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Directed C–H activation with iron carbene
complexes†

Zachary S. Lincoln, Melissa R. Hoffbauer and Vlad M. Iluc *

The reactivity of PCcarbeneP iron carbenes, [{PC(sp2)P}Fe(L)(N2)] (1-L, L = NCtBu, PMe3), was investigated

toward imines, ketones, diazenes, 2-vinylpyridine, and 8-methylquinoline, and revealed the directed acti-

vation of aryl, vinyl, or benzyl C–H bonds by 1,2-addition across the iron-carbene bond. Our results

support a syn 1,2-addition of these bonds, suggesting a metal–ligand cooperative process for the acti-

vation of these substrates. These findings highlight the potential of iron-carbene complexes in C–H acti-

vation processes, and deviate from the traditional mechanisms employed for iron promoted C–H

activations.

Introduction

Transition metal-catalyzed C–H activation has been of great
interest as an econonomical and environmentally friendly
alternative to traditional cross-coupling reactions.1–6 Usually,
to achieve positional selectivity, directing groups within the
substrate of interest are used,7 allowing for chelation-assisted
C–H activation and resulting in cyclometalated species that
can either be isolated and used for catalysis, or are transient
species during functionalization.8 Though catalytic C–H acti-
vations have been highly desirable for many years, the use of
iron complexes for C–H activation has been only recently
reported.9–11 As such, mechanistic understanding of these
systems is lacking, and good ligand scaffolds have yet to be rea-
lized. Pioneering work showed that low-valent iron(0/II) com-
plexes can stoichiometrically activate certain C–H bonds via
oxidative addition or σ-bond metathesis mechanisms (Fig. 1A
and B).12 Modern reactions can be achieved catalytically, and
typically employ iron(III) species alongside the use of directing
groups within the substrate.13

Transition metal complexes employing pincer-type ligands
have been shown to be catalytically proficient in a number
of C–H activation reactions,14–16 as they closely control the
environment of the transition metal and can even be involved
in the reaction as the metal and ligand work cooperatively.17,18

Compounds containing PCcarbeneP, whereby the pincer
complex contains a central-carbene moiety, have shown

promise in E–H (E = H, B, C, N, O, Si, Ge) activations by acces-
sibility of a 1,2-addition across the metal–carbene moiety
(Fig. 1C).19,20 Despite the breadth of 1,2-addition reactions dis-
played by PCcarbeneP complexes, C–H activations have been

Fig. 1 (A and B) Examples of C–H activation promoted by iron-com-
plexes. (C) E–H activations with PCcarbeneP complexes. (D) This work:
directed C–H activations across an iron–PCcarbeneP bond.
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limited to classical substrates such as acetonitrile, alkynes,
and 9,10-dihydroanthracene.21–23

Considering the established reactivity of PCcarbeneP com-
plexes toward small molecule activation, we sought whether
the use of substrates incorporating directing groups could
undergo directed C–H activation with an iron PCcarbeneP
complex, denoted as [{PC(sp2)P}Fe(L)(N2)] (1-L, L = NCtBu,

PMe3). Herein, we discuss the directed C–H activations of a
variety of substrates using an iron carbene, resulting in cyclo-
metalated species. These results showcase that a cooperative
1,2-addition occurs with the iron-carbene moiety, displaying
unique reactivity from the typical oxidative addition and σ-
bond metathesis mechanisms invoked for iron-promoted C–H
bond activation.

