|}{|V|(|V| - 1)}, \quad (9)$$

$$999 P[i \xleftarrow{\text{bi}} j] = p^{\text{bi}} = \frac{|E^{\text{bi}}|}{|V|(|V| - 1)}, \quad (10)$$

$$999 P[i \not\xrightarrow{\text{uni}} j] = 1 - 2p^{\text{uni}} - p^{\text{bi}}. \quad (11)$$

999 All edges between unordered node pairs were drawn indepen-
 999 dently and at random.

999 In line with previous work (7, 63), we also employed a di-
 999 rected configuration model (CFG), $\mathcal{G}(V, \{d_i^+\}, \{d_i^-\})$, which
 999 preserves degree sequences during random rewiring. We sam-
 999 pled 1,000 random graphs uniformly from a configuration space
 999 of graphs with the same degree sequences as the observed graph
 999 by applying the switch-and-hold algorithm (92), where we ran-
 999 domly select two edges in each iteration and swap their target
 999 endpoints under the condition that doing so does not introduce
 999 self-loops or multiple edges (switch), or else keep them un-
 999 changed (hold).

998 Computing pairwise distances between neuronal arbors

999 To determine the connection probability distribution as a function
1000 of distance between neurons, we first had to distill the available
1001 spatial information into a handful of points. This was the only
1002 practical way to enable distance comparisons between all
1003 neurons—a total of 14 billion pairs.

1004 For each neuron, we defined two coordinates based on the
1005 location of their incoming and outgoing synapses. We com-
1006 puted the average 3D position of all of the neuron's incoming
1007 synapses to approximate the position of the neuron's dendritic
1008 arbor, and did the same to approximate the position of the neu-
1009 ron's axonal arbor. We then computed for all neuron pairs the
1010 pairwise distances between the axonal arbor of neuron *A* and the
1011 dendritic arbor of neuron *B*. Binning by distance and com-
1012 paring the number of true connections to the number of neuron
1013 pairs allowed us to compute connection probability as a func-
1014 tion of space (Figure S1d).

1015 Spatial null model

1016 Informed by the distribution of connection probability as a
1017 function of distance, we constructed a spatial null model with
1018 two zones of probability—a “close” zone (0 to 50 microns)
1019 where connections are possible with a relatively high prob-
1020 ability ($p_{close} = 0.00418$) and a “distant” zone (more than
1021 50 microns) where connections occur with lower probability
1022 ($p_{distant} = 0.00418$) (Figure S1e). The probabilities in these
1023 two zones were derived from the real network.

1024 Spectral analysis

1025 Given a strongly connected graph $G(V, E)$ and its 0-1 adjacency
1026 matrix $A \in \mathbb{R}_{\geq 0}^{n \times n}$, where A_{ij} indicates the existence of a
1027 connection from neuron *j* to neuron *i*, one can construct an ir-
1028 reducible Markov chain on the strongly connected graph with
1029 a transition matrix $P_{ij} := A_{ij} / \sum_k A_{kj}$ giving the transition
1030 probability from *j* to *i*. The Perron-Frobenius theorem guar-
1031antees that P has a unique positive right eigenvector π with eigen-
1032 value 1, and therefore that π is the stationary distribution of the
1033 Markov chain. We constructed such a transition matrix for the
1034 connectome and determined the eigenvector π .

1035 We also defined a “reverse” Markov chain with a transition
1036 matrix $P_{ij}^{\text{rev}} := A_{ji} / \sum_k A_{jk}$ giving the transition probability
1037 from *j* to *i*. P^{rev} also has a unique positive right eigenvector
1038 π^{rev} with eigenvalue 1. Figures S1f and S1g show the sta-
1039 tionary distribution of forward and reversed Markov chains, respec-
1040 tively.

1041 The normalized symmetric Laplacian of the Markov chain
1042 P is

$$1043 \mathcal{L} = I - \frac{1}{2} \left(\Pi^{1/2} P \alpha \Pi^{-1/2} + \Pi^{-1/2} P^\top \Pi^{1/2} \right), \quad (12)$$

1044 where $\Pi := \text{Diag}(\pi)$ and I is the identity matrix. Similarly, we
1045 defined \mathcal{L}^{rev} for the reverse Markov chain. The eigen-spectra of
1046 \mathcal{L} and \mathcal{L}^{rev} are shown in Figures S1f and S1g, respectively. The
1047 gaps between eigenvalues indicate the conductance properties
1048 of the graph.

1049 Finding rich club neurons

1050 We employed the standard rich club formulation to quantify the
1051 rich club effect (11). The rich club coefficient $\Phi(k)$ at a given
1052 degree value (k), with all nodes with degree $< k$ pruned, is the
1053 number of existing connections in the surviving subnetwork di-
1054 vided by the total possible connections in the surviving subnet-
1055 work:

$$1056 \Phi(k) = \frac{M_k}{N_k(N_k - 1)}, \quad (13)$$

1057 where N_k neurons in the network with degree $\geq k$ and M_k is
1058 the number of connections between such neurons.

1059 To control for the fact that high-degree nodes have a higher
1060 probability of connecting to each other by chance, we normal-
1061 ized the rich club coefficient to the average rich club value of
1062 100 samples from a CFG null model (Figure 1h):

$$1063 \Phi_{\text{norm}}(k) = \frac{\Phi(k)}{\langle \Phi_{\text{CFG}}(k) \rangle}. \quad (14)$$

1064 The standard method of determining the rich club threshold is to
1065 look for values of k for which $\Phi_{\text{norm}}(k) > 1 + n\sigma$, where σ is
1066 the standard deviation of $\Phi_{\text{CFG}}(k)$ and n is chosen arbitrarily
1067 (18). However, since the standard deviation from our samples is
1068 extremely small near the bump in relative rich club coefficient,
1069 we chose instead to define the onset threshold of the rich club as
1070 $\Phi_{\text{norm}}(k) > 1.01$ (1% denser than the CFG random networks).

1071 We computed the rich club coefficient in three different
1072 ways, by sweeping by total degree (Figure 1h), in-degree, and
1073 out-degree (Figure S2c), progressively moving from small to
1074 large values. As we observed, when the total degrees of the
1075 remaining nodes surpass 37, the network becomes denser com-
1076 pared to randomized networks. Once the minimal total degree
1077 reaches 93, the network becomes as sparse as the randomized
1078 counterpart. Therefore, we classified neurons with total degrees
1079 above 37 as “rich club” neurons because they exhibit denser in-
1080 terconnections when considered as a subnetwork. In terms of
1081 in-degree, the range for denser-than-random connectivity is be-
1082 tween 10 and 54. Considering out-degree alone did not reveal
1083 any specific onset or offset threshold for rich club behavior, as
1084 the subnetwork always remains sparser than random.

1085 Definitions of broadcaster neurons, integrator neurons, 1086 and neuropil-specific recurrent neurons

1087 To identify broadcaster neurons, we filtered the intrinsic rich
1088 club neurons ($d^{\text{tot}} > 37$) for those which had an out-degree was
1089 at least 5 times higher than their in-degree:

$$1090 d^- \geq 5 \times d^+. \quad (15)$$

1091 Similarly, we identified integrator neurons by filtering the
1092 intrinsic rich club neurons for those which had an in-degree was
1093 at least 5 times higher than their out-degree:

$$1094 d^+ \geq 5 \times d^-. \quad (16)$$

1095 Rich club neurons which did not fall into either category were
1096 defined as “large balanced” neurons. This analysis was limited

1074 to intrinsic neurons—those which have all of their inputs and out-
1075 puts within the brain—to avoid spurious identification of afferent
1076 or efferent neurons as broadcasters or integrators.

1077 When identifying large recurrent neuropil-specific neurons
1078 (**Figure 5g**) we applied the following criteria. First, the neu-
1079 rons were intrinsic and met the rich club criteria. Second, at
1080 least 50% of the neuron's incoming connections were contained
1081 within the subnetwork of a single neuropil. Third, at least 50%
1082 of the neuron's outgoing connections were contained within the
1083 same neuropil.

1084 **Neuron ranking**

1085 We employed a probabilistic connectome flow model previously
1086 published in Schlegel et al. 2021 to determine the ranking of
1087 neurons relative to various sensory neuron populations (28, 48).
1088 This method ignores the sign of connections. Starting from a
1089 set of user-defined seed neurons, the model traverses the wiring
1090 diagram probabilistically: in each iteration the chance that a
1091 neuron is added to the traversed set increases linearly with the
1092 fractions of synapses it is receiving from neurons already in the
1093 traversed set. When this likelihood reaches 30%, the neuron
1094 is guaranteed to be added to the traversed set. The process is
1095 then repeated until the entire network graph has been traversed.
1096 The iteration in which a neuron was added corresponds to the
1097 distance in hops it was from the seed neurons. For each set of
1098 seed neurons, the model was run 10,000 times. The distance
1099 used to determine the rank of any given neuron was the average
1100 iteration in which it was added to the traversed set.

1101 We ran this model using the following subsets of sensory
1102 neurons as seeds: olfactory receptor neurons, gustatory recep-
1103 tor neurons, mechanosensory Johnston's Organ neurons, head
1104 and neck bristle mechanosensory neurons, thermosensory neu-
1105 rons, hygrosensory neurons, visual projection neurons, visual
1106 photoreceptors, ocellar photoreceptors and ascending neurons.
1107 We also ran the model using the set of all of the input neurons
1108 as seed neurons. All neurons in the brain were then ranked by
1109 their traversal distance from each set of starting neurons, and
1110 this ranking was normalized to return a percentile rank.

1111 **Determining information flow between neuropils**

1112 To determine the contributions a single neuron makes to infor-
1113 mation flow between neuropils, we first applied two simplifying
1114 assumptions: (1) that information flow through the neuron can
1115 be approximated by the fraction of synapses in a given region
1116 and (2) that inputs and outputs can be treated independently.
1117 Employing these two assumptions we constructed a matrix rep-
1118 resenting the projections of a single neuron between neuropils.
1119 The fractional inputs of a given neuron are a $1 \times N$ vector con-
1120 taining the fraction of incoming synapses the neuron has in each
1121 of the N neuropils, and the fractional outputs are a similar vec-
1122 tor containing the fraction of outgoing synapses in each of the
1123 N neuropils. We multiplied these vectors against each other to
1124 generate the $N \times N$ matrix of the neuron's fractional weights,
1125 with a total weight of one. Summing these matrices across all
1126 neurons produced a matrix of neuropil-to-neuropil connectivity,
1127 or projectome (see Figure 4 of Dorkenwald et al., 2023) (28).

1128 From the neuropil-to-neuropil connectivity matrix we deter-

1129 mined the total weight of internal connections—those within a
1130 given neuropil—by identifying the neurons which contribute to
1131 the diagonal of the matrix. We likewise determined the weight
1132 external connections—either incoming to the neuropil or outgo-
1133 ing from the neuropil—by looking at the off-diagonals. These
1134 data were used to construct the analyses in **Figure S6a-c**.

1135 **Identifying neuropil subnetworks**

1136 Most of the neurons in the *Drosophila* brain have soma at
1137 the surface of the brain. Therefore, they cannot be associ-
1138 ated to neuropils (brain regions) based on their soma locations.
1139 Synapses, however, can be associated with neuropils. To per-
1140 form motif analyses at the level of individual neuropils, we iden-
1141 tified neuropil subnetworks based on the the connections made
1142 by the synapses contained within each neuropil volume. All
1143 connections within the neuropil of interest are taken as edges of
1144 this subnetwork, and all neurons connected to these edges are
1145 included (**Figure 5b**). The number of neurons associated with
1146 each neuropil subnetwork is plotted in **Figure S6d**. Note that if
1147 two neurons both in a given neuropil subnetwork share a con-
1148 nection which occurs in a different neuropil, that connection is
1149 not included as an edge in the given subnetwork.

1150 **Identifying inter-neuropil reciprocal pairs**

1151 We constructed a map of reciprocal connections between neu-
1152 ropils in the form of a triangular matrix with the neuropils as
1153 axes. For clarity, here we will refer to a unidirectional connec-
1154 tion as an edge. A reciprocal connection contains two opposing
1155 edges. While some edges are composed of synapses in multi-
1156 ple neuropils, the majority of edges are composed of synapses
1157 in a single neuropil after thresholding. We therefore applied a
1158 winner-take-all approach to assigning edges to neuropils.

