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Figure 1: A conceptual framework for LLM-based Interactions along three dimensions: (1) Intent Specificity, (2) Functional
Flexibility, and (3) Output Determinacy. Point (a) indicates conventional interfaces such as a Calculator with pre-determined
functionality and affordances for interaction. Point (b) represents conversational LLMs such as ChatGPT with dynamic
functionality. Gulf of Envisioning is the challenge users face in formulating prompts to generate high-quality outputs, i.e.,
point (c).
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ABSTRACT
Large language models (LLMs) exhibit dynamic capabilities and
appear to comprehend complex and ambiguous natural language
prompts. However, calibrating LLM interactions is challenging for
interface designers and end-users alike. A central issue is our lim-
ited grasp of how human cognitive processes begin with a goal and
form intentions for executing actions, a blindspot even in estab-
lished interaction models such as Norman’s gulfs of execution and
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evaluation. To address this gap, we theorize how end-users ‘envi-
sion’ translating their goals into clear intentions and craft prompts
to obtain the desired LLM response. We define a process of Envision-
ing by highlighting three misalignments on not knowing: (1) what
the task should be, (2) how to instruct the LLM to do the task, and
(3) what to expect for the LLM’s output in meeting the goal. Finally,
we make recommendations to narrow the gulf of envisioning in
human-LLM interactions.

CCS CONCEPTS
• Human-centered computing→ Interaction design theory,
concepts and paradigms; Natural language interfaces; • Com-
puting methodologies → Natural language generation.

KEYWORDS
large language models, prompt-based interactions, cognitive psy-
chology
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1 INTRODUCTION
Large language models (LLMs) such as ChatGPT [124] have demon-
strated remarkable capabilities in generating content that is novel,
coherent, and contextually relevant. These models can perform a
wide array of tasks, from writing comprehensive essays to creating
artwork and even producing functional software interfaces, show-
casing a high degree of creativity and adaptability. However, they
also require careful guidance to ensure the generated content is
appropriate and in alignment with human goals and intentions.
For instance, if an end-user wishes to leverage an LLM to craft
a toast and prompts the LLM with “Write a toast for Taylor”, the
output may be incomplete without providing the desired qualities.
The human must be more specific about their intentions (such as,
“Write a heartwarming toast for my best friend Taylor’s retirement
party, about 5 minutes long, include a humorous twist, and wish
them well on the golf course”). Formal and anecdotal evidence
(e.g., [2, 75, 82, 197]) suggests that effectively prompting LLMs to
produce outputs similar to human-generated content remains chal-
lenging. If intentions are expressed too vaguely or lacking specific
detail, the LLM may generate responses that are generic, irrelevant,
or off-topic [63, 80, 197]. Iterating with an LLM can correct and
progressively guide generation, but playing a “20-questions” or
“Hot or Cold” guessing game may be inefficient for longer output
and lead to a local minima within the solution space [159]. Further,
humans show fixation on initial examples that interfere with ex-
ploring alternative solutions [71, 93]. In this work, we draw from
theories across HCI and cognitive science to characterize the
nature of the cognitive challenges for humans in dialogic
interactions with intelligent generative agents.

As shown in Figure 1, the shift towards LLM-powered interfaces
can be characterized along the following three dimensions: (1) Func-
tional Flexibility, (2) Intent Specificity, and (3) Output Determinacy.
The vision for artificial general intelligence (AGI) includes LLMs
with a robust theory of mind (ToM) of humans (and vice-versa),
and would allow effective collaboration across numerous tasks.
While not yet at this level of general intelligence [113, 173], cur-
rent LLMs do exhibit dynamic capabilities in that they are able to
fulfill a broad range of tasks and generate ad-hoc functionality in re-
sponse to prompt inputs (e.g., “rewrite these appliance installation
instructions for a five-year-old”). This flexibility contrasts with con-
ventional direct manipulation interfaces with pre-determined func-
tionalities (e.g., a calculator). Even contemporary natural language
interfaces, while aiming for linguistic variability and conversation-
style interactions, remain essentially function-specific, like locating
the closest coffee shop [49], updating specific attributes of vector
graphics [91], controlling task workflows [166], or constructing
data charts [151].

Second, LLMs exhibit open-ended generative characteristics
through the vast quantity of linguistic patterns and information
learned during training. Their capacity to generate diverse re-
sponses to a given input underscores their utility in creative and
conversational tasks. While LLMs can produce determinate, correct
solutions to closed-ended problems, they offer great value by gen-
erating many different solutions to an open-ended problem [119].
As indicated along the Output Determinacy (O) dimension in Fig-
ure 1, the LLM’s capacity to generate varied and unexpected output
defines its inherent unpredictability. Humans need to provide over-
sight and guidance by validating facts, verifying relevance, checking
for biases, and evaluating output quality. Third, end-users can con-
verse with LLMs through prompts expressing goals and intentions
at any level of specificity. As indicated in the Intent Specificity (I)
dimension in Figure 1, structure and convention in the input are
not imposed by the LLM, leaving end-users uncertain about how to
formulate input to improve LLM generation. The new capabilities
of LLMs greatly extend human-machine interactions along these
three dimensions into new territory through an interaction model
where (1) operational scope is not restricted to pre-programmed
tasks, (2) all input intentions are allowed with an “anything goes”
approach, and (3) outputs are probabilistic rather than determinate.

In this work, we examine the transformative impact of genera-
tive AI systems for human-machine interaction, focusing on how
this shift from conventional interfaces alters the design and usabil-
ity of interactions on these three dimensions. Hutchins et al. [68]
offer a model of interface-design-challenges in software systems,
including an “execution gulf” between user intentions and system
actions and an “evaluation gulf” between system output and user
understanding of its genesis. Their general principle is that as the
distance between the human’s intentions and the system’s inter-
face increases, the costs of interaction increase. LLMs transform
human-machine interaction to substantially reduce this distance,
and therefore the costs, by defining interaction as human formu-
lation of intentions through natural language dialogue leading to
desired output [81, 197]. LLMs narrow the gulf of execution by
eliminating conventional needs for action specification and execu-
tion [68], leaving only intention to the user. However, the gulf of
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evaluation may increase by challenges to perceive, interpret, and
evaluate output [68] given the LLMs’ probabilistic process.

What are the consequences of these new LLM features enabling
success on complex tasks – flexibility in functional scope, variation
in intention specificity, and probabilistic processes and outputs –
on the nature and costs of human interaction? We suggest this
new LLM interaction process poses new challenges for people,
which we call, “the gulf of envisioning.” Concretely, the gulf of
envisioning characterizes the distance between the human’s initial
intentions and their formulation of a prompt that foresees how
LLM capabilities and training data can be leveraged to generate
high-quality output. Envisioning includes at least three challenges
for humans interacting with LLM systems: (1) how to set my goals
and intentions such that the LLM can accomplish the task – the
capability gap, (2) how to best instruct an LLM about my goals (i.e.,
prompt engineering) – the instruction gap, and (3) what to expect
for the LLM’s output – the intentionality gap.

In this paper, we formulate a newmodel of interaction for human-
LLM interfaces in which intentions are the actions. Our key contri-
butions include (1) a characterization of how transformative LLM
natural language interfaces yield both expansive functionality and
new challenges in bridging intentions and outcomes; (2) an updated
model of human-machine interaction identifying the process of en-
visioning execution; and (3) a set of design patterns and guidelines
for human-LLM interfaces along with an analysis of interfaces for
three types of generative tasks.

2 INTENTIONS AND INTERACTIONS IN
CONVENTIONAL SOFTWARE SYSTEMS

A primary focus of HCI is designing interfaces that mediate the
interactive relationship between an end-user and a computational
system to accomplish a human goal. To this end, researchers and
practitioners have conceived several different interaction paradigms
(summarized in [65]), proposed frameworks to understand chal-
lenges in human-machine interactions [68, 120], and identifiedways
to solve those challenges through the use of affordances, feedback
mechanisms, task-oriented design, etc. [34, 53, 183].

However, an intriguing question remaining underexplored is
how end-users conceive intentions when engaging with the
interface. In Norman’s seven-stage model [120], interaction con-
sists of (1) Establishing the Goal, (2) Forming the Intention, (3)
Specifying the Action Sequence, (4) Executing the Action on the
System’s Interface, (5) Perceiving the System’s State as a Response
to the Action, (6) Interpreting the State, and (7) Evaluating the Sys-
tem State with respect to the Goals and Iterating until the goal is
achieved (see Figure 2). In much of HCI work, stage two – forming
the intention – is assumed as given [65]. For instance, when cutting
and pasting a paragraph of text in a word processor or clicking
on the ‘Bold’ font button, how much do we know (or care) about
the underlying intentions leading a user to execute those actions?
We posit that while this gap from goal to intention has been in-
advertently bypassed in traditional design approaches, it emerges
as a critical challenge that must be addressed in human-LLM in-
teractions. In this section, we explore this overlooked aspect of
intention formation during interactions and postulate its role in
LLM-powered interfaces.