Results and discussion

Imines have been extensively explored as directing groups
for C–H activation owing to the strong coordination of the
N-group to transition metals.24 As such, we explored the reac-
tion of N-benzylideneaniline towards 1-NCtBu. Addition of one
equivalent of N-benzylideneaniline to a diethyl ether solution
of 1-NCtBu or 1-PMe3 results in the precipitation of a green
solid immediately. NMR analysis of this material reveals a new
paramagnetic compound in 29% yield, which was identified as
the cyclometalated imine, [{PC(sp3)HP}Fe(–CAr–CHvNPh–)] (2)
by X-ray crystallography (Scheme 1 and Fig. 2). C–H activation
of the ortho-position of the carbon-aryl group is evident with a
new Fe–C(52) bond of 1.990(2) Å, which is in the typical range
of other iron(II)-aryl complexes.12,25 Loss of the carbene charac-
ter is indicated by lengthening of the Fe–C distance from
1.898(2) Å in 1-NCtBu 26 to 2.127(1) Å – which is consistent
with other reported [PC(sp3)HP] iron complexes,26–28 and iron
(II)-alkyl complexes.29,30 The CvN bond experiences only
minimal elongation to 1.303(2) Å, and is in range for other iso-
lated iron-imine chelates.12,31–33 Compound 2 is square-pyra-
midal, with the two carbon groups trans to one another and
C–Fe–C(52) angle of 162.61(5)° and P(1)–Fe–P(2) angle of
156.23(2)°. The five-membered ring achieves the ideal value of
540° for a five-membered metallacycle, with the sum of the
internal angles at 540.0°. The solution-state magnetic momentScheme 1 Synthetic routes to 2–4 from 1-L.

Fig. 2 Molecular structures of 2, 3, and 4. Most H atoms have been omitted for clarity, atomic displacements are displayed at the 50% probability
level. Selected distances (Å) and angles (°) for 2: Fe–C, 2.127(1); Fe–C(52), 1.990(2); Fe–N(1), 2.1189(9); N(1)–C(5), 1.303(2); Fe–P(1), 2.2160(4); Fe–
P(2), 2.2599(4); C–Fe–C(52), 162.61(5); P(1)–Fe–P(2), 156.23(2). Selected distances (Å) and angles (°) for 3: Fe–C, 2.102(3); Fe–C(62), 1.927(2); Fe–
O(1), 1.973(2); C(5)–O, 1.272(3); Fe–P(1), 2.288(1); Fe–P(2), 2.2272(8); Fe–N, 1.949(2); C–Fe–O(1), 171.3(1); P(1)–Fe–P(2), 159.3; N(1)–Fe–C(62),
169.1(1). Selected distances (Å) and angles (°) for 4: Fe–C, 2.091(1); Fe–C(62), 1.869(1); Fe–N(1), 1.901(1); N(1)–N(2), 1.312(1); Fe–P(1), 2.2590(5); Fe–
P(2), 2.2398(5); C–Fe–N(1), 178.41(5); P(1)–Fe–P(2), 157.16(2).

Research Article Inorganic Chemistry Frontiers

5580 | Inorg. Chem. Front., 2024, 11, 5579–5586 This journal is © the Partner Organisations 2024

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
8 

Ju
ly

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
/2

5/
20

25
 8

:2
2:

38
 P

M
. 

 T
hi

s a
rti

cl
e 

is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
Li

ce
nc

e.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4qi01088d


was measured, and corresponds to S = 2, pointing to a high-
spin state.

Having established that the strongly coordinating imine
undergoes this directed ortho C–H activation of the aryl group,
we also sought whether the significantly weaker O-director
could also achieve this directed-activation. Though less exten-
sively studied, carbonyl-containing directing groups have
appealed as the more-abundant, easily-handled, and function-
ally useful alternative to imines.34 Young and coworkers
described the 2π + 2π cycloaddition and subsequent β-hydride
elimination of PCcarbeneP cobalt complexes with aldehydes,35

thus we sought ketones as directing groups for C–H activation,
which have previously demonstrated directed C–H activation
and insertion with a yttrium methandiide-derived carbene.36