1159 Given two reciprocally connected neurons X and Y, let us
1160 call the edge from X to Y Edge 1, and the edge from Y to X
1161 Edge 2. If the synapses that form Edge 1 are in Neuropil A, and
1162 the synapses that form Edge 2 are in Neuropil B, then we assign
1163 this reciprocal pair to the Neuropil A to Neuropil B square of
1164 the matrix. This was done for all reciprocal pairs, with each re-
1165 ciprocal pair is counted as 1 in the matrix. Note that this means
1166 that a given neuron can be represented multiple times if it has
1167 multiple reciprocal partners.

1168 **Data availability**

1169 The FlyWire data is available online via Codex (Connectome
1170 Data Explorer): codex.flywire.ai. Neuron annotations,
1171 neurotransmitter information, and compact data downloads are
1172 available via Codex, along with neuron lists generated in this
1173 work, including neurons participating in 2-node and selected 3-
1174 node motifs, rich club neurons, broadcaster and integrator neu-
1175 rons, and neuropil-specific reciprocal neurons.

1176 **Software availability**

1177 The analyses presented in this paper were performed in Python
1178 with the numpy and graph-tool (93) packages, and in MAT-
1179 LAB (standard toolboxes). Software written for this publi-
1180 cation is available at Github (github.com/murthylab/

1181 [flywire-network-analysis](#)). Some 3D renders were
1182 generated in Cinema4D.

1183 AUTHOR CONTRIBUTIONS

1184 AL, RY, and SD analyzed the data. SD, PS, and AM curated the data and made it
1185 available for download. AM developed software and data analysis tools. AM and ARS
1186 built the Codex online platform. SCY, CEM, MC, KE, and PS trained and managed
1187 Flywire proofreaders. ASB, NE, GSXEJ and JF provided neurotransmitter information.
1188 CEM and ARS provided Flywire community support and training. AL, RY, SD, and ARS
1189 generated figure panels. AL, RY, and MM wrote the manuscript with feedback from the
1190 other authors. MM supervised the project.

1191 ACKNOWLEDGEMENTS

1192 We thank Sebastian Seung, Davi Bock and the members of the Murthy, Seung,
1193 Jefferis, and Clandinin labs for their advice on the project and comments on the
1194 manuscript. AL was supported by the NSF through the Center for the Physics of Biological
1195 Function (PHY-1734030). GSXEJ was supported by Wellcome Trust Collaborative
1196 Awards 203261/Z/16/Z and 220343/Z/20/Z, the Neuronex2 award (MRC_MC_EX_MR/
1197 T046279/1), and the MRC (MC-U105188491). MM was supported by NIH BRAIN Initiative
1198 grants RF1 MH117815, RF1 MH129268 and U24 NS126935. We also acknowledge support
1199 from the Princeton Neuroscience Institute and assistance from Google.
1200

1201 References

1. Olaf Sporns, Giulio Tononi, and Rolf Kötter. The human connectome: A structural description of the human brain. *PLOS Computational Biology*, 1:e42, 2005. ISSN 1553-7358. doi: 10.1371/JOURNAL.PCB.0010042.
2. Lav R. Varshney, Beth L. Chen, Eric Paniagua, David H. Hall, and Dmitri B. Chklovskii. Structural properties of the *Caenorhabditis elegans* neuronal network. *PLoS Comput. Biol.*, 7(2), 2011. ISSN 1553734X. doi: 10.1371/journal.pcbi.1001066.
3. Martijn P Van Den Heuvel and Olaf Sporns. Rich-club organization of the human connectome. *Journal of Neuroscience*, 31(44):15775–15786, 2011.
4. Dae Jin Kim and Byoung Kyung Min. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. *Computational and Structural Biotechnology Journal*, 18:1761–1773, 1 2020. ISSN 2001-0370. doi: 10.1016/J.CSBJ.2020.06.039.
5. Daniel Udvari, Philipp Harth, Jakob H. Macke, Hans Christian Hege, Christiaan P.J. de Kock, Bert Sakmann, and Marcel Oberlaender. The impact of neuron morphology on cortical network architecture. *Cell Reports*, 39, 4 2022. ISSN 22111247. doi: 10.1016/j.celrep.2022.110677.
6. Nicholas L Turner, Thomas Macrina, J Alexander Bae, Runzhe Yang, Alyssa M Wilson, Casey Schneider-Mizell, Kisuk Lee, Ran Lu, Jingpeng Wu, Agnes L Bodor, et al. Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity. *Cell*, 185(6):1082–1100, 2022.
7. Runzhe Yang, Ashwin Vishwanathan, Jingpeng Wu, Nico Kemnitz, Dodam Ih, Nicholas Turner, Kisuk Lee, Ignacio Tartavull, William M. Silversmith, Chris S. Jordan, Celia David, Doug Bland, Amy Sterling, Mark S. Goldman, Emre R. F. Aksay, H. Sebastian Seung, and the EyeWires. Cyclic structure with cellular precision in a vertebrate sensorimotor neural circuit. *Current Biology*, 2023.
8. Daniel M Busiello, Samir Suweis, Jorge Hidalgo, and Amos Maritan. Explorability and the origin of network sparsity in living systems. *Scientific reports*, 7(1):12323, 2017.
9. Vito Latora and Massimo Marchiori. Efficient behavior of small-world networks. *Physical review letters*, 87(19):198701, 2001.
10. Mark D Humphries and Kevin Gurney. Network 'small-world-ness': a quantitative method for determining canonical network equivalence. *PLoS one*, 3(4):e0002051, 2008.
11. Vittoria Colizza, Alessandro Flammini, M Angeles Serrano, and Alessandro Vespignani. Detecting rich-club ordering in complex networks. *Nature physics*, 2(2):110–115, 2006.
12. Longchuan Liu, Xiaoping Hu, Todd M. Preuss, Matthew F. Glasser, Frederick W. Damasio, Yuxuan Qiu, and James Rilling. Mapping putative hubs in human, chimpanzee (pan troglodytes) and rhesus macaque (macaca mulatta) connectomes via diffusion tractography. *NeuroImage*, 80: 462, 10 2013. ISSN 10538119. doi: 10.1016/J.NEUROIMAGE.2013.04.024.
13. Sarah S. Sethi, Valerio Zerbi, Nicole Wenderoth, Alex Fornito, and Ben D. Fulcher. Structural connectome topology relates to regional bold signal dynamics in the mouse brain. *Chaos*, 27, 4 2017. ISSN 10541500. doi: 10.1063/1.4979281/322545.
14. Alessandra Griffa and Martijn P. Van Den Heuvel. Rich-club neurocircuitry: function, evolution, and vulnerability. *Dialogues in Clinical Neuroscience*, 20:121, 6 2018. ISSN 12948322. doi: 10.31887/DCNS.2018.20.2/AGRIFFA.
15. Jennifer Stine Elam, Matthew F. Glasser, Michael P. Harms, Stamatis N. Sotiropoulos, Jesper L.R. Andersson, Gregory C. Burgess, Sandra W. Curtiss, Robert Oostenveld, Linda J. Larson-Prior, Jan Mathijs Schoffelen, Michael R. Hodge, Eileen A. Cler, Daniel M. Marcus, Deanna M. Barch, Essa Yacoub, Stephen M. Smith, Kamil Ugurbil, and David C. Van Essen. The human connectome project: A retrospective. *NeuroImage*, 244:118543, 12 2021. ISSN 1053-8119. doi: 10.1016/J.NEUROIMAGE.2021.118543.
16. Chi Tin Shih, Olaf Sporns, Shou Li Yuan, Ta Shan Su, Yen Jen Lin, Chao Chun Chuang, Ting Yuan Wang, Chung Chuang Lo, Ralph J. Greenspan, and Ann Shyn Chiang. Connectomics-based analysis of information flow in the drosophila brain. *Current Biology*, 25: 1249–1258, 5 2015. ISSN 18790445. doi: 10.1016/j.cub.2015.03.021.
17. Jacob C. Worrell, Jeffrey Rumschlag, Richard F. Betzel, Olaf Sporns, and Bratislav Mišić. Optimized connectome architecture for sensory-motor integration. *Network Neuroscience*, 1:415, 12 2017. ISSN 24721751. doi: 10.1162/NETN_A_00022.
18. Emma K. Towlson, Petra E. Vértes, Sebastian E. Ahnert, William R. Schafer, and Edward T. Bullmore. The rich club of the *C. elegans* neuronal connectome. *Journal of Neuroscience*, 33 (15):6380–6387, 2013. ISSN 0270-6474. doi: 10.1523/JNEUROSCI.3784-12.2013.
19. Steven J Cook, Travis A Jarrell, Christopher A Brittin, Yi Wang, Adam E Bloniarz, Maksim A Yakovlev, Ken CQ Nguyen, Leo T-H Tang, Emily A Bayer, Janet S Duerr, et al. Whole-animal connectomes of both *Caenorhabditis elegans* sexes. *Nature*, 571(7763):63–71, 2019.
20. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: Simple building blocks of complex networks. *Science*, 298(5594):824–827, 2002. doi: 10.1126/science.298.5594.824.
21. Olaf Sporns and Rolf Kötter. Motifs in brain networks. *PLOS Biology*, 2(11):null, 10 2004. doi: 10.1371/journal.pbio.0020369.
22. Sen Song, Per Jesper Sjöström, Markus Reigl, Sacha Nelson, and Dmitri B Chklovskii. Highly nonrandom features of synaptic connectivity in local cortical circuits. *PLOS biology*, 3(3):e68, 2005.
23. Rodrigo Perin, Thomas K Berger, and Henry Markram. A synaptic organizing principle for cortical neuronal groups. *Proceedings of the National Academy of Sciences*, 108(13):5419–5424, 2011.
24. Michael Winding, Benjamin D. Pedigo, Christopher L. Barnes, Heather G. Patsolic, Youngse Park, Tom Kazimiers, Akira Fushiki, Ingrid V. Andrade, Avinash Khandelwal, Javier Valdes-Aleman, Feng Li, Nadine Randel, Elizabeth Bartoli, Ana Correia, Richard D. Fetter, Volker Hartenstein, Carey E. Priebe, Joshua T. Vogelstein, Albert Cardona, and Marta Zlatic. The connectome of an insect brain. *Science*, 379(6636):eadd9330, 2023. doi: 10.1126/science.add9330.
25. Daniel Witvliet, Ben Mulcahy, James K. Mitchell, Yaron Meirovitch, Daniel R. Berger, Yuelong Wu, Yufang Liu, Wan Xian Koh, Rajeev Parvathala, Douglas Holmyard, Richard L. Schalek, Nir Shavit, Andrew D. Chisholm, Jeff W. Lichtman, Aravindh D.T. Samuel, and Mei Zen. Connectomes across development reveal principles of brain maturation. *Nature*, 596(7871): 257–261, 2021. ISSN 14764687. doi: 10.1038/s41586-021-03778-8.
26. James E Ferrell Jr. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle. *Current opinion in cell biology*, 25(6):676–686, 2013.
27. Sven Dorkenwald, Claire McKellar, Thomas Macrina, Nico Kemnitz, Kisuk Lee, Jingpeng Wu, Sergiy Popovych, Alexander Bae, Eric Mitchell, Barak Nehorai, Zhen Jia, Jonathan Zung, Derrick Brittain, Forrest Colman, Chris Jordan, William Silversmith, Christa Baker, David Deutsch, Sandeep Kumar, Austin Burke, Jay Gager, James Hebditch, Merlin Moore, Sarah Morejohn, Ben Silverman, Kyle Willie, Ryan Willie, Mala Murthy, and H Sebastian Seung. Flywire: Online community for whole-brain connectomics. *Nature Methods*, 19:119–128, 2022.
28. Sven Dorkenwald, Aris Matsliah, Amy R Sterling, Philipp Schlegel, Szi-chieh Yu, Claire E. McKellar, Albert Lin, Marta Costa, Katharina Eichler, Yijie Yin, Will Silversmith, Casey Schneider-Mizell, Chris S Jordan, Derrick Brittain, Akhilesh Halageri, Kai Kuehner, Oluwaseun Ogedengbe, Ryan Morey, Jay Gager, Krzysztof Kruk, Eric Perlman, Runzhe Yang, David Deutsch, Doug Bland, Marissa Sorek, Ran Lu, Thomas Macrina, Kisuk Lee, J. Alexander Bae, Shang Mu, Barak Nehorai, Eric Mitchell, Sergiy Popovych, Jingpeng Wu, Zhen Jia, Manuel Castro, Nico Kemnitz, Dodam Ih, Alexander Shakeel Bates, Nils Eckstein, Jan Funke, Forrest Colman, Davi D Bock, Gregory S X E Jefferis, H. Sebastian Seung, Mala Murthy, and the FlyWire Consortium. Neuronal wiring diagram of an adult brain. *bioRxiv*, 2023. doi: 10.1101/2023.06.27.546656.
29. Philipp Schlegel, Yijie Yin, Alexander Shakeel Bates, Sven Dorkenwald, Katharina Eichler, Paul Brooks, Daniel S Han, Marina Gkantia, Marcia dos Santos, Eva J Munnely, Griffin Badalamente, Laia Serratosa Capdevila, Varun Aniruddha Sane, Markus William Pleijzier, Imaan F M Tamimi, Christopher R Dunne, Irene Salgarella, Alexandre Javier, Siqi Fang, Eric Perlman, Tom Kazimiers, Sridhar R Jagannathan, Aris Matsliah, Amy R Sterling, Szi-chieh Yu, Claire E McKellar, FlyWire Consortium, Marta Costa, H. Sebastian Seung, Mala Murthy, Volker Hartenstein, Davi D Bock, and Gregory S X E Jefferis. A consensus cell type atlas from multiple connectomes reveals principles of circuit stereotypy and variation. *bioRxiv*, 2023. doi: 10.1101/2023.06.27.546655.
30. Zhihao Zheng, J. Scott Lauritzen, Eric Perlman, Camenzind G. Robinson, Matthew Nichols, Daniel Milkie, Omar Torrens, John Price, Corey B. Fisher, Nadiya Sharifi, Steven A. Calle-Schuler, Lucia Kmecova, Iqbal J. Ali, Bill Karsh, Eric T. Trautman, John A. Bogovic, Philipp Hanslovsky, Gregory S.X.E. Jefferis, Michael Kazhdan, Khaled Khairy, Stephan Saalfeld, Richard D. Fetter, and Davi D. Bock. A complete electron microscopy volume of the brain of adult *drosophila melanogaster*. *Cell*, 174(3):730–743.e22, 2018. ISSN 0092-8674. doi: <https://doi.org/10.1016/j.cell.2018.06.019>.
31. Larissa Heinrich, Jan Funke, Constantin Pape, Juan Nunez-Iglesias, and Stephan Saalfeld. Synaptic cleft segmentation in non-isotropic volume electron microscopy of the complete *drosophila* brain. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 11071 LNCS:317–325, 2018. ISSN 16113349. doi: 10.1007/978-3-030-00934-2_36/COVER.
32. Julia Buhmann, Arlo Sheridan, Caroline Malin-Mayor, Philipp Schlegel, Stephan Gerhard, Tom Kazimiers, Renate Krause, Tri M. Nguyen, Larissa Heinrich, Wei Chung Allen Lee, Rachel Wilson, Stephan Saalfeld, Gregory S.X.E. Jefferis, Davi D. Bock, Srinivas C. Turaga, Matthew Cook, and Jan Funke. Automatic detection of synaptic partners in a whole-brain *drosophila* electron microscopy data set. *Nature Methods* 2021 18, 18:771–774, 6 2021. ISSN 1548-7105. doi: 10.1038/s41592-021-01183-7.
33. Nils Eckstein, Alexander Shakeel Bates, Andrew Champion, Michelle Du, Yijie Yin, Philipp Schlegel, Alicia Kun-Yang Lu, Thomson Rymer, Samantha Finley-May, Tyler Paterson, Ruchi Parekh, Sven Dorkenwald, Aris Matsliah, Szi-Chieh Yu, Claire McKellar, Amy Sterling, Katharina Eichler, Marta Costa, Sebastian Seung, Mala Murthy, Volker Hartenstein, Gregory S.X.E. Jefferis, and Jan Funke. Neurotransmitter classification from electron microscopy images at synaptic sites in *drosophila melanogaster*. *bioRxiv*, 2023. doi: 10.1101/2020.06.12.148775.
34. Wendy W. Liu and Rachel I. Wilson. Glutamate is an inhibitory neurotransmitter in the *drosophila* olfactory system. *Proceedings of the National Academy of Sciences of the United States of America*, 110:10294–10299, 6 2013. ISSN 00278424. doi: 10.1073/PNAS.1220560110/SUPPLFILE/PNAS.201220560SI.PDF.
35. Ellena v. McCarthy, Ying Wu, Tagide deCarvalho, Christian Brandt, Guan Cao, and Michael N. Nitabach. Synchronized bilateral synaptic inputs to *drosophila melanogaster* neuropeptidergic rest/arousal neurons. *Journal of Neuroscience*, 31(22):8181–8193, 2011. ISSN 0270-6474. doi: 10.1523/JNEUROSCI.2017-10.2011.
36. Sebastian Molina-Obando, Juan Felipe Vargas-Fique, Miriam Henning, Burak Gür, T Moritz Schladt, Junaid Akhtar, Thomas K Berger, and Marion Silies. On selectivity in the *Drosophila*

