2024 |IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) | 979-8-3503-5300-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/CVPR52733.2024.00721

2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models

Jiayi Guo'?; Xinggian Xu'3} Yifan Pu?, Zanlin Ni?, Chaofei Wang?, Manushree Vasu!,
Shiji Song?, Gao Huang?’, Humphrey Shi' 37
ISHI Labs @ Georgia Tech & UIUC *Tsinghua University >Picsart Al Research (PAIR)
https://github.com/SHI-Labs/Smooth-Diffusion

Task 1: Image Interpolation
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Task 2: Image Inversion and Reconstruction
“A train going back to its course filled with people”

Task 3: Image Editing
Replace Item: “rabbit”— “cat”

“A mouse is next to a keyboard on a desk”

Source  Swooth BLff. ‘Stable Diff. Source  Swooth PLff. Stable Diff. Source  Swooth Biff. Stable Diff.
Figure 1. Smooth Diffusion for downstream image synthesis tasks. Our method formally introduces latent space smoothness to
diffusion models like Stable Diffusion [62]. This smoothness dramatically aids various tasks in: 1) improving continuity of transitions in

image interpolation, 2) reducing approximation errors in image inversion, & 3) better preserving unedited contents in image editing.

Abstract

Recently, diffusion models have made remarkable
progress in text-to-image (T21) generation, synthesizing im-
ages with high fidelity and diverse contents. Despite this ad-
vancement, latent space smoothness within diffusion mod-
els remains largely unexplored. Smooth latent spaces en-
sure that a perturbation on an input latent corresponds to
a steady change in the output image. This property proves
beneficial in downstream tasks, including image interpola-
tion, inversion, and editing. In this work, we expose the
non-smoothness of diffusion latent spaces by observing no-
ticeable visual fluctuations resulting from minor latent vari-
ations. To tackle this issue, we propose Smooth Diffusion, a
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new category of diffusion models that can be simultaneously
high-performing and smooth. Specifically, we introduce
Step-wise Variation Regularization to enforce the propor-
tion between the variations of an arbitrary input latent and
that of the output image is a constant at any diffusion train-
ing step. In addition, we devise an interpolation standard
deviation (ISTD) metric to effectively assess the latent space
smoothness of a diffusion model. Extensive quantitative and
qualitative experiments demonstrate that Smooth Diffusion
stands out as a more desirable solution not only in T2I gen-
eration but also across various downstream tasks. Smooth
Diffusion is implemented as a plug-and-play Smooth-LoRA
to work with various community models. Code is available
at https://github.com/SHI-Labs/Smooth-Diffusion.
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1. Introduction

In recent years, diffusion models [12, 24, 62] have rapidly
grown into very powerful tools for generative Al, particu-
larly for text-to-image generation. The remarkable ability
of diffusion models, generating high-quality photorealistic
images from open-book contexts, has been highlighted in
many research and commercial products. Such success has
also inspired various diffusion-based downstream tasks, in-
cluding image interpolation [29, 78], inversion [13, 44, 54,
71,77], editing [21, 42, 45, 55, 69, 75, 81, 82], etc.

Despite the great success in the generation field, dif-
fusion models occasionally produce low-quality results
with undesirable and unpredictable behaviors. Specifi-
cally speaking, for image interpolation, the Stable Diffusion
Walk (SDW) [29] test examines latent space with spheri-
cal linear interpolations, usually resulting in highly fluctu-
ated outputs with unpredictable visual appearance. Exam-
ples can be found in Fig. 1 Task 1, in which such interpo-
lation exhibits undesired sharp changes as well as “cartoon-
ization” on photorealistic dog images, highlighted in the red
box. For the image inversion task shown in Fig. | Task 2,
a naive application of DDIM inversion [71] cannot recon-
struct images faithfully from the sources. Instead, it gener-
ates incorrect colors and object orientations, and misinter-
prets the computer mouse as an animal mouse. For the im-
age editing task shown in Fig. 1 Task 3, one may notice that
only minor text prompt editing can lead to major updates
on image contents and layouts, in which the object (i.e. the
cat’s pose, the horse’s location, the shape of the pizza) can
be wildly and incorrectly altered. Moreover, current diffu-
sion models are unsuited to drag-based editing [69] because
a fine-engineered drag method still has a noticeably large
chance of breaking objects’ shape and semantics.

