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Array of metabolic pathways in a kleptoplastidic
foraminiferan protist supports chemoautotrophy in dark,
euxinic seafloor sediments
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Abstract

Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth
and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments
analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera
are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host’s
independence from oxygen. The full extent of foraminiferal physiological capabilities is not fully understood. To date, evidence for
foraminiferal anaerobiosis was gleaned from specimens first subjected to stresses associated with removal from in situ conditions.
Here, we report comprehensive gene expression analysis of benthic foraminiferal populations preserved in situ on the euxinic
(anoxic and sulfidic) bathyal seafloor, thus avoiding environmental alterations associated with sample recovery, including pressure
reduction, sunlight exposure, warming, and oxygenation. Metatranscriptomics, metagenome-assembled genomes, and measurements
of substrate uptake were used to study the kleptoplastidic foraminifer Nonionella stella inhabiting sulfur-oxidizing bacterial mats of
the Santa Barbara Basin, off California. We show N. stella energy generation under dark euxinia is unusual because it orchestrates
complex metabolic pathways for ATP production and carbon fixation through the Calvin cycle. These pathways include extended
glycolysis, anaerobic fermentation, sulfide oxidation, and the presence of a membrane-bound inorganic pyrophosphatase, an enzyme
that hydrolyzes inorganic pyrophosphate to actively pump protons across the mitochondrial membrane.

Keywords: chemosynthesis, anaerobic metabolism, inorganic carbon uptake, dark carbon fixation, aphotic chloroplast sequestration,
proton-pumping pyrophosphatases, microbial mat, Beggiatoa, Santa Barbara Basin, seafloor preservation

Introduction protists [1, 2]. In kleptoplasty, a heterotrophic protist or metazoan

Many microorganisms (Bacteria, Archaea, single-celled eukaryotes)
evolved versatile metabolic pathways for generating energy and
for sustaining life under stressful environmental conditions.
While significant progress has been made in identifying these
metabolic pathways in bacteria and archaea, the mechanisms by
which protists (single-celled eukaryotes excluding microbial fungi
and algae) survive in environments where oxygen is low or absent
and where high concentrations of sulfide and sulfidic compounds
that suppress canonical aerobic respiration remain relatively
unknown. The metabolic collaboration between eukaryotes and
their symbiotic partners, including bacteria or archaea, as well
as the acquisition of organelles from other eukaryotes, such as
chloroplasts from algal cells—a process known as kleptoplasty—
is now widely acknowledged across nearly all lineages of

sequesters and retains algal chloroplasts for several weeks to
months [3] or, perhaps, longer [4]. Kleptoplasty has been reported
in certain ciliated protists (e.g. [5]) and foraminifera (e.g., [6-8]),
typically from shallow waters, and the retained plastids are shown
remain active, capable of performing light-dependent carbon
fixation and, potentially, ammonium assimilation (e.g., [8]).

In California’s Santa Barbara Basin (SBB) at water depths far
below the base of the euphotic zone, certain benthic foraminiferal
species dominate the microeukaryotic meiofauna within the
anoxic, highly sulfidic sediments [9], an environment sometimes
considered an Ocean Worlds analog. A common feature in
these foraminiferal species is that most host symbionts—
including microbial partners or organelles such as sequestered
chloroplasts—that may bolster independence from oxygen and
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provide the ability to detoxify or, perhaps, use hydrogen-sulfide
dependent metabolisms. Understanding the metabolic innova-
tions of the host and its associated organelles or symbionts in
such environments provides insights into microbial eukaryote
evolution on early Earth and, possibly into lifeforms awaiting
discovery on other planetary bodies. The foraminifer Nonionella
stella presents a fascinating case study because it harbors intact
chloroplasts (Supplemental Fig. 1A-C) and is highly abundant in
anoxic, highly sulfidic marine sediments far below the euphotic
zone (i.e. >500m, [4, 6, 9]). Further, there are copious peroxisomes
in N. stella (Supplemental Fig. 1B and D) that work in concert
with mitochondria to perform additional previously described
metabolic activities [10]. The full extent of the physiological
capabilities of the acquired chloroplasts is currently unknown.
Previous gene expression analysis confirmed the diatom origin
of N. stella chloroplasts as well as the high expression of Rubisco
genes (rbcL/S) that encode a key enzyme in the Calvin-Benson-
Bassham (CBB) cycle, suggesting potential chloroplast roles in
carbon assimilation [11]. However, because those specimens were
exposed to light prior to and during preservation, their expression
of light-regulated genes may be a methodological artifact.
Thus, we obtained metatranscriptomes from in situ-preserved
samples unexposed to sunlight to assess the functionality of
active metabolic pathways of N. stella in their natural deep-
water sulfidic environment. This approach allowed us to also
examine whether kleptoplasty confers the capacity to assimilate
inorganic carbon and the role(s) of other metabolisms potentially
advantageous to the host. Metatranscriptome analyses were
combined with isotope-incubation experiments to investigate if N.
stella’s metabolism supplies energy and reducing equivalents (i.e.
ATP, NADH, NADPH) to the chloroplast for dark carbon fixation
via the CBB cycle in the absence of dissolved oxygen.

Materials and methods
Sample collections

Samples for this study were collected from the SBB (Southern
California, USA) on two research cruises: NA127 aboard E/V Nau-
tilus in July 2021 and SP2213 aboard R/V Robert Gordon Sproul in
July 2022. Aboard the E/V Nautilus, samples were obtained via the
Remotely Operated Vehicle (ROV) Hercules. On selected ROV dives,
measurements of incident sunlight were measured at depth. A
QSP-2150 photosynthetically active radiation (PAR) sensor (Bio-
spherical Instruments Inc., San Diego, CA, USA) was mounted to
Hercules’ brow and connected to its electronic data logging system
during four dives to the SBB seafloor (H1850, H1852, H1855, and
H1856). These dives spanned daylight as well as nighttime hours.
Before the dives, all Hercules and clump weight-/tether-system
Medea lights other than those used for viewing and imaging were
covered with opaque tape. When Hercules was immobilized on
the seafloor, all uncovered light sources were extinguished for
10 minutes. During this time, the PAR measured incident light
levels (logged in volts). The PAR sensor was calibrated, the dark
offset value (reading in complete darkness) calculated, and this
value subtracted from all field measurements.

An Aanderaa Oxygen Optode 3830 sensor mounted on Hercules
was used to measure dissolved oxygen concentrations in sur-
rounding (bottom) seawater. The sensor was calibrated approx-
imately 9 months prior to use. Imagery of the seafloor surface
and sampling were recorded with Hercules’ standard cameras and
video capabilities.

For this contribution, we targeted sediments that supported a
white Beggiatoa-like microbial mat, known to existin SBB for many

decades (e.g. [12-14]), indicating these sediments coincide with
or were near the oxycline. Using Hercules’ manipulator arm, July
2021 sediment samples were collected in 6.2-cm and 8.2-cm inner-
diameter pushcores. Once a core was successfully obtained (i.e.
clear overlying waters, relatively flat and undisturbed sediment
surface), it was quickly secured in a quiver holder mounted to
Hercules’ front basket (Supplemental Fig. 2A and B). Three types
of pushcores were obtained for this study: (i) “regular” push-
cores to provide samples of living specimens for varied tasks; (ii)
“large injector” pushcores for in situ preservation of foraminiferal
populations; and (iii) “small injector” pushcores where in situ
incubations were executed. As soon as possible after the ROV was
recovered on deck, the cores were catalogued and subsampled
as necessary. For live materials to be taken to our lab at WHOI,
we sectioned the top ~2-cm of sediment into 100- to 250-ml
HDPE bottles, filled to no header space with chilled bottom waters
collected from Niskin bottles mounted on the ROV, and main-
tained at ~6°C until transport on blue ice to WHOI. Those samples
provided specimens for MAG analyses. Metatranscriptomics, MAG,
and sources of live specimen cores were collected in the vicinity
of 34.29795, —120.06036 at 571-m water depth.

Large injector pushcores were similar to those used previously
[15, 16]. The fixative reservoir of large injector pushcores was
filled with RNAlater supplemented with red food coloring (Sup-
plemental Fig. 2B) to provide better visibility during injections.
Once the core tube was placed into the seafloor between reference
lines, the ROV manipulator was used to squeeze the reservoir,
which was connected to the corer head space via plastic tubing.
Careful observation permitted visualization of the pink preserva-
tive. Sediments of these cores provided in situ-preserved N. stella
populations that were used for metatranscriptome analyses. As
soon as possible after core recovery, sediments were rinsed in
0.2 um-filtered artificial seawater (FASW) and specimens isolated
using a very fine sable brush. Cytoplasm-laden specimens were
categorized into green (most common), pink, and white specimens
(Supplemental Fig. 1C). Pools of ~25 N. stella of the same cytoplas-
mic color were carefully rinsed three times in FASW. Each pool was
preserved (again) in 100 ul of DNA/RNA Shield (Zymo Research)
and stored at 4°C. Once samples were taken to the shore-based
lab, they were kept frozen at —80°C until RNA extraction. Due
to in situ specimen abundance, time constraints and personnel
limitations during the expedition, we isolated as many pools of
each type of specimen as feasible within the available ship time.
In total, we collected 8 pools for metatranscriptome analysis.

The reservoir of small injector pushcores (Supplemen-
tal Fig. 2C and D) was filled with '*C-labeled bicarbonate (H*COs).
Once these core tubes were placed in the seafloor, the bicarbonate
was injected and allowed to incubate for about 23 hours until
the ROV returned to collect them. These cores were processed
with red lights once they were recovered on the ship with waters
collected into exetainers preloaded with ZnCl, and sediments
collected into scintillation vials and amended with ZnCl, (300 ul
of a 0.5-M solution).