1345 visual system is a multisynaptic process involving both glutamatergic and gabaergic inhibition. *eLife*, 8:e49373, sep 2019. ISSN 2050-084X. doi: 10.7554/eLife.49373. 1431

1346 37. Robert Tarjan. Depth-first search and linear graph algorithms. *SIAM journal on computing*, 1 1432

1347 (2):146–160, 1972. 1432

1348 38. Louis K. Scheffer, C. Shan Xu, Michal Januszewski, Zhiyuan Lu, Shin Ya Takemura, Kenneth J. 1433

1349 Hayworth, Gary B. Huang, Kazunori Shinomiya, Jeremy Maitin-Shepard, Stuart Berg, Jody 1434

1350 Clements, Philip M. Hubbard, William T. Katz, Lowell Umayam, Ting Zhao, David Ackerman, 1435

1351 Tim Blakely, John Bogovic, Tom Dolafi, Dagmar Kainmueller, Takashi Kawase, Khaled A. Khairy, 1436

1352 Laramie Leavitt, Peter H. Li, Larry Lindsey, Nicole Neubarth, Donald J. Olbris, Hideo Otsuna, 1437

1353 Eric T. Trautman, Masayoshi Ito, Alexander S. Bates, Jens Goldammer, Tanya Wolff, Robert 1438

1354 Svirkas, Philipp Schlegel, Erika R. Neace, Christopher J. Knecht, Chelsea X. Alvarado, Dennis 1439

1355 A. Bailey, Samantha Ballinger, Jolanta A. Borycz, Brandon S. Canino, Natasha Cheatham, 1440

1356 Michael Cook, Marisa Dreher, Octave Dulos, Bryon Eubanks, Kelli Fairbanks, Samantha Finley, 1441

1357 Nora Forknall, Audrey Francis, Gary Patrick Hopkins, Emily M. Joyce, Sungjin Kim, Nicole A. 1442

1358 Kirk, Julie Kovalyak, Shirley A. Lauchie, Alanna Lohff, Charli Maldonado, Emily A. Manley, Sari 1443

1359 McLin, Caroline Mooney, Miatta Ndama, Omotara Ogundeyi, Nneoma Okeoma, Christopher Ordish, 1444

1360 Nicholas Padilla, Christopher Patrick, Tyler Paterson, Elliott E. Phillips, Emily M. Phillips, 1445

1361 Neha Rampally, Caitlin Ribeiro, Madelaine K. Robertson, Jon Thomson Rymer, Sean M. Ryan, 1446

1362 Megan Sammons, Anne K. Scott, Ashley L. Scott, Aya Shinomiya, Claire Smith, Kelsey Smith, 1447

1363 Natalie L. Smith, Margaret A. Sobeski, Alia Suleiman, Jackie Swift, Satoko Takemura, Iris Talebi, 1448

1364 Dorota Tarnogorska, Emily Tenshaw, Temour Tokhi, John J. Walsh, Tansy Yang, Jane Anne 1449

1365 Horne, Feng Li, Ruchi Parekh, Patricia K. Rivlin, Vivek Jayaraman, Marta Costa, Gregory S.X.E. 1450

1366 Jefferis, Kei Ito, Stephen Saalfeld, Reed George, Ian A. Meinertzhagen, Gerald M. Rubin, 1451

1367 Harald F. Hess, Viren Jain, and Stephen M. Plaza. A connectome and analysis of the adult 1452

1368 drosophila central brain. *eLife*, 9:1–74, 2020. ISSN 2050084X. doi: 10.7554/ELIFE.57443. 1453

1369 39. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image 1454

1370 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, 1455

1371 pages 770–778, 2016. 1455

1372 40. David F Gleich. Pagerank beyond the web. *siam REVIEW*, 57(3):321–363, 2015. 1456

1373 41. Shin-ya Takemura, Yoshinori Aso, Toshihiko Hige, Allan Wong, Zhiyuan Lu, C Shan Xu, Patricia K Rivlin, Harald Hess, Ting Zhao, Toufiq Parag, Stuart Berg, Gary Huang, William Katz, 1457

1374 Donald J Olbris, Stephen Plaza, Lowell Umayam, Roxanne Aniceto, Lei-Ann Chang, Shirley 1458

1375 Lauchie, Omotara Ogundeyi, Christopher Ordish, Aya Shinomiya, Christopher Sigmund, Satoko 1459

1376 Takemura, Julie Tran, Glenn C Turner, Gerald M Rubin, and Louis K Scheffer. A connectome of 1460

1377 a learning and memory center in the adult *Drosophila* brain. *eLife*, 6:e26975, jul 2017. ISSN 1461

1378 2050-084X. doi: 10.7554/eLife.26975. 1461

1379 42. Jane Anne Horne, Carlie Langille, Sari McLin, Meagan Wiederman, Zhiyuan Lu, C Shan Xu, 1462

1380 Stephen M Plaza, Louis K Scheffer, Harald F Hess, and Ian A Meinertzhagen. A resource for 1463

1381 the *Drosophila* antennal lobe provided by the connectome of glomerulus va1v. *eLife*, 7:e37550, 1464

1382 nov 2018. ISSN 2050-084X. doi: 10.7554/eLife.37550. 1464

1383 43. Wilfrid Rall, G.M. Shepherd, T.S. Reese, and M.W. Brightman. Dendrodendritic synaptic pathway 1465

1384 for inhibition in the olfactory bulb. *Experimental Neurology*, 14(1):44–56, 1966. ISSN 1466

1385 0014-4886. doi: [https://doi.org/10.1016/0014-4886\(66\)90023-9](https://doi.org/10.1016/0014-4886(66)90023-9). 1466

1386 44. John G White, E Southgate, J N Thomson, and Sydney Brenner. The structure of the nervous 1467

1387 system of the nematode *Caenorhabditis elegans*. *Philosophical Transactions of the Royal Society of London B*, 314:1–340, 1986. 1467

1388 45. Duncan J Watts and Steven H Strogatz. Collective dynamics of 'small-world' networks. *nature*, 1468

1389 393(6684):440–442, 1998. 1468

1390 46. John Guare. *Six degrees of separation: A play*. Vintage, 1990. 1469

1391 47. Edgar N Gilbert. Random graphs. *The Annals of Mathematical Statistics*, 30(4):1141–1144, 1470

1392 1959. 1470

1393 48. Philipp Schlegel, Alexander Shakeel Bates, Tomke Stürner, Sridhar R Jagannathan, Nikolas 1471

1394 Drummond, Joseph Hsu, Laia Serratosa Capdevila, Alexandre Javier, Elizabeth C Marin, Asa 1472

1395 Barth-Maron, Imaan FM Tamimi, Feng Li, Gerald M Rubin, Stephen M Plaza, Marta Costa, and 1473

1396 Gregory S X E Jefferis. Information flow, cell types and stereotypy in a full olfactory connectome. 1474

1397 *eLife*, 10:e6018, may 2021. ISSN 2050-084X. doi: 10.7554/eLife.60018. 1474

1398 49. Shin Ya Takemura, Arjun Bharioke, Zhiyuan Lu, Aljoscha Nern, Shiv Vitaladevuni, Patricia K. Rivlin, William T. Katz, Donald J. Olbris, Stephen M. Plaza, Philip Winston, Ting Zhao, 1475