2.1 Defining Intentions
At the highest level, an intention is a situated pursuit of a goal that is
attainable through the execution of a process [14, 70] of a certain se-
quence of actions conceived as leading towards a goal. An intention
is an intermediate cognitive state that translates the abstract desire
(goal) into concrete actions. Research in cognitive task analysis
suggests that intentions are not just spontaneously generated but
arise from a foundation of knowledge, thought processes, and goal
configurations [28]. Intentions include aspects such as declarative
knowledge (understanding “what” needs to be done), procedural
knowledge (knowing the “how-to” of a task), decision points (key
moments in reaching a goal where decisions are necessary), and
cognitive skills (the mental abilities required to carry out the task).
Further, intentions are tied to goals through complex hierarchical
structures, and they emerge as the user works towards achieving
those goals. This key cognitive science insight was advanced in
seminal works by Karl Lashley [92] and Miller et al. [109] in their
focus on the hierarchical structure of nested subroutines in human
action, opposing behaviorist conceptions of sequential behavior as a
chain of stimulus-response associations, and it is further elaborated
in current work in cognitive and computational neuroscience [18].

2.2 Role of Intentions in Interactions
How does a user formulate intentions and then specify them as ac-
tions to be executed by a system? Let’s start with the more familiar
aspect of this question, which is action specification, before delving
into intentions. According to Norman, users have (or rather acquire)
in their mind, mentally represented models of the target system that
provide them with the “predictive and explanatory powers” to un-
derstand interactions [121]. We refer to these representations about
systems that help with action specification as system mental
models. These models primarily comprise knowledge about how
the system operates, including its constituent parts and their inter-
relations, their inherent processes, and their impact on the system
output [24]. While many researchers have characterized the nature
of system mental models (e.g., [12, 103, 112, 194]), the common pur-
pose pertaining to HCI is to equip users to determine which action
to execute by allowing them to mentally simulate the action [162].
For instance, imagine that a writer (the user) is about to type a long
and detailed section header. Before committing, they run a mental
simulation using the system mental model: they envision typing
the header in full length, foreseeing it might take up too much
space or look cumbersome in the document. Consequently, they
may consider changing the header size or shortening the text. This
mental rehearsal helps them anticipate potential readability issues
or aesthetic concerns and select their action sequence accordingly.

In the above example, intention formation has not been consid-
ered. That is, when mentally simulating the typing of the header,
how did the user conceive the header text (i.e., input to the system
mental model) in the first place? Of course, this pertains to the
user’s goal; let us assume it is to produce a Wikipedia article on
Chocolate. A specific intention is the user’s decision or plan to type
a long, detailed section header in the document, say “Ethical and
environmental implications of cacao bean farming in various tropical
regions and their socio-economic impact.” The formulation of this
intention is tied to the underlying cognitive task processes of writing
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Figure 2: Expanded View of Norman’s seven-stage model of interaction. Norman’s seven-stage model (blue blocks) is a valuable
tool when designing interfaces. However, while the second stage – forming the intention – has often been overlooked in most
HCI research, it is a crucial part of human-LLM interactions. We add the cognitive task and system mental blocks (in green) to
illustrate the mechanism for intention formation and its interaction with action specification.

that are independent of the technological system. Generally, they
concern how people accomplish mental tasks through component
processes, such as retrieval from memory, transforming and com-
bining ideas, and using procedures, etc. Specific to writing, such
a cognitive task process is formulated by Hayes and Flower, and
it involves three intertwined cognitive stages, including planning,
translating, and reviewing [61]. The specifics of this model are less
important at this point, and we will discuss cognitive task processes
in detail in Section 3. But what it is important to understand is that
these cognitive task processes support intention formation.
Even for a simpler goal, such as setting a wake-up alarm, the end
user must mentally determine the time they need to leave for work,
the time it might take to get ready, plan their commute, etc. This is
all part of the cognitive task processes.

Critically, these two stages – formulating intentions through cog-
nitive task processes and specifying actions through system mental
model simulations – interact. In order to generate their intentions
for a given goal, the user must be engaged in the cognitive processes
needed for that goal. To specify the actions for the system to take
based on formulated intentions, the user must simulate the system’s
mental model to determine how selected actions may influence the
execution of their intention. In reality, users constantly adapt their
intentions based on both their dynamic cognitive task processes
(what they want to accomplish) and their system mental model
(what they believe can be accomplished through system actions).

In the Wikipedia example, the mental simulation of typing a long
header may result in the reformulation of the intention to a shorter
title, say “Ethical impacts of Cacao farming.” Thus, interaction re-
quires (1) intention (formulation and refinement), (2) systemmental
models that allow a cognitive walkthrough of how the intention
might play out at the end of the interaction, and (3) the ability to
mentally project the results of their intended actions (i.e., anticipate
the eventual outcome of the interaction).

2.3 Role of Design in Mapping Intentions to
Actions

Until LLMs, HCI approaches have successfully interwoven inten-
tions and actions during interaction design. Through human-
centered design approaches, interaction designers strive to en-
sure that every potential action available on an interface aligns
intuitively with the users’ goal-based intentions [121, 183]. Even
for complex cognitive goals such as reading, writing, reasoning,
and sense-making, researchers have developed interactive inter-
faces by understanding the underlying cognitive process model
(e.g., [43, 86, 168]). For instance, in texSketch [168], they build inter-
actions around the cognitive processes in reading, such as selection,
organization, and integrated comprehension. This alignment fosters
a symbiotic relationship where users feel the system is an extension
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of their thought processes, making the interaction feel natural and
efficient.

Second, design also plays a critical role in helping users to for-
mulate a mental model of the system, and through it, learn to an-
ticipate system outcomes. In conventional HCI, designers invent a
conceptual model – an abstract representation or framework to com-
municate how a system operates – based on human-centered design
practices [121]. For instance, the designer may analyze users’ past
experiences and prior knowledge and draw from familiar analogies
and metaphors (e.g., the desktop metaphor) to shape the presenta-
tion and behavior of the system [116]. According to Hutchins [67],
conceptual models function as metaphors on several levels. At the
broadest level, they’re shaped by the users’ primary goals. In a
word-processing tool, this could mean a “blank page” metaphor
aligning with users’ primary goal of creating a document. Mov-
ing in more granularly, metaphors at the interaction level inform
users about their computer interactions and often remain consis-
tent across tasks (e.g., a “clipboard” for copying and pasting). Lastly,
metaphors at the task domain level provide an understanding of
how tasks are organized and structured, such as the use of tabs or
headers and footers to indicate document structuring during writ-
ing. By establishing this foundation by means of HCI design, users
can more readily form a coherent internal representation of the sys-
tem’s operations and functionalities. This representation enhances
their ability to plan and execute complex tasks while seamlessly
aligning their goal intentions with the appropriate actions.

With LLM systems, the link between user intentions and sys-
tem actions is less clear, and end-users lack adequate men-
tal models of LLMs. Consequently, LLM interactions become
challenging for users. In the next section, we postulate how these
constraints challenge forming intentions for interactions.

3 ENVISIONING INTENTIONS IN LLM
INTERACTIONS

LLMs represent a significant leap forward in the evolution of natural
language processing (NLP) capabilities. From the perspective of
interactive system design, LLMs obviate the need for structured
interfaces with preset actions for implementing intentions in favor
of unconstrained use of natural language (note that we address
specific interface designs for LLMs in Section 4). With a dynamic
operational scope lacking explicit interface actions, how do users
formulate their intentions and then express them as prompt inputs?
One proposed solution is to treat LLMs as if they are human and
engage in a conversation with them [33, 37, 136, 197]. Here, we
examine this approach to intention formation by considering a
specific generative task for LLMs – writing – in three aspects of
human-to-human interactions: models of communication, roles and
expertise, and theory of minds.

3.1 Cognitive Processes in Generative Tasks
What happens when humans perform generative tasks? Stud-
ies show that human performance of ‘generative’ tasks, such as
writing, creating new ideas, coding, and reasoning, appears end-
lessly variable. At a high level, human task performance takes the
form of repetitive cycles of cognitive processes where a change in
process, failure, or success is not predictable. A general observation

is task performance proceeds through cycles of “plan a little” and
“do a little” [35, 107]. There is no definitive cognitive process for
how to accomplish a generative task, though much of education
is aimed at instruction on exactly these tasks. Models offer few
distinctions among tasks despite distinctive aims, and a high degree
of variation in cognitive processes is observed for the same task in
different people and for the same person repeating a task.