Aboard R/V Robert Gordon Sproul in July 2022, we initially pro-
filed the dissolved oxygen concentrations along with salinity
and temperature across the full water column via CTDO,-Niskin
rosette cast, selecting a site near but sufficiently distant from a
lander deployed on NA127. Our general sediment sampling area
for this contribution was 34.29904-120.05631 at a water depth of
581 m. Dissolved oxygen was measured in the water column and
within 3-5 m of the seafloor using two Seabird SBE43 sensors
attached to the CTD-Niskin Rosette; these had been calibrated
about 9 months prior to our use.
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On this July 2022 cruise, sediment samples were collected using
an MC800 multicore (Ocean Instruments; Supplemental Fig. 2E)
or a Soutar boxcore [17]. After core recovery to the ship and
confirmation of an undisturbed sediment-water interface with
microbial mat, multicores were moved to a~6°C cold lab and
microsensors were used to obtain downcore profiles of oxygen,
sulfide, and pH. After profiling, the overlying water was siphoned
off and the upper ~2 cm of sediments were transferred to 100-
250 ml HDPE bottles with the remaining volume filled with site
water. Upon confirmation of an intact sediment/water interface
in a Soutar boxcore, overlying water was siphoned off and the
upper ~2 cm of surface sediments were transferred to 100-250 ml
HDPE bottles and the remaining volume filled with site bottom
water. Collected sediments were stored cold and dark until further
processing. The varied sediment sample types and their analyses
are presented in flow-chart form (Supplemental Fig. 3).

Carbon uptake experiments

Upon return to the laboratory in 2022, cytoplasm-containing N.
stella foraminifera specimens were hand-picked under room light
or under red light (i.e. dark treatment) and placed into 12-ml
exetainers (Labco, 757 W, United Kingdom), 10 foraminifera per
exetainer. The exetainers were filled without headspace with
filtered seawater amended with ®NO;~ (100 uM addition, 75-99
atom% final values) or NHy* (50 uM, 99 atom% final values),
HBCO;5 (2.3 mM, 50 atom% final values) and sulfide (2 uM). All
isotope salts were purchased from Cambridge Isotope Laboratory.
The sealed vials were mixed by inversion and incubated in the
dark at 6°C. Aliquots of the amended seawater (water samples)
were taken to determine initial isotopic values. Additionally, a “No
Amendment” treatment was performed that contained the addi-
tion sulfide and *C-labeled carbon but no nitrogen amendment
(i.e.no NOs~ or NH,* addition). These “No Amendment” samples
serve as a technical control to provide a frame of reference for
interpreting incubation results. Finally, there were No Isotope
Controls that served to measure the background carbon isotopic
values. All treatments and controls were run in triplicate. Samples
were destructively sampled at 4-hour and 20-hour by fixing with
300 ul of ZnCl, (50 wt%/v) and mixing by inversion.

Additionally, on the July 2021 cruise, the reservoir of small
injector pushcores (Supplemental Fig. 2C and D) was filled with
filtered artificial seawater amended with 3C-labeled bicarbon-
ate (~5 mM at 50 atom% H'*COj3 final) and *N-labeled nitrate
(100 uM, 99 atom% °NOs;7). Once these pushcore tubes were
placed in the seafloor with about 100 ml of headspace overly-
ing the sediment/water interface, bicarbonate was injected and
allowed to incubate for about 23 hours until the ROV returned
to collect them. These pushcores were recovered near dawn/dusk
and processed with red lights once recovered to limit surface
light exposure. The top 2-cm of the cores was harvested, and the
sediment split with ~1/2 partitioned into a scintillation vial and
treated with 300 ul of a saturated ZnCl, solution for preservation.
Upon return to the shore-based laboratory, these sediments were
sieved using a 63-um mesh screen and the retained fraction
partitioned into tin capsules for POC determination as described.
These fractions were dried (60°C overnight), acidified with 300 ul
of 12 N HCl overnight to remove inorganic carbon and dried again
at 60°C (overnight). Additionally, at sea, the overlying waters of
the pushcores were aliquoted into 12-ml exetainers preloaded
with 300 ul of saturated ZnCl, for later analysis. Samples were
stored cold (5°C) until analysis. To determine N, production,
about 4 ml of the preserved exetainer water sample was analyzed
using a Membrane Inlet Mass Spectrometer (MIMS) equipped

with a liquid nitrogen cold trap (trapping CO,) and a 600°C, Cu-
reduction column to remove O,. 262%30N, was quantified using a
quadrupole mass spectrometer (RGA100, Stanford Research Sys-
tems). Standards were made using temperature-controlled (6°C)
saline solutions (3.5%, 3%, 2.5% and 0% NacCl) in equilibrium
with the atmosphere. The remaining volume of the exetainer
was acidified with 1 ml of phosphoric acid (85%) to convert dis-
solved inorganic carbon to carbon dioxide (CO,). CO, was purged
from the exetainer and analyzed at UCDavis using the protocols
described.

Determination of *C uptake

Water and foraminifera samples were measured for *C content
at the UC Davis Stable Isotope Facility (SIF). To account for label
atom percent, water samples from the exetainers were injected
into a 12-ml, helium-purged exetainer preloaded with 1 ml of
concentrated phosphoric acid to convert dissolved inorganic car-
bon to carbon dioxide (CO;). CO, was then purged from the vial
and measured by isotope ratio mass spectroscopy (IRMS) using
the SIF’s standard protocols. Standard lithium carbonate samples
run every 10 samples were used to correct for instrument drift. N.
stella were filtered onto a glass fiber filter, dried overnight (60°C)
and then packed into tin capsules. Foraminifera were acidified
by adding 300 wul of a 12 N HCI solution to the tin capsules to
remove inorganic carbon (DIC and foram test) and incubated
overnight, and finally dried at 60°C (overnight). Control samples
(all amendments but the '3C-label, No Isotope Control) were
prepared in the same manner. **C of the foraminiferal biomass
was measured using an Elemental analyzer (Elementar Vario EL
Cube) interfaced with a 20-20 IRMS at the SIF using standard
protocols. Instrumental drift was corrected for using 4 or more
reference samples per SIF protocol. Values are reported as §'3C vs
Vienna PeeDee Belemnite (V-PDB).

(13c)
e foram

(=€)
2CJvrpB

To resolve the addition of labeled 3C to the N. stella biomass
under the incubation conditions the excess *C was calculated
as A'3C for the treatment N. stella over the control (unlabeled)
conspecifics:

513Cforam = — 11 %1000

ABC = ( Blgcfomm - 513 Ctveatment contml)

Estimations of C-uptake

Using an approximation of foraminiferal biomass and the deter-
mined isotopic values, a mass of C taken up and the percentage
of total biomass can be calculated. To estimate the biomass of
N. stella (we were unable to find literature values) we have scaled
from published measurements of another foraminifera, Ammonia
beccarii, to N. stella using the ratio of each taxon’s biovolume.
Published values for the biomass and diameter of A. beccarii are
2.235 pg C/individual (average) and 1000 um respectively [18]. N.
stella is a much smaller organism with a diameter on the major
axis of only ~300 um. Approximating each organism as an oblate
spheroid with a minor axis half that of the major axis we calculate
the biovolume of each species by:

4 . .
Vspecies = §”(aXISmajor)2 (aXISminor)
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The ratio of the determined biovolumes (0.027 N. stella:A. becca-
rii) can be used to scale the reported carbon mass of A. beccarii to
that of N. stella (0.060 ng C/individual). With this assumption and
assuming the change in the delta values from the uptake of *C
from the H**CO3~ pool (and not by respiration of ?C from a stored
organic pool, which would also result in a minor enrichment), the
mass of carbon added to the biomass pool can be calculated by:

[Cbiomass] 513Cmeasuxved = [Cbiomass] 313Cunamended + [Cadd] 513CH13C03

Ribonucleic acid extraction and library
preparation

All cell sorting for RNA isolation was conducted on ship in July
2021; sorted N. stella were preserved in DNA/RNA Shield from
ZymoResearch (USA). RNA was isolated from each pool (sample)
using Quick-RNA Microprep (Zymo Research). Total RNA was
quantitated with a Qubit Fluorometer, RNA quality was assessed
by Nanodrop, and RNA integrity was determined by Bioanalyzer
(Agilent 2100) and TapeStation (Agilent 2200). A total of 8 samples,
based of the color of their cytoplasm were assigned into three
designations: 5 green-colored, 2 pink-colored and one white/color-
less (Supplemental Fig. 1C). Extracts of all samples passed quality
control and were used for RNA library preparation.

We prepared total RNA libraries using the Trio RNA-Seq Kit
(Tecan, USA). The cDNA was generated from total RNA (host +
bacteria + chloroplasts) using random and oligo (dT) primers.
Libraries were then amplified using single-primer isothermal
amplification (SPIA) and prepared with double-stranded cDNA
fragmentation end repair to generate blunt ends, and adaptor
ligation. To deplete the ribosomal RNA reads, we designed N. stella-
specific ribosomal depletion probes. Libraries were then amplified
and quantified by Bioanalyzer and TapeStation. Each sample was
prepared using unique eight-base barcodes and sequenced on
one flow cell of NovaSeq S4 (Illumina), achieving approximately
150 million reads per sample.

Data processing of ribonucleic acid reads

Reads were quality checked using TrimGalore (https://github.
com/FelixKrueger/TrimGalore), which uses the adaptor trimming
tools Cutadapt (https://cutadapt.readthedocs.io/en/stable/) and
FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Quality-controlled fastq files of each of the eight samples were
concatenated into one fastq file per library preparation to perform
co-assembly of eight samples. De novo transcriptome assembly
was performed using Trinity v2.8.4 to generate contiguous
transcript sequences (contigs) [19]. Transcript abundance per
sample was quantified with Salmon 0.12.0 [20]. The abundance
profiles from short-read multimapping were then used in
RapClust [21] to identify and group contigs representing different
fragments of the same gene. The small sample size limited our
ability to conduct statistical analyses among the three types,
as we only had two pink samples and one white sample. This
is insufficient for drawing reliable conclusions about variability
between the sample types. Transcripts were then taxonomically
and functionally annotated by a number of annotation tools.
Coding regions were identified in the contigs with TransDecoder
[19] and extracted for annotation. InterProScan, a wrapper
tool that uses multiple annotation systems, was used on the
nucleotide sequences to predict Pfam and TIGRFAM annotations.
Coding regions were also translated to amino acid sequences
with the EMBOSS tool Transeq and subsequently annotated with
EggNOG-mapper v2 to provide IDs for KEGG (Kyoto Encyclopedia

of Genes and Genomes) pathway and module and NCBI Cluster
of Orthologous Groups. We retained all annotated reads in our
data; relatedness to chloroplast, bacterial or eukaryotic genes
was identified by top hits using the NCBI Basic Local Alignment
Search Tool (BLAST) search against NCBI's nonredundant protein
database (Supplemental Table 1). Conserved protein domains
were identified by applying the Subfamily Protein Architecture
Labeling Engine (SPARCLE) on the NCBI conserved domain
database.