In this work, we step into an important but under-
explored area: to improve the latent space smoothness of
diffusion models. Our motivation to enhance latent smooth-
ness comes from the real-world demand to improve the out-
put qualities of the aforementioned downstream tasks. A
smooth latent space implies a robust visual variation under
a minor latent change. Therefore, enhancing such smooth-
ness could help improve the continuity of image interpola-
tion, expand the capacity of image inversion, and maintain
correct semantics in image editing. Notably, prior works in
GANSs [32, 33, 68] have demonstrated that the smooth la-
tent space of the generator can significantly improve down-
stream tasks’ quality, offering additional evidence of the im-
portance of this area.

To achieve our goal, we propose Smooth Diffusion, a
new category of diffusion models that can be simultane-
ously high-performing and smooth. We start our explo-
ration by first formalizing the objective for Smooth Dif-
fusion, in which fixed-size perturbations on a latent
noise should produce smooth visual changes on the

synthetic image , rounded to a constant ratio . Al-
though one may think that according to the formulation,
the smoothness constraint could be an accessible train-
time loss. Actually, there is no direct application of such
regularization from inference to training, and the chal-
lenge lies in the fact that in each training iteration (i.e.,
back-propagation), diffusion models optimize only a *“ -step
snapshot” instead of the entire -step diffusion process.

Therefore, we introduce Step-wise Variation Regular-
ization, a novel regularization that seamlessly incorporates
our Smooth Diffusion’s inference-time objective to training.
This regularization aims to bound the 2-norm of output vari-
ation given a fixed-size change ininput atan
arbitrary step . The rationale of the reformulation is intu-
itive: If  and exhibit smooth changes at any , then
the relation between the latent noise (i.e. ) and is
just the accumulation of smooth variations and thus can be
smooth as well. More details can be found in Sec. 3.

In practice, our Smooth Diffusion is trained on top of
a well-known text-to-image model: Stable Diffusion [62].
We examine and demonstrate that Smooth Diffusion dra-
matically improves the latent space smoothness over its
baseline. Meanwhile, we conduct extensive research across
numerous downstream tasks, including but not limited to
image interpolation, inversion, editing, etc. Both qualitative
and quantitative results support our conclusion that Smooth
Diffusion can be the next-gen high-performing generative
model not only for the baseline text-to-image task but across
various downstream tasks.

2. Related Work

Diffusion models are initiated from a family of prior works
including but not limited to [8, 66, 70, 76]. Since then,
DDPM [24] introduced an image-based noise prediction
model, becoming one of the most popular image generation
research. Later works [12, 48, 71] extended DDPM, demon-
strating that diffusion models perform on-par and even sur-
pass GAN-based methods [15, 30-33]. Recently, gener-
ating images from text prompts (T2I) become an emerg-
ing field [11, 19, 28, 47, 62], among which diffusion mod-
els [16, 49, 59, 62, 64] have become quite visible to the
public. For example, Stable Diffusion (SD) [62] consists of
VAE [36] and CLIP [58], diffuses latent space, and yields an
outstanding balance between quality and speed. Following
SD [62], researchers also explored diffusion approaches for
controls such as ControlNet [14, 26, 46, 57, 80, 85, 86, 89—
91, 95] and multimodal such as Versatile Diffusion [6, 41,
73, 88]. Works from a different track reduce diffusion steps
to improve speed [5, 34, 39, 43, 65, 72, 92, 96], or restrict
data and domain for few-shot learning [20, 25, 40, 63], all
had successfully maintained a high output quality.

Smooth latent space was one of the prominent proper-
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ties of SOTA GAN works [9, 31-33], while exploring such
property went through the decade-long GAN research [3,
15], whose goals were mainly robust training. Ideas such as
Wasserstein GAN [4, 17] had proved to be effective, which
enforced the Lipschitz continuity on discriminator via gra-
dient penalties. Another technique, namely path length reg-
ularization, related to the Jacobian clamping in [51], was
adapted in StyleGAN2 [32] and later became a standard set-
ting for GAN-based generators [10, 37, 87, 94]. Benefiting
from the smoothness property, researchers managed to ma-
nipulate latent space in many downstream research projects.
Works such as [7, 50, 68, 83] explored latent space disen-
tanglement. GAN-inverse [1, 2, 52, 84] had also proved
to be feasible, along with a family of image editing ap-
proaches [18, 53, 56, 60, 61, 74, 97]. As aforementioned,
our work aims to investigate the latent space smoothness for
diffusion models, which by far remains unexplored.

