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ABSTRACT

Magnetic skyrmions, as scalable and nonvolatile spin textures, can dynamically interact with fields and currents, making them promising for
unconventional computing. This paper presents a neuromorphic device based on skyrmion manipulation chambers to implement spike-
timing-dependent plasticity (STDP), a mechanism for unsupervised learning in brain-inspired computing. STDP adjusts synaptic weights
based on the timing of pre-synaptic and post-synaptic spikes. The proposed three-chamber design encodes synaptic weight in the number of
skyrmions in the center chamber, with left and right chambers for pre- and post-synaptic spikes, respectively. Micromagnetic simulations
demonstrate that the timing between applied currents across the chambers controls the final skyrmion count (weight). The device exhibits
adaptability and learning capabilities by manipulating chamber parameters, mimicking Hebbian and dendritic location-based plasticity. The

device’s ability to maintain state post-write highlights its potential for advancing adaptable neuromorphic devices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0218348

Emulating neural brain functions in solid-state devices is a central
focus in neuromorphic computing due to its potential for energy-
efficient computing."” Neuromorphic systems aim to mimic the highly
parallel, event-driven, and adaptive nature of biological neural net-
works.” > Spike-timing-dependent plasticity (STDP), which adjusts
synaptic weight based on the timing of pre- and post-synaptic
spikes,”” is fundamental to unsupervised learning in the brain, where
synapses independently optimize for learning and memory recall.’
STDP has been extensively studied in biological systems and has been
shown to play a crucial role in the development and refinement of
neural circuits.”'” Fine-tuning the time constant and amplitude of syn-
aptic weight changes is crucial in this process, as it allows the network
to adapt the speed and magnitude of synaptic changes to specific com-
putational tasks or environmental conditions. The adaptability of spik-
ing neural networks (SNN), similar to biological synapses, enhances
their learning capabilities, responsiveness, and overall efficiency, prov-
ing helpful in managing complex dynamics over extended periods and
training neural networks with long-term temporal dependencies.'' "
Recent advances in hardware implementation of SNNs have demon-
strated their potential for energy-efficient and fast information proc-
essing.'“'° Magnetic skyrmions, small magnetic textures found in
certain magnetic materials, are attracting attention due to their unique
properties'® with application in computing, particularly their dynamics
in confined geometries,'””'® and their potential use as artificial synapses
in neuromorphic computing. 9

Previous studies have investigated the behavior of magnetic sky-
rmions in manipulation chambers and under the influence of tempera-
ture,””'*" including the design and examination of a skyrmion
manipulation chamber for stochastic computing,'® These studies have
shown that skyrmions can be efficiently controlled and manipulated using
electrical currents and temperature gradients.”’ * Moreover, magnetic
skyrmions in a magnetic tunnel junction (MTJ) have been shown to act
as artificial synapses,”” exhibiting synaptic characteristics such as long-
term potentiation (LTP) and long-term depression (LTD).”**” However,
STDP has not been implemented in multi-skyrmion chamber devices
that could be tuned to emulate various forms of synaptic plasticity.

Here, nanodevices based on magnetic skyrmion manipulation
chambers are designed to implement STDP. The device is divided into
distinct regions, each capable of applying different magnitudes and
directions of current. Micromagnetic simulations analyze the device’s
behavior, demonstrating three different rates of STDP plasticity weight
updates and several maximum weight updates. The simulations reveal
that the skyrmions’ dynamics under various current densities impact
the rate of weight updates. This research develops adaptable neuro-
morphic devices capable of mimicking different types of synaptic plas-
ticity, e.g., Hebbian®” and dendritic location-based plasticity.”

The STDP model is defined by a function W(A4t), where At
represents the difference in timing between pre- and post-synaptic
spikes. The model has different forms depending on the order of
neuron spikes,28
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Ate /T Ar >0,
wia) = { AT AL<0

where t* (77) are the time constants for potentiation (depression)
that determine the strength of the update over a given interspike inter-
val, AT and A~ represent the maximum and minimum synaptic
changes, respectively, and At = t;,; — tyr. represents the time differ-
ence between the pre- and post-synaptic spikes.