Short reads from ribonucleic acid and
deoxyribonucleic acid mapping to diatom’s
chloroplast genomes

N. stella RNA and DNA short reads were obtained from the three
types of N. stella holobionts (green, pink, and white) based on the
color of the cytoplasm, where green represents the type that har-
bors chloroplasts, while pink and white harbor few to no chloro-
plasts, respectively, as evidenced by plastid gene expression anal-
yses (Fig. 1A). Both DNA and RNA short-reads were mapped with
bowtie2 onto reference plastid genomes downloaded from NCBI
GenBank for S. pseudocostatum (GenBank accession no. MK372941).
The read mapping produced coverage values for each reference
genome by counting the number of times that a nucleotide was
included in a short-read alignment to the reference. The gene-
level coverage was defined as the average nucleotide’s coverage in
that gene, and a nonzero coverage value indicates that the gene
was detected in the transcriptome. The coverage and detection
information were visualized with anvi'o [22]. In both DNA and
RNA-shortreads, the S. pseudocostatum plastid had the deepest and
broadest coverage with the fewest mismatches (SNPs). Gene-level
coverage was logl10-transformed for display.

Identification of key proteins

We searched our host and holobiont transcriptomic databases
for encoded amino acid sequences involved in CBB, mitochon-
drial oxidative phosphorylation, sulfur oxidation and reduction,
multicopper oxidases, and genes associated with pyrophosphate
metabolism. Reference sequences were obtained from NCBI Ref-
Seq nonredundant proteins database, EggNOG, Uniprot, Laccase
and Multicopper Oxidase Engineering Database (https://lcced.
biocatnet.de), and published genome and transcriptome of Globo-
bulimina sp. [23]. Genes were identified on the basis of annotations
using the EggNOG database. Amino acid sequences were clustered
at 95% identity using CD-HIT (Cluster Database at High Identity
with Tolerance) for the identification of representative sequences
in each cluster. Amino acid analysis showed that H*- PPase of
N. stella exhibited the key conserved motifs underlined in the
following sequence: GGGIYTKAADVGADLVGKVESAIPEDSPKNPA-
TIADNVGDNVGD [24, 25].

Organelle localization predictions

Chloroplast and mitochondria localizations were predicted using
PredSL and TargetP version 2.0 [26, 27] (Supplemental Table 1).
Localization predictions of PredSL is based on homology using
Markov Chains and hidden Markov model for the prediction of the
subcellular localization of proteins in eukaryotic cells from the N-
terminal amino acid sequence. Whereas localization predication
using TargetP sorts the proteins signals at the N-terminal with tar-
geting peptides to mitochondria or chloroplast. Confidence levels
were assigned to the putative mitochondrial proteins by integrat-
ing the combined probability of localization and the homology
identifications to the reference mitochondrial protein database.
Both methods have been applied previously [10] for two benthic
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Figure 1. (A) Expression of sequestered chloroplast genes from SBB N. stella metatranscriptome reads. RNA-reads of N. stella mapped onto the
chloroplast genome of the diatom Skeletonema pseudocostatum. Rings in green represent the green-colored N. stella samples (n=5), rings in pink
represent the pink-colored N. stella (n=2) samples, black ring represents the white-colored N. stella sample. Ring height is maximum detection of each
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Gene-level coverage was logl0-transformed; outermost ring displays gene category (COG) for all chloroplast genes. Inner grey ring represents the 113
contigs with 221 genes assembled from the DNA short reads. (C and D) Expression of transcripts of CBB cycle and related genes. Rubisco subunit (rbcL);
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transaldolase (TALDO). Sequences classified as diatom have green labels.

foraminiferal species, N. stella and Bolivina argentea. Proteins that
were not localized to mitochondrion or chloroplast were classified
as cytosolic and were included in the metabolic reconstruction.
Taxonomic assignment was based on DIAMOND BLASTP and
NCBI BLASTP, all proteins presented in this study were annotated
by EggNOG and KEGG and had at least 50% coverage to a reference
protein from NCBI and DIAMOND BlastP database [28].

Cell sorting, deoxyribonucleic acid extraction,
and library preparation

Sediments preserved in situ with RNAlater was processed in the
lab following our established protocol [11]. DNA from green N.
stella cells was extracted from two pools of cells, one had 715
cells, while the second had 110 cells. DNA was extracted using the
Quick-DNA Microprep kit (Zymo Research, USA). Total DNA was
quantitated with Nanodrop and Tapestation (Agilent 2200) and

the total DNA concentration for the first sample was 240 ng and
for the second was 89 ng. Libraries were prepared using Nextera
XT DNA library preparation kit (lllumina, USA) and sequenced on
NovaSeq S4 (Illumina).

Metagenomics assembly

Metagenomic reads were quality checked using TrimGalore
(https://github.com/FelixKrueger/TrimGalore), which uses the
adaptor trimming tools Cutadapt (https://cutadapt.readthedocs.
io/en/stable/) and FastQC (www.bioinformatics.babraham.ac.
uk/projects/fastqc/). Reads were downsampled using bbnorm
version 38.90 with a target coverage of 100x. Downsampled reads
were assembled using spades version 3.15.1 in the metagenome
assembly mode [29]. Assembly metrics were calculated with quast
version 5.0.2 [30]. Gene calling was performed using genemark_ES
with a minimum contig length of 5000 [31]. Resulting gene calls
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were annotated using eggnog mapper version 2.1.7 [32]. Reads
were mapped to the assembly using bbmap version 38.90, sorted
and indexed with samtools version 1.9 [33], and counted using the
pileup.sh script from bbmap. Finally, bins were assembled using
metabat version 2.15 [34]. We acknowledge that assembling the
N. stella genome from metagenomic reads presented significant
challenges due to the lack of effective assemblers for large
and repetitive genomes. Consequently, the results presented in
our manuscript are based on assembled contigs rather than a
complete genome assembly.

Results
Environmental conditions

A conspicuous and extensive white microbial mat of sulfur-
oxidizing bacteria has been documented on the seafloor in
the deeper parts of SBB for decades (e.g. [12-14, 35]). This
mat was well developed and extensive in both July 2021
(Supplemental Fig. 2A-D) and July 2022 (Supplemental Fig. 2E).
It was present during four ROV Hercules dives (H1850-1852,
H1855), to sites separated by as much as 4.2 km, in July 2021,
between water depths of 569-580 m, and it appeared on the
surface of each of 6 boxcores taken in July 2022 between water
depths of 579 to 584 m, the deepest water-depths sampled at
that time. In the deepest areas, the microbial mat varied in
surface appearance, where thickly clumped spots transitioned
into finely tufted areas (Supplemental Fig. 4A and B). When
sampled using a pushcore or scoop, the concentrated surface
distribution was clearly discernible (Supplemental Fig. 2B inset
and Supplemental Fig. 4C). As described previously (e.g. [13]),
the sediments beneath the surface of the microbial mat are
finely laminated. Cohesive microbial mats were not observed
at shallower sites in either 2021 (462470 m) or 2022 (554-556 m),
however, some filaments of sulfur-oxidizing bacteria were noted
during microscopic examination of those sediments.

In the Basin’s deeper regions, dissolved oxygen was unde-
tectable in bottom waters in July 2021, and minimal in July 2022
at ~0.4 umol/l in bottom waters ~3-5 m above the seafloor. Data
from the PAR sensor indicated that sunlight was not detectable on
the seafloor during any of the 2021 dives; PAR was not measured
during the 2022 cruise.

Nonionella stella characteristics

The typical color of cytoplasm-laden N. stella (i.e. living specimens)
is dark brownish green (Supplemental Fig. 1C; see also [11]);
however, we also found considerable populations of pink and
white cytoplasm-laden N. stella in July 2021 (Supplemental Fig. 1C).
The test (shell) morphologies of all three populations appeared
identical, so we assumed all three N. stella color variations were
conspecifics. This was confirmed using 18S rRNA analysis of
assembled metatranscriptome contigs. Although enumeration of
N. stella abundance was not a focus of this study, the population
in July 2021 was particularly abundant, approaching densities
observed in October 1996 when over 230 N. stella cm™ were
recovered [36]. N. stella abundances in July 2022 were also high,
but not quantified.

Transcriptomic analyses supporting autotrophic
C fixation

RNA and DNA short sequence reads of the N. stella samples were
mapped to the chloroplast genome from the diatom Skeletonema
pseudocostatum, a reference genome retrieved from NCBI, which
emerged as the closest relative to the sequestered plastids, con-
sistent with our previous findings [11]. The assembled plastid

genome is comprised of 113 contigs with 221 genes. Kleptoplast
genes, rbcl/S, and almost all subunits of light energy reaction
centers PSI and PSII, as well as ATP synthase (ATPase) were all
highly expressed in the metatranscriptome data (Fig. 1A, C). More-
over, the subunits of cytochrome bef complex, a key component
in the photosynthetic electron transfer process, were expressed in
our metatranscriptome data and were encoded in the assembled
chloroplast genome derived from both DNA and RNA sequence
reads from green N. stella pools (Fig. 1A and B).