3. Methodology

In this section, we first introduce preliminaries of our
method, including diffusion process [24], diffusion inver-
sion [12, 44, 71] and low-rank adaptation [25] (Sec. 3.1).
Then Smooth Diffusion is proposed with its definition, ob-
jective (Sec. 3.2) and regularization function (Sec. 3.3).

3.1. Preliminaries

Diffusion process [24] is a kind of Markov chain that grad-
ually adds random noise €, ~ N (0, I) to ground truth sig-
nal &y ~ p(x(), making xr in a total of T steps. At each
step, The noisy data x; is computed as:

Ty = \/1fﬁtmt—l+ V Btetv t:1a25 7Ta (1)

where (3, is the preset diffusion rate at step ¢. By making
ap=1— 0, a7 = Hthl oy and € ~ N(0, I), we have the
following equivalents:

Ty = /oy 1+ V1 —ae
=vVoxo+ v 1 — OiE,

A diffusion model ey (x;, t) is then trained to estimate €,
from x, by which one can predict the original signal xy by
gradually remove noise from the degraded 7 [71]. This is
commonly known as the backward diffusion process:

— Q1 1 1
Tt—1 =4/ Ty + /1 1/ —1—4/— =1
i Qg i ’ ( Qg1 Qg )

3)
Diffusion inversion [12, 44, 71] targets to recover the exact
backward diffusion process (i.e. Ty, €9 (T, 1), t = 1,...,7T)
from a known final prediction Z. One of the common tech-
nique for such inversion is DDIM inversion [12, 71], which
reverses Eq. (3) under a local linear approximation:

2
t=1,2,---,T. @

. 69(@, t).

— Qg1 — 1 1 —
=,/ Ve (1] —1—y/==1]- 1),
T Qi ARG ( [e7AN] o > ol

“)
where T; represent the estimated z; at time . However,
DDIM inversion is only a rough estimation. For text-
to-image diffusion, a more advanced technique, Null-Text
Inversion [44], optimizes additional null-text embeddings
{@,}I_, for each step t, simulating the backward process
with eg(xy,t, &, ), where € is the input text embedding.
The predicted null-text &, is the null input of the classifier-
free guidance [23] with a guidance scale w:

EG(wtv ta 57 @t) =w- 60(3375; ta 5) + (]- - w) : 60(:1325; tv gt)~
)
Low-rank adaptation (LoRA) [25] is initially proposed
to efficiently adapt large pretrained models to downstream
tasks. The key assumption of LoRA is that the weight
changes required during adaptation maintain a low rank.
Given a pretrained model weight W, € R?** its updated
weight AW is expressed as a low rank decomposition:

Wo + AW =Wy + BA, (6)

where B € R¥™*", A € R"™*F and r < min(d, k). During
adaptation, W is frozen, while B and A are trainable.

3.2. Smooth Diffusion

As previously mentioned, modern diffusion models (DM)
do not guarantee latent space smoothness, creating not only
research gaps between GANs and diffusions but also unex-
pected challenges in downstream tasks. To address these
issues, we propose Smooth Diffusion, a novel class of
high-performing diffusion models with enhanced smooth-
ness over its latent space. The underlining of Smooth Dif-
fusion is the newly proposed training scheme in which we
carried out a Step-wise Variation Regularization to en-
hance model smoothness.

To better explain our aims, we adopt the same termi-
nologies from the standard inference-time diffusion process
(Fig. 2a), involving a T' steps procedure that transforms the
random noise € (i.e., Tr) to the prediction Zy. The over-
all objective of Smooth Diffusion can then be written in
Eq. 7: in which we expect that a fixed-size change A€ on €
(i.e., Az on xy) will finally lead to a non-zero, fixed-size
change AZq on g, up to a constant ratio C':

[AZo|l2 & Cl|Amr|ls = C|Ae])2, Ve, %

Notice that by definition, x is the initial input of the
backward diffusion loop in Eq. 3. Since xr is close to
€ ~ N(0,1), for simplicity, we make them equivalent in
all the following equations.