The predominant model of generative tasks is Newell & Simon’s
(1972) model of problem-solving [119]. They defined a problem
space, including the current state, a desired goal state, and all avail-
able actions or operators. The process of problem-solving is defined
by actions taken to bridge the gap between nearby states, describ-
ing a path toward a solution. For instance, a means-ends analysis
process identifies differences between current and desired states
and selects an action to decrease their distance [117]. The path
from each state is viewed as traversing a solution space containing
all possible outcomes. Problem space models describe well-defined
problems where these elements are known, and branching can iden-
tify all possible combinations of actions. This approach is successful
as a model for machine problem solving [118], but when applied
to human problem solving, deterministic solution paths with well-
defined goals, operators, and evaluation of options are rare [149].
Typically, great variability is observed in cognitive processes, in-
cluding strategies like back-tracking from a goal to a current state,
mental simulation of potential actions, and generation of novel
actions.

As a consequence, cognitive models of generative tasks de-
scribe a more variable process with ill-defined initial states, goal
states, and available actions. For example, a four-stage model of
human problem solving describes cognitive processes of 1) problem
identification, 2) planning, 3) implementation, and evaluation [41].
Defining a problem is far from a determinate process yet central
to success. Planning is defined as identifying and organizing sub-
goals, intentions, and actions [108, 129] to achieve a goal. Next, an
execution phase turns intentions into actions. In addition to “do-
ing” the task, people coordinate other cognitive processes, such as
monitoring for errors and making real-time adjustments based on
feedback. During the evaluation phase, users are engaged in a com-
parative judgment of the actions’ outcome in relation to a goal state.
Evaluation also includes self-regulation, metacognitive awareness,
and value functions, as well as explaining errors to plan subsequent
intentions and actions [21, 146, 182]. These stages are so loosely
defined that the 4-stage model is ubiquitous in accounts of think-
ing, creativity, design, and other generative tasks [41, 66]. When
applied to an instance of task performance, the cognitive processes
are indeterminate, with the progression and order of stages varying,
and stages are often independently repeated. Iteration is assumed
for all stages in these models because the cognitive processes are
also defined over subtasks as needed [10].

3.1.1 A Cognitive Task Process for Writing Tasks. A cognitive pro-
cess model for writing offers a more specific account of the steps
required for completing a task [61]. First, the writer defines the task
environment, including the audience, the purpose, and tools. Next,
the act of writing involves three intertwined cognitive stages for
planning, translating, and reviewing. The planning phase creates a
mental roadmap for writing. It involves retrieving ideas or content
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related to the topic, articulating objectives such as the intent to
inform, persuade, or entertain, structuring ideas in a coherent order,
and determining how to transition from one idea to the next. The
translating stage involves navigating the roadmap and putting ideas
into words by converting cognitive representations into linguistic
expressions. After a segment (or an entire piece) is written, a third
stage involves Reviewing it to determine whether it aligns with
initial goals, such as coherency, compellingness, and clarity. Based
on this evaluation, they may choose to revise the text through
restructuring, adding new information, or deleting content. Cru-
cially, this cognitive process during a writing task is not a linear
progression from one stage to the next, but an iterative, dynamic
process of constant repetition, refinement, and reflection as writers
respond to their ongoing assessment of their created output. In this
more specific model of cognitive processing in writing texts, the
same general steps (planning, implementing, and evaluating) and
prominent iteration are evident. In addition, a role for continual
monitoring of what is produced and how it meets the goals suggests
constant oversight of the generation process.

3.2 Generative Task Interactions with an LLM
Agent

Based on this understanding of cognitive task processes, let us re-
visit the goal of writing a toast for Taylor’s retirement. If recruiting
a human to help, one might choose an expert who knows Taylor
well, and has been to many such events, or an assistant with strong
writing skills based on prior knowledge of the expertise required for
the task and a theory of specific minds reflecting their knowledge
states. Based on this understanding, we may directly ask the expert
to “Write a retirement toast.” With an LLM agent, we can assume
training on everything posted on the internet, a generation process
by next-word prediction, and conversational interaction to iterate
on output. Based on this assumption, the most straightforward path
is to simply state the goal to the LLM in their own words, as shown
in Figure 3- PATH 1. Such an approach aligns with the theory of
computational rationality, in which interactive behaviors funda-
mentally depend on the principle of expected utility [126]. That is,
users tend towards behaviors that maximize expected utility within
specific constraints, called bounded rationality [158]. Constraints
can emerge internally from cognitive or bodily capacities, or exter-
nally from the environment. A key element in this determination
is the perception of effort required to improve the input quality
and the potential gain in output quality. Given that LLMs are likely
trained on databases containing toasts, the resulting output may
satisfice [157, 172], and generic or adequate answers may be readily
available.

Experienced users may learn that instead of directly stating the
goal, a greater effort to formulate intentions within prompts can
increase the utility by arriving at better or quicker solutions. For
example, while it is possible to iterate based on output evaluation,
the time to read and reformulate prompts has costs. If the iterative
steps can be combined in fewer steps, taking more care in formu-
lating intentions may be cost-effective. For instance, in creating a
prompt for the LLM to write a toast for Taylor, the user may engage
in planning how they would do the task by identifying topics to
include, a structure and organization, constraints for format and

length, tone and writing style, desirable qualities, etc. The more
developed and specific the intentions, the better the LLM’s output
should satisfy the user. We call this process envisioning (Figure 3-
PATH 2). However, envisioning more developed intention speci-
fications is effortful and cognitively demanding. To craft a more
specific prompt for the LLM, the user must further develop their
intention by mentally exploring potential plans and values as if –
but not actually – executing them, and then adding what is discov-
ered to the prompt. This often leads to taking the Path 1 approach
without envisioning. If “an answer” or even a “satisfactory answer”
is needed, envisioning may not be. But, if aiming for a high-quality
answer, a user may better exploit the system’s vast knowledge by
envisioning possible and very desirable output. In what follows, we
discuss specific cognitive gaps in envisioning LLM interactions:

3.2.1 Capability Gap: Recall from our earlier definition that an in-
tention includes specifications about how to execute task processes.
The capability gap concerns the users’ inability to formulate
“how to” procedures to implement their intentions. Defining
when, where, and how one wants to take action on intentions re-
quires added cognitive effort [128, 150], but has been shown to
enhance the rate of successful execution [55]. While LLMs, with
their extensive training data, can theoretically understand and gen-
erate a wide variety of bespoke task content, their very strength
can also be a source of complexity for users. Take, for instance,
entering a prompt for summarizing a 2-page text in 1 page. For a
human writer, this task involves a myriad of choices about what to
prioritize, which nuances to retain, and which details to omit. How
can a user identify the right specification of intention for the LLM?

For most generation tasks, a cognitive process is not already
well-formed in memory but can be made more explicit (or newly
generated) through planning. As described in the section on cog-
nitive models, generative tasks are not determinate and vary with
each instance of generation and each intention (every story is writ-
ten with a different specific process). On the other hand, when tasks
are well practiced through experience with execution, people may
have “scripts” or well-developed routines to complete a genera-
tive task [144]. However, some tasks may be too well learned to
summarize as instructions; for example, asking someone how to
make a peanut butter and jelly sandwich without actually making
it1 demands generating actions without feedback from execution.
“Doing” offers reminders of where you take added steps to avoid
errors. Without this step (since LLMs are doing the generation),
users are forced to take a trial-and-error approach with differing
abstractions and variations of their intentions, and then iterate
based on evaluating the LLM’s output. But unlike deterministic
systems where a given input always produces the same output, an
LLM can produce countless variations from the same input, and
there is, by definition, no one correct answer in generative tasks.
This indeterminacy in LLM responses, coupled with a lack of
transparency in how inputs lead to LLM outputs, can hinder
users’ attempts to formulate prompts.