1400 Jane Anne Horne, Richard D. Fetter, Satoko Takemura, Katerina Blazek, Lei Ann Chang, Omotara Ogundeyi, Mathew A. Saunders, Victor Shapiro, Christopher Sigmund, Gerald M. Rubin, 1476

1401 Louis K. Scheffer, Ian A. Meinertzhagen, and Dmitri B. Chklovskii. A visual motion detection 1477

1402 circuit suggested by drosophila connectomics. *Nature* 2013 500:7461, 500:175–181, 8 2013. 1478

1403 ISSN 1476-4687. doi: 10.1038/nature12450. 1478

1404 50. Alexander Arenz, Michael S. Drews, Florian G. Richter, Georg Ammer, and Alexander Borst. 1479

1405 The temporal tuning of the drosophila motion detectors is determined by the dynamics of their 1480

1406 input elements. *Current Biology*, 27:929–944, 4 2017. ISSN 09609822. doi: 10.1016/j.cub.2017. 1481

1407 01.051. 1481

1408 51. Kei Ito, Kazunori Shinomiya, Masayoshi Ito, J Douglas Armstrong, George Boyan, Volker 1482

1409 Hartenstein, Steffen Harzsch, Martin Heisenberg, Uwe Homberg, Armin Jenett, Haig 1483

1410 Keshishian, Linda L Restif, Wolfgang RÄ¶fsl, Julie H Simpson, Nicholas J Strausfeld, Roland 1484

1411 Strauss, and Leslie B Vosshall. A systematic nomenclature for the insect brain. *Neuron*, 81: 1485

1412 755–765, 2014. ISSN 08966273. doi: 10.1016/j.neuron.2013.12.017. 1485

1413 52. Xu Liu and Ronald L. Davis. The gabaergic anterior paired lateral neuron suppresses and 1486

1414 is suppressed by olfactory learning. *Nature Neuroscience* 2008 12:1, 12:53–59, 11 2008. ISSN 1487

1415 1546-1726. doi: 10.1038/nn.2235. 1487

1416 53. Yanying Wu, Qingzheng Ren, Hao Li, and Aike Guo. The gabaergic anterior paired lateral 1488

1417 neurons facilitate olfactory reversal learning in drosophila. *Learning & Memory*, 19:478–486, 10 1489

1418 2012. ISSN 1072-0502. doi: 10.1101/LM.025726.112. 1489

1419 54. Kazunori Shinomiya, Shin Ya Takemura, Patricia K. Rivlin, Stephen M. Plaza, Louis K. Scheffer, 1490

1420 and Ian A. Meinertzhagen. A common evolutionary origin for the on- and off-edge motion detection 1491

1421 pathways of the drosophila visual system. *Frontiers in Neural Circuits*, 9:152337, 7 2015. 1492

1422 ISSN 16625110. doi: 10.3389/FNCIR.2015.00033/BIBTEX. 1492

1423 55. Kazunori Shinomiya, Gary Huang, Zhiyuan Lu, Toufiq Parag, C. Shan Xu, Roxanne Aniceto, 1493

1424 Namra Ansari, Natasha Cheatham, Shirley Lauchie, Erika Neace, Omotara Ogundeyi, Christopher 1494

1425 Ordish, David Peel, Aya Shinomiya, Claire Smith, Satoko Takemura, Iris Talebi, Patricia K. 1495

1426 Rivlin, Aljoscha Nern, Louis K. Scheffer, Stephen M. Plaza, and Ian A. Meinertzhagen. Com- 1496

1427 parisons between the on-and off-edge motion pathways in the drosophila brain. *eLife*, 8, 2019. 1497

1428 ISSN 2050084X. doi: 10.7554/ELIFE.40025. 1497

1429 56. Shawn R. Olsen and Rachel I. Wilson. Lateral presynaptic inhibition mediates gain control 1498

1430 in an olfactory circuit. *Nature* 2008 452:7190, 452:956–960, 3 2008. ISSN 1476-4687. doi: 1499

1431 10.1038/nature06864. 1499

1432 57. Cory M. Root, Kaoru Masuyama, David S. Green, Lina E. Enell, Dick R. Nässel, Chi Hon Lee, 1500

1433 and Jing W. Wang. A presynaptic gain control mechanism fine-tunes olfactory behavior. *Neuron*, 59:311–321, 7 2008. ISSN 08966273. doi: 10.1016/j.neuron.2008.07.003. 1500

1434 58. Matthias Meier and Alexander Borst. Extreme compartmentalization in a drosophila amacrine 1501

1435 cell. *Current Biology*, 29:1545–1550.e2, 5 2019. ISSN 09609822. doi: 10.1016/j.cub.2019.03. 1501

1436 070. 1501

1437 59. Hoger Amin, Anthi A Apostolopoulou, Raquel Suárez-Grimalt, Eleftheria Vrontou, and Andrew C 1502

1438 Lin. Localized inhibition in the *Drosophila* mushroom body. *eLife*, 9:e56954, sep 2020. ISSN 1503

1439 2050-084X. doi: 10.7554/eLife.56954. 1503

1440 60. Jonathan E. Schenck and Quentin Gaudry. Nonspiking interneurons in the drosophila antennal 1504

1441 lobe exhibit spatially restricted activity. *eNeuro*, 10, 1 2023. ISSN 2373-2822. doi: 10.1523/ 1504

1442 ENEURO.0109-22.2022. 1504

1443 61. Christa A. Baker, Claire McKellar, Rich Pang, Aljoscha Nern, Sven Dorkenwald, Diego A. 1505

1444 Pacheco, Nils Eckstein, Jan Funke, Barry J. Dickson, and Mala Murthy. Neural network organization 1505

1445 for courtship-song feature detection in drosophila. *Current Biology*, 32: 3317–3333.e7, 8 2022. 1506

1446 ISSN 18790445. doi: 10.1016/j.CUB.2022.06.019/ATTACHMENT/16F13A9C-98D3-4D28-AC95-31F85990C9AE/MMC3.XLSX. 1506

1447 62. Diego A Pacheco, Stephan Y Thibierge, Eftychios Pnevmatikakis, and Mala Murthy. Auditory 1507

1448 activity is diverse and widespread throughout the central brain of drosophila. *Nat Neurosci*, 24: 1508

1449 93–104, 2021. doi: <https://doi.org/10.1038/s41593-020-00743-y>. 1508

1450 63. Maxwell H Turner, Kevin Mann, and Thomas R Clandinin. The connectome predicts resting- 1509

1451 state functional connectivity across the drosophila brain. *Current Biology*, 31(11):2386–2394, 2021. 1509

1452 2050-084X. doi: 10.1016/j.cub.2021.05.001. 1509

1453 64. Luke E. Brezovec, Andrew B. Berger, Shaul Druckmann, and Thomas R. Clandinin. Mapping 1510

1454 the neural dynamics of locomotion across the drosophila brain. *bioRxiv*, 2022. doi: 10.1101/ 1510

1455 2022.03.20.485047. 1510

1456 65. Kelsey M Hallinen, Ross Dempsey, Monika Scholz, Xinwei Yu, Ashley Linder, Francesco Randi, 1511

1457 Anuj K Sharma, Joshua W Shaevitz, and Andrew M Leifer. Decoding locomotion from population 1512

1458 neural activity in moving *C. elegans*. *eLife*, 10:e66135, jul 2021. ISSN 2050-084X. doi: 10.7554/ 1512

1459 eLife.66135. 1512

1460 66. Eviatar Yemini, Albert Lin, Amin Nejatbakhsh, Erdem Varol, Ruoxi Sun, Gonzalo E. Mena, 1513

1461 Aravindh T. Samuel, Liam Paninski, Vivek Venkatachalam, and Oliver Hobert. NeuroPAL: A 1514

1462 Multicolor Atlas for Whole-Brain Neuronal Identification in *C. elegans*. *Cell*, 184:272–288, 2021. 1515

1463 doi: 10.1016/j.cell.2020.12.012. 1515

1464 67. Timothy W Dunn, Yu Mu, Sujatha Narayan, Owen Randlett, Eva A Naumann, Chao Tsung 1516

1465 Yang, Alexander F Schier, Jeremy Freeman, Florian Engert, and Misha B Ahrens. Brain-wide 1517

1466 mapping of neural activity controlling zebrafish exploratory locomotion. *eLife*, 5(MARCH2016): 1518

1467 1–29, 2016. ISSN 2050084X. doi: 10.7554/eLife.12741. 1518

1468 68. Martin Haesemeyer, Drew N Robson, Jennifer M Li, Alexander F Schier, and Florian Engert. A 1519

1469 Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish. *Neuron*, 98: 1520

1470 (4):817–831, 2018. ISSN 10974199. doi: 10.1016/j.neuron.2018.04.013. 1520

1471 69. Yu Mu, Davis V Bennett, Mikail Rubinov, Sujatha Narayan, Chao Tsung Yang, Masashi Tanimoto, 1521

1472 Brett D. Mensh, Loren L. Looger, and Misha B. Ahrens. Glia Accumulate Evidence that Actions Are 1522

1473 Futile and Suppress Unsuccessful Behavior. *Cell*, 178(1):27–43, 2019. ISSN 10974172. doi: 10.1016/j.cell.2019.05.050. 1522

1474 70. Simon Musall, Matthew T. Kaufman, Ashley L. Juavinec, Steven Gluf, and Anne K. Churchland. 1523

1475 Single-trial neural dynamics are dominated by richly varied movements. *Nature Neuroscience* 2019 22:10, 22:1677–1686, 9 2019. ISSN 1546-1726. doi: 10.1038/s41593-019-0502-4. 1524

1476 71. Sarah L. West, Justin D. Aronson, Laurentiu S. Popa, Kathryn D. Feller, Russell E. Carter, 1525

1477 William M. Chiesl, Morgan L. Gerhart, Aditya C. Shekhar, Leila Ghanbari, Suhaba B. Kondamaraiah, and Timothy J. Ebner. Wide-field calcium imaging of dynamic cortical networks during 1526

1478 locomotion. *Cerebral Cortex*, 32:2668–2687, 6 2022. ISSN 1047-3211. doi: 10.1093/CERCOR/BHAB373. 1527

1479 72. Albert Lin, Daniel Witvliet, Luis Hernandez-Nunez, Scott W. Linderman, Aravindh T. D. T. 1528

1480 Samuel, and Vivek Venkatachalam. Imaging whole-brain activity to understand behaviour. *Nature 1529* 2022, 1529

1481 Reviews Physics

1482 0123456789, 2022. doi: 10.1038/s42254-022-00430-w. 1529

1483 73. Johannes D. Seelig and Vivek Jayaraman. Neural dynamics for landmark orientation and 1530

1484 angular path integration. *Nature* 2015 521:7551, 521:186–191, 5 2015. ISSN 1476-4687. doi: 1530

1485 10.1038/nature14446. 1530

1486 74. Daniel Turner-Evans, Stephanie Wegener, Hervé Rouault, Romain Franconville, Tanya Wolff, 1531

1487 Johannes D. Seelig, Shaul Druckmann, and Vivek Jayaraman. Angular velocity integration in a 1532

1488 fly heading circuit. *eLife*, 6, 5 2017. ISSN 2050084X. doi: 10.7554/ELIFE.23496. 1532

1489 75. Jonathan Green, Atsuko Adachi, Kunal K. Shah, Jonathan D. Hirokawa, Pablo S. Magani, and 1533

1490 Gaby Maimon. A neural circuit architecture for angular integration in drosophila. *Nature* 2017 1534

1491 546:7656, 546:101–106, 5 2017. ISSN 1476-4687. doi: 10.1038/nature22343. 1534

1492 76. Sung Soo Kim, Ann M. Hermundstad, Sandro Romani, L. F. Abbott, and Vivek Jayaraman. 1535

1493 Generation of stable heading representations in diverse visual scenes. *Nature* 2019 576:7785, 1536

1494 576:126–131, 11 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1767-1. 1536

1495 77. Yvette E. Fisher, Jenny Lu, Isabel D'Alessandro, and Rachel I. Wilson. Sensorimotor experience 1537

1496 remaps visual input to a heading-direction network. *Nature* 2019 576:7785, 576:121–125, 11 2019. 1537

1497 ISSN 1476-4687. doi: 10.1038/s41586-019-1772-4. 1537

1498 78. Tatsuo S. Okubo, Paola Patella, Isabel D'Alessandro, and Rachel I. Wilson. A 1538

1499 neural network for wind-guided compass navigation. *Neuron*, 107:924–940.e18, 9 2020. ISSN 1539

1500 10974199. doi: 10.1016/j.NEURON.2020.06.022/ATTACHMENT/C924E477-E422-4151-BD5C-593A3D2B7916/MMC1.PDF. 1500

1501 79. Jakob Troidl, Simon Warchol, Jinhan Choi, Jordan Matelsky, Nagaraju Dhanyani, Xueying Wang, 1502

1502 Brock Wester, Donglai Wei, Jeff W. Lichtman, Hanspeter Pfister, and Johanna Beyer. Vimo 1503

1503 visual analysis of neuronal connectivity motifs. *bioRxiv*, 2022. doi: 10.1101/2022.12.09.519772. 1503

1504 80. Scott Waddell, J. Douglas Armstrong, Toshihiro Kitamoto, Kim Kaiser, and William G. Quinn. 1505

1505 The amnesiac gene product is expressed in two neurons in the drosophila brain that are critical 1506 for memory. *Cell*, 103:805–813, 11 2000. ISSN 0092-8674. doi: 10.1016/S0092-8674(00) 1506

1507

1517 00183-5.