Nevertheless, one may notice that our inference-time ob-
jective in Eq. 7 cannot be directly transformed into a train-
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(a) Inference-time Diffusion:
Denoising prediction through T steps

\/a:txo
}—) X DM X,
J1—1a.€e

(b) Training-time Diffusion:
Denoising prediction at a single step t

/) T steps

€+ Ae X, + AX,

(or xp + Axyp)

DM

CllAellz = CllAxr|l; < [IAXs|l2, Ve

(c) Inference-time Swmooth Diffusion:
Variation constraint through T steps

\/a:txo
})—)xt + Ax; DM X, + Ax,
a;(e + Ae)

\/1_——

Cy1—acllAellz = CllAx|l; & lIA%,]l2, Ve
(d) Training-time Swmooth Diffusion:
Variation constraint at a single step ¢

Figure 2. Mllustration of Smooth Diffusion. Smooth Diffusion (c) enforces the ratio between the variation of the input latent (||A€||2 or
|Azr||2) and the variation of the output prediction (|| AZo||2) is a constant C'. Training-time Diffusion (b) optimizes a “¢-step snapshot”
of the denoising prediction process in Inference-time Diffusion (a). Similarly, we propose Training-time Smooth Diffusion (d) to optimize
a “t-step snapshot” of the variation constraint in Inference-time Smooth Diffusion (c). DM: Diffusion model.

ing loss function. This is because, in one training iteration
(i.e., back-propagation), diffusion models optimize only a
“t-step snapshot” of the diffusion process (Fig. 2b), where
t is uniformly sampled from 1 to 7". Hence, the proposed
“global” objective (Eq. 7) for the entire T-step process is
not accessible in training. Therefore, we need to reformu-
late our global objective into a step-wise objective shown
in Eq. 8, which can later be integrated into the diffusion
training process as a loss function:

1AZo[l2 & CllAmy[l; = CV1 —ar]| Ael2, Ve, (8)

where C'is a non-zero constant. This step-wise objective in-
dicates that at each training step, variations Ae on € should
imply variations Ax; on x; with a ratio proportional to
/1 —@;. The rationale of Eq. 8 is intuitive: If «; and Zo
show smooth changes at any ¢, then the relation between
the latent noise € (i.e. ©7) and g is just the accumulation
of smooth variations and thus can be smooth as well.

3.3. Step-wise Variation Regularization

While the motivation and formulation of the Smooth Diffu-
sion objective are presented, how to realize such an objec-
tive remains unexplained. Therefore, in this section, we in-
troduce Step-wise Variation Regularization to effectively
integrate the step-wise objective into diffusion training.

We draw inspiration from the regularization tech-
niques [32, 51] adopted in GAN training. The core idea of
Step-wise Variation Regularization is to bound the Jacobian
matrix J. = 0z /e of the diffusion system by minimizing
the following regularization loss at any x, €, and step ¢:

— o~ 2
Lieg = Enzse (VI—|I. ATl —a)”, )

where AZg is the normally sampled pixel intensities nor-
malized to unit length, € is a normally sampled noise
in Eq. 2, and a is the exponential moving average of
V1 —=a;||JFAZg||2 computed online during training. In
practice, we compute Eq. 9 via standard backpropagation
with the following identity:

VI=a|| IS A2 = | Ve(VT —arzs - AZg)||2- (10)

The identity holds since Azg is independently sampled, and
uncorrelated with e.

Next, we prove that the proposed objective in Eq. 9 ex-
actly matches our optimization goal in Eq. 8. One prelimi-
nary result, proven in [32], is that in high dimensions, Eq. 9
is minimized when J. is orthogonal at any € up to a global
scaling factor K (i.e. Jc - JT = K - I). By applying the
orthogonality of J., we have the following:

_ _ 0 _
ITAZ = KIZ AT = K= - Ay = KAe.  (11)
3w0
When L, in Eq. 9 reaches its optimal, we then have:
a=V1-—a|I] AT = VI—@mK||Aell.  (12)

Notice that a = a||AZg||2, since ||AZg||2 = 1 is the afore-
mentioned random unit length vector. Hence, we can finally
reformulate the expression:

U o —
1AZoll2 = —v1 — @l Aell2
= CVI—al| A€z,

which exactly matches our proposed objective in Eq. 8.
To summarize, during training, the Smooth Diffusion ob-
jective encompasses a combination of Lpase and Lyeg:

L= Lbase + /\Eregv

(13)

(14)
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Figure 3. Image interpolation comparison results. For Smooth Diffusion and Stable Diffusion [62], real images (Image A and B) are
inverted into latents using NTI [44]. We perform spherical linear interpolations between latents (also known as Stable Diffusion Walk [29])
and concatenate the resulting images as a transition sequence. VAE Inter. performs interpolations within the VAE space of Stable Diffusion.
ANID [78] first adds noise to real images and subsequently denoises the interpolated noisy images using Stable Diffusion.

where £ denotes the basic training objective of a diffu-
sion model and represents a ratio parameter controlling
the intensity of Step-wise Variation Regularization.

4. Experiments
4.1. Experimental Setup

Baselines and settings. We select the Stable Diffusion [62]
as the primary baseline for all tasks. Additionally, for im-
age interpolation, we adopt a VAE-space interpolation and
ANID [78] as competitors. For image inversion, we inte-
grate Smooth Diffusion and Stable Diffusion with DDIM
inversion [71] and Null-text inversion [44]. For text-based
image editing, SDEdit [42], Prompt-to-Prompt (P2P) [21],
Plug-and-Play (PnP) [75], Diffusion Disentanglement (Dis-
entangle) [82], Pix2Pix-Zero [55] and Cycle Diffusion [81]
are chosen as SOTA approaches. For drag-based image
editing, we compare Smooth Diffusion with Stable Diffu-
sion within the framework of DragDiffusion [69].

Implementation details. Smooth Diffusion is trained atop
pretrained Stable Diffusion-V1.5 [62], using LoRA [25]
finetuning technique. The UNet of Smooth Diffusion is
set as trainable with a LoRA rank of 8, while the VAE and
text encoder are frozen. We leverage the LAION Aesthetics
6.5+ as the training dataset, which contains 625K image-
text pairs with predicted aesthetics scores of 6.5 or higher
from LAION-5B [67]. Smooth diffusion is typically trained
for 30K iterations with a batch size of 96, 3 samples per
GPU, a total of 4 A100 GPUs, and a gradient accumulation
of 8. The AdamW [35] optimizer is adopted with a constant
learning rate of and a weight decay of -

The ratio parameter in Eq. 14 is set to 1. During infer-
ence, the total number of diffusion steps is set to 50 and the
classifier-free guidance [23] scale is set to 7.5.

Evaluation metrics. To evaluate the general text-to-image
generation performance, we report the popular FID [22] and
CLIP Score [58] on the MS-COCO validation set [38]. To
assess the latent space smoothness, we propose an interpo-
lation standard deviation (ISTD) as an evaluation metric. In
specific, we randomly draw 500 text prompts from the MS-
COCO validation set. For each prompt, we sample a pair of
Gaussian noises and uniformly interpolate them from one to
the other 9 times with mix ratios from 0.1 to 0.9. Fed into
diffusion models together with a prompt, we could obtain
a total of 11 generated images, 2 from the source Gaussian
noises and 9 from the interpolated noises. We calculate the
standard deviation of L2 distances between every two ad-
jacent images in the pixel space. Finally, we average the
standard deviations over 500 prompts as ISTD. Ideally, a
zero value of ISTD indicates that consistent and uniform
visual fluctuations in the pixel space for identical fixed-
size changes in the latent space, resulting in a smooth la-
tent space. For image inversion, mean square error (MSE),
LPIPS [93], SSIM [79] and PSNR [27] are adopted to eval-
uate the image reconstruction capability.

4.2. Latent Space Interpolation

Qualitative comparison. The most straightforward way
to demonstrate the smoothness of the latent space is
through the observation of interpolation results between la-
tent noises. In Fig. 3, we present interpolation compar-
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isons between Smooth Diffusion and Stable Diffusion using
real images. To generate these comparisons, we utilize the
NTI [44] to invert a pair of real images into latent noises
sharing the same . We then perform uniform spher-
ical linear interpolations between latent noises (also known
as Stable Diffusion Walk [29]), resulting in 9 intermediate
noises with mix ratios from 0.1 to 0.9. Subsequently, we
concatenate the 11 images produced from these noises to
create an image transition sequence in the figures.