The design of the device, composed of three chambers, is depicted
in Fig. 1(a): two small chambers for the pre-synaptic spike chamber
(Pre) and post-synaptic spike chamber (Post), and a middle weights
chamber (W) for weight storage. In the proposed device, the synapse
weight corresponds to the number of skyrmions in the W chamber
after a spiking event and can be readout using an MTJ,” which mea-
sures the quantized change in resistance proportional to the total topo-
logical degree in the chamber. For the Pre and Post chambers, events
are timed based on the current density and geometry, as the skyrmion
dynamics in such confined geometries have been previously stud-
ied.'”” Each chamber has a controllable current density magnitude
and direction, managed using contacts I;, I, I3, and I, and grounds
between the middle and small chambers. Two voltage-controlled mag-
netic anisotropy (VCMA) gates are positioned between the spike and
weights chambers, regulated by contacts V; and V.

The simulation is executed using MuMax3,”’ and the material
parameters shown in Table I represent Ir/Co/Pt non-symmetric multi-
layers.”' The simulation applies spin-transfer torque (STT) using the
Zhang-Li model, with the spin polarization parameter set to 0.4 and
the non-adiabaticity of STT set to 0.2.

In this study, the term “spike” functions as a self-regulating
mechanism similar to the action potential in a biological neuron. The
accumulation of skyrmions in the Pre or Post chamber is akin to the
electrical potential buildup in a neuron. Once this count reaches 15
skyrmions, the maximum Pre and Post are designed to accumulate
before skyrmions start leaving the chamber if gates are turned off—a
spike is triggered, paralleling a neuron’s action potential. This event

Pre-synaptic spike chamber (Pre) Weights chamber (W)  Post-synaptic spike chamber (Post)

O Iy~
600 N

E, Pre W Post s
X 200 i
0 800 1600 2400 3200 4096 °
y (nm)

FIG. 1. STDP skyrmion chamber design and simulation setup. (a) The device con-
sists of three chambers (two for spikes and one for weight update) controlled by
four contacts (I4-14) applying current in =y directions. VCMA contacts (V, V) pre-
vent skyrmion overflow. An inset displays simulated skyrmion snapshots. (b)
Simulation setup includes initial magnetization and geometric dimensions, with
a 5nm wide strip (K, = 9.27 x 10° J/m?) surrounding Pre and Post regions.
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TABLE |. Material parameters used in the simulation.

Symbol Magnetic constant Values

o Gilbert damping 0.14

M, Saturation magnetization 9.6 x 10° A/m
K, Anisotropy constant 7.17 x 10° J/m?
A Exchange stiffness 1.6 x 107" J/m
DMI Dzyaloshinskii-Moriya interaction 1.51 x 10 J/m?

marks a peak in system activity and causes a reset by turning off
applied currents, stopping further skyrmion accumulation. Thus, it
serves to regulate system activity and prevent potential overload.

The initial magnetization is uniformly set out of plane (z) as illus-
trated in Fig. 1(b), and a Néel skyrmion with charge 1 and core polari-
zation —1 was introduced, shifted 1740 nm in the = direction from
the center of the geometry to the rectangular paths. The dimensions of
the Pre and Post are 940 and 500 nm along the major and minor axis
directions, respectively. The W measures 1250 and 900 nm in the y
and X directions, respectively. A rectangle of width 210nm connects
the chambers. The rectangles extending from the left side of the “Pre”
chamber and the right side of the “Post” chamber have a width of
180 nm. The spike chambers have been designed in an elliptical shape
to accommodate more stable skyrmions. This results in a smoothed
edge between the chamber and rectangle regions, preventing edge
crashes involving skyrmions.”” A 5nm wide strip with a higher anisot-
ropy constant (K,) of 9.27 x 10°J/m> covers Pre and Post borders
(Fig. 2) to repel skyrmions™” and improves stability at elevated temper-
atures. Reference 20 provides a more detailed examination of tempera-
ture influence on manipulation chambers. To expedite the simulations,
a damping constant o = 0.14 was used, and the simulations were con-
ducted at a temperature of 0 K. The discretization cell is set to 4 x 4
x 1nm’ in the X, j, and 2 directions, respectively.

vl m— - ]
SV - —---
s
()
B | Relax
= I34 -
g LTP
<
Spike
23] ===—=———- T
Initial weight
l12] === e e e e e
0 100 200 300 400 500
Time (ns)