1518 81. Zhengmei Mao and Ronald L. Davis. Eight different types of dopaminergic neurons innervate
1519 the drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. *Frontiers*
1520 in *Neural Circuits*, 3:612, 7 2009. ISSN 16625110. doi: 10.3389/NEURO.04.005.2009/BIBTEX.

1521 82. Vincent Croset, Christoph D. Treiber, and Scott Waddell. Cellular diversity in the drosophila
1522 midbrain revealed by single-cell transcriptomics. *eLife*, 7, 4 2018. ISSN 2050084X. doi: 10.
1523 7554/ELIFE.34550.

1524 83. Lewis M. Sherer, Elizabeth Catudio Garrett, Hannah R. Morgan, Edmond D. Brewer, Lucy A.
1525 Sirris, Harold K. Shearin, Jessica L. Williams, Brian D. McCabe, R. Steven Stowers, and Sarah J.
1526 Certel. Octopamine neuron dependent aggression requires dvglut from dual-transmitting neu-
1527 rons. *PLOS Genetics*, 16:e1008609, 2020. ISSN 1553-7404. doi: 10.1371/JOURNAL.PGEN.
1528 1008609.

1529 84. Paul H. Taghert and Michael N. Nitabach. Peptide neuromodulation in invertebrate model sys-
1530 tems. *Neuron*, 76:82–97, 10 2012. ISSN 0896-6273. doi: 10.1016/J.NEURON.2012.08.035.

1531 85. Dick R. Nässel and Meet Zandawala. Recent advances in neuropeptide signaling in drosophila,
1532 from genes to physiology and behavior. *Progress in Neurobiology*, 179:101607, 8 2019. ISSN
1533 0301-0082. doi: 10.1016/J.PNEUROBIO.2019.02.003.

1534 86. Dick R. Nässel and Meet Zandawala. Endocrine cybernetics: neuropeptides as molecu-
1535 lar switches in behavioural decisions. *Open Biology*, 12, 7 2022. ISSN 20462441. doi:
1536 10.1098/RSOB.220174.

1537 87. Martijn P. Van Den Heuvel, René S. Kahn, Joaquín Goñi, and Olaf Sporns. High-cost, high-
1538 capacity backbone for global brain communication. *Proceedings of the National Academy of
1539 Sciences of the United States of America*, 109:11372–11377, 7 2012. ISSN 00278424. doi:
1540 10.1073/PNAS.1203593109/SUPPL_FILE/PNAS.201203593SI.PDF.

1541 88. Stuart Oldham and Alex Fornito. The development of brain network hubs. *Developmental/
1542 Cognitive Neuroscience*, 36:100607, 4 2019. ISSN 1878-9293. doi: 10.1016/J.DCN.2018.12.
1543 005.

1544 89. Shin ya Takemura, Kenneth J Hayworth, Gary B Huang, Michal Januszewski, Zhiyuan Lu, Eliz-
1545 abeth C Marin, Stephan Preibisch, C Shan Xu, John Bogovic, Andrew S Champion, Han SJ
1546 Cheong, Marta Costa, Katharina Eichler, William Katz, Christopher Knecht, Feng Li, Billy J Mor-
1547 ris, Christopher Ordish, Patricia K Rivlin, Philipp Schlegel, Kazunori Shinomiya, Tomke Stürner,
1548 Ting Zhao, Griffin Badalamente, Dennis Bailey, Paul Brooks, Brandon S Canino, Jody Clements,
1549 Michael Cook, Octave Duclos, Christopher R Dunne, Kelli Fairbanks, Siqi Fang, Samantha
1550 Finley-May, Audrey Francis, Reed George, Marina Gkantia, Kyle Harrington, Gary Patrick Hop-
1551 kins, Joseph Hsu, Philip M Hubbard, Alexandre Javier, Dagmar Kainmueller, Wyatt Korff, Julie
1552 Kovalyak, Dominik Krzeminski, Shirley A Lauchie, Alanna Lohff, Charli Maldonado, Emily A Man-
1553 ley, Caroline Mooney, Erika Neace, Matthew Nichols, Omotara Ogundeyi, Nneoma Okeoma,
1554 Tyler Paterson, Elliott Phillips, Emily M Phillips, Caitlin Ribeiro, Sean M Ryan, Jon Thomson
1555 Rymer, Anne K Scott, Ashley L Scott, David Shepherd, Aya Shinomiya, Claire Smith, Na-
1556 talié Smith, Alia Suleiman, Satoko Takemura, Iris Talebi, Imaan FM Tamimi, Eric T Trautman,
1557 Lowell Umayam, John J Walsh, Tansy Yang, Gerald M Rubin, Louis K Scheffer, Jan Funke,
1558 Stephan Saalfeld, Harald F Hess, Stephen M Plaza, Gwyneth M Card, Gregory SXE Jefferis,
1559 and Stuart Berg. A connectome of the male drosophila ventral nerve cord. *bioRxiv*, 2023. doi:
1560 10.1101/2023.06.05.543757.

1561 90. Larry F. Abbott, Davi D. Bock, Edward M. Callaway, Winfried Denk, Catherine Dulac, Adrienne L.
1562 Fairhall, Ila Fiete, Kristen M. Harris, Moritz Helmstaedter, Viren Jain, Narayanan Kasthuri, Yann
1563 LeCun, Jeff W. Lichtman, Peter B. Littlewood, Liqun Luo, John H.R. Maunsell, R. Clay Reid,
1564 Bruce R. Rosen, Gerald M. Rubin, Terrence J. Sejnowski, H. Sebastian Seung, Karel Svoboda,
1565 David W. Tank, Doris Tsao, and David C. Van Essen. The mind of a mouse. *Cell*, 182(6):
1566 1372–1376, 2020. ISSN 0092-8674. doi: <https://doi.org/10.1016/j.cell.2020.08.010>.

1567 91. Arie Matsliah, Szi chieh Yu, Krzysztof Kruk, Doug Bland, Austin Burke, Jay Gager, James Heb-
1568 ditch, Ben Silverman, Kyle Willie, Ryan Willie, Marissa Sorek, Amy R. Sterling, Emil Kind, Dustin
1569 Garner, Gizem Sancer, Mathias Wernet, Sung Soo Kim, Mala Murthy, H. Sebastian Seung, and
1570 FlyWire Consortium. Neuronal “parts list” and wiring diagram for a visual system. *bioRxiv*, page
1571 2023.10.12.562119, 12 2023. doi: 10.1101/2023.10.12.562119.

1572 92. Yael Artzy-Randrup and Lewi Stone. Generating uniformly distributed random networks. *Physi-
1573 cal Review E*, 72(5):056708, 2005.

1574 93. Tiago P. Peixoto. The graph-tool python library. *figshare*, 2014. doi: 10.6084/m9.figshare.
1575 1164194.

1576

Supplement

Supplemental figures

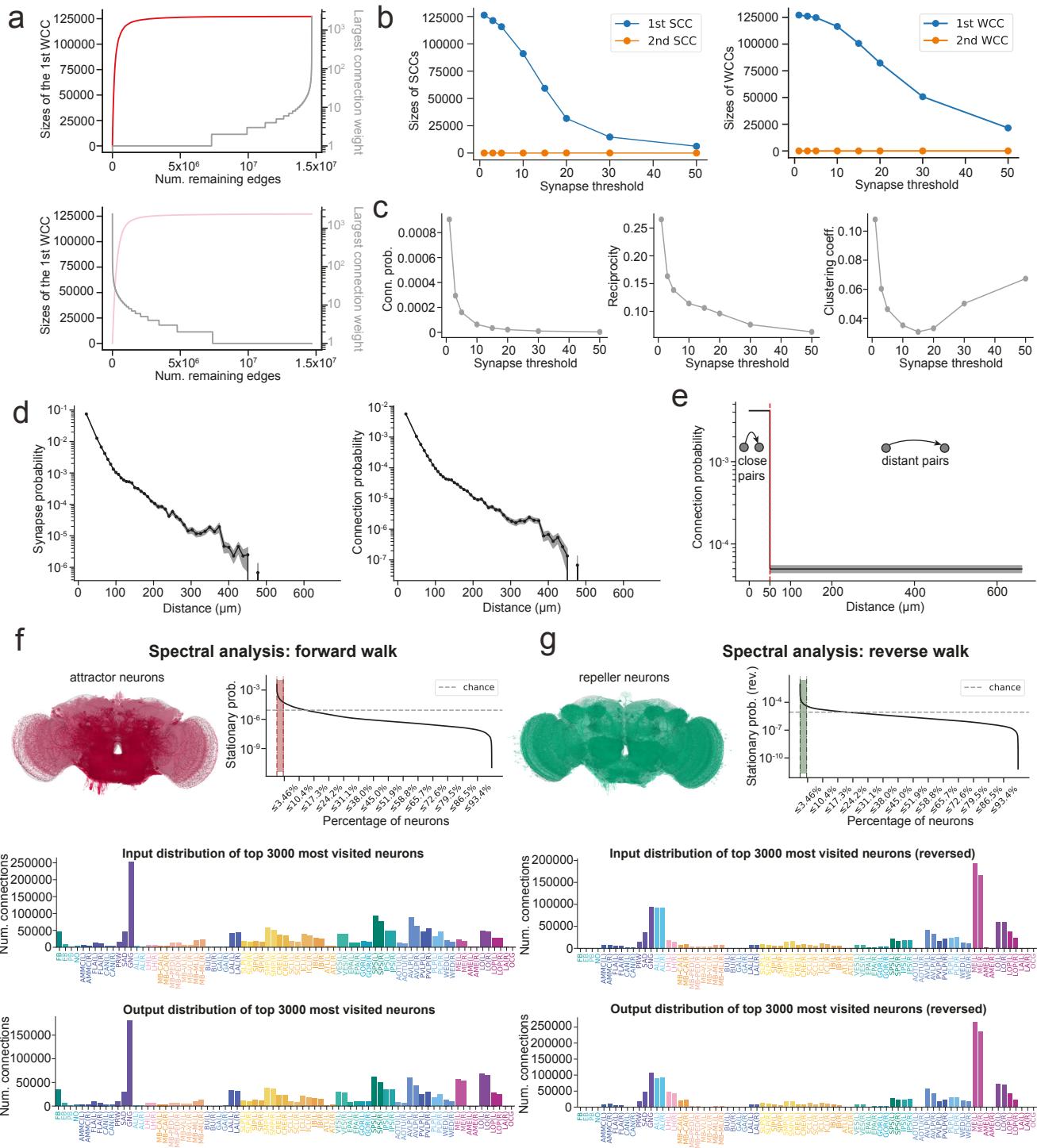


Figure S1. Supplement for Figure 1. The effects of edge percolation on the size of the largest WCC when (a) large connections are removed first and when (b) small connections are removed first. (c) The sizes of the first two SCCs as a function of the synapse threshold. (d) Synapse probability (left) and connection probability (right) as a function of the average distance between neuronal arbors. Plots are drawn from a subsample of 700 million pairs (5% of the total 14 billion pairs). (e) The probability of random connection of the two-zone spatial null model, with one close regime with high connection probability and a distant regime with low connection probability. Spectral analysis of the whole-brain network with (f) forward and (g) reverse walks. In each case, the stationary probability distributions are shown, as well as the distribution of neuropsils in which the inputs and outputs of the top 3000 most visited neurons are located. Renders of the top 3% attractor (red) and repeller (green) neurons are also shown. The top 0.3% are rendered in darker colors.