Of course, human-LLM interactions are designed to be conver-
sational and iterative, allowing users to evaluate output, revise
prompts, and further refine intentions until satisfied. However,

1The EXACT INSTRUCTIONS CHALLENGE video: https://youtu.be/Ct-lOOUqmyY

https://youtu.be/Ct-lOOUqmyY
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Figure 3: In the context of Norman’s seven-stage model action, we highlight what is missing during human-LLM interactions.
Further, there are three pathways to interactions: (1) directly state their goal to the LLM, (2) formulate their intentions and
provide them to the model through prompt engineering, and (3) take the LLM output and transition to a dedicated interface
and system (e.g., switching from ChatGPT to a Word Processor based on an LLM generated draft).

there are costs associated with iteration from user experi-
ence, social exchange expectations [29], and generative process
perspectives. In envisioning intentions, users must find a balance be-
tween “batching” intentions in prompts and development through
iteration. Intention setting in advance allows users to carefully
consider their goals without potential change or interference from
the LLM. For example, if writing about personal experience or
emotions, iterations may draw the eventual outcome further away
from the user’s internal perspective. Repeated iteration over many
small changes to prompts may violate a user’s conversational
expectations for “chunking” of information in turn-taking. Most
importantly, iteration poses the danger of fixation on the pre-
sented output. Humans tend to become fixated on their own or
others’ initial proposed solutions [71, 93, 101] and struggle with
overcoming attachment to early ideas [30], limiting options for solu-
tions through fixation on a particular type of idea or concept [132],
resulting in a lack of exploration of alternatives. If a first output
is viewed, the user may “anchor” on it as a solution and focus on
local refinements to local minima, thereby missing opportunities in
more distant solution spaces. Those with less developed intentions
may be more likely to show a stronger fixation on an initial LLM
output due to a lack of knowledge about desirable outcomes. Expe-
rienced users may learn when greater effort to formulate intentions
within initial prompts is worthwhile in arriving at better solutions
or quicker system interactions. For example, while it is possible
to iterate based on output evaluation, the time to read and refor-
mulate prompts has costs. If the iterative steps can be combined

in fewer steps, taking more care in formulating intentions may be
cost-effective.

3.2.2 Instruction Gap: The instruction gap refers to the user’s chal-
lenges in clearly and effectively expressing their intentions in the
interface as text prompts, leading to a potential mismatch between
the user’s intentions and what the LLM perceives and then pro-
duces. One benefit to the natural language interface for LLMs for
end-users is a wide-open input space for specifying intentions.
In writing the toast, the user’s intentions as described in the text
prompt can vary across language expressions; for example, the role
assumed (e.g., “act as an event emcee,” “act as a best friend”), desir-
able qualities of output (e.g., “make it funny,” “make it heartfelt”),
and related text content as a starting point for generation (e.g.,
“golf,” “Vegas”). Unfortunately, the LLMs’ algorithms for learning
from text corpora create a dependency on language precision.
While human language use tolerates a wide range of expressions
communicating a similar meaning, even slight changes in words
can lead LLMs to produce significantly different outputs. It is possi-
ble that substantial experience with LLM use will improve a user’s
understanding of the precise mapping between prompt contents, at
least in a domain area. For instance, more expert users may have an
understanding of transformer architectures, and experienced users
may know how specific keywords in the prompt (e.g., “punchy”)
influence the attention mechanism. “Instructing” is a much more de-
liberate task with individual variation, and there are few examples
of product instructions done well despite their ubiquity (but see [3]).
Users challenged in performing improvisational linguistic
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dexterity may not obtain satisfactory outcomes solely through
trial and error iteration of prompts. Further, linguistic sensitivity
makes it difficult for users to script their intentions for the
LLM upfront by anticipating potential system interpreta-
tions. Therefore, users are likely to need a multi-turn interaction
with an LLM session to determine alternative specifications for
their intentions leading to better outcomes.

3.2.3 Intentionality Gap: In PATH-1 interaction with the LLM, the
user states their goal directly and forgoes any cognitive task pro-
cesses anticipated in doing the tasks themselves (i.e., planning what
to write, executing it, and evaluating it). Instead, they start with
evaluation of the LLM-generated text. Does it meet their goal? This
evaluation is cognitively demanding because no “bridging” steps
between goal and output are provided. By skipping directly from
goal to evaluating output, users may lack a cohesive understanding
of the task context and required content, hindering their ability
to make comprehensive judgments about the adequacy of
the output. Drawing from philosophical terminology, users en-
counter an intentionality gap while assessing texts generated by
LLMs. In philosophy, intentionality refers to the capacity of mental
states to be about, directed at, or represent something in the world
outside of themselves [147]. In the LLM context, users may not
have a nuanced “aboutness” of the specific intentions or contexts
they are considering and, therefore, may not have a clear sense
of what the content should be “about” from their own perspec-
tive. Consequently, without internal cognitive benchmarks of
the generation process for comparison, they may become
over-reliant on the LLM and avoid evaluation against thier
self-generated goals. Further, engaging in subsequent planning to
identify and rectify any deviations from a desired outcome can be
challenging. In other words, users producing only a goal statement
will have difficulty answering questions such as, “Can the LLM do
better?” and “How can the LLM do better?”

Note that this intentionality gap is different from the gulf of
evaluation in Norman’s model [120]. With traditional HCI tasks, de-
terministic outcomes are easier to perceive and interpret, whether
completed successfully or not. Feedback is often immediate, as with
a direct manipulation user interface in which “. . . users can imme-
diately see if their actions are furthering their goals [156].” The
evaluation gulf stems from ambiguous system feedback at the inter-
face level, which may make it challenging to perceive and interpret
the produced outcome. Addressing the gulf of evaluation involves
improving system feedback, representation, and visibility. In con-
trast, the intentionality gap lies at the cognitive level due to the
user’s failure to create clear intentions. Bridging this intentionality
gap with LLMs may require interfaces to scaffold users in creating
clearer task process prompts and developing their contextualized
understanding of the qualities desired in the generated text.

The idea that under-specified intentions lead to challenges in
evaluation surfaces in Karl Duncker’s [41] work on the process of
finding a solution through a continual restructuring of a problem
over time to develop the “essential” properties of a desired solu-
tion. Problems intentionally left open-ended, as in many creative
tasks, are termed “ill-defined” [159] in that incomplete information
is provided about the problem. For example, design intentions re-
quire a great deal of construction by the designer [138] to identify

valuable qualities of potential solutions. Identifying the nature of
a problem is key to solving problems, creative work, and design
thinking [39, 42, 60]. Exploring problems provides perspectives on
values important in solutions [40, 145]. The process of developing
intentions helps one learn to “see” the desirable attributes of non-
existent outcomes [39] and specify important solution qualities.
The power of exploring intention is illustrated by an early study
of fine artists asked to create still-life drawings: those showing
“discovery-oriented” behavior (rearranging objects, changing per-
spectives, touching objects) producedworks with greater originality
and higher quality (as judged by experts), and even experienced
greater professional recognition and income years later. Those
who showed more consideration of the qualities of their in-
tended piece produced better outcomes than those focused
on execution [31, 32].

3.3 Recruiting New Pathways for Interacting
With LLMs

In the Intentionality Gap, users interact directly with the LLM in
evaluation mode. This means they’re often trying to make judg-
ments about the generated output and whether changes to the input
may produce different outputs more aligned with their goal. With
LLMs, they must attempt these cognitive maneuvers without
a foundational context or a cohesive mental model of the
LLM functions. In a third proposed interaction pathway (Figure 3-
PATH 3), we suggest a dedicated interface tool with support for
the user to further develop intentions and actions to more clearly
direct the LLM toward their task goals. This shift to an interface
tool that knows specific complex generative tasks – how to write a
screenplay or code in Java – facilitates the user’s identification of
a functional basis for the task process, enabling the user to more
precisely specify, calibrate, and synchronize their intentions with
corresponding plan descriptions. Critically, the scaffolding pro-
vided by such a “prompt prompter” can facilitate prompt
entry and completeness by identifying expected elements of task
functions that are missing in a user prompt and requesting needed
information (e.g., “who is your audience?”). Another alternative
pathway is integrating LLMs within existing functional tools, as
we will see in section 4. The use of a specialized interface tool
can help scaffold human interactions with LLMs by dynamically
providing structured templates to guide users in clarifying their
intentions and fostering clearer directions. This added structure
serves as a scaffold for helping users frame their output evaluations
with a more informed perspective on what is required in a prompt
to generate a successful output, reducing the intentionality gap.
While expert users can develop their own cognitive task models
through LLM use to identify their own scaffolds, sharing that exper-
tise can greatly help occasional and novice users. Furthermore, a
specialized tool can guide users in specifying procedural aspects of
their intentions, thereby reducing the need for repeated trial-and-
error. Importantly, this prompting scaffold can change dynamically
within an LLM session to better reflect the intentions as the user
develops them.

As discussed earlier, a cognitive task model such as Hayes and
Flowers [61] describes how a writer moves from a goal to the ex-
ecuted text output. While this process is not the only viable way



Gulf of Envisioning CHI ’24, May 11–16, 2024, Honolulu, HI, USA

to generate a story, it is an approach that people often use and,
therefore, may be evident in the stories captured in the textual data
corpus employed in training LLMs. While the LLM was not trained
to write stories, this underlying cognitive model becomes implicitly
embedded in the LLM through its training set of words, phrases,
and stories, and emerges in the LLM’s generation performance.
While the LLM does not have an explicit cognitive model of how
to generate a story, it is built through statistical analysis of a story
corpus created by human writers. That is why it is helpful for a
user to mentally envision what is required for them to per-
form the generative task: Doing so likely engages the same
task knowledge used by other writers with similar intentions.
Then, describing their developed intentions to the LLM using those
cognitively informed specifications makes accessing stories with
similar intent more likely through the lexical indexes built into
transformer networks.