The S. pseudocostatum reference genome does not encode plas-
tocyanin, a known photosynthetic electron carrier that mediates
electron transfer from PSII to PSI via the cytochrome bsf complex
[37]. The expression of a nuclear-encoded plastid-targeted pet]
gene coding for cytochrome C6 was detected in the green N. stella
samples (Fig. 1D). Cytochrome C6 can be an alternative electron
carrier between cytochrome bgf complex and photosystem I for
diatoms and can replace plastocyanin [38-40]. Findings included
the expression of the gene for the plastid-encoded cytochrome C-
type biogenesis protein (CcsA/CcmC), a key protein of cytochrome
C maturation, and the presence of this gene in the chloroplast
genome from assembled DNA reads of the green N. stella samples,
but not the pink and white N. stella samples (Fig. 1A, B, and D).

The fucoxanthin chlorophyll a/b protein complex (FCP), a
nuclear-encoded and plastid-targeted gene, was detected in the
metatranscriptome of the green N. stella samples although its
relative expression was lower than in the previously reported
data [11] (Fig. 1D). This lower expression suggests that although
the fcb gene was retained by N. stella, potentially within its
nuclear genome, its expression may be influenced by exposure to
light. The gene for another diatom nuclear-encoded and plastid-
targeted protein (CP12) was solely detected in the green N. stella
samples, in both metatranscriptome and MAG data. A recent
study showed that CP12 in the diatom Thalassiosira pseudonana
is constitutively expressed under both light and dark conditions
and forms a complex with Ferredoxin-NADP reductase (FNR) and
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH; GAPDH-
CP12-FNR) [41]. Ferredoxin (Fd), an iron-sulfur protein that
mediates electron transfer in diatoms, was also expressed in our
dataset (Fig. 1D).

The metatranscriptome data revealed high expression of the
central CBB gene, rbcL (Fig. 1C), which constitutes the largest
fraction of non-foraminifera eukaryotic transcripts in our dataset.
Other CBB-associated genes, including phosphoribulokinase (PRK)
and sedoheptulose-1,7-bisphosphatase (SBPase), both of which
are nuclear-encoded plastid-targeting proteins, exhibited distinct
results. While PRK was detected in the MAG data, it had very
low expression values in the metatranscriptomes, whereas SBPase
expression was not detected (Fig. 1D).

Transcripts identified as diatom Tat and Sec pathways (i.e.
twin arginine transporter (Tat)-dependent and secretory (Sec)-
dependent import pathways; Fig. 1A and B) were consistently
expressed in all green N. stella samples. These pathways are vital
for transporting proteins across the thylakoid membrane into the
lumen [42]. The expression of chloroplast ATP synthase subunits,
the cytochrome b6f complex subunits, and photosystem I and
II indicates the functionality of the chloroplast (Figs 1A and B,
and 2). The expression of protein translocating pathways (Tat and
Sec) suggests that the proton motive force (pmf) is active, possi-
bly to deliver exogenous reducing equivalents and energy from
stroma to lumen for carbon fixation by CBB [42]. However, the
expression data alone cannot confirm the activity in maintaining
the redox potential. We must note it remains uncertain whether
ATP synthase is expressed exclusively for ATP synthesis or if it
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Figure 2. Key metabolic pathways in N. stella and their kleptoplast. Schematic representation of metabolic pathways in the foraminifera N. Stella based
on gene expression data from the metatranscriptome reads obtained from in situ preserved samples. Identified proteins and metabolic pathways in
carbon metabolism: phosphoenolpyruvate carboxykinase (PEPCK); pyruvate kinase (PK); pyruvate-phosphate dikinase (PPi-dependent PPdK);
oxaloacetate decarboxylase (oadA); malate dehydrogenase (MDH); aspartate aminotransferase (AAT); glutamate pyruvate transaminase (GPT);
acetyl-CoA carboxylas (ACC); phosphoketolase (PPK); acetyl-CoA synthetase (ACSS1); malic enzyme (ME); acetate kinase (AK); and pyruvate formate
lyase (PFL). Sulfur cycle, including sulfate assimilation proteins: ATP/PPi sulfurylase-APS kinase and CysH or phosphoadenosine 5'-phosphosulfate
reductase (PAPS). Sulfite and thiosulfate oxidation proteins: sulfite oxidase (SOX) and rhodanese (RHOD). Electron-transport chain; NADH: ubiquinone
oxidoreductase (complex I); succinate dehydrogenase (complex II); ubiquinol-cytochrome c oxidoreductase (complex III, or cytochrome bcy complex);
nitric oxide reductase (complex IV) and ATP synthase (complex V); c-type cytochromes; (Cyt-C) cytochrome c2 (Cyt-C2); cytochrome-C peroxidase
(Cyto-C-peroxidase); H* proton-pumping pyrophosphatase (PPi synthase); and manganese oxidase (moxA). Kleptoplasty proteins and associated
metabolism: photosystem I (PSI); photosystem II (PSII); cytochrome bé6f complex (Cb6/f complex); secretory pathway (Sec); twin-arginine translocation
pathway (TatC); triose phosphate transporter (TPT); and 3-phosphoglycerate (PGA).

also has a role in ATP hydrolysis to uphold chloroplast lumen
homeostasis.

Isotope incubations supporting autotrophy

In July 2021 (NA127), all push cores used for seafloor incubations
(with 3C-labeled bicarbonate, n = 3) were obtained from the same
site (571 m); the core liners deployed with minimal disruption
of the sediment/water interface and incubated over the same
time period. After placement of the core liners, H*CO;~ was
injected into the sealed headspace of the core liner by squeez-
ing the label into the cores’ overlying waters from a remote
reservoir and without removing the core from the seafloor. After
23 hours, the cores were preserved in situ with ZnCl,. Net pro-
duction of Ny in the cores (sediments + porewaters) averaged
1.84 +1.48 nmol N,/cm?/day. Net N,O production was lower, at
13+ 6.5 pmol/cm?/day. §13C values of the POC from the push cores
were near values expected for marine particulate organic matter
(POC) and similar to incubations of unlabeled, pooled N. stella
(Supplemental Fig. 5). Of note, this POC measurement was on

material retained on a 63-um sieve. §C values of the POC ranged
from —20.6%0 to —22.7%o, with a mean of —21.940.7%.

The §'3C values for isolated pools of green N. stella from dark
incubation experiments performed in July 2022 (SP2213) showed
uptake (i.e. shift in §'3C value) of H**COs; into biomass in all
treatments relative to the unlabeled controls (Table 1; Supple-
mental Fig. 6A and B). Incubations amended with ammonium
displayed the greatest uptake of H*COs_ into biomass, with up
to a~3%o shift in delta-values over the 20-hour incubation for N.
stella isolated under laboratory / sunlight conditions as well as
N. stella isolated under minimal (red) light. Similar trends, with
smaller amplitude change (<+1 per mil), were observed in 20-
hour nitrate-amended incubations.

Mitochondrial respiratory electron transport
chain and proton pumps

In agreement with our previous study [10], expression of genes for
electron transport chain (ETC) complexes, complex I and II were
detected in our data, as well as alternative oxidase (AOX; data in
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Table 1. Shifts in isotopic values resulting from incubations with a '3C-labeled inorganic carbon source.

n s13¢c-poC 90% confidence Al3c 90% confidence % change in
interval interval biomass carbon
Ammonium + 13C 5 —-18.91 0.65 3.20 0.42 0.57
Nitrate + 13C 5 —-21.52 0.35 0.93 0.34 0.13
BC 2 -22.11 0.43 0.34 0.20 0.09
No-Isotope Control 2 —22.45 0.31 0.00 0.31 0.00

Supplemental Table 1). The expression of cytochrome b (cob), one
of the three subunits of the respiratory cytochrome complex III,
has 99% amino-acid sequence similarity to diatom cob, suggesting
that cob in N. stella is of diatom origin (Fig. 3A). The expression
of this cob was represented by only one isoform and detected
only in the green samples, whereas very low to no cob expression
was observed in the white and pink samples. Analysis based on
mapping RNA short reads of the N. stella metatranscriptome into
the Skeletonema pseudocostatum mitochondrial reference genome
[37] revealed a fragmented mitochondrial genome, except for cob
and NADH dehydrogenase, both of which maintained consistent
expression across the green samples. This result suggests that not
all mitochondrial genes for this diatom are actively transcribed
in N. stella (Supplemental Fig. 7A), but rather only selected
genes. Additionally, MAG analyses showed that the cob gene was
encoded in a contig that comprises diatom NADH dehydrogenase
subunit 5 at the 5 region and cob at the 3’ region, with about
10 kb of intergenic region between them (Supplemental Fig. 7B).
The two other subunits of complex III (ubiquinol-cytochrome c
reductase, cytochrome C1) are both classified as foraminiferal/
eukaryotic genes. The consistency of cob expression across
the green samples suggests that the N. stella acquired diatom
mitochondria. Inter-mitochondrial gene transfer has been docu-
mented between distantly related plant species [43]. N. stella may
also have acquired cob horizontally from phagocytosed diatom
mitochondria or through a viral vector. Horizontal gene transfer
of mitochondrial genes has been reported among fungal species
[44]. This acquisition of cob genes underscores the functionality of
complex Il in N. stella’s ETC (Fig. 3A), however, this functionality
was limited to only the green samples.

In contrast to previous findings in experimentally manipulated
N. stella [10], our current gene expression analysis indicates
that aerobic respiration is likely not sustained in the N. stella
samples that were preserved in situ. This conclusion is based
on incomplete expression of respiratory complex IV (known as
cytochrome C oxidase in the ETC), with expression observed only
for certain subunits (Supplemental Fig. 8). Thus, the incomplete
functionality of complex IV does not support aerobic respiration
but may instead contribute to alternative functions. A similar
observation was reported in protists with mitochondria-related
organelles (MROs) including some anaerobic ciliates [45]. An addi-
tional finding in our current analysis is that nitric oxide reductase
(cytochrome c; NorB; EC: 1.7.2.5) that catalyzes the reduction of
NO to N, O, was highly expressed in all samples (Fig. 3A). This is in
agreement with our previous findings for incubation experiments
in N. stella under different oxygen regimes [11]. Our current
metatranscriptome data detected three isoforms of cnorB, with
one localized to mitochondria, suggesting its role in supporting
denitrification and electron transfer from complex III through
cytochrome C1 to nitric oxide as the terminal electron acceptor.
Sequence analysis of transcripts revealed that one of the isoforms
of cnorB was encoded in the same transcript with mitochondrial
eukaryotic Cullin protein. A BLASTp sequence search and

conserved domain analyses showed a striking similarity between
Cullin from our N. stella transcripts and Cullin from Reticulomyxa
filosa, a freshwater foraminifera. This finding strongly suggests
that cnorB is likely encoded in the foraminifera genome.