FIG. 2. Sequence and timing of currents (l12, lo3, l34), voltages (V4, V5), and key
operations (initial weight, spike on the left/right, LTP, and system relaxation) in the
skyrmion chamber device during the long-term potentiation process.
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Table 1T outlines the range of functions the STDP skyrmion
chamber can be tailored to perform, and Fig. 2 shows its timing dia-
gram for the long-term potentiation (LTP) process. The system starts
operations with an initial number of skyrmions (initial weight) in the
center chamber, which can be introduced via either Pre or Post. In this
study, the initial weight was introduced via Pre using I}, and I3. Next,
skyrmions accumulate in Pre and Post using I}, and I34 currents, while
Vi and V, keep skyrmions moving to the W. When the skyrmion
count in either chamber reaches a predetermined threshold of 15, V;
is turned off to let skyrmions pass, i.e., the neuron spikes. The VCMA
gates increase the anisotropy constant, creating high energy barriers
that lead to the annihilation of the skyrmions. The temporal difference
between the spikes activates the respective currents for LTP (I}, L3),
and meanwhile, V, is kept active to prevent overflow from W to Post.
The current is applied in the —y direction. After the LTP process, the
system enters a relaxation stage, where currents are turned off and

VCMA gates are kept on until the next spike event is observed. TS
Following these events, the system undergoes a relaxation phase S ) Post
lasting 100 ns, during which skyrmion-skyrmion repulsion comes into g
play, increasing the area covered by skyrmions. This demonstrates the % 101
device’s non-volatility to retain its state post-write. The VCMA gates are s
simulated using higher anisotropy constant of K, =9.27 x 10° J/m® 5 51
when the gate is on, and K, =7.17 x 10° ]/m3 when the gate is off, 'g
returning to the intrinsic anisotropy constant of the material. 2 of t=30ns
Figure 2 shows the interplay of currents (I}, I3, I34) and voltages 0 60 120 180 0 60 120 180 0 60 120 180
(Vy, V) for the LTP synaptic plasticity function when At =0, as Time (ns) Time (ns) Time (ns)
described in Table II. Details of the process are animated in the supple-
mentary material video S1. (g) At=0ns (i) At=50ns

Figure 3 shows simulation snapshots and results that illustrate the
initial weight transfer and the effect of spike-timing delays on the weight
update. Figures 3(a)-3(f) plot the initial weight transfer from Pre to W
with magnetization snapshots at t=30 (a), 94 (b), and 186ns (c). The
arrow indicates the direction of the skyrmion propagation. Figure 3(d)
shows the corresponding skyrmion number in the Pre, (e) shows for the

W chamber, and (f) shows the Post chamber. For initial weight,

I, =45x10"" A/m*> (—9) and Ly=25x 10" A/m> (—j) were (h) A1t5= Ons (k) At=50ns

0S:2S 1 ¥20Z dunr 9z

applied. The ground is connected to both the region between the Pre 2]  f=777777
and W chambers and the region between the Post and W chambers to 55
allow independently supplied currents. €L g
Previous experimental'” and theoretical”® work demonstrated 5 §
that current density was lower in the chamber section of the skyrmion <
reshuffle device compared to the rectangular sections due to its larger 01
size. This pattern was replicated in modeling the chambers by (i) 30 0
t=401ns
c
TABLE II. Setup for various STDP skyrmion chamber device operations. For exam- S \
ple, I1, column indicates the presence and direction of current flowing between elec- 1S ‘g 23 _
trodes /4 and /. > 3 t=401ns
w
112 123 134 V1 Vz Function 154 - . . . . - _ . . .
185 259 333 407 481 185 259 333 407 481
-y —y OFF OFF  OFF Initial weight Time (ns) Time (ns)
-y OFF  OFF ON ON Spike on the left
OFF  OFF +y ON ON Spike on the right FIG. 3. Initial weight operation and comparative analysis of At =0 and At=50ns
-y -y OFF OFF ON Long-term potentiation spikes for LTP. (a)—(c) Magpetlzatlon smulatlop s:napshots of .Pre, W, and P0§t at
N N . 30, 94, and 186 ns, respectively. Arrow in (a) indicates skyrmion movement direc-
OFF -y -y ON  OFF  Long-term depression tion. (d)~(f) Weight updates in Pre, W, and Post. (g)i) Initial weight, skyrmion num-
OFF OFF OFF ON ON System relaxation ber over time, and weight update for At =0. (j)—(I) Same for At=>50ns between
SL and SR.
Appl. Phys. Lett. 124, 262402 (2024); doi: 10.1063/5.0218348 124, 262402-3
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assigning a higher current density in the rectangles, e.g., the left rectan-
gle of Pre (1.8 x 10'* A/m®) and a lower density within the chamber
(4.5 x 10" A/m®). The same pattern was used for the Post chamber.
As a result, skyrmions move quickly toward the spiking chambers and
then slow down, allowing time for interaction and accumulation. For
the remainder of this paper, only the current density within the spiking
chambers will be referred to for both I, and I34 currents.