To traverse the extreme database of connections encoded within
large learning models and generate a desired outcome, a user must
attempt to describe not only what others wrote about, but also, why
they wrote. Without understanding intentions well, it is impossible
to access plans from past tasks leading to good outcomes, and im-
possible to assess outcomes from LLM systems as meeting one’s
goals. The value of generative outputs depends entirely on
the intentions linking goals to their execution in output. The
three pathways shown in Figure 3 build on human knowledge of
successful task completion and vary in the effort and process re-
quired. The three gaps, including the capability gap, instruction gap,
and intentionality gap, together comprise the gulf of envisioning.

4 EXAMINING THE ENVISIONING GAP IN
THREE LLM INTERFACES

Up until now, we have characterized the envisioning gulf based
on the core capabilities of LLMs (i.e., language understanding and
text generation) with a focus on writing tasks. We now analyze
the design of three existing LLM interfaces (see Figure 4) across
different generative tasks to pinpoint how the three gaps manifest
during interactions. Concretely, we look at how LLM interface
designs support the specific cognitive task processes they’re built
for – using the framework of planning, execution, and evaluation
– and the specific features they implement to minimize the three
gaps in our revised interaction model.

4.1 Writing using ChatGPT
ChatGPT (Figure 4-A) is an LLM with a corresponding web-based
interface developed by OpenAI [124]. Through the interactive chat
interface, users can supply prompts and engage in dynamic con-
versations with the model. In the context of a writing task, Chat-
GPT can quickly produce drafts or outlines based on a given topic,
elaborate on an outline, perform grammar and style checks, and
paraphrase and synthesize. Naturally, the full spectrum of writing
support it offers is diverse and dynamically evolving.

4.1.1 Capability Gap. To support users in understanding the ac-
tion space, the ChatGPT landing page currently provides example
prompts and tasks the model can perform. These affordances be-
gin to reduce the capability gap during interactions. Yet the tasks
depicted often lack the granularity required for users to devise

concrete plans. Further, the tool also allows users to start different
“chats” for different lines of planning and execution cycles. How-
ever, the key cognitive issue in planning is determining how to
break down their goals into specific, actionable steps with the LLM.
Simply having different chats may help with the organization, but
it does not close the gap in helping users know how to best to
formulate their intentions.

4.1.2 Instruction gap. Users mainly discover how LLMs interpret
prompts within ChatGPT through trial and error. These trial and
error actions subsume features such as regeneration, editing the
original prompt, and managing different “chats” with ChatGPT on
the left sidebar. Yet ChatGPT does not provide a history of previous
outputs, making it difficult to compare the quality of regeneration
from run to run. If users cannot see how slight language changes
affect outputs, they might struggle to learn from their linguistic
adjustments to the prompt. In other words, the lack of feedback
inhibits their ability to understand how language nuances influence
the model’s interpretations, making the Instruction gap even more
pronounced. Separately, ChatGPT allows users to set “custom in-
structions,” which specify details and guidelines when engaging in
a dialogue with the model. However, this feature requires users to
foresee these intentions upfront before interacting with the model
and a more general understanding of instruction utility across tasks.

4.1.3 Intentionality Gap. The intentionality gap reflects the chal-
lenge users face when evaluating the LLM-generated text because
they bypassed the planning and execution processes. Custom in-
structions are the primarymode for aligning user values with model
output, acting somewhat as “base prompts.” There are two parts
to defining custom instructions: (1) what you want ChatGPT to
know about you as well as (2) how you would like ChatGPT to
respond. The sum of these two mimics domain-specific prompts
seen in other LLM-enabled systems, as the former asks the model
to play a role in narrowing its scope while the latter helps steer
the model’s generation. Overall, this feature ensures that users no
longer need to specify such context when prompting, allowing
them to focus on crafting a good prompt based on their specific
goals and intentions. However, even with this alignment, users
may still encounter challenges in assessing the output because they
may lack a comprehensive mental model of the content. Finally, at
evaluation time, users can ask the LLM questions about its previous
inputs, regenerate a response from the LLM, or even directly edit an
old prompt to see how a model changes its answer. These features
aim to give users more clarity on the LLM’s outputs, offering ways
to refine and adjust the content to better match their intentions.

In essence, while these features of ChatGPT offer initial guidance
and organization, they don’t fully equip users to carry out the
planning and evaluation tasks.

4.2 Creative Coding using Spellburst
Next, we look at Spellburst (Figure 4-B), a creativity support tool
developed as a research artifact [5]. We selected this tool as it aims
to support the artists’ “exploratory creative coding” workflow to
address cognitive challenges in creative work. Specifically, they
focus on bridging the artist’s creative intents expressed in natural
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Figure 4: Example affordances for how (A.) ChatGPT [124], (B.) Spellburst [5], and (C.) Cursor [7] bridges the capability (top),
language (middle), and intentionality (bottom) gaps.

language with the implementation of those intents as code using
LLM.

Briefly, they provide a node-based interface that allows artists
to prompt an LLM – namely, ChatGPT – to generate new computa-
tional artwork (called a sketch) and also execute creative operations
such as merging different outputs or creating variations through
branching. The tool provides example sketches in code to iterate
from, a toolbar for each nodewith a set of possible operators, and au-
tocomplete suggestions when authoring prompts. Users primarily
execute the task by prompting the LLM to generate code; however,
users can also manually write and edit LLM-generated code for
use in further ideation. Finally, Spellburst offers various ways of
evaluation, including interleaving comments in the LLM’s output
and allowing users to ask questions about the output through the
diffing and extraction operators. The node-based canvas of the in-
terface is also well-suited for exploring different lines of iteration
after evaluation.

4.2.1 Capability Gap. Tominimize the capability gap, the interface
first provides a series of example sketches. These examples, which
are snippets of p5.js [105] code for sketches such as “Bouncing
Balls” and “Fractal Tree,” provide the user with ideas for what types
of tasks are best suited for the interface. In addition, the interface
shortens the distance by helping users author prompts through
autocomplete based on their crowd-sourced taxonomy. This helps
them understand what is possible with Spellburst, especially for
users who may have an initial idea for a semantic jump. Finally, the
set of semantic operators on the right side of each node, such as
“Modify,” “Diff,” and “Extract,” showcase the different types of ways
users can extend their current line of thinking using the LLM.

4.2.2 Instruction gap. Spellburst also uses a variety of techniques
to bridge the Instruction gap. After the interface is prompted to
generate a sketch, the model interleaves comments within the code
of the sketch that point to the specific change in the code based
on the user’s prompt. These comments enable users to see how
the model’s inputs prompt its outputs. As an example, if a user
modified a sketch to turn its outline from black to blue, the model
would output the sketch with a code comment in the location where
the outline color was changed. There are also numerous ways to
experiment and see how the model may interpret different prompts,
including the duplication and modification of a sketch node or the
creation of a new branch within the interface entirely, representing
a new line of semantic and syntactic jumps. Finally, two semantic
operators help make the model’s output more explainable by asking
the LLM to describe its own output – diffing and extracting. Diffing
allows users to see both syntactic (code-level) and semantic (prompt-
based) differences between two sketches, while extracting enables
users to ask the model questions about a sketch.

4.2.3 Intentionality Gap. Based on their provided prompts, Spell-
burst asks the LLM to “act as an expert creative coder.” Through this
approach, they are setting a high-level intentionality of how the
LLM should be thinking about generating the output. Furthermore,
the prompts help ensure that the model generates code that runs
and compiles correctly. The team behind the system also crowd-
sourced a set of image transformations to develop a creative coding
taxonomy. This taxonomy drives the autocomplete suggestions, as
users can orient their intentions alongside this shared vocabulary
when prompting the model, improving the quality of the LLM’s
output.
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4.3 Software Development using Cursor
Cursor (Figure 4-C) is a code editor that helps users pair program
with AI [7]. The system uses an LLM – users can choose between
GPT-4 [125] or ChatGPT [124] – to help developers chat with their
project, make code changes, and address bugs. Given the growing
interest in utilizing AI to supercharge the software development pro-
cess [54, 69], we analyze how Cursor implemented a human-LLM
interface for the complex cognitive task process of programming.

As a fork of VSCode [106], Cursor has numerous tool affordances
critical to supporting programming, including a file explorer, line
completion, and a search bar. However, there are many features
specific to Cursor. When planning, users are given several examples
of tasks they can accomplish. In addition, there are various ways to
converse with the LLM, including when selecting the text, using
keyboard shortcuts within the main editor, and the right sidebar
dedicated to chatting with the model. During execution, the user
can either write code normally in the editor or prompt the model
to generate code. Finally, the system provides several features for
evaluation, including regenerating model responses, chatting with
a model about code, and auto-debugging.

