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Abstract

In feedback control of dynamical systems, the choice of a higher loop gain is typically desirable to achieve a faster closed-loop
dynamics, smaller tracking error, and more effective disturbance suppression. Yet, an increased loop gain requires a higher control
effort, which can extend beyond the actuation capacity of the feedback system and intermittently cause actuator saturation. To
benefit from the advantages of a high feedback gain and simultaneously avoid actuator saturation, this paper advocates a dynamic
gain adaptation technique in which the loop gain is lowered whenever necessary to prevent actuator saturation, and is raised again
whenever possible. This concept is optimized for linear systems based on an optimal control formulation inspired by the notion
of linear quadratic regulator (LQR). The quadratic cost functional adopted in LQR is modified into a certain quasi-quadratic form
in which the control cost is dynamically emphasized or deemphasized as a function of the system state. The optimal control law
resulted from this quasi-quadratic cost functional is essentially nonlinear, but its structure resembles an LQR with an adaptable
gain adjusted by the state of system, aimed to prevent actuator saturation. Moreover, under mild assumptions analogous to those
of LQR, this optimal control law is stabilizing. As an illustrative example, application of this optimal control law in feedback
design for dc servomotors is examined, and its performance is verified by numerical simulations.
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I. INTRODUCTION

EEDBACK control of dynamical systems is an essential component of modern technology, which is often used to improve

these systems toward a faster dynamics, more precise reference tracking, and more effective disturbance suppression. These
objectives of feedback control can be all accomplished to a greater extent by increasing the gain of feedback loop. Yet, larger
feedback gains generate controls of larger magnitude, which can intermittently extend beyond the physical actuation capacity
of a system, causing actuator saturation. In feedback systems with a constant loop gain, the magnitude of loop gain must
be taken sufficiently small to prevent actuator saturation for the worst-case scenarios, which indeed occur infrequently. This
approach prevents feedback loops from exploiting the full actuation capacity of systems, which lowers their performance.

This paper investigates an alternative approach relying on an adaptable feedback gain, which is dynamically adjusted toward
lower loop gains whenever necessary for preventing actuator saturation, and toward higher loop gains whenever possible to
exploit the many advantages of a high loop gain. The notion of dynamic gain adaptation as adopted in this paper has already
been introduced by other researchers as a method of avoiding actuator saturation in linear dynamical systems [1]-[7]. The
main contribution of this paper is the optimization of the gain adaptation process in linear systems, within an optimal control
framework inspired by the linear quadratic regulator (LQR) theory.

The control laws resulted from this framework are nonlinear in essence, even though they are developed for linear systems,
are inspired by linear controllers, and are optimal in a sense similar to the LQR optimality. The core idea is to dynamically
select a feedback gain from a family of LQR gains, depending on the current state of the system under control. This process
leads to a nonlinear state feedback law that resembles an LQR at each instance of time, but with a variable gain dynamically
adjusted as a function of the system state to confine the control effort within an acceptable range.

In LQR theory, the performance measure is a quadratic cost functional that simultaneously penalizes the deviations of both
state and control from their equilibrium point at the origin. In this cost functional, the relative importance of the deviations in
state and control can be adjusted by the relative size of a pair of weighting matrices parameterizing the cost functional. Thus,
a control designer can decide between a low gain control regime at lower control effort, or a high gain regime with higher
effort which can intermittently exceed the system actuation capacity. The decision is normally the largest possible feedback
gain that insistently maintains the control effort below the actuation capacity. This gain is then held fixed during the entire
course of control.

This paper modifies the quadratic cost functional adopted in LQR into a quasi-quadratic form in which the relative size of
its weighting matrices is dynamically adjusted depending on the current system state. When the system is near equilibrium, it
needs only a small control effort, so the feedback gain can be increased without causing actuator saturation. This is achieved
by reducing the relative size of the weighting matrix penalizing the control effort. Conversely, the control effort is penalized
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more when the system state is far from equilibrium, aimed to reduce the feedback gain and consequently confine the control
effort below the actuator saturation limit. The quasi-quadratic cost functional in this paper is deliberately synthesized in such
a manner to inherently produce stabilizing controls and yield analytical forms for the optimal control law.