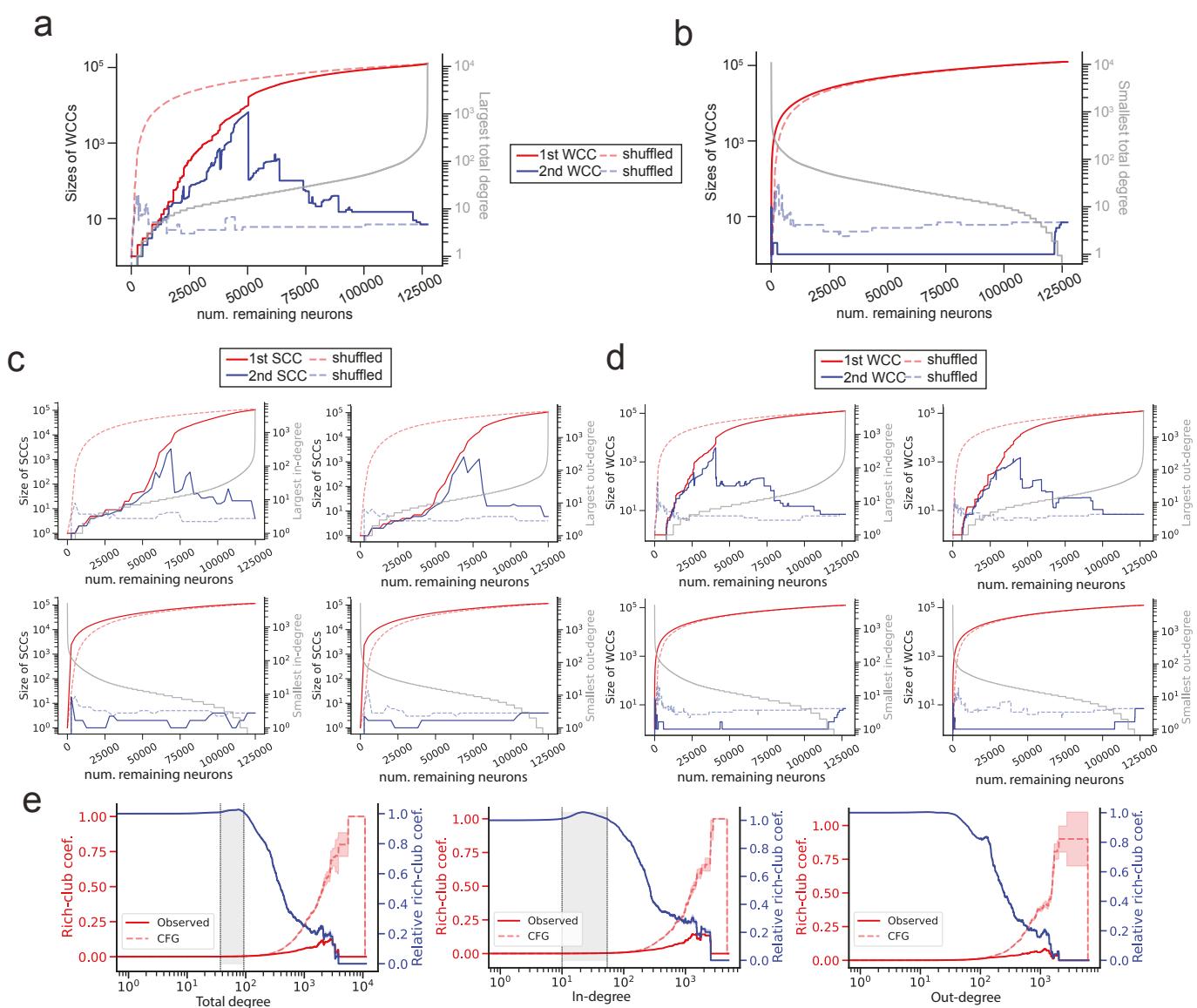


Figure S2. Additional supplement for Figure 1. (a) The sizes of the first two weakly connected components (WCCs) as nodes are removed by total degree (1 neuron per step). Removal of neurons starting with those with largest degree results in the brain splitting into two WCCs when neurons of approximately degree 50 start to be removed, a deviation from when neurons are removed in a random order (dotted lines). The largest surviving total degree as a function of the number of remaining nodes is plotted in gray. (b) Removal of neurons starting with those with smallest degree results in a single giant WCC until all neurons are removed. The smallest surviving total degree as a function of the number of remaining nodes is plotted in gray. (c) The sizes of the first two strongly connected components (SCCs) as nodes are removed by in-degree or out-degree (2500 neurons per step). Removal of neurons starting with those with largest in-degree (top left) or largest out-degree (top right) result in the brain splitting into two SCCs when neurons of approximately degree 50 start to be removed, a deviation from when neurons are removed in a random order (dotted lines). Removal of neurons starting with those with smallest in-degree (bottom left) or smallest out-degree (bottom right) results in a single giant SCC until all neurons are removed. (d) The sizes of the first two weakly connected components (WCCs) as nodes are removed by in-degree or out-degree (1 neuron per step). Removal of neurons starting with those with largest in-degree (top left) or largest out-degree (top right) result in the brain similarly splitting into two WCCs when neurons of approximately degree 50 start to be removed, a deviation from when neurons are removed in a random order (dotted lines). Removal of neurons starting with those with smallest in-degree (bottom left) or smallest out-degree (bottom right) results in a single giant WCC until all neurons are removed. (e) The rich club coefficient (red) as a function of total degree (left), in-degree (middle), and out-degree (right), compared to the predicted rich club coefficient of a CFG null model (dotted red). The relative rich club coefficient is plotted in blue.

	Neuron lists available on Codex		Definitions
2-neuron motifs	reciprocal connection participants		all neurons that participate in reciprocal connections.
3-neuron motifs	feedforward loop participants		neurons that participate in feedforward loop motifs consisting of unidirectional connections: $\beta \rightarrow \alpha$, $\alpha \rightarrow \gamma$ and $\beta \rightarrow \gamma$, precisely.
	3-unicycle participants		neurons that participate in 3-unicycles consisting of unidirectional connections: $\beta \rightarrow \alpha$, $\alpha \rightarrow \gamma$ and $\gamma \rightarrow \beta$, precisely.
N-neuron motifs	highly reciprocal neurons		neurons with the numbers of reciprocal edges $\geq 0.5 \times$ total-degrees.
	neuropil-specific highly reciprocal neurons (NSRNs)		intrinsic rich-club and highly reciprocal neurons with $\geq 50\%$ of incoming connections, and $\geq 50\%$ outgoing connections are contained in the same neuropils, respectively.
Rich-club analysis	rich-club neurons		high-degree neurons that are densely connected with other high-degree neurons (total-degree is higher than 37).
	broadcasters		intrinsic rich-club neurons with out-degrees $\geq 5 \times$ in-degree.
	integrators		intrinsic rich-club neurons with in-degrees $\geq 5 \times$ out-degrees.
Spectral analysis	attractors		top 3% most visited neurons in a forward random walk over the largest strongly connected component.
	repellers		top 3% most visited neurons in a reversed random walk over the largest strongly connected component.

Table S1. Supplement for Table 1. Definitions for all neuron populations identified in this paper.

Neuronal wiring diagrams	Fruit fly (no threshold) <i>Drosophila melanogaster</i> (Dorkenwald et al., 2023)	Fruit fly (≥ 5 synapses) <i>Drosophila melanogaster</i> (Dorkenwald et al., 2023)
	127,978 neurons 14,680,950 connections	127,978 neurons 2,613,129 connections
	3.59 synapses 1 ~ 2358	12.61 synapses 5 ~ 2358
	0.000896 x5.62	0.000160 x1
	0.265 x293 than ER x46.1 than CFG	0.138 x858 than ER x43.8 than CFG
	0.108 x59.7 than ER x9.17 than CFG	0.0463 x144 than ER x7.57 than CFG

Table S2. Supplement for Table 2. Network statistics of the fly connectome with no threshold on the number of synapses per connection (left) and a threshold of 5 synapses per connection.

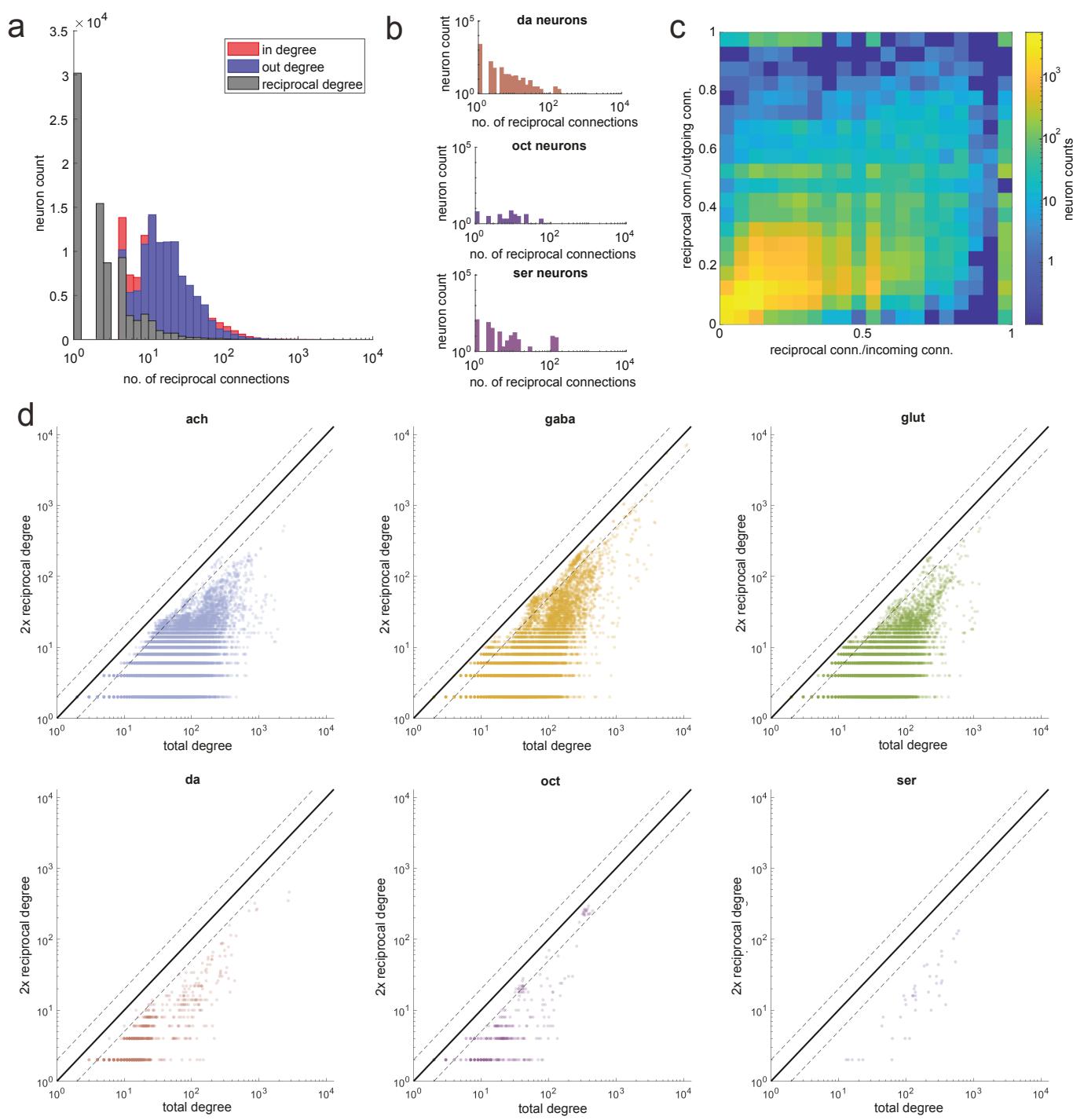


Figure S3. Supplement for Figure 2. (a) Distribution of reciprocal degree (gray) alongside distributions of in-degree (red) and out-degree (blue). (b) Distributions of reciprocal degree for glut, da, oct, and ser neurons. (c) Heatmap showing the fraction of reciprocal incoming connections versus the fraction of reciprocal outgoing connections. Dotted lines indicate a factor of 2 around the $x = y$ line.