4.3.1 Capability Gap. Cursor’s first way of showcasing what tasks
are available within the system is through a set of example files
when a user first opens the editor. Each of these files is named
after a possible task, and the comments in the file give instructions
regarding what keyboard shortcuts and prompt to use to complete
the goal. Similar to ChatGPT, though, since these tasks are high-
level (i.e., “fix a bug,” “explain code”), they are not helpful for more
specific planning of goals and intentions. When interacting with
code across the various panels of the interface – including the
code editor and the chat interface on the right-hand side – the
tooltip shows both what actions can be taken with an LLM and
how to establish context. For instance, highlighting text within a
code editor gives users the option to either add the code to the
right-hand chat interface or edit directly with a prompt. Likewise,
inside of the chat interface, buttons appear for users to reference a
file or change the scope of the user’s question within a prompt.

4.3.2 Instruction gap. To help users understand how LLMs inter-
pret language, Cursor allows users to ask models questions about
their codebase. Topics for these questions can range from the inner
workings of a particular function to the overall flow of an entire
project. Since this feature can give answers about model-generated
and user-written code, developers can get a better idea of how LLMs
interpret their programs“under the hood.” A similar feature that
can help decipher how models understand code is prompting the
model to generate inline comments. Finally, despite no direct func-
tionality for regenerating output outside of feeding the model the
same prompt, there is an option to “rerun without context” to see
the effects of adding code or references to other materials alongside
a prompt. The lack of regeneration history, however, makes it more
complicated for users to map changes in their inputs to changes in
model outputs.

4.3.3 Intentionality Gap. The primary way Cursor aligns user in-
tent with model output is through references of code snippets, files,
and documentation. When authoring a prompt, users can attach
an existing file of code they’ve written, a function within the code

editor, or even documentation of third-party libraries to steer the
output of the model. This functionality has many use cases, includ-
ing prompting the model to adopt the same style or asking the LLM
to use a particular method or function from a library. While this
feature reduces the amount of effort involved in establishing con-
text with the LLM, this affordance does not inherently give users
a mental model of how the LLM works, which means that users
may still run into issues. Furthermore, to help evaluate output, user
can ask Cursor questions about their codebase. The questions can
be about any piece of code within the code editor – either model-
or user-generated – to help users understand how to make their
prompts more optimal.

5 RECOMMENDATIONS FOR DESIGNING
INTERFACES FOR ENVISIONING

In addition to the three interfaces described in detail in the previ-
ous section, we conducted a qualitative analysis of 12 systems to
identify design patterns that would potentially support the process
of envisioning. We only selected tools that were either directly
accessible or at least had a video demonstration and accompanying
technical description of the features, such as in research papers. For
each tool, we identified affordances along the three main operators
in generative tasks, namely planning, execution, and evaluation.
We then clustered the identified features based on their functional
similarity to develop a set of interface design patterns and corre-
sponding tenets for teams building human-LLM systems. We do
not claim a comprehensive categorization but provide a starting
point for the design of interface affordances for envisioning LLM
interactions.

Design Pattern 1 – Visually Track Prompts and Outputs: LLM
interactions are often iterative and take a trial-and-error approach.
We observed that some tools provided users with a visual inter-
face for capturing their prompting and divergent thinking through
alternative pathways. A popular choice is node-based interfaces,
which allow users to visualize multiple different outputs (nodes)
and trace how they are connected (edges). As mentioned before, in
Spellburst [5], each node represents a sketch, and edges showcase
different iterations of the sketch through merging, diffing, and other
semantic operators. In PromptChainer [185], a system that helps
users chain together LLM prompts for complex tasks, each node
represents an individual prompt and corresponding output while
each edge represents the use of the output as context for another
prompt. Such external representations of their thought process not
only lower cognitive load but also help users better engage in more
deliberate prompt authoring. For instance, users can readily see if
their previous line of thinking was fruitful or make adjustments
to subsequent prompts based on prior outputs. These affordances
correspond to the tenet that: Users need guidance navigating the
cognitive task space for prompt authoring, discerning which paths
lead to desired or poor outcomes [T1].

Design Pattern 2 – Suggest Ideas for Prompting:Many systems
proactively offer users prompt suggestions. Some of them are aimed
at assisting users who may not be as familiar with LLM-enabled
interfaces, while others serve as ideation partners in the cognitive
task workflow. In addition to providing ideas for prompts, examples
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and suggestions emphasize the importance of clarity and precision
in language. If these suggestions come from examples where the
model is fine-tuned, they can also help better align a user’s inten-
tions with model behavior. For example, ChatGPT [124] provides
standalone prompt examples to showcase its utility. On the other
hand, Notion [122], which is a tool for knowledge management,
not only offers possible ways to use AI to improve your writing
(i.e., “Change tone”): it also gives suggestions on how to prompt
an LLM to steer these improvements in a certain direction (i.e.,
“Professional,” “Casual,” “Straightforward”). These patterns lead to
two Tenets, namely: LLMs can serve as cognitive partners in task
formulation [T2] , and A focus on clear, precise written language will
help to bridge the gap between human intention and LLM output [T3].

Design Pattern 3 - Provide Multiple Outputs: Rather than gen-
erate one output based on a user prompt, LLM systems may provide
numerous outputs. This can be achieved by setting the temperature
of the model – a parameter that dictates randomness – greater than
0 and giving the model the same prompt or explicitly asking the
model to give more than one example. This feature allows users to
view multiple options to see which best fits their intentions. Fur-
thermore, providing multiple outputs helps users link the effects
of changes in prompts to changes in the final output of the model.
Some systems also support grouping and clustering model outputs
to make this process easier. For instance, BotDesigner [197] lets
users manually assign a tag to model outputs, while Sensecape [169]
groups relevant topics together semantically based on a high-level
topic. These features support the tenet that LLMs should support
users through their divergent thinking strategies [T4].

Design Pattern 4 - Make the Output Explainable: Some sys-
tems prompt LLMs to explain their outputs or make them more
interpretable. This design pattern allows users to better understand
how LLMs interpret certain prompts and makes model outputs
easier to use for manual editing. How this technique is applied in
practice can differ depending on the task domain. Replit [137], a
browser-based code editor, has an AI assistant named Ghostwriter
that generates in-line comments within its code responses. Another
code editor, Cursor [7], does not always provide code comments
but does allow users to ask LLMs about the code they generate. In
contrast, Sensecape [169], which is designed for exploration and
sensemaking, prompts an LLM to return a response at different
levels of detail, such as through summaries and keywords. These
features help users address their intentionality gaps and better as-
sess the model output. This pattern supports the tenet An error in
human-LLM interaction is not just a user error or LLM failure but
signals a breakdown in the distributed cognitive system that requires
collaborative repair [T5]. However, in designing for explainability
and drawing causal inferences between prompt inputs and out-
puts, design should account for users’ overreliance on explanations
without careful validation [48].

Design Pattern 5 - Use domain-specific prompting strategies:
Outside of standard prompt engineering techniques, most systems
use a custom prompting strategy depending on their task. These
methods help steer the outputs from LLMs into something usable for
the end goal while also minimizing the output ambiguity that may

arise in trying different prompts. As an example, Graphologue [74],
which is designed to turn text-based responses from LLMs into
graphical diagrams, uses prompting techniques to have models
annotate entities and relationships within their outputs to create
diagrams in real-time. Coding Steps [78], a web-based application
to help novices learn Python, prompts models with static examples,
then user code, then the user prompt, to ensure that the level of out-
put is appropriate for beginners. These strategies allow designers to
implement conceptual tasks for users and consequently allow them
to build task-specific system mental models. The corresponding
tenet is that, Users favor working with a system mental model leading
to actions when working within a defined task domain [T6].

Design Pattern 6 - Allow manual control of output: Many
systems afford users the opportunity to manually edit the outputs
and interactions with LLMs. Since many LLM-enabled systems are
built for exploration and ideation, direct manipulation can help
users better incorporate their values and intentions into the model.
Oftentimes, manual editing is introduced when one output serves
as input to another LLM. For instance, while LIDA [36], a tool
for generating visualizations and infographics, prompts an LLM
to output goals for dataset exploration, users are also allowed to
enter their own goals and adjust the model’s suggestions. Likewise,
Mirror [187] – an NLI for data querying and summarization – gives
users the ability to edit the SQL queries generated by a pre-trained
code model to add human expertise. These features align with the
tenet, If tasks are well-defined, people prefer dedicated interfaces over
dynamic interfaces [T7].