Addition of one equivalent of benzophenone to a solution
of 1-NCtBu led to the rapid formation of a new paramagnetic
product as indicated by 1H and 31P NMR spectra. X-ray crystal-
lography identified the product as the iron(II) cyclometalated
complex 3, [{PC(sp3)HP}Fe(–CAr–CBzvO–)(NCtBu)], isolated in
39% yield (Scheme 1 and Fig. 2). As with 2, C–H activation of
the ortho-position of the ketone has occurred, and protonation
of the carbene is evident in the crystal structure. The Fe–C dis-
tance 2.102(3) Å and Fe–C(62) distance of 1.927(2) Å are com-
parable to that of 2, though minor decrease in the distances
can be attributed to the cis-arrangement of the two carbon
groups, whereas they are trans in 2. Minimal elongation of the
C(5)vO bond to 1.272(3) Å occurs as a result of coordination
to iron, with a Fe–O distance of 1.973(2) Å – consistent with
other isolated iron cyclometalated ketones.37–39 The newly
formed ortho-metalated ketone ligand has a bite angle of
81.6(1)°, and the sum of the internal angles (539.4°) is close to
the ideal value of 540° for a planar five-member ring. The
phosphines are comparable in orientation to 2 with a P(1)–Fe–
P(2) angle of 159.3(3)°, and the ketone and alkyl groups lie
essentially trans from one another with a C–Fe–O angle of
171.3(1)°. Unlike in 2, the final coordination site is occupied
with a pivalonitrile ligand, likely as a result of the weak elec-
tron-donating capabilities of the ketone. Measurement of the
solution-state magnetic moment is consistent with S = 2, and
suggests a high-spin iron(II) complex.

Though imines and carbonyl compounds are extensively
studied, directed C–H activation of non-traditional directing
groups is also of interest for building complex molecular struc-
tures. Aryl-diazenes represent an interesting class of molecules
in this regard, as they have a wide range of significant appli-
cations, particularly as azo dyes.35 In addition, directed C–H
activation has been shown with diazenes,40 however these
transformations have yet to be catalytically applied to iron-con-
taining systems.

Addition of one equivalent of azobenzene to a sealed NMR
tube of 1-NCtBu or 1-PMe3 led to the slow formation of a new
paramagnetic product, alongside concomitant formation of tri-
methylphosphine and a color change to dark blue. Single crys-
tals obtained from this reaction revealed the formation of the
cyclometalated diazene, [{PC(sp3)HP}Fe(–CAr–NvNPh–)] (4) in
55% yield (Scheme 1 and Fig. 2). As with 3, the activated arene

lies cis to the erstwhile carbene. The Fe–C distance of 2.091(1)
Å is shorter than in both 2 and 3, while the Fe–C(62) distance
is considerably shorter at 1.869(1) Å than in 2, 3, and the
parent carbene (1.9037(18) Å).26 Accordingly, an increase in
the adjacent C–C bonds is observed with the C(62)–C(63) and
C(61)–C(62) distances of 1.411(2) Å and 1.428(2) Å, respectively.
The N(1)–N(2) bond experiences considerable elongation to
1.312(1) Å, which falls between a single and double bond, as
supported by an intermediate single/double bond distance for
N(2)–C(61) of 1.380(2) Å. Despite this, the Fe–N(1) interaction
does not adopt an iron-imido configuration, as the Fe–N(1) dis-
tance of 1.901(1) Å is significantly longer than in reported
iron-imido species.41 The internal angles of the five-membered
metallacycle once again approaches the ideal value of 540°
with a sum of 539.88°, supporting significant aromaticity in
the five-membered metallacycle. Solution-state magnetic
measurements were performed and a spin state of S = 2 was
determined, which was consistent with the high-spin states of
2 and 3. Together, these structural parameters are consistent
with other cyclometalated diazenes isolated by C–H activation
of azobenzenes with first-row transition metals.42

We sought to understand the mechanism by which 2–4 are
formed. The most common mode of C–H activation by iron is
σ-bond metathesis, and the use of directing groups for C–H
activation with iron is relatively rare: examples in the literature
primarily rely on the use of Fe(CH3)2(PMe3)2, through a σ-bond
metathesis mechanism, or transient iron(0) complexes
through an oxidative addition mechanism (Fig. 1A and B).43

On the basis of several reports of metal–ligand cooperative C–
H activation with PCcarbeneP complexes,19 we also propose that
2–4 can be formed by a cooperative 1,2-addition of the ortho
C–H moiety.