Notably, as highlighted by the red boxes, Stable Diffu-
sion exhibits significant visual fluctuations during the tran-
sition. In particular, the interpolated images may intro-
duce new attributes that are unrelated to the source im-
ages, e.g., the undesired grasslands in the second row
of Fig. 3. In contrast, our approach, Smooth Diffusion, not
only avoids introducing obvious irrelevant attributes in the
interpolated images but also ensures that the visual effects
change smoothly throughout the transition. Additional in-
terpolation results can be seen in supplementary materials.

In addition to Stable Diffusion, Fig. 3 also includes two
other baseline methods for comparison: 1) VAE Interpola-
tion (VAE Inter.), which performs interpolations within the
VAE space of Stable Diffusion. However, the results closely
resemble pixel-space interpolations, with significant degra-
dation of visual details, particularly in the highlighted red
box area. 2) ANID [78], which first adds noise to real im-
ages and subsequently denoises the interpolated noisy im-
ages using Stable Diffusion. In Fig. 3, ANID with a 50-
step scheduler exhibits highly blurred interpolation results.
When ANID operates with a default 200-step scheduler, the
blurring can be alleviated, but the quality of the interpolated
images remains far from satisfactory.

Method ISTD() FID() CLIP Score( )
Stable Diffusion 38.63 12.70 31.46
Smooth Diffusion 16.54 12.10 31.54

Table 1. Quantitative evaluations of image interpolation and
text-to-image generation. We evaluate Smooth Diffusion and
Stable Diffusion [62] with ISTD, FID [22] and CLIP Score [58].
The better results are in bold.

Quantitative comparison. The goal of Smooth Diffu-
sion is to enhance the latent space smoothness without im-
age generation performance degradation compared to Sta-
ble Diffusion. In pursuit of this goal, we employ the ISTD
introduced in Sec. 4.1 to evaluate the latent space smooth-
ness. Additionally, we utilize FID [22] and CLIP Score [58]
to assess generators’ overall performance. The results pre-
sented in Tab. 1 demonstrate that Smooth Diffusion signifi-
cantly outperforms Stable Diffusion in terms of ISTD, indi-
cating a substantial improvement in the latent space smooth-
ness. Furthermore, Smooth Diffusion exhibits superior per-
formance in both FID and CLIP Score, suggesting that the

OO0 (T T T TITTITT [T [T ITT

T O] (T T T TITIT T

Swooth Diff. ILITID Swooth Biff.

ialm T (0 (T T
Figure 4. Image reconstruction comparison results. We inte-
grate Smooth Diffusion and Stable Diffusion [62] with NTI [44]

(column 2 & 3) and DDIM inversion [71] (column 4 & 5).

Method MSE() LPIPS() SSIM() PSNR()

Stable Diff. + DDIM 0.1756 0.5385 0.2662 13.97
Smooth Diff. + DDIM  0.1086 0.4326 0.3418 16.17
Stable Diff. + NTI 0.0156 0.1656 0.6068 25.63
Smooth Diff. + NTI 0.0153 0.1635 0.6102 25.74

VAE Reconstruction 0.0148 0.1590 0.6136 25.98

Table 2. Quantitative evaluations of image reconstruction. We
integrate Stable Diffusion and Smooth Diffusion [62] with DDIM
inversion [71] (row 2 & 3) and NTI [44] (row 4 & 5). MSE,
LPIPS [93], SSIM [79] and PSNR [27] are evaluated. VAE Re-
construction results are provided as the optimal values.

enhancement of latent space smoothness and the overall im-
age generation quality are not mutually exclusive but com-
plement each other when the regularization term is applied
with a suitable strength ratio.