The DBSCAN algorithm™ from Python’s sklearn library was
used to detect and count skyrmions in the Pre, W, and Post chambers.
Figures 3(g)-3(1) show the effect of the delay between spike on the left
chamber (SL) and spike on the right chamber (SR) on the weight
update in W. When the delay is At =0ns [Figs. 5(g)-5(i)], both Pre
and Post reach 15 skyrmions simultaneously at t=284ns, and the
weight update is maximized, increasing from 15 to 30 skyrmions in W
at t=401ns. With a 50 ns delay [Figs. 5(j)-5(1)], the weight increases
from 15 to 23 skyrmions, resulting in a lower update. The delay corre-
sponds to the I, and I3 currents runtime. For all 15 skyrmions, the
runtime to move from Pre to W is 100 ns; for each At, the runtime
gets subtracted. VCMA remains active until either Pre or Post reaches
the spike threshold. For SL and SR, Ij; =4.5 x 10'" A/m* (—7) and
I3y =45 x 10'" A/m* (+) are used. For LTP, I;, =45 x 10" A/m*
(—9) and L3 = 2.5 x 10"" A/m* () are applied.

Figure 4 shows the LTP and LTD characteristics for different
spike-timing delays (At) and STDP curves mimicking dendritic
location-dependent plasticity. In LTP [Fig. 4(a)], the synaptic weight
update inversely depends on At, with the range of changes varying

15
=
£
2
k<] 10
E
z
2]
5 5
o}
e}
€
2
0
0 100 200 300 400 500 0 150 300 450 600
Time (ns) Time (ns)
(c)
100 —e— Strong weight STDP LTP

--- Moderate weight STDP [*~a
1

50 - Weak weight STDP

LTD

Weight percentage change (%)
o

-100 -75 -50 -25 0 25 50 75 100
Delay time (ns)

FIG. 4. STDP plasticity behavior and dendritic location-based plasticity rates. (a)
LTP STDP: Skyrmion count in W over time for At=0-100ns. (b) LTD STDP:
Skyrmion count in W for At=—100 to Ons. (c) Dendritic location-based STDP
plasticity rates—strong (0%—-100% weight change), moderate (7%-73%), and weak
(0%~27% LTP, 0%—-20% LTD).
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from 0% (15 skyrmions) to 100% (30 skyrmions). The initial jump
and drop are attributed to the activation of VCMA gates. In LTD
[Fig. 4(b)], as |At] increases, the net synaptic weight removed from W
decreases, with maximum and minimum changes corresponding to
100% (0 skyrmions) and 0% (15 skyrmions). For LTD, I3 = 3.5 x 10"
Alm® (=) (At >0) and Iy =4.5x 10" A/m* (—)) (At <0) are
applied. The total runtime is kept at 100 ns by adjusting current densi-
ties. Figure 4(c) shows the progression of STDP from full (100%) to
null (0%) synaptic modification, exemplifying Hebbian learning. The
results suggest that the skyrmion chamber’s weight incorporates
the STDP model principles, where synaptic modification depends on
the order and relative timing of pre- and post-synaptic spikes, highlight-
ing the complex interplay of factors contributing to synaptic plasticity.