To understand whether 2 and 4 could be formed through σ-
bond metathesis, we investigated whether N-benzylideneaniline
or azobenzene would form the respective products when
added to [{PC(sp3)HP}Fe(CH3)]. No reaction was observed with
either substrate, and the addition of benzophenone also did
not elicit any reaction – implying that the iron-carbene bond
of 1 is relevant to the addition reactions observed above
(Scheme 2). Previous studies of palladium PCcarbeneP com-
plexes with silanes and germanes implicated a concerted 1,2-

Scheme 2 Two possible pathways for the formation of 2–4.
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addition mechanism by isolation of the syn-addition inter-
mediate species;44 as such, we propose that 2–4 are formed
through a similar 1,2-addition, as they are also isolated exclu-
sively as the syn-addition products. However, the oxidative
addition of the ortho C–H group and subsequent reductive
elimination of the hydride and carbene cannot be directly
ruled out (Scheme 2).

Having established that directed ortho C–H activation can
be achieved using cooperative action of an iron-carbene
complex, we also sought to study other directed C–H acti-
vations. Another attractive candidate is 2-vinylpyridine, as it
has shown similar reactivity to what was observed with
2–4.32,45,46 Addition of one equivalent of 2-vinylpyridine to a
sealed tube of 1-PMe3 resulted in the slow formation of a
new paramagnetic product by 1H and 31P NMR spectroscopy,
alongside the concomitant release of trimethylphosphine.
Interrogation of this product by X-ray crystallography reveals
the formation of the vinyl C–H activated compound 5,
[{PC(sp3)HP}Fe{–C(sp2)H–CH–Py–}] (Scheme 3 and Fig. 3). Loss
of the carbene character is indicated by the Fe–C distance of
2.104(1) Å, while the Fe–C(5) distance of 1.965(1) Å is slightly
shorter than other reported η1-vinyl iron complexes.47,48 The
C(5)–C(6) distance 1.360(2) Å as well as the C(5)–C(6)–C(61)
angle of 117.3(1)° and the Fe–C(5)–C(6) of 114.98(9)° are
within range for other vinyl η1-vinyl complexes. The Fe–N(6)
distance of 2.083(1) Å is within range of typical iron-pyridine
distances, indicating that no increase in bond order occurs.
The metallacycle once again approaches the ideally planar
value of 540°, with the sum of internal angles at 539.97°.
Complex 5 is a square-pyramidal structure, similar to 2, where
the vinyl group lies cis to the protonated carbene, with a C(5)–
Fe–C angle of 174.00(5)° and P(1)–Fe–P(2) angle of 152.52(2)°.

Solution-state magnetic moment measurements were consist-
ent with S = 1, pointing to an intermediate spin-state, which is
different from the high-spin states of the square-pyramidal
compounds 2 and 4.

When the same reaction was attempted with 1-NCtBu, 5
was not immediately formed. Instead, two new diamagnetic
products are observed in the 31P NMR spectrum at 65.4 and
64.5 ppm in a 95 : 5 ratio. Single crystals obtained from this
reaction revealed the formation of [{PC(sp3)HP}Fe{–C(sp2)H–

CH–Py–}(NCtBu)] (6-NCtBu) (Scheme 3 and Fig. 3). Due to the
similar chemical shifts between the two products, we assign
the other species to be [{PC(sp3)HP}Fe{–C(sp2)H–CH–Py–}(N2)]
(6-N2), though we were unable to isolate this product.26,49

Compound 6-NCtBu is the six-coordinated analogue of 5,
however, isomerization of the cyclometalated vinylpyridine

Scheme 3 Synthesis of 5 and 6 by addition of 2-vinylpyridine to
1-PMe3 and 1-NCtBu, respectively.