Additionally, N. stella expressed four proteins annotated as C-
type cytochromes, all of which were highly expressed, and having
the conserved motif CXXCH (Figs 2 and 3A). This highlights the
importance of these cytochromes in N. stella’s ETC. Transcription
of all ATPase subunits across all samples suggests that SBB N. stella
likely possesses the ability to generate ATP by harnessing proton
gradients created by respiratory complexes I, I1I, and NorB (Fig. 2).
Alongside the expression of proton-pumping V-type ATPase, our
dataset further unveils the expression of H*- translocating inor-
ganic pyrophosphatase (H"- PPase), sometimes referred to as PPi
synthase (Figs 2 and 3A). This electrogenic proton pump plays a
critical role in scavenging inorganic pyrophosphate (PPi) within
the cell’s cytoplasm and mitochondria, facilitating proton trans-
port and energy generation from mitochondria to cytoplasm,
potentially generating a proton gradient across the mitochondrial
membrane. Alternatively, H* - PPase might use the proton gradient
to synthesize PPi in mitochondria to be utilized as an energy
source by some enzymatic pathways. In plants, it was shown that
under stressful conditions where oxygen is low or absent, ATP
generation slows or even stops [46]. In the absence of oxygen, H*-
PPase generates PPi to replace ATP in certain glycolytic pathways
that are pyrophosphate dependent, thus minimizing ATP use [46].

Cytochrome C peroxidase (Ccp), a common enzyme that pro-
tects against oxidative stress [47], was highly expressed across all
N. stella samples and, based on protein sequence analysis, is local-
ized to the mitochondria (Figs 2 and 3A; Supplemental Table 1).
In bacteria, Ccp serves as a respiratory enzyme that donates
electrons to H,O, under anoxia [48]. In the mitochondria of aero-
bic yeast, Ccp and Cytochrome ¢ form a complex with ferrocy-
tochrome C in the inter-membrane cristae, where Ccp reduces
hydrogen peroxide to water using electrons provided by ferrocy-
tochrome C. This safeguards the cell against peroxide toxicity and
maintains aerobic respiration [49]. On the basis of downregulation
or absence of the expression of cytochrome c oxidases, aerobic
respiration is unlikely to be active (Supplemental Fig. 8). This
implies that Ccp may play a role in an unconventional pathway
that supports H,O, reduction (Fig. 2). We also detected expres-
sion of genes involved in menaquinone (MK) biosynthesis in all
three colors of N. stella based on our metatranscriptome analysis.
Menaquinone is an electron carrier for both aerobic and anaerobic
processes known to reduce Ccp under anoxia [50].

Heterotrophic organic carbon metabolism

N. stella expressed a suite of anaerobic carbon metabolisms,
including pathways for acetate production and utilization,
pyruvate metabolism, and the generation of precursors essential
for anabolic pathways (Fig. 3B). These pathways, described in
greater detail below, illustrate an adaptation of this eukaryote’s
carbon metabolism to an anoxic, dark environment.

Gz0z Areniga4 Gz uo Jasn ABojouyos | Jo a)mnsu| eluione) Aq LGyEZ6./8bZerIM/LL /6 /alo1de/fowsl/woo dno-olwapeoe//:sdiy Wwolj papeojuMo(]


https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae248#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae248#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae248#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae248#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae248#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae248#supplementary-data

Chemoautotrophy in a benthic foraminifer | 9

A

White FF FIFIEE B
Pink_7- I

Pink_4-

Green_6-

Green _!

Green

Green_2-

Green_1;

C c2 UQCRFS1 b CYC1 Cc peroxidase

Sample

H*- PPase

"Wors

Cc

° -

\
n

PFL ¢© "MDH ~ ME Cysteine synthasePEPCK ¥ & &
(Cysk) S v

log2(TPM + 1)
6
4
2
0
&

White White- White
Pink_7 ‘ Pink_7 . Pink_7: l
o 2 ] 2
S Pink 4 ‘ £ Pink_4 g Pink_a
:% g yh log2(TPM + 1) = log2(TPM + 1) 3 log2(TPM + 1)
(7] | 20 °
6 Green_6.
Green_6 Green_6/ l 15 :
5J 4 Green_5 - 10 Green_5 2
Green ! 2 05 1
Green_3. 00 Green_3
Green_3 0 -
Green. 2 Green_2
Green_2 -
Green_1
‘ Green_1
Green_t- | — e e T
- | e s ol et MCOs isoforms Mn-?/Fe*
o e e e e ATP/PPi Sulfurylase/  PAPS transpoter
SQOR  Rhodanese  Sulfite oxidase APS kinase reductase CC1
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by cytoplasmic color (rows) for all genes in (A) electron transport chain and cytochromes, proton pumps; (B) carbon metabolism; (C) sulfur oxidation;
(D) sulfur reduction; (E) multicopper oxidases domain and iron/manganese transporter. Abbreviations align with those in Supplementary Table 1.

In all N. stella metatranscriptome samples (green, white, and
pink), we detected the expression of the gene for pyruvate formate
lyase (PFL), an oxygen-sensitive enzyme that plays a role in anaer-
obic glucose fermentation in obligatory or facultative anaerobic
bacteria and eukaryotes [51]. PFL expression was highest in the
green N. stella samples (Fig. 3B). This enzyme operates and is
activated through a glycyl radical-based homolytic mechanism,
converting pyruvate into acetyl-CoA and formate [52, 53]. PFL
has significant importance in fumarate-independent anaerobic
glycerol metabolism [54].

Another metabolic pathway involved in anaerobic carbon
metabolism was identified in N. stella: the phosphoketolase (PPK)-
acetate kinase pathway. PPK uses xylulose 5-phosphate (X5P) or
fructose 6-phosphate (F6P) generated by the oxidative branch of
the pentose phosphate pathway (PPP) [10] as a carbon source
to produce glyceraldehyde-3-P (GA3P) or erythrose-4-P (E4P) and
acetyl phosphate (Acetyl-P) [55]. Amino acid-sequence analysis
revealed that PPK expression was unique to the green N. stella
samples (Fig. 3B), and the N. stella PPK protein was identical to
the diatom PPK protein. Additional steps in this pathway involve
ATP production and acetate production from acetyl-P catalyzed
by the mitochondrial acetate kinase (Figs 2 and 3B). This pathway
was identified in bacteria and a few anaerobic eukaryotes [56].
The acetate is ultimately converted to acetyl-CoA through the
action of acetyl COA synthase (ACS). This finding illustrates
N. stella’s unique strategy of adapting to anaerobic carbon
metabolism, allowing it to thrive within a distinct ecological
niche.

We detected pathways for acetate formation in all three types
of SBB N. stella. Several isoforms of cysteine synthase (cysK)
were expressed (Fig. 3B), an enzyme that uses hydrogen sulfide
that exists in considerable concentrations in these pore waters
[12, 57], and O-acetylserine, to generate L-cysteine and acetate.

Localization analysis indicated that cysK isoforms have both
mitochondrial and cytosolic localization. To date, the cysteine
synthase pathway is only identified in plants, bacteria and ciliates
[58, 59]. N. stella’s cysK has the three conserved lysine residues
(Lys66, Lys77, Lys226) required for enzyme activity [58].

Based on in-depth gene expression analyses, a series of
enzymes pivotal to oxaloacetate decarboxylation and pyruvate
generation have been detected within SBB N. stella. Oxaloacetate
decarboxylase (oadA), a mitochondrial enzyme responsible for
the irreversible conversion of oxaloacetate into pyruvate, was
consistently expressed in our N. stella samples along with genes
for additional decarboxylation enzymes (Fig. 3B). Among them,
phosphoenolpyruvate carboxykinase (PEPCK) was identified,
which plays a role in the reversible transformation of phospho-
enolpyruvate (PEP) into oxaloacetate [60, 61]. PEPCK was present
in two isoforms: ATP- and GTP-utilizing PEPCKs, which were
localized to the mitochondria and cytosol, respectively (Figs 2
and 3B). Another decarboxylation enzyme detected was malate
dehydrogenase (oxaloacetate-decarboxylating NADP and/or
NAD-malic enzyme), which generates pyruvate and NADPH
from malate (Figs 2 and 3B). Because N. stella does not express
pyruvate carboxylase [10], a mitochondrial enzyme responsible
for oxaloacetate synthesis from pyruvate, we suggest that PEPCK
is involved in pyruvate synthesis. We hypothesize that N. stella
adapted glucogenic metabolism to generate carbohydrates using
PEPCKs, which catalyze the generation of PEP from oxaloacetate.
The glyoxylate cycle [10], as well as the expression of aspartate
aminotransferase (AAT), can both contribute to oxaloacetate
production. We also predict that produced glutamate from
ammonium assimilation [11] is converted by Glutamate-pyruvate
transaminase (GPT) to alpha-ketoglutarate, suggesting that both
enzymes are involved in coordinating carbon and nitrogen
metabolism (Figs 2 and 3B).
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Our data demonstrate that N. stella uses enzymes that depend
on inorganic pyrophosphate as an energy source for carbon
metabolism. The expression of PPi-dependent enzymes, the
cytosolic PPi-PFK and the mitochondrial phosphate pyruvate
dikinase (PPi-PPdK), supports this hypothesis because these
glycolysis enzymes can catalyze the generation of ATP. In contrast,
we detected the expression of five malate dehydrogenase (MDH)
isoforms: four were localized to the cytoplasm, while one was
mitochondria-localized; at least two of these isoforms were
previously reported [10]. MDH catalyzes the reversible reaction
of malate into pyruvate and CO, generating NADH or NAD®
depending on the directionality of the reaction. The NADH and
NADPH generated through cytoplasmic malate dehydrogenase
and malic enzyme can potentially be used as reducing powers for
carbon fixation in the kleptoplast via the CBB (Figs 2 and 3B).
However, further investigations are required to confirm this
pathway functions in SBB N. stella.