4.3. Image Inversion and Reconstruction

Previous research [32] in the realm of GANs discovered that
a smoother latent space has a positive impact on the accu-
racy of image inversion and reconstruction. We empirically
validate this finding within the context of diffusion mod-
els. In specific, two representative inversion techniques,
DDIM inversion [71] and Null-text inversion (NTTI) [44] are
adopted and integrated with Smooth Diffusion and Stable
Diffusion separately. We both qualitatively and quantita-
tively compare the image inversion and reconstruction per-
formance of these integrated models using 500 randomly
sampled images from the MS-COCO validation set [38].
As illustrated in the two rightmost columns of Fig. 4,
when employing a straightforward DDIM inversion,
Smooth Diffusion outperforms Stable Diffusion by a con-
siderable margin in terms of reconstruction quality. This
improvement is evident in various aspects, such as an accu-
rate generation of character identities, a faithful recreation
of the city view behind the tower, and a correct reproduc-
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“A chocolate cake with cream on it” = “A chocolate cake with strawberries on it”

Local Edit
(Replace Item)

Local Edit
(Add Item)

Global Edit
(Transfer Style)

Source Swooth Diff. Stable Diff. SDEdit

Disentangle  Pix2Pix-Zero Cyéle Diff.

Figure 5. Text-based image editing comparison results. We compare Smooth Diffusion and Stable Diffusion [62] (column 2 & 3),
considering both local and global edits through the straightforward pipeline described in Sec. 4.4. Additionally, we present results from
SOTA approaches, including SDEdit [42], P2P [21], PnP [75], Disentangle [82], Pix2Pix-Zero [55], and Cycle Diffusion [81], as references.

tion of room layouts. This phenomenon underscores the
fact that the latent space of Smooth Diffusion is more tol-
erant of the errors introduced by the local linear approxi-
mation in DDIM inversion. Consequently, the reconstruc-
tion results produced by Smooth Diffusion manage to retain
the contents of the source images to a greater extent. On
the other hand, when the optimization-based NTI technique
is employed, the disparity between Smooth Diffusion and
Stable Diffusion is not as pronounced. Nonetheless, there
are still instances where Stable Diffusion exhibits subpar
results, such as the ruined man’s face in Fig. 4.

To quantify the image reconstruction performance, MSE,
LPIPS [93], SSIM [79] and PSNR [27] are reported
in Tab. 2. Notably, the reconstruction error encompasses
two components: 1) the error from different inversion meth-
ods and U-Net parameters and 2) the error from the shared
pretrained VAE [36]. Hence, we included the VAE recon-
struction errors as optimal values for our method. The re-
sults exhibit a consistent outperformance of Smooth Diffu-
sion over Stable Diffusion across all metrics, whether using
DDIM inversion or NTI. Moreover, “Smooth Diffusion +
NTI” performs results close to VAE reconstruction, indicat-
ing its superiority attributed to a smoother latent space.

4.4. Image Editing

The superiority of Smooth Diffusion in image inversion and
reconstruction has motivated us to explore its potential for
enhancing image editing tasks. In this section, we delve
into two typical image editing scenarios: text-based image
editing and drag-based image editing.

Text-based image editing. There have been numerous
methods [21, 42, 55, 75, 81, 82] proposed in the litera-
ture, each with its own unique designs aimed at achieving
the SOTA performance. In contrast, we adopt a simpler
pipeline akin to the image inversion and reconstruction pro-

cess discussed in Sec. 4.3. The key distinction lies in our
approach to modify the text prompt during the later time
steps of the reconstruction process. In specific, the original
eg(xy,t,C, dy) in Eq. (5) during NTI reconstruction (diffu-
sion sampling) process is replaced with:

eg(xy, t,Core, D), t >T X1,
ea(wt,t7c7@t>={"(t wrer 1) (15)

€9($t,t,ctrg, @t), t S T x r,
where Cg,. represents the source text prompt for inversion,
while Cy,, corresponds to the target text prompt for editing.
The parameter r serves as a threshold, determining when to
switch from Cq,. to Cye. In practice, 7 is typically chosen
within {0.6, 0.7, 0.8, 0.9}, with the exact value depending
on the specific input images and target visual effects.