Fig. 3 Molecular structures of 5 and 6-NCtBu. Most H atoms have been
omitted for clarity, atomic displacements are displayed at the 50% prob-
ability level. Selected distances (Å) and angles (°) for 5: Fe–C, 2.104(1);
Fe–C(5), 1.965(1); Fe–N(6), 2.083(1); C(5)–C(6), 1.360(2); Fe–P(1),
2.2306(4); Fe–P(2), 2.2567(5); C–Fe–C(5), 174.00(5); P(1)–Fe–P(2),
152.52(2). Selected distances (Å) and angles (°) for 6-NCtBu: Fe–C,
2.105(1); Fe–C(5), 1.905(1); Fe–N(6), 2.015(1); Fe–P(1), 2.2882(4); Fe–
P(2), 2.2358(4); Fe–N(7), 1.946(1); C–Fe–N(6), 171.70(5); C(5)–Fe–N(7),
172.71(5); P(1)–Fe–P(2), 158.23(2).
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occurs such that the vinyl moiety is cis to the erstwhile
carbene. The Fe–C distance (2.105(1) Å) is comparable to the
others discussed herein, while the Fe–C(5) distance is notice-
ably shorter at 1.905(1) Å. Despite this, C(5)–C(6) of 1.365(2) Å,
the C(5)–C(6)–C(61) angle of 114.7(1)° and the Fe–C(5)–C(6)
angle of 117.3(1)° are comparable to 5, suggesting that
6-NCtBu does not adopt a η1-vinyl carbene in the solid state.
This is supported by the solution structure, whereby the vinyl
proton resonates at 11.1 ppm as a triplet ( J = 8.0 Hz), which is
upfield relative to true vinyl carbene metal complexes.50,51 The
13C NMR spectrum paints a more complex picture: the vinyl
carbon resonates as a triplet at 233.5 ppm ( JCP = 28 Hz), which
is within the wide range of reported η1-vinyl metal complexes
(ca. 260–150 ppm),46,52 and in between the closely related vinyl
PCP iron carbenes isolated by cycloaddition of alkynes to
1-PMe3 (242–228 ppm).26 Together, these results point toward
6 being an intermediate species between a true η1-vinyl
carbene and an η1-vinyl metal complex.

Upon heating a solution of 6-NCtBu to 60° C, formation of
5 and free NCtBu is observed, demonstrating that isomeriza-
tion of the vinyl adduct occurs upon loss of a ligand
(Scheme 4). Knowing that 6 is an intermediate in the for-
mation of 5, the mechanism seems to point toward the metal–
ligand cooperative 1,2-addition across the carbene. The mecha-
nism likely proceeds by initial coordination of the pyridine to
the iron center, displacing the majority of the N2 ligand of
1-NCtBu. From here, a 1,2-addition of the vinyl group across
the iron-carbene bond proceeds, leading to the syn-addition
product 6-NCtBu. No observation of the anti-product is
obvious in the solid state or by NMR spectroscopy, suggesting
this is the only mode of C–H activation present with 2-vinylpyr-
idine. Furthermore, because 6-NCtBu undergoes ligand loss
and irreversible isomerization to 5, it is likely that 5 proceeds
through this same mechanism – though the six-coordinate

complex with trimethylphosphine is significantly less stable
and it is never observed by NMR spectroscopy (Scheme 4).

Having established that directed C(sp2)–H activation can be
accomplished by 1 with the use of directing groups, we turned
our attention to whether C(sp3)–H bonds could be activated
in a similar fashion. Several directed C(sp3)–H activation
strategies are known,3,53–55 which have frequently utilized
N-heteroarenes as the directing group. We opted to use
8-methylquinoline to explore the reactivity of 1, as a C(sp3)
analogue of 2-vinylpyridine.