We searched our transcriptome data for carboxylation
enzymes that may be involved in anaplerotic CO, fixation
to replenish TCA-cycle intermediates, a process known as
heterotrophic CO, fixation via anaplerosis [62]. Enzymes that
replenish the oxaloacetate pool (i.e. pyruvate carboxylase and
phosphoenolpyruvate carboxylase [PEPC]) were not expressed.
However, we detected expression of Acetyl-CoA carboxylase (ACC;
Fig. 3B), an enzyme that catalyzes the irreversible carboxylation
of Acetyl CoA to manoyl CoA, a key metabolite precursor for fatty
acid synthesis [63], suggesting that anaplerosis in N. stella does
not replenish TCA-cycle intermediates.

N. stella has evolved a variety of metabolic pathways that
enhance its ability to produce reduced NADH and NADPH. Key
pathways include mitochondrial and cytosolic malate dehydro-
genases, which play significant roles in NADH/NADPH generation.
Additionally, the oxidative PPP serves as a primary source of
NADPH, whereas the malic enzyme also contributes to NADPH
production. Additionally, [FeFe]-hydrogenase (HydA, which is
fused with NuoG and the small subunit of iron hydrogenase)
have been previously described [10, 11] as contributors to NADH
and NADPH generation. The NADH and NADPH produced by
these pathways, especially those occurring in the cytosol, may
be transported to the kleptoplast for utilization in the CBB cycle.
In our metatranscriptome analysis, we identified the triose-
phosphate transporter family, which facilitates the exchange
of metabolites between the cytosol and the chloroplast, and
NAD(P) + transhydrogenase (NNT) E.C. 1.6.1.2 in our meta-
transcriptome dataset (Supplemental Table 1). These findings
highlight the diverse metabolic capabilities of N. stella.

Inorganic sulfur compound oxidation and
reduction are key pathways in Nonionella stella

Our data indicate that all in situ-preserved N. stella (green, pink,
and white) are capable of oxidizing hydrogen sulfide using sulfide
quinone oxidoreductase (SQOR), indicating that the previously
reported expression activity [10] is active in situ. N. stella also
expresses at least two isoforms of Rhodanese or Rhodanese-
like enzyme that was localized to mitochondria and belongs to
the sulfurtransferase family of enzymes present in organisms
from all three domains of life (Fig. 3C). Rhodanese catalyzes the
transfer of a sulfur atom from thiosulfate (sulfur donor) to
cyanide (sulfur acceptor), producing sulfite and thiocyanate.
Rhodanese minimizes build-up of the toxic compound sulfane
sulfur and acts as a supply of sulfur [64, 65]. Thus, rhodanese
may play roles in channeling sulfur metabolism in N. stella. The
produced sulfite may serve as a source of electrons in N. stella.

We identified three sulfite oxidase isoforms, enzymes responsible
for sulfite oxidation to sulfate (Fig. 3C), all highly expressed in
our data. Only one of these isoforms has been reported in the
literature [10, 23].

Assimilatory sulfate reduction genes were also detected
in our data. Sulfate can be converted into sulfite using two
different enzymes. The first enzyme is a bifunctional sul-
fate adenylyltransferase/adenylyl sulfate kinase forming APS
as an intermediate and then PAPS (3’-Phosphoadenosine-5'-
phosphosulfate) as a final product. PAPS is then reduced to
sulfite with 3’-phosphoadenosine-5-phosphosulfate reductase
(PAPS reductase, commonly known as cysH-thioredoxin) [66].
Both enzymes have mitochondrial localization based on our
prediction analysis (Supplemental Table 1, Fig. 3D). Our analysis
cannot determine whether the sulfate reduction enzymes are
ATP-dependent or PPi-dependent enzymes. Sulfite reductase,
which catalyzes the conversion of sulfite to hydrogen sulfide,
was not expressed in any sample, indicating that N. stella may
perform incomplete sulfate reduction to sulfite. The expression
levels of sulfate reduction genes are markedly lower compared
to those of sulfite oxidation genes, with a ratio of 1:1000
(Fig. 3C and D). Such findings suggest that the N. stella is not
allocating significant energy resources towards sulfate reduction.
To understand its role, further experimental investigations
are required. Collectively, these data demonstrate that both
assimilatory sulfate reduction and sulfite oxidation pathways
coexist in SBB N. stella.

N. stella expressed four multicopper oxidase (MCO) proteins
(Fig. 3E) that range in size from 250 to 445 amino acids. Con-
served domain-search revealed that N. stella MCOs all belong to
the two-domain multicopper oxidases (2dMCO) that consist of 2
cupredoxin-like domains and copper ligands arranged in four con-
served motifs (HXHG, HXH, HXXHXH, and HCHXXXHXXXXM/L/F).
This is a typical structure for bacterial MCOs and bacterial and
eukaryotic laccases [67, 68]. MCO enzymes are exported across
outer membranes and can oxidize various metals such as Fe (1),
Cu (I), and Mn (II). We did not detect the expression of man-
ganese peroxidase in our data. Certain bacteria can oxidize Mn
(I) as an electron source to supplement the energy required for
chemolithoheterotrophy [69]. Localization analysis supports that
N. stella MCO genes have signal peptides enabling the translo-
cation of MCO proteins into membranes of organelles or extra-
cellular vesicles. Only one of the MCO genes has a mitochon-
drial localization signal (Supplemental Table 1). In general, most
copper-containing proteins are extracellular enzymes [68]. These
N. stella MCOs were annotated as manganese oxidase (MoxA;
E.C. 1.16.3.3) based on KEGG annotation. Protein domain analysis
using two databases: Laccase and Multicopper Oxidase Engineer-
ing Database (LccED, Swiss-Model Protein, respectively) showed
the closest match is laccase and laccase-like enzymes [69]. We
suspect that N. stella MCOs are laccase-like enzymes that may
also be capable of oxidizing manganese, but this function must
be addressed experimentally. Proteins responsible for Fe?*/Mn?*
uptake were expressed in all samples (Fig. 3E), indicating the
capacity of N. stella to store intracellular iron and manganese,
essential cofactors for various enzymes (e.g., superoxide dismu-
tase, Fructose 1,6-bisphosphatase).

Discussion

Our results demonstrate that these N. stella populations possess
an impressive array of metabolic pathways (Table 2) enabling
the utilization of both organic and inorganic compounds to
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Table 2. Metabolic pathways performed by SBB N. stella.

Metabolism Localization Similarities Novel to Novel to Initial documentation in
foraminifera eukaryotes foraminifera

Dark carbon fixation via CBB Kleptoplast Bacteria, archaea No No This study[11]

Fumarate reduction Mitochondria Anaerobic protist No No [10]

Denitrification Mitochondria and Fungi and foraminifera =~ No No [23, 98]
associated symbionts

Fermentation Mitochondria and Fungi and protist No No [11, 98]
cytosol

Proton-pumping Mitochondria Plants Yes No This study

pyrophosphatases (H + PPases)

Unconventional anaerobic Mitochondria Eukaryotes and fungi Yes Yes This study

respiration via HyO, reduction

(PPK)-acetate kinase (Ack) Mitochondria and Bacteria, archaea Yes Yes This study

pathway cytosol anaerobic protist, plants

Cysteine synthase pathway Mitochondria and Bacteria, archaea and Yes No This study
cytosol ciliates

PEP-pyruvate-oxaloacetate Mitochondrial and Anaerobic protist and Yes No This study
cytosol plants

Pyrophosphate-dependent Mitochondria and Bacteria, archaea and Yes No This study

glucose metabolism cytosol eukaryotes

Sulfate reduction/assimilation Mitochondria Photosynthetic No No This study

eukaryotes

Sulfite oxidation as energy and Mitochondria Bacteria, archaea and Yes Yes This study

electron donor ciliates

Manganese oxidation and Cytosol and Bacteria, archaea and Yes No (onlyin  This study

manganese/iron transporter membrane-bound fungi fungi, refs, 87
enzymes and 88)

sustain the flow of electrons and generate energy. These pathways
potentially augment CO, assimilation through the CBB cycle in
the absence of light and oxygen. Thus, N. stella that live among
the microbial mat of the euxinic SBB seafloor are examples of
chemolithomixotrophic protists.

Inorganic carbon assimilation

The ability of foraminifera to sequester diatom chloroplasts and
to retain the function of these chloroplasts for assimilating inor-
ganic carbon has been reported in several species that inhabit
shallow and intertidal photic zones [3, 7]. Although the SBB N.
stella live far below the base of the euphotic zone and sequester
Skeletonema pseudocostatum chloroplasts [4, 11], the full functional-
ity of these organelles had not yet been demonstrated. This work
reports the high expression of rbcL genes alongside chloroplast-
related proteins (Fig. 1A), suggesting the likely functionality of
these sequestered chloroplasts in inorganic carbon assimilation
via CBB. Additionally, the expression of PSI, PSII and ATP synthase
provides further evidence that the thylakoid membrane is intact
and functional (Fig. 1A-D; Supplemental Fig. 1A).

The functionality of N. stella’s CBB pathway was brought into
question, however, when our data revealed trends of two key
genes: phosphoribulokinase (PRK), which was downregulated, and
sedoheptulose-bisphosphatase (SBPase), whose gene expression
was not detected. Previous studies showed that SBPase expres-
sion is not essential for the functionality of the CBB pathway in
chemolithoautotrophic bacteria, where autotrophic CO, fixation
is mediated by transaldolase, substituting for SBPase in the CBB
cycle [70]. Similarly, in cyanobacteria, the enzyme FBPase can per-
form a bifunctional role, hydrolyzing both FBP and SBP [71]. In the
CBB cycle regeneration phase, both PRK and SBPase genes are not
redox regulated in diatoms, unlike in plants [71]. A recent study
that designed a mutant PRK gene and tested its function in the
green algae Chlamydomonas reinhardtii showed that CBB activity

was retained even if PRK expression was downregulated, with
maximal photosynthetic activity retained at 86% PRK expression
[72]. Furthermore, in many metazoans and protists with func-
tional plastids, neither PRK nor SBPase were detected in genomic
and transcriptome data, suggesting that their plastid functional
stability is the result of long-term maintenance of cryptic algal
proteins that persist months after acquiring the chloroplast from
algal prey [73]. Additionally, in the green N. stella samples, the
expression of plastid-targeting proteins such as CP12, cytochrome
C6, and FCP [41, 74] (Fig. 1D) suggest that all proteins essential to
an active CBB cycle are maintained. These findings suggest that N.
stella is capable of fixing inorganic carbon in dark euxinic niches.