This location dependence arises from neuromodulators like
dopamine and acetylcholine, which modulate synaptic plasticity.”* **
The degree of synaptic strengthening and weakening varies along the
dendrite.”” This principle of STDP-related varying rates of synaptic
weight updates is implemented using different current densities within
W. Figure 4(c) illustrates these variations, categorizing STDP rates as
strong, moderate, and weak, corresponding to distinct learning loca-
tions along the dendrite. For moderate weight, current densities of
I, =3.5x 10" A/m* (=) for LTP and Lz =2.5 x 10" A/m* (—j)
for LTD were used. For weak weight, I;; = 1.5 x 10'" A/m* (=) for
LTP and L; = 0.5 x 10"" A/m* (—§) for LTD were used.

STDP ranges from 0 to 100 ns, representing 0%-100% weight
change for a strong rate and 7%-73% for a moderate rate. The weak
rate is 0%-27% for LTP and 0%-20% for LTD. Lower skyrmion
counts make matching LTP/LTD rates harder for weak updates.
However, tunable weight change rates allow for the adjustment of
learning behavior, showcasing skyrmion-STDP’s versatility.

The design supports natural skyrmion motion for mimicking
plasticity without VCMA gates, as shown in Fig. 5. Material interfacial
engineering” increases the local perpendicular anisotropy, creating a
lower K, =738 x 10° J/m’ in the constriction between chambers.

50
(a) Pre
= —
.gg
2
EEX
(*,‘) c
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15
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0+; : : :
0 720 1440 2160
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FIG. 5. Natural motion of skyrmions to mimic plasticity. (a) The weight at Pre shows
the 32 skyrmion threshold for leakage to (b) W, and (c) shows a magnetization
snapshot for skyrmions moving from Pre to W at t=1220, (d) t=1226, and (e)
t=1238ns. Arrows show the forces applied to a skyrmion. Color represents M,
from —1 (red) to +1 (blue).
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Decreasing the current in Pre to Ij; = 1.2 x 10" A/m* (—9) achieves
natural motion. The Pre chamber holds fewer than 50 skyrmions
[Fig. 5(a)], while the weight in W is shown in Fig. 5(b). The mecha-
nism relies on repulsive forces between skyrmions moving through the
constriction, as depicted by arrows in Fig. 5(c). It is worth noting that
during the simulations, skyrmion annihilation events were observed,
particularly at high current densities or when skyrmions were pushed
against chamber edges during natural motion. However, for this study,
the current density and geometry were optimized to minimize such
events. The choice of elliptical chambers, as opposed to the circular
chambers used in previous studies,'”'**" helped to improve skyrmion
stability. As a result, skyrmion annihilation was relatively rare in the
optimized device configuration and did not significantly impact the
overall skyrmion count or device operation. Simulation snapshots
[Figs. 5(c)-5(e)] illustrate these forces acting on a skyrmion. The
decrease in skyrmion diameter signifies the skyrmion overpowering
the constriction point energy barriers [Fig. 5(d)] and passing to the
other side [Fig. 5(e)]. Details are visualized in the supplementary mate-
rial video S2. Repulsive forces increase the total energy density within a
skyrmion, enabling it to overcome the lowered anisotropy-induced
energy barrier. Seventy skyrmions were introduced into Pre, and they
move to W until the count reaches 32, beyond which the repulsive
effect is insufficient for further movement. Current is only applied to
I}, and I34, while skyrmion-skyrmion repulsion causes expansion and
movement inside W. Consequently, plasticity can be implemented
using only two contact wires, simplifying the device design.

In summary, these results reveal that magnetic skyrmion cham-
bers can be designed to emulate different types of synaptic plasticity,
with STDP plasticity as an example. The chambers offer an adaptable
architecture that enables the fine-tuning of STDP behavior by manipu-
lating runtime, applied currents, and applied voltages. Key results
include temporal- and diffusion-based control of skyrmion-synapse
weight updates, STDP curves mimicking dendritic location-dependent
plasticity, and nonvolatile synaptic weight storage. These results high-
light the potential of skyrmion-based devices to achieve efficient, unsu-
pervised learning in neuromorphic hardware. This biomimetic
approach could lead to highly adaptable systems for real-world, online
learning applications with further optimization and verification.

See the supplementary material for videos S1 and S2, which pro-
vide animated visualizations of the long-term potentiation process and
the natural motion of skyrmions mimicking plasticity, respectively.
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