The addition of an equivalent of 8-methylquinoline to a
solution of 1-NCtBu rapidly results in formation of a new para-
magnetic product by 1H and 31P NMR spectroscopy. Single
crystals obtained of this material revealed the formation of the
five-coordinate complex, [{PC(sp3)HP}Fe{–C(sp3)H2–N

quin}] (7,
Scheme 5 and Fig. 4) Once more, loss of the carbene is indi-
cated by a Fe–C distance of 2.087(3) Å, which is comparable to
the other C–H activated products 2–6. The methyl-group of the
8-methylquinoline has undergone C–H activation, indicated by

Scheme 4 Proposed mechanism for the stepwise formation of 6 by
1,2-addition of 2-vinylpyridine to 1-NCtBu to yield 6-NCtBu, from which
ligand loss and isomerization occurs to yield 5. The direct formation of 5
from 1-PMe3 likely proceeds by this same mechanism, with L = PMe3.

Scheme 5 Synthesis of 7 by addition of 8-methylquinoline to 1-NCtBu.

Fig. 4 Molecular structure of 7. Most hydrogen atoms have been
omitted for clarity; atomic displacements are displayed at the 50% prob-
ability level. Selected distances (Å) and angles (°) for 7: Fe–C, 2.087(3);
Fe–C(5), 2.077(3); Fe–N(5), 2.089(2); Fe–P(1), 2.2625(8); Fe–P(2),
2.2331(8); C–Fe–C(5), 174.0(1); P(1)–Fe–P(2), 152.48(3).
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a Fe–C(5) bond of 2.077(3) Å, which is notably longer than any
of the activated Fe–C bonds of 2–6 but within the typical range
for a Fe–C(sp3) single bond. Furthermore, the Fe–N(5) distance
of 2.089(2) Å as well as the C–C distances of the quinoline
moiety are consistent with a coordinated quinoline. As with
2–6, the sum of the internal angles for the five-membered
metallacycle approaches ideally planar at 539.6°, and the phos-
phines experience a similar angle at 152.48(3)° providing 7 as
a pseudo-square pyramidal structure (Fig. 4). The C–Fe–C(5)
angle of 174.0(1)° is nearly identical to that of 5, establishing 7
as the C(sp3) activated analogue.

Notably, 7 appears to be the result of an anti-addition of
C(sp3)H group, as the activated methyl group lies trans- to that
of the carbene. We postulate that 7 follows a similar mecha-
nism to that of 5, whereby generation of an intermediate
species akin to 6-NCtBu occurs, before subsequent ligand loss
and rearrangement. Attempts to observe this species by NMR
were unsuccessful, highlighting that this rearrangement is
more facile than that of 6-NCtBu. Attempts to generate 7 by
addition of 8-methylquinoline to 1-PMe3 were unsuccessful,
even at elevated temperatures, likely as a result of the quino-
line not being able to outcompete the coordination of the tri-
methylphosphine ligand.

Conclusions

In conclusion, this study expands the toolbox of cooperative
C–H activations by PCcarbeneP iron complexes, and shows
that directed ortho C–H activation can be accomplished
with imines, ketones, and diazenes as directing groups.
Furthermore, 2-vinylpyridine leads to stepwise syn 1,2-addition
of the vinyl moiety across the iron-carbon bond, from which
ligand loss and isomerization eventually leads to the apparent
anti-product 5. This reactivity was not limited to C(sp2)–H
bonds, the iron carbene is also activating C(sp3)–H bonds,
specifically the methyl group of 8-methylquinoline. These
results display new reactivity for directed C–H activation by
iron carbene complexes, and point toward the potential for
exploitation of iron-carbene bonds as mediators of C–H acti-
vation processes in catalysis. These results also showcase that
iron PCcarbeneP complexes can be utilized in C–H activation
processes, much like previous examples of PCcarbeneP metal
complexes, opening the door to new iron-ligand cooperative
reactions.
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