6 DISCUSSION
In this work, we have theorized about cognitive challenges emerg-
ing in the transition from conventional software paradigms to
prompt-based interactions powered by generative models. Based
on prior empirical evidence on challenges with prompting [80, 196,
197], we have applied cognitive science and HCI perspectives to
characterize significant HCI design challenges with prompt-based
interactions. Given the advanced cognitive capabilities of LLMs,
people are now able to express in natural language their bespoke
task goals and ask the LLM to perform those goals for them. At
the same time, they lack the specific affordances of conventional
systems in formulating their intentions and task plans and eval-
uating the LLM outputs. Given the shift in the operational scope
from deterministic functions to dynamic intelligent agents, we
have identified new cognitive process models for specifying actions
through intentions, i.e., the process of envisioning. In reasoning
about envisioning intentions with LLMs, we have also identified
three specific gaps including the capability gap, instruction gap, and
intentionality gap, and we have provided initial recommendations
for interface designers to scaffold prompting. However, a number
of open questions remain about designing prompt-based interfaces.
Here, we propose open questions for future research as we consider
future development and applications of generative models.
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6.1 Open Questions for Designing Human-LLM
Interactions

6.1.1 How should we model conversational interactions between hu-
mans and LLMs? Given the human-like conversational abilities of
LLM interactions, designers must consider how to effectively model
conversations. Recent work on designing natural language inter-
faces (e.g., [38, 152] ) has primarily considered the ‘Recipient Design’
approach based on Grice’s Cooperative principles [20, 58, 164]. This
approach models communication as sensitive to context and indi-
vidual characteristics, and it recognizes that speakers tailor their
speech and communicative behavior to meet the needs of their
listeners. As the influential literary theorist Mikhail Bahktin theo-
rizes [9], any utterance has both addressability (every word always
addressed to someone) and answerability (every word directed to-
ward and anticipating an answer from someone). Sociolinguists
describe these features as manifest in the recipient design of an ut-
terance [56]. The maxims of quantity, quality, relation, and manner
guide how information is conveyed and interpreted to ensure clar-
ity, relevance, and truthfulness. However, with LLM dialog, such an
inductive approach can be challenging for users as these maxims
depend on each conversationalist tracking a theory of mind [50]
regarding what their partner thinks and knows. An AI capable
of a complex theory of mind for individual users across sessions
will likely require extensive development and testing for feasibility.
An alternative model is the Transactional Model of Communica-
tion [141], which offers a more dynamic view of interchange. Rather
than precision, a deductive process allows for repairs and adjust-
ments of misunderstanding and miscommunication, and consider
the contextual and continuous nature of communication. Applying
this model for human-LLM interaction, rather than emphasizing
the quality of communication, in interfaces offers opportunities for
repair and feedback, e.g., editing a previous prompt in the ChatGPT
interface.

Other models of communication, such as the Socio-Cognitive
approach to Pragmatics [79] and Speech Act Theory [148], may
also be useful for design. The socio-cognitive approach accounts
for how the speaker’s and listener’s background, intentions, and
situational contexts contribute to constructing meaning. This ap-
proach may provide guidance for characterizing the agentic roles of
LLMs in personalization and adaptability, modeling intentions and
expectations, code-switching, and ethical and responsible interac-
tions. Further, focusing on the ‘functions’ of language, i.e., speech
acts, may allow design for conversational rules and conventions.
Lastly, according to social exchange theory [29], communication
behaviors are influenced by design to maximize benefits and mini-
mize the cost of interactions. Future research should investigate the
balance and trade-offs between high-quality intuitive prompting
and the adaptability offered by more deductive conversational ap-
proaches. This exploration should focus on how varying models of
communication can enhance LLMs’ ability to understand and adapt
to diverse user backgrounds, intentions, and contexts. By integrat-
ing insights from these communication models, HCI research can
develop LLM interfaces that not only facilitate efficient exchanges
but also support ethical, personalized, and contextually sensitive
interactions.

6.1.2 What is a useful theory of mind for LLMs to support effective
envisioning? In conventional systems, users’ mental models of sys-
tems provide a functional account of how the system produces its
output, and that knowledge is used to generate necessary action
specifications and evaluate whether the output is “ good enough.”
In the case of LLMs, novice users likely do not have a system men-
tal model that can sufficiently describe what happens at a process
level, or that understanding does not allow the prediction of output
from input. The requisite mental model to account for an LLM’s
performance includes both the training process and the algorithms
used to learn; further, it must include a theory of what was learned
by the LLM. If we consider LLMs from a purely human-like perspec-
tive, as in human-human communication, we require a cognitive
understanding of how communication works, including forming
assumptions and expectations, norms, shared knowledge, feedback
processing, symbolic understanding, perspective taking, reciprocity
and feedback processing, etc. For another human, I can use my own
mind to generate predictions of what output will likely be produced
by another mind using my own mind as a guide; for example, the
colors red, white, and blue make me think of America. However, no
other minds have the equivalent dataset of an LLM. Its scope defies
the predictions one can generate from the information encoded in
one human mind. Without a sense of the outcome of its learning
process, it is impossible for another mind to predict LLM output.
That is why LLMs are exciting generators different from humans
but connected through text descriptions of human experiences. It
is sufficient to engage in a conversational LLM interaction and feel
like talking with another person who has a theory of mind about
the individual and associated beliefs, feelings, and goals through
the power of intentions.

Future research should explore how to bridge the gap between
the complex, often opaque inner workings of LLMs and the intuitive
understanding of its users. This work will involve creating models
that accurately represent the LLM’s operations in a user-friendly
manner, aligning them with the system’s actual functionality. The
challenge lies in simplifying the complex mechanisms of LLMs
without sacrificing essential details that users need to predict the
outcomes of their interactions. Prior research on end-user program-
ming has studied the challenges novices face in envisioning simple
interactive features and ways to support requirement specifica-
tion, debugging, and verification [81]. Similarly, for LLMs, theory
should account for the evolving nature of user requirements and
the emergent design process, acknowledging that users often learn
and refine their understanding of LLMs through experience. Efforts
should be concentrated on enhancing the visibility of the LLM’s
processing pathways, perhaps through interactive visualizations or
simplified explanatory frameworks to reinforce user understanding
through better prompting, iteration, and evaluation.

6.1.3 What is the optimal “sweet spot” for Human-LLM interaction
along the three interaction dimensions? Reconsidering the three di-
mensions in Figure 1, LLMs are appealing because the inputs can be
abstract, complex, and vague (i.e., underspecified), and they can still
produce outputs that are good. As mentioned earlier, if the quality
of the answer matters, end users will want to iteratively explore the
generative features to reach a high-quality answer. In such cases,
envisioning can be challenging, and in both our revised model and
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as seen in prior work [196], we need better guidance in designing
interfaces to make envisioning easier for users. When powering in-
terfaces with LLM capabilities, how do we balance Intent Specificity,
Functional Flexibility, and Output Determinacy in ways that lever-
age the strengths of the LLM while aligning with the user’s needs
for quality and relevance? For Intent Specificity, a semi-structured
(templated) approach is advantageous. While LLMs excel at inter-
preting and generating responses to open-ended queries, a certain
level of specificity in the user’s intent can guide the LLM to produce
more targeted and pertinent content. Functional Flexibility should
be oriented towards dynamic responsiveness. The LLM’s ability to
pivot across different tasks and domains should be fully utilized
within a framework that is shaped by the context of the interaction.
Future research should investigate efficient pathways and optimal
points along these three dimensions. Such inquiries will be likely to
include novel interfaces that suggest modifications to vague inputs
and feedback systems that learn from each interaction to refine
future responses. Moreover, future research should also consider
the evolving nature of user expectations and the continuous ad-
vancements in LLM capabilities, ensuring that the “sweet spot” for
AI and interface design remains a moving target that adapts to the
growing sophistication of both users and technology.

6.2 Limitations and Future Work
Of course, LLMs have been game-changing for AI, and have launched
a wildly diverging portfolio of applications. They evidence the fact
that much of everyday human task performance is rote, standard-
ized, and repetitive. Strong patterns across the text database reveal
how little originality exists in the accumulated human text products
available in digital form. It is quite possible that the deep cognitive
processing proposed here as a means of probing LLMs to produce
output more similar to desired human outcomes is rare. However,
its value when it does occur suggests it is well worth developing
models of the cognitive processes shared across cognitive tasks.