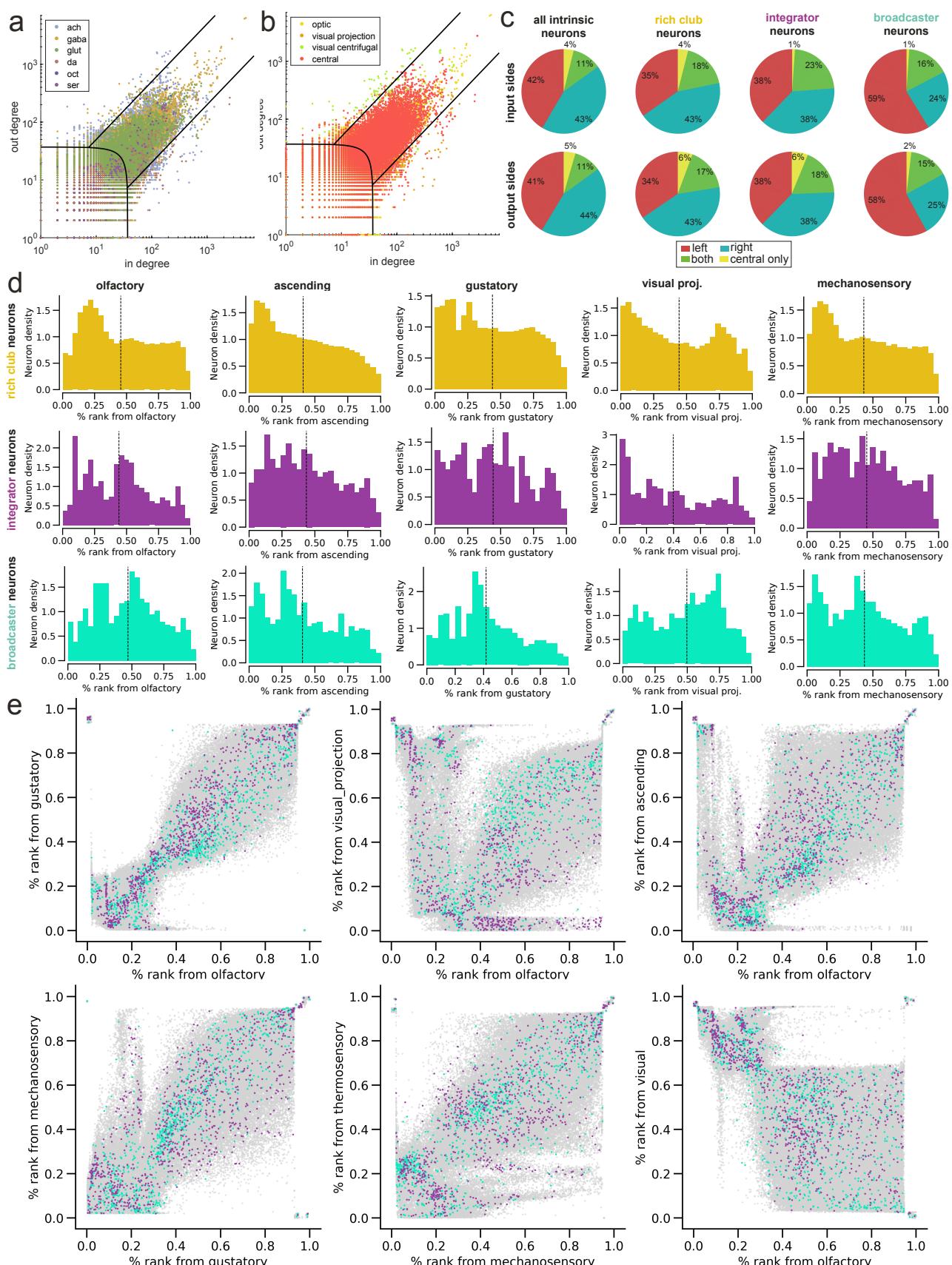


Figure S4. Supplement for Figure 4. In-degree vs. out-degree scatterplots showing broadcaster, rich balanced, and integrator regimes, with neurons plotted by (a) the putative neurotransmitter of each neuron and (b) the superclass of each neuron. (c) Comparing the input and output sides of all intrinsic neurons, rich club neurons, integrators, and broadcasters. The asymmetry in L/R percentages for broadcaster neurons is due to the large number of medulla-intrinsic broadcasters which connect with photoreceptors (Proofreading of photoreceptors was incomplete in Snapshot v630). (d) Percentile rank distributions of rich club, integrator, and broadcaster neuron populations from various input modalities. (e) Scatterplots of percentile rank from one sensory modality on each axis. Broadcaster neurons are highlighted in teal and integrator neurons are highlighted in purple.

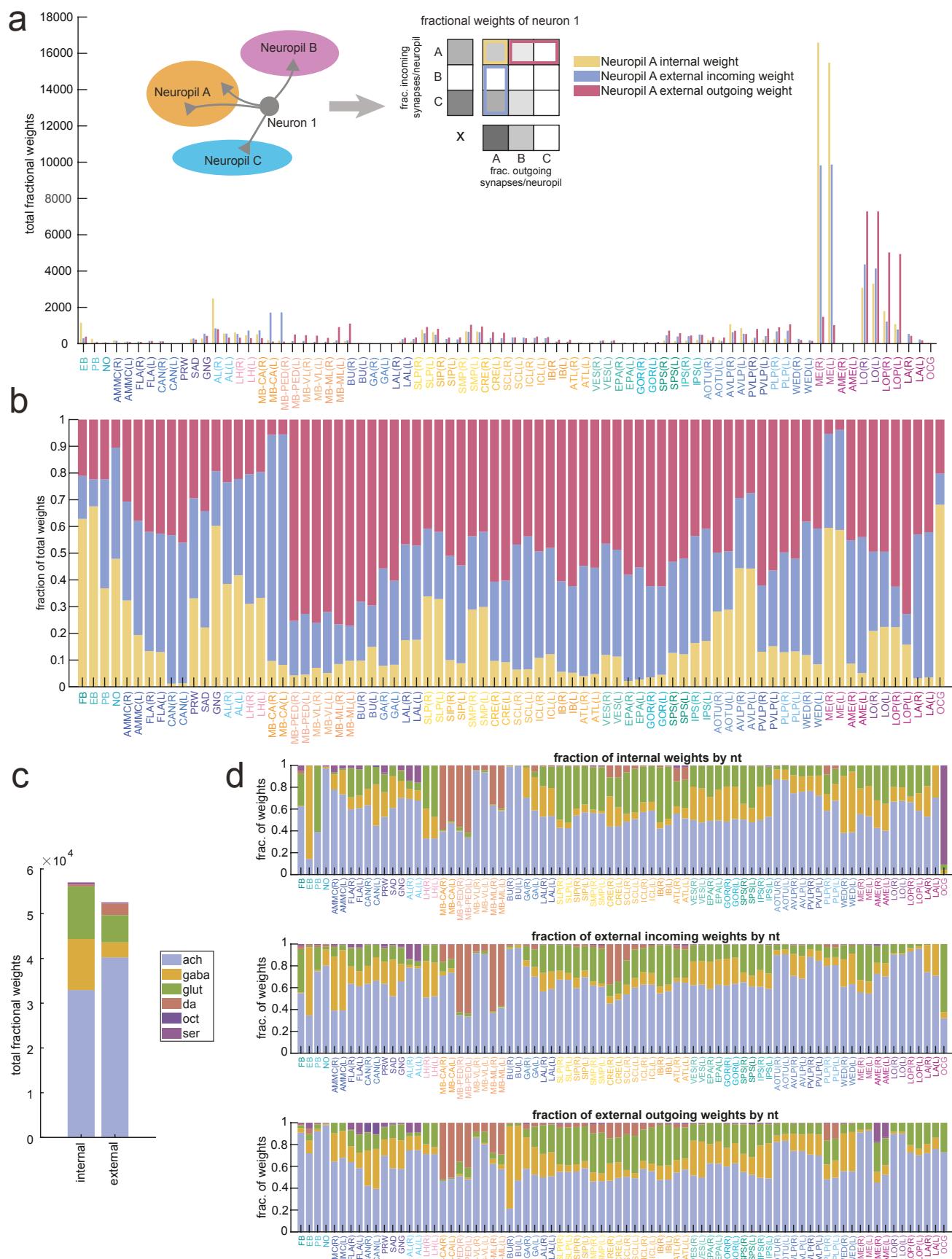


Figure S5. Internal and external connections across neuromodulatory systems. (a) The number and (b) relative fraction of neuron weights in each neuromodulatory system making connections internal to that neuromodulatory system, external incoming connections, and external outgoing connections. Each neuron contributes a total weight of 1, computed based on the fraction of incoming and outgoing synapses the neuron has in each neuromodulatory system. (c) Comparing the neurotransmitter composition of all internal and all external neuron weights across the whole brain and (d) by neuromodulatory system.