To assess if the CBB cycle is active, an in situ incubation, using
H3CO3~ as substrate, was executed. Changes in §3C values of
the POC pool in surface sediments after the in-situ incubations
using injector pushcores were minimal and comparable to
sediment values with unlabeled seawater. These POC samples
were acidified with concentrated acid (12 N HCI, 300 l, overnight),
but were not purged with He or N to physically displace inorganic
carbon. Without purging, it is possible that *CO,~ could adhere
to surfaces or remain dissolved, however, given the small sample
volumes (<1 ml) and acidic pH we expect the inorganic pool to
move quantitatively to the gaseous CO, pool. Of note, the N. stella
tests are very thin, around 1-2 microns thick [75], and should
dissolve readily during acidification. If this acidification was not
successful, we would expect a small positive excursion in all mea-
sured isotopic values. Estimates of this excursion are +1 permil if
100 pul of incubation water (~5 mM HCO5~ at 50 atom%) adhere to
the samples (i.e. remained through acidification). Rather, isotopic
values from in situ incubated samples displayed a trend toward
13C enrichment up to 3x this estimate, consistent with some
uptake of the C label over the 23-hour incubation. Because
these in situ incubations included the whole community, rather
than targeting only the foraminifera, these values are expected
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to underestimate uptake of labeled inorganic carbon by the
foraminifera. This underestimate stems from the assumption
that the >63-um sediment fraction contains foraminifera plus
other large contributors to the organic carbon pool (e.g., other
large protists, metazoan meiofauna, detritus) that would not
incorporate the label. For the §23C of the POC pool to become more
enriched requires the addition of 3C and if we assume only the
foraminifera (specifically N. stella) were assimilating this carbon in
the >63-um size class then this net assimilation underestimates
the foraminifera-specific assimilation rates. Another possibility is
thatlabeled bicarbonate was incorporated by phagocytosis of bac-
terial or archaeal autotrophs by the foraminifera, although SBB N.
stella typically does not phagocytose (Supplemental Fig. 1B and C;
[11]) and these incubations were conducted in the absence of
sediments. Prokaryotes could possibly have been carried over
into the incubations because they remained stuck to the surface
of the picked and filtered sterile seawater-washed foraminifera
used for the incubations. Alternatively, the more positive §3C
values of the POC could be explained by preferential removal of
2C through respiration. We cannot exclude this possibility either.
However, if we take together the §*C isotopic values and the
N, production values, a trend exists between N, production and
more positive §'3C values. This is consistent with heterotrophic
denitrification or coincident denitrification and inorganic carbon
assimilation. Certain foraminifera are known to conduct complete
denitrification through anaerobic and aerobic processes. N,O
production, an intermediate produced within the denitrification
pathway, was also observed, but did not show a trend with §13C
values. However, due to the heterogeneous nature of the sediment
samples, it is impossible to verify that either the N, production
or the change in carbon isotopic values was exclusively due to
N. stella activity. To shed light on the role of N. stella and its
kleptoplasts in the CBB cycle, a more targeted incubation study
was conducted to distinguish if the observed isotopic shift was
due to a loss of >C or an uptake of *C.

N. stella isolated from and cleaned of SBB sediments were
incubated in the laboratory with '3C-labeled bicarbonate and
movement of the tracer into their biomass was tracked. Move-
ment of the labeled *C from the dissolved inorganic carbon (DIC)
pool to the N. stella pool was consistent with either *C exchange
between DIC and POC (the foraminifera were measured after acid-
ification treatment to remove inorganic material) or active carbon
uptake into the N. stella cellular biomass. N. stella in the control
treatments (HCOs;~, sulfide and nitrate or ammonium but no
13C-label) showed isotope values consistent with marine organic
carbon (§'*C~ —22%0) and not marine inorganic carbon (—5%),
consistent with effective removal of the inorganic shell material
(and suggesting purging with He or N, was not needed). If shell
carbonate remained, it would push our isotopic data more positive
(toward —5%o), a trend not observed in this data set (Table 1,
Supplemental Fig. 6A). Similarly, the lack H3*CO3~ removal due to
the lack of purging with He/N, in the acidification step of sample
processing would shift measured values positive relative to values
for marine organic carbon and at most by +1 permil (assuming
100 ul of incubation waters remained after filtering). We do not
see this change between our no-isotope (**C) control and our
nitrate amendments, which were not significantly different than
the no-'3C controls (Supplemental Fig. 6A). The consistency of the
nitrate-amended sample values with the no-isotope control and
marine organic material is consistent with the removal inorganic
H3CO5~ prior to measurement (i.e. acidification was sufficient
to remove DIC). In the presence of nitrate, N. stella biomass was
enriched in *C but enrichment was not significantly different

from control incubations at this sampling effort, suggesting added
nitrate did not stimulate prolonged carbon uptake. Ammonium
amendments showed a more striking trend. With ammonium
added to incubations, the §'*C of the N. stella biomass was about
3.2%o enriched after 20 hour of incubation. These shifts in §*3C
of the N. stella biomass can be placed in context by calculat-
ing the total additional carbon that would have to be added
from the H*3CO;~ pool to achieve these isotopic signatures. As
described, N. stella has an average calculated biomass of 0.06 ug
C/individual. To shift the isotopic signature of this organic pool
in the ammonium amended incubations to the measured values
would require between a~0.13% and 0.5761% (Table 1) addition
of biomass C in the nitrate and ammonium-amended incubations
respectively, over a 20-hour incubation. This determination is
without consideration of inorganic carbon in the foraminifera
tests, as the tests were removed by acidification prior to analysis.
The No Isotope Control foraminifera underwent the same sample
preparation steps. However, this could be an underestimation of
carbon uptake if non-active specimens (i.e. dead or dormant; [76])
were included, or if adhered detrital carbon associated cells were
included in the incubation pool. The isotopic shift was similar
between N. stella isolated using red light and white light, suggest-
ing the limited exposure to potentially PAR was not a determinant
in C-uptake. C-uptake was not as pronounced in nitrate amended
incubations as in ammonium amended incubations, resulting in
<1%o shift in uptake even after 20 hours. This could be because
ammonium was already reduced and more efficiently assimilated
into biochemical pathways than nitrate. The combined evidence
from metatranscriptomic analyses and the incubation studies
suggest SBB N. stella incorporate inorganic carbon into biomass,
likely using the CBB pathway; such abilities support the assertion
that SBB N. stella have chemoautotrophic capabilities.

Energy sources and oxygen-independent
metabolism

We focused on identifying pathways in the metatranscriptome
data for utilization of organic carbon and inorganic sulfur com-
pounds to discern the strategy used by N. stella to generate energy
and reducing equivalents (i.e. NADPH/NADH) from metabolites
necessary for fixing CO, in darkness and euxinia. Our findings
revealed robust expression of genes involved in anaerobic oxida-
tion of sulfide across all our samples. Although sulfide oxidation is
a common feature in mitochondria across a wide range of organ-
isms, from micro-eukaryotes to humans, hydrogen sulfide (H,S)
can meet energy demands during hypoxia and regulate electron
flow in the electron transport chain. Specifically, H,S may influ-
ence the reduction of malate to succinate, thereby facilitating ATP
production under low-oxygen conditions [77, 78]. We hypothesize
that sulfide oxidation plays a significant role as an electron donor
to sustain electron flow in N. stella. These electrons can then be
transferred by cytochrome C-type proteins across the chloroplast
thylakoid membrane generating a pmf for the generation of ATP
via kleptoplast ATP synthases, ultimately allowing for carbon fix-
ation via CBB cycle (Fig. 2). Previous experimental studies reported
that diatoms meet their energy needs for carbon assimilation
through energy exchange from mitochondria to plastids [79]).
Additionally, it is established that nucleotide transporters (NTTs)
transfer ADP/ATP from the cytosol to the diatom’s plastids [80].
Also, the fact that photosystems I and II were active suggests
that cyclic electron flow (CEF) can be an alternative pathway for
translocating extra protons into the lumen [81].

It is unlikely that the N. stella in this study were performing
aerobic respiration at the time of sample collection and
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fixation because the habitat sampled had undetectable oxygen
and was highly sulfidic. Further, N. stella inconsistently expressed
cytochrome c¢ oxidase subunits across all pooled samples
(Supplemental Fig. 8). Our data showed that N. stella have
adopted several oxygen-independent carbon catabolic pathways
(Fig. 2). The absence of pyruvate carboxylase, and the initial
metabolic link of the TCA cycle (ie. citrate synthase, [10]),
collectively suggest that N. stella’s central carbon metabolism
operates independently of the canonical TCA cycle and oxidative
phosphorylation, which are the typical eukaryotic strategies for
thriving in anoxic habitats [82]. N. stella has evolved metabolic
pathways specialized for extended glycolysis metabolism and for
metabolizing organic compounds, amino acids, and simple sugars.
These pathways bear resemblance to those observed in an anaero-
bic flagellate protist [83, 84]. Our findings document the expressed
anaerobic pyruvate-formate lyase and phosphoketolase (PPK)
in a foraminifer (Figs2 and 3B). Phosphoketolase expression
noted because this enzyme has the potential to enhance carbon
flux, preventing carbon loss [55] by producing high energy
acetyl-phosphate and G3P or E4P from any phosphate sugar
manufactured by the phosphate pentose pathway (PPP) or CBB
cycle [85]. This ability is thought to be unique to bacteria, algae,
and some fungi; but it appears that foraminifera as well can grow
on pentose sugar (i.e. xylose) as a carbon source [86]. Moreover,
SBB N. stella can use the supply of G3P in the penultimate step of
glycolysis to create additional ATP and NADPH.