Through this straightforward pipeline, we conducted a
comparative analysis of the editing performance between
Smooth Diffusion and Stable Diffusion, as presented in the
three left-most columns of Fig. 5. We also included editing
results obtained from SOTA methods as references. Our
evaluation encompasses both local and global editing tasks.
The local editing tasks involve replacing items (e.g., chang-
ing “cream” to “strawberries”’) and adding items (e.g., “ap-
ple”). On the other hand, the global editing tasks pertain to
global style transfer, such as transforming an image into a
“cartoon style”. It is evident that while Stable Diffusion ex-
cels in achieving precise image reconstruction with NTI, as
discussed in Sec. 4.3, even minor modifications to the text
prompt can significantly impact the content of the generated
images. For instance, it can affect elements like the style of
the cake, the shape of the banana, and the haircut of the girl.
In contrast, Smooth Diffusion not only accurately generates
edited images in accordance with the target text prompts
but also effectively preserves the unedited contents. Fur-
thermore, when compared to SOTA methods, even with this
straightforward pipeline, Smooth Diffusion consistently de-
livers competitive results across all cases.
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Figure 6. Drag-based image editing comparison results. We
implement Smooth Diffusion and Stable Diffusion [62] within the
framework of DragDiffusion [69], respectively.

Drag-based image editing. As an emerging research av-
enue in the community, drag-based image editing [45, 53,
69] has garnered considerable attention recently. DragDif-
fusion [69] first introduces a framework for drag-based
image editing employing Stable Diffusion. In the task 3
of Fig. 1 and Fig. 6, we showcase that by integrating Smooth
Diffusion into the DragDiffusion framework, some previ-
ously unsuccessful editing operations with Stable Diffusion
can be enabled. As illustrated, Smooth Diffusion achieves
operations such as making the tree grow taller without dam-
aging existing branches (Fig. 1), rotating the cat head, creat-
ing a new mountain top without destroying the original one,
and letting new flowers grow in the vase (Fig. 6). These op-
erations, however, fail with Stable Diffusion, indicating the
non-smoothness of its latent space.

4.5. Ablation Studies

Regularization ratio. In Tab. 3, we examine the impact
of different strength ratios in Eq. (14). This ratio ad-
justs the intensity of the step-wise variation regularization.
Specifically, when a weaker regularization is applied (e.g.,
), we observe a slight improvement in the CLIP
Score. However, there is a significant increase in ISTD,
indicating a notable degradation in latent space smooth-
ness. In contrast, employing a stronger regularization (e.g.,
) leads to a smoother latent space, as demonstrated
by the decrease in ISTD. However, in this case, we observe
an unexpected increase in FID, indicating a notable decline
in the quality of generated images. Therefore, selecting an
appropriate trade-off value for becomes crucial based on
the specific experimental settings. In our default setting, we
find that serves as a suitable value.
LoRA rank. In Tab. 4, we examine the impact of differ-
ent ranks of the LoORA component utilized in our Smooth
diffusion. We discover that LoRA ranks within the range

Ratio  ISTD() FID() CLIP Score ( )
0.1 24.23 12.15 31.56
1 (defaulty  16.54 12.11 31.49
10 11.51 17.44 31.41

Table 3. Ablation results of different regularization ratios. The
best results are in bold, and the second-best results are underlined.

of [4,16] are all suitable values for our default setting. We
select a default rank of 8 because of its lowest ISTD among
the first three rows in Tab. 4. Furthermore, we train a fully
finetuned model, referred to as “full,” which showcases a
further decrease in ISTD. However, this comes at the ex-
pense of significantly degrading the quality of the generated
images, as indicated by an increased FID and decreased
CLIP Score. This decline in performance underscores the
vulnerability of fully fine-tuned models to collapse within
our default setting, emphasizing the need for additional
meticulous design considerations.

Rank ISTD() FID() CLIP Score ( )
4 16.76 12.36 31.49
8 (default) 16.54 12.11 31.54
16 16.65 11.49 31.61
full 11.52 27.27 28.86

Table 4. Ablation results of different LoRA ranks. The best
results are in bold, and the second-best results are underlined.

5. Conclusion

In this article, we explored Smooth Diffusion, an innova-
tive diffusion model that enhances latent space smoothness
for generation. Smooth Diffusion adopts the novel Step-
wise Variation Regularization, which successfully main-
tains variation between arbitrary input latent and gener-
ated images at a more bounded range. Smooth Diffusion
was trained on top of the prevailing text-to-image model,
from which we carried out extensive research, including but
not limited to interpolation, inversion, and editing, all of
which had shown competitive performance. Through quali-
tative and quantitative measurements, we demonstrated that
Smooth Diffusion managed to make a smoother latent space
without compromising the output quality. We believe that
Smooth Diffusion will become a valuable solution for other
challenging tasks, such as video generation, in the future.
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