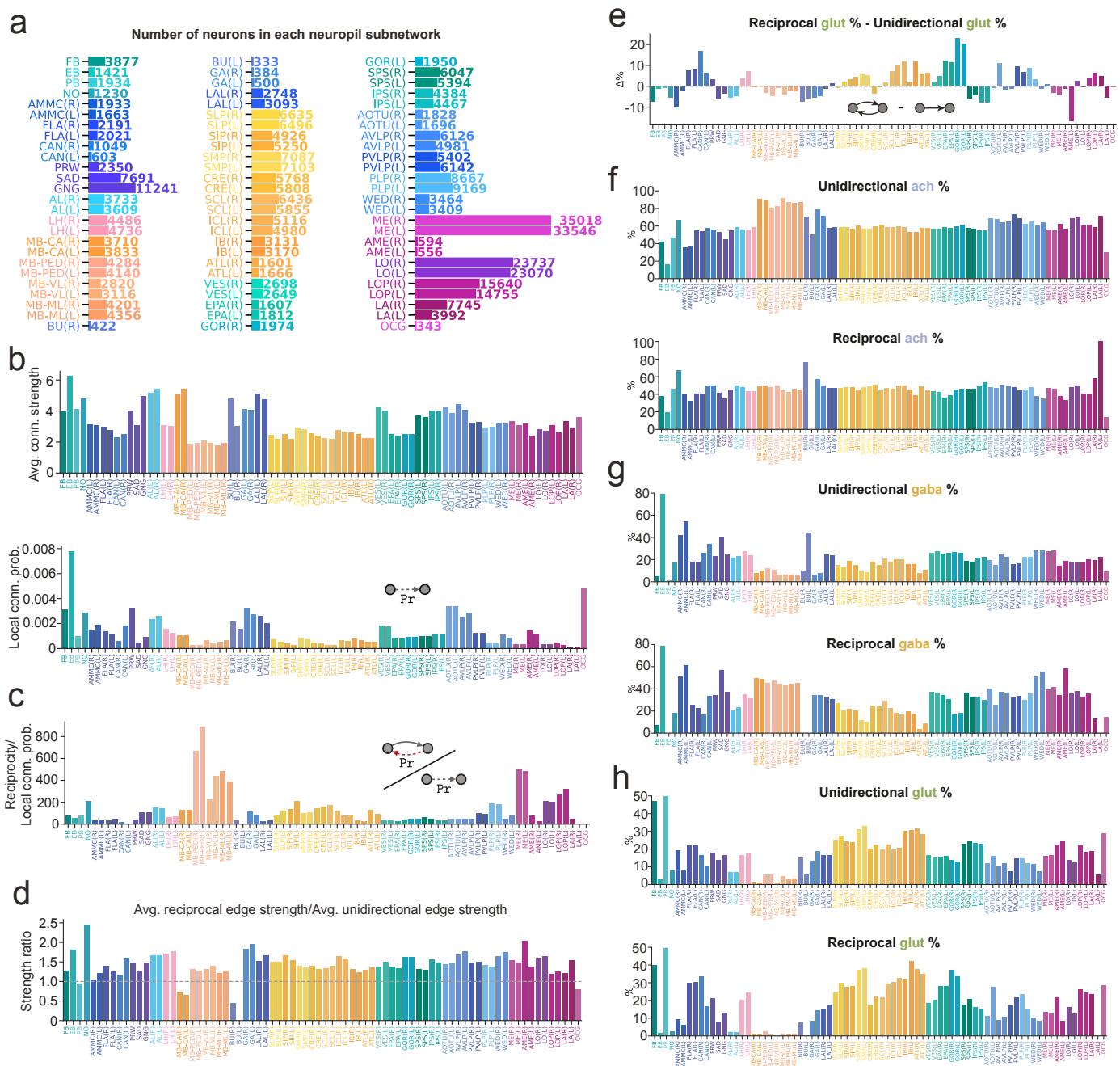


Figure S6. Supplement for Figure 5. (a) The number of neurons included in each neuropil subnetwork. (b) The average connection strength (no synapse threshold applied) of connections made in each neuropil (above), and the connection probability of each neuropil (below). (c) Reciprocity normalized by connection density for all 78 neuropils. (d) Average reciprocal connection strength normalized by average unidirectional connection strength in all neuropils. (e) The relative fraction of glutamatergic neurons participating in reciprocal and unidirectional connections. Absolute percentages of (f) acetylcholine, (g) GABA, and (h) glutamate occurrence in unidirectional and reciprocal connections within each neuropil subnetwork.

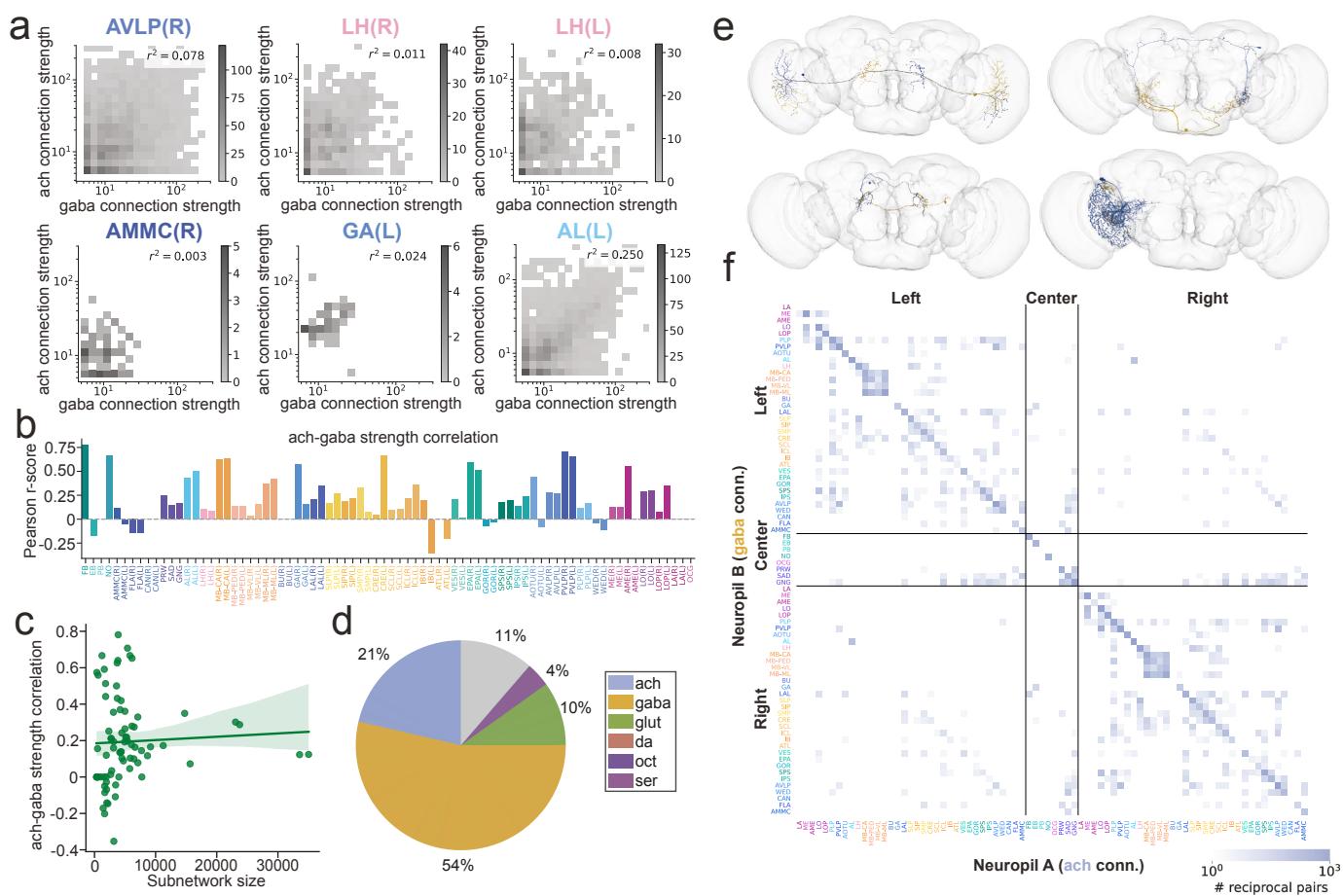


Figure S7. Additional supplement for Figure 5. (a) Heatmaps showing the relationship between excitatory (ach) and inhibitory (GABA) connection strengths in reciprocal connections in different brain regions. (b) Ach-gaba reciprocal connection strength correlations (Pearson r-score) for all neuropils. (c) These correlations do not appear to be correlated with neuropil subnetwork size. (d) The neurotransmitter composition of the population of neuropil-specific highly reciprocal neurons (NSRNs). (e) Examples of inter-neuropil reciprocal neuron pairs, one neuron in blue and one neuron in gold. (f) Map of the total number of ach-gaba reciprocal pairs between different neuropils.

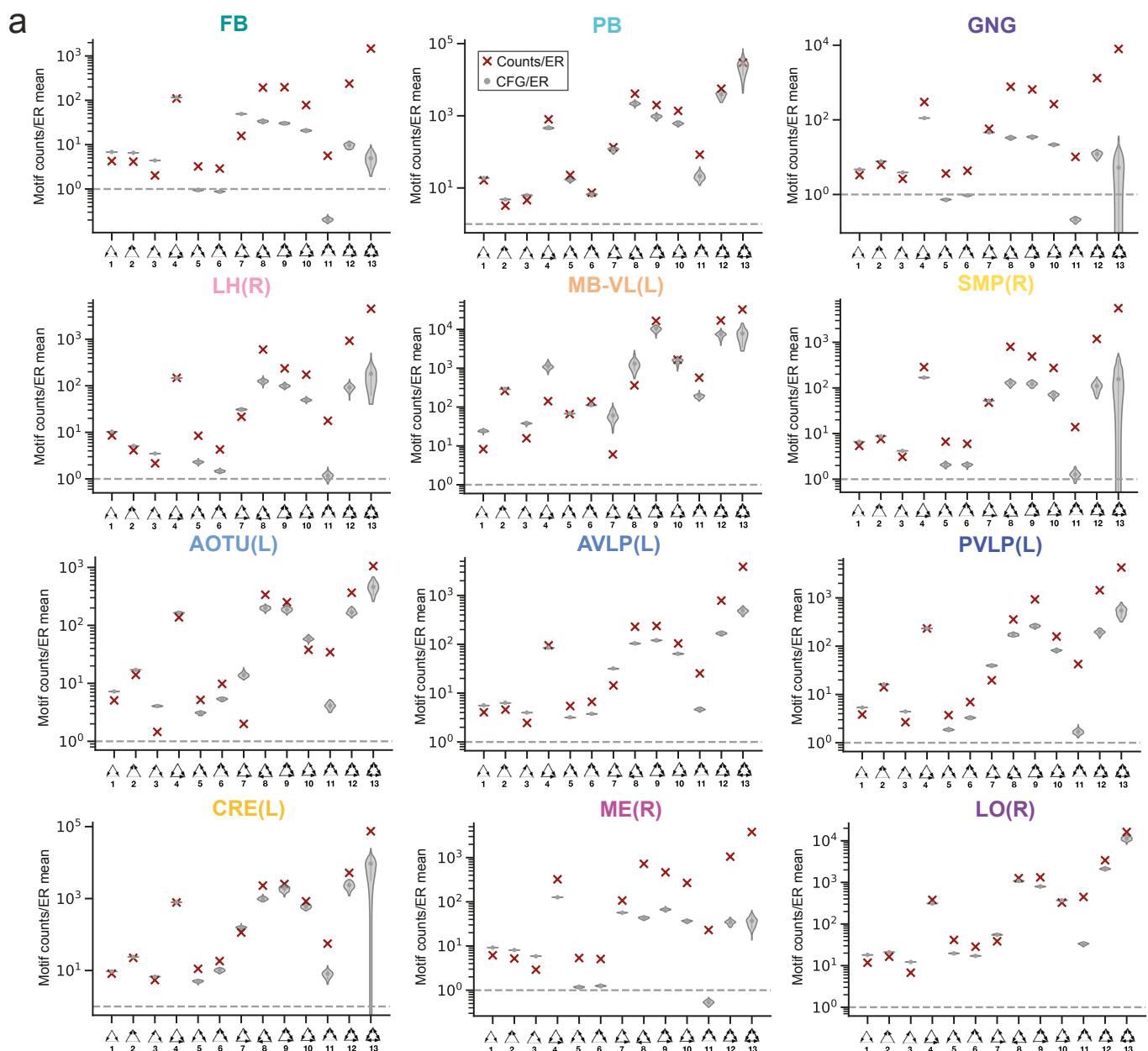
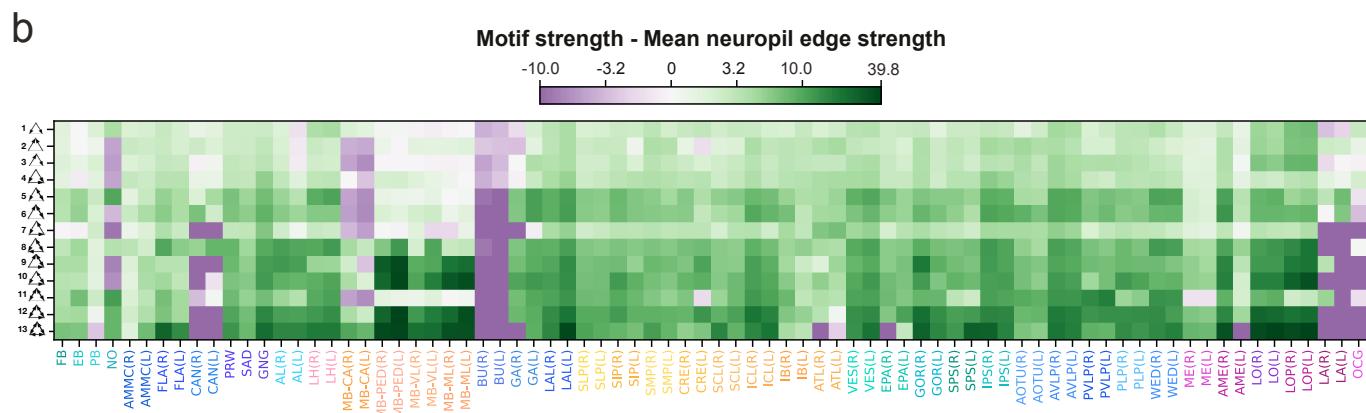


Figure S8. Supplement for Figure 6. (a) Three-node motif distributions for additional neuropils. The frequency of each motif relative to that in an ER null model is plotted to the right, together with the average motif frequencies of 100 CFG models (gray violin plots). (b) Average strengths of edges participating in 3-node motifs in the different neuropil subnetworks relative to the average edge strength in each subnetwork.