Another limitation of our model is the obvious differences among
people in their ability to identify intentions from goals. Divergent
thinking [59] is a minor part of academic training across the school
curriculum, whereas converging on a single correct answer dom-
inates learning. People show major differences in their ability to
solve open-ended problems and complete generative tasks, poten-
tially attributable to differences in cognitive capacities, including
memory but also imagination. A common test of creativity, the un-
usual uses test, asks for different ways to use a common object, such
as a brick [59]. People often fixate on functions such as using the
brick as a weight, and generate uses like an anchor, paperweight,
and balloon holder. Less often, they identify unusual functions,
such as using its material as a dye for crayons or lipstick. Perhaps
using human minds as the “key” limits solutions to only those gen-
erated by the human mind. While the LLMs are currently making
use of the text-based products of human minds, it is possible that
future systems will encode different forms of data less dependent
on human goals and intentions and more content generated by AI
models. Further, more systems with corpora combining products of
humans and AIs may diverge further away from cognitive models
as explanations of links between input and output.

Finally, this work is intended to propose a direction for the de-
velopment of new approaches to HCI. Further pathways for human-
LLM interaction can be identified, and new interface supports for
LLM use based on prompting guidance are growing daily. While
other approaches may be quicker (and dirtier) so as to plug obvious
holes in current LLMs, the promise of this work is to capture the
intentions found useful by humans in executing generative tasks.
To test this approach, comparing prompts where the intention is
evident will determine its value in creating satisfying outputs from
LLMs. Strategies from co-work, such as asking someone to repeat
back their understanding of the task instructions given, may prove
similarly useful with LLMs. An empirical agenda can determine not
just the factual or writing quality of AI systems but also their value
to human users. This proposed approach to HCI with LLMs aims to
support the user as they must think more deeply and fully during
interactions with systems in order to integrate their processing
abilities with the strengths offered by systems. This work, like the
development of LLMs, is at its beginning stages.

7 RELATEDWORK
7.1 Documented Challenges of LLMs
A core challenge of using LLMs is their explainability [102], i.e.,
how can we explain why a model behaves in a certain manner?
Compared to the domain of traditional machine learning, LLM
explainability is a different challenge [198], as these models are
pre-trained to do a variety of complex reasoning tasks [188] and
absorb patterns from data automatically [110]. Regarding inputs
to LLMs (i.e., prompts), the largest issue is that it is not always
clear how a prompt strategy affects model output [97, 142]. Even
for popular methods like chain-of-thought – which asks a model
to explain itself – there is no evidence to suggest whether models
reason towards the answer through the steps they provide, based on
their pre-training data, or through other heuristics [143]. Overall,
explainability, or the lack thereof, is a significant contributor to
the gaps involved in LLM interaction, as users struggle to build a
mental model [15, 170, 174].

Another challenge with LLMs is concerned with the usability of
their outputs. For instance, such models can hallucinate, where the
text generated seems structurally correct but is actually nonsensical
or incoherent [13, 72, 135]. In addition, LLMs do not always produce
factually correct output, and it may be difficult to verify whether
the output is correct or not [73, 104]. Depending on the context
and domain, such as in the realms of medical or military applica-
tions [123], this inaccuracy can be severely detrimental [83, 94, 140].
Furthermore, while a prevalent technique for addressing this short-
coming is to provide sources, it can be hard to implement in practice
and may also not always be correct [16, 96, 134]. Combined with
the issue of explainability, it can be difficult to correct and steer
LLMs to responses that are more usable.

Lastly, a final challenge concerns the issue of bias in LLMs. Much
empirical research has shown that a plethora of biases are encoded
in these models, including racial bias, gender bias, and bias around
political leanings, to name but a few [45, 115, 155, 171]. There is
also an abundance of work in the realm of jailbreaking LLMs to
generate toxic outputs and leak private information in both their
training data and conversation history [25, 98, 175]. There are many
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factors contributing to this propagation of bias [46], including the
corpora these models are trained on, how the data is labeled and
annotated, and the architectures that power these LLMs under
the hood [13, 23, 114]. Overall, while existing models reject most
harmful prompts (i.e., ChatGPT responds with “I’m sorry, but I
can’t assist with that request.”), socially situated contexts can still
produce potentially offensive output from an LLM [153].

7.2 Prompt Engineering
Prompt engineering encompasses the set of techniques used to
converse with LLMs. These methods assist with setting rules, struc-
turing output, and overall guiding the model in the direction in
which a user intends [180]. While there has been much research
devoted to uncovering these emergent properties, these techniques
are often simple tricks that are intended to mimic the process of
human reasoning.

One of the most effective prompting strategies is providing exam-
ples of expected input and output, also known as few-shot prompt-
ing [22]. The inspiration comes from human cognition, as people
can learn new concepts from a small set of examples while also ap-
plying these concepts to new inputs [88, 89]. The effects of few-shot
prompting are more pronounced when models are of a certain scale,
and there are numerous factors that can aid or inhibit the helpful-
ness of such prompts [76]. These include the semantic similarity of
the training examples to the test examples, the choice of prompt
format, and even the order of the examples in the prompt [95, 199].

Another predominant technique used in prompting is chain-of-
thought, or providing a series of reasoning steps to show the model
how to get to the final answer [84, 178]. These prompts are helpful
to learning because, for humans, explanations break down why a
certain answer is correct and not just what the final answer is [87,
90, 99, 131]. Coupled with few-shot prompting, there are numerous
factors that make for useful chain-of-thought prompts, such as the
amount of complexity within the prompts (measured by the number
of steps), whether the provided examples are relevant to future
queries, and the correct ordering of the reasoning steps [26, 51, 176].
There are also a plethora of variations that build upon chain-of-
thought, including sampling multiple responses given the same
prompt [163, 177] (Self-Constency Sampling); repeatedly prompting
a language model to ask follow-up questions [130] (Self-Ask); and
both decomposing a problem into numerous steps and sampling
numerous responses at each step [192] (Tree of Thoughts).

7.3 Designing Human-AI Interfaces
The rise of artificial intelligence (AI) has led to a surge of interest
in the development of human-AI systems. The creation of these
novel systems has brought new challenges. For instance, since these
models are sometimes perceived as non-deterministic “black-boxes,”
users can have a hard time discerning how these interfaces produce
their outputs [11, 62]. Likewise, given the massive amount of data
these models are trained on, there are new concerns around the
bias and privacy of such systems [17, 85, 193]. Perhaps most critical
is the change in the relationship between humans and interfaces:
while traditional NLI systems served more as assistants to end
users [44, 181], human-AI systems act more as collaborators due
to their human-like cognitive abilities [19, 100]. As a result of this

role change, there are many propositions for human-AI interaction
guidelines [4, 111, 184], including conveying the consequences of
user actions, providing diverse options from models, and holding
the system accountable for errors. Further prior research has looked
at changing design practices to accommodate the new challenges of
designing user experiences for machine learning capabilities [165,
167, 190, 191].

Specific to natural language interfaces, prior work has looked
at designing natural language interfaces and LLM-powered chat-
bots [189, 196]. These interfaces are most prevalent in the domains
of data visualization [52, 161] and querying [1, 127]. There are sev-
eral issues involved in the development of NLI systems, including
the ambiguity of natural language, communicating to users what
the system can do, and evaluating the utility of these interfaces in
accomplishing their end goal [154]. To this end, researchers within
academia and industry have put forth ideas for creating effective
NLI systems, including the use of autocomplete to show users how
to phrase their queries to the system [8, 195], the design of con-
versational interfaces to engage users in a back-and-forth dialogue
about their intentions [64, 151, 152], and the development of multi-
modal features to give users more control over their input to the
interface [77, 160].

Finally, recent work in HCI has been focused on generative AI, in
particular, LLMs [6, 57, 124] and diffusion models [133, 139]. Within
this space, significant effort has been concentrated on developing
effective prompt strategies (see Section 7.2), helping users craft and
author these prompts [47, 186, 197], and also developing prelimi-
nary guidelines for generative models [27, 179]. Focusing specifi-
cally on LLMs, though, what is missing in the current literature is
a better understanding of why human-LLM interaction is different
from human-AI interaction – and more broadly, how human-LLM
systems are different from traditional natural language interfaces –
and what types of strategies designers can employ to address the
gaps that result from these new computational opportunities.

8 CONCLUSION
Our work applies a cognitive framework to characterize the dynam-
ics of prompt-based interfaces such as ChatGPT, highlighting the
complexities of interacting with LLMs. While LLMs are capable of
interpreting a vast range of queries, their very flexibility can pose
challenges for users attempting to convey precise intentions. We
identify and characterize a new kind of interaction gulf called the
“gulf of envisioning,” which captures the challenge users face in suc-
cessfully formulating their intentions to elicit the desired response
from an LLM. This gulf is further identified by the capability gap –
what intentions can the LLM perform, the instruction gap –how to
say what is needed to the LLM, and the intentionality gap – what
to expect and how to evaluate the generated output, all of which
describe varying facets of human-LLM misalignments. By arguing
that for LLM interfaces, “intentions are actions,” we provide de-
sign recommendations to support the process of envisioning with
generative AI models.
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