Micro-eukaryotes with a reduced mitochondrial genome,
adapted for an anaerobic lifestyle, usually rely on extended
glycolysis and fermentation for ATP production [84, 87, 88]. N. stella
from SBB does things differently. Specifically, N. stella expresses
the typical pyruvate kinase (PK) as well as an uncommon enzyme,
pyruvate phosphate dikinase (PPDK), and it uses inorganic
pyrophosphate (PPi) to convert phosphoenolpyruvate (PEP) to
pyruvate. Together with PPi-PFK, these enzymes conserve ATP
consumption. This allows the generated ATP from glycolysis
and fermentation to be utilized for more efficient cellular
functions. PPDK has solely been identified in a few anaerobic
protists, offering a selective evolutionary advantage to those
lacking aerobic mitochondria [84, 89]. PPDK is usually localized
to the cytosol or chloroplast in C4 plants [87, 90]. The PPDK
in N. stella is, however, uniquely localized to mitochondria
(Supplemental Table 1). It appears that N. stella has metabolic
pathways to augment their pyruvate flux (Fig. 2). Malate produced
from the peroxisomal glyoxylate cycle [10] can be converted
it into pyruvate through malic enzyme (ME), or to OAA and
then pyruvate by malate dehydrogenase and oadA, respec-
tively (Fig. 2). The utilization of oxygen-independent pyruvate
metabolism with PFL and the previously reported PFOR [10, 11]
also highlight that the central route for ATP and acetyl-CoA
generation in N. stella is consistently specialized to anoxia/euxinia.
These results show the evolutionary convergence between the
metabolism of N. stella and fungal, bacterial, and archaeal
metabolisms [91].

Inorganic pyrophosphate metabolism

Membrane-bound H*-pyrophosphatases (H*-PPases) generate a
pmf by hydrolyzing inorganic pyrophosphate (PPi), a high-energy
metabolite that potentially supports ATP production (see Figs 2
and 3A) [69]. Although H*-PPases have been previously identified
in various protist species [92-94], our study reports their presence
in foraminifera. In addition to hydrolyzing PPi, H" -PPases can also
synthesize PPi, which can serve as an energy source for several
glycolytic metabolic pathways.

Energy production through PPi hydrolysis is considered the first
energy source in the origin of life [92, 95, 96] and is used as
an alternative or additional energy source when ATP production
through ATPase synthase is low, although this point is debated
[96]. Recent studies showed that certain benthic foraminifera
store high concentrations of inorganic phosphate intracellularly
[97]. The ability of benthic foraminifera to hydrolyze organic crea-
tine phosphate was reported [98]. Here we show that foraminifera
can utilize inorganic pyrophosphate via H*-PPases to maintain
the mitochondrial proton gradient (Figs 2 and 3A). These findings
shed light on the key role of synthesis and hydrolysis of inorganic
pyrophosphate through the H-PPase in N. stella, and the likely
importance of this as an evolutionary adaptation for generating
and conserving energy in an anoxic realm.

We also observed that SBB N. stella express PPi-dependent gly-
colysis using PPi-PFK, PPi-PPDK, and, possibly, the PPi- dependent
sulfate reduction pathway, indicating PPi is an energy substitute
to ATP, a unique evolutionary trait only known to date in bacteria
and archaea, anoxia-tolerant plants, and a few amitochondriate
anaerobic protists [46, 99, 100]. The utilization of PPi-dependent
metabolism as an evolutionary strategy to meet the cell’s energy
demands when oxygen is scarce or absent is now expanding to
include this foraminifer that thrives in anoxic, sulfidic seafloor
sediments.

Non-chloroplastidic sulfate assimilation

A recent correlative TEM-NanoSIMS (Nanoscale Secondary
Ion Mass Spectrometry) study of kleptoplastidic and non-
kleptoplastidic benthic foraminifera species from varied marine
environments showed their ability to uptake inorganic nitrogen
(ammonium or nitrate) and sulfate into their biomass [101],
suggesting an assimilatory function. We identified a sulfate
assimilation pathway in N. stella and our amino acid sequence
analysis suggests that sulfate assimilation is localized to the
mitochondria, independent from kleptoplasts. In photosynthetic
eukaryotes, sulfate assimilation is localized to the chloroplasts,
whereas it is cytosolic in non-photosynthetic eukaryotes [102].
The chloroplastidic protist Euglena gracilis is the only known
exception, where the pathway is localized to mitochondria [102],
suggesting that sulfate assimilation in eukaryotes is not strictly
associated with chloroplasts. Thus, the SBB N. stella is the second
known chloroplastidic eukaryote to localize ammonium and
sulfate assimilation in their mitochondria.

Putative genes involved in redox reactions

In SBB, N. stella thrives within a sulfur-oxidizing microbial
mat where pore waters can be rich in hydrogen peroxide.
N. stella’s superoxide dismutase, an enzyme that scavenges
superoxide radicals to produce oxygen and hydrogen peroxide,
were highly expressed (Supplemental Fig. 9), consistent with
prior observations [10]. It was hypothesized that SBB N. stella
and some other foraminiferal species use catalase to cleave
H,0; to provide O, to support aerobic respiration [103]. N. stella
possesses and expresses an ROS defense system, the eukaryotic
catalase/peroxidase (KatG/CAT) [10]. This is an efficient enzyme
that protects against high (up to millimolar) concentrations of
H,0, by cleaving H,0, into water and O, [53]. Hydrogen peroxide
metabolized by catalase (KatG/CAT; Supplemental Fig. 9) can
be utilized for beta-oxidation in peroxisomes, assuming that
catalases are situated near the peroxisomes [10]. However, we also
detected the expression of the mitochondrial heme-containing
cytochrome C peroxidase (Ccp) in our data across all samples
(Figs 2 and 3A); this enzyme can contribute to H,O, metabolism,
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but its exact function requires dedicated experimental study. Ccp
functions differently in eukaryotes and bacteria. For example,
in fungal mitochondria, the Ccp catalyzes H,0, reduction, and
its expression increases during aerobic respiration to protect the
cells against oxidative stress [104]. N. stella expresses Ccp under
euxinic environmental conditions and is not likely performing
aerobic respiration. An experimental study identified Ccp as a
respiratory oxidase that uses H,O, as a terminal electron acceptor
in E. coli when oxygen is not available [48]. Furthermore, the same
study showed that the activity of Ccp and fumarate reductase
(QFR) were comparable, where QFR used fumarate as a terminal
electron acceptor and contributed to increased H,0, production,
suggesting both enzymes may be co-regulated to maintain
cellular redox balance [48]. An experimental study linked an
increased concentration of H,O, to high concentration of ATP
in N. stella and a coexisting foraminifer with copious peroxisomes
(Buliminella tenuata) [103]. Based on our observations, H,O, may
be an alternative respiratory substrate besides nitrate in SBB N.
stella, however, additional experimental evidence is required to
resolve this possibility.

To date, the presence of multicopper oxidases identified as
manganese oxidases and laccases have been only reported in
fungi and bacteria, with few of those studies verifying the function
experimentally [69, 105]. The fungal laccase belongs to MCO
and works together with manganese peroxidases to oxidize Mn
II to Mn IV to degrade the lignocellulose and yield H,O, [106].
The expression of candidate 2d MCO genes with amino acid
sequence similarity to laccase and laccase-like manganese oxi-
dases in N. stella suggests they may play roles in metal oxidation
(Figs 2 and 3E). It is unclear if N. stella’s MCOs perform similar
functions as in basidiomycete fungi, where Mn (II) oxidase and
peroxidase cooperate in degradation of lignin and xenobiotics to
produce Mn (III) and H,0, [107]. A benthic foraminifera species
from Antarctica was able to uptake dissolved organic matter
[108], however, those enzymatic and biochemical processes were
not identified. We hypothesize that SBB N. stella are using their
laccase-like enzyme for degradation and oxidation of organic
matter. Experimental verification is required to test this hypothe-
sis. Additionally, it is thought that N. stella and other foraminifers
in oxygen-depleted environments incorporate soluble Mn (II) into
their calcium carbonate test or shell in a ratio with calcium that is
proportional to the in situ seawater oxygen concentration (e.g. [75,
109, 110]), thus allowing Mn/Ca to serve as a proxy for reconstruct-
ing past dissolved oxygen concentrations. Unfortunately, the SBB
N. stella Mn/Ca did not fit expectations, revealing lower than
predicted Mn/Ca ratios [75]. This observation, together with the
presence of MCO enzymes, suggests N. stella may be utilizing Mn
(1) for other biochemical processes, for instance, to maintain the
redox potential of the chloroplast, to reduce superoxide or nitrate
to provide electrons for various biochemical processes including
denitrification and/or, possibly, carbon fixation. The fact that N.
stella has abundant peroxisomes (Supplemental Fig. 1B and C;
[6]) and all samples had high expression of superoxide dismutase
(SOD) suggests that oxygen made by SOD can be used for man-
ganese oxidation without being constrained by catalase activity
[111]. To understand the link between Mn (II), carbon fixation,
and denitrification, incubation experiments are required to pro-
vide evidence that N. stella can perform dark-driven manganese
oxidation.

In conclusion, we show that in situ-preserved N. stella, a pop-
ulation that lives in aphotic (dark) anoxic to sulfidic sediments
of the SBB, relies on oxygen-independent carbon metabolism and
uses both organic and inorganic (sulfide and Mn II) substrates

as energy and electron sources. The ability of N. stella to retain
functional chloroplasts to fix carbon via the CBB cycle is sup-
ported by both gene expression and isotope analysis. Our findings
support the assertion that N. stella is a micro-eukaryote with
metabolic pathways to support chemolithomixotrophy. The versa-
tility of this kleptoplastidic foraminifera and its unique mitochon-
dria metabolism represents an evolutionary puzzle that should
change how we perceive the origin and diversification of eukary-
otes on Earth and bolster the need to study dark euxinic habitats
elsewhere.
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