The control constraints posed by actuator saturation (or even further, those involving both state and control) can be managed
properly by model predictive control (MPC) [8]-[12]. Despite its successful deployment in various advanced process control
applications, MPC is computationally demanding, which limits its application to processes with slow dynamics [13] and those
that can afford the cost of a powerful computer hardware for real-time implementation of the MPC algorithm. For compact,
low-power, and inexpensive systems with fast dynamics, such as the servomotor studied in Section VI, the control scheme of
this paper offers a low computational cost alternative to MPC. As discussed in Section V-C, this control scheme can be easily
implemented by a quick search in a small lookup table, which can be executed even on inexpensive embedded systems.

The remainder of this paper is organized into six sections, including conclusion, and an appendix for the proof of results.
Section II presents a detailed statement of the optimal control problem studied in this paper, and provides a short summary
of its major results. The solution to this optimal control problem and the structure and properties of the optimal control law
are discussed in Section III. A detailed stability analysis of the optimal control law is presented next in Section IV. Based on
this optimal control law, a step-by-step procedure is offered in Section V to design practical feedback control for real-world
applications. This procedure is demonstrated in Section VI by an example in design of feedback control for dc servomotors.
For this example, simulation results are presented to evaluate the control performance under the designed feedback control.

II. PROBLEM STATEMENT AND SUMMARY OF RESULTS

Consider the linear state-space equation
C.Ct = AZZ?t + But (1)

with the state vector z; € R™, control vector u; € R¥, and the constant matrices A and B of the dimensions n x n and n x k.
The goal is to determine a feedback law i (-) : R — RF to establish a state feedback of the form

ur = p(24) (2)

under which the state z; of the linear system (1) decays rapidly from an initial state o toward 0, while maintaining the control
effort at an affordable level.

This control problem can be conveniently addressed by the LQR method, in which the feedback law p (-) is obtained by
minimizing the infinite horizon quadratic cost functional

J, = / (:vtTQth + utTRut) dt. 3)
0

Here, x; and u; are the state and control vectors of the linear system (1), and ()7, and R are positive definite matrices of
suitable dimensions. It is well known that the optimal control law minimizing (3) is a linear function of the form

p(z) =Kz,

where K, is a constant & X n gain matrix [14]. For an idealized problem without any bound on the control vector u;, this
gain matrix can be increased indefinitely by increasing ||@QL|| in the cost functional (3).

Certainly, a larger gain matrix results in a faster closed-loop dynamics and more effective disturbance suppression; yet, this
matrix cannot be increased indefinitely in practice, as a higher feedback gain requires a higher control effort which can extend
beyond the physical limitations of a system. The limitations on the actuation capacity of a system are reflected mathematically
by constraining u; € U for some bounded control set holding

{u e R*, |l < a1} CcCUcC {u € RF, [lu|l < ag}, 4)

where 0 < a1 < as < 0.

In a strict sense, the linear state feedback u, = — K x; with any value of the gain matrix K, eventually violates the control
constraint u; € U for large enough initial states. In practice, however, the initial states are typically confined within some
bounded subset Ay C R"™ of the entire state space, so the gain of state feedback can be chosen small enough to only hold

o (It) S L{, t> O, T9 € Xp. 5)

This gain matrix can be determined via the LQR method by choosing Q, in the cost functional (3) sufficiently small.!
While the linear control u; = — K, satisfies condition (5), its performance is degraded by the low values of loop gain that
are chosen reluctantly to meet this condition. If this condition was not a design constraint, the designer could ideally select a

UTf the linear system (1) is open-loop stable, always a again matrix exists to hold (5). Otherwise, the existence of such gain matrix depends on the size of
X, as discussed in Section V-B.



higher feedback gain Ky for a faster closed-loop response and more effective disturbance suppression. This higher feedback
gain can be also designed via LQR with a modified cost

Ju = / (2 Quwe + uf Ruy) dt, (6)
0

where QQp is a positive definite matrix larger than Q.

The key observation here is that a linear feedback law with a constant gain matrix barely achieves the most effective control
performance. Therefore, this paper follows [1]-[7] in adopting a dynamic gain adaptation scheme in which the feedback gain
is smoothly changed from K toward Ky whenever possible, and from Ky toward K whenever necessary to enforce the
control constraint (5). Certainly, variations in the feedback gain must be scheduled in such a manner that preserves the stability
of feedback loop, a concern that has been addressed in [1]-[7] via the Lyapunov stability analysis. This paper focuses on the
optimality of the gain adaptation process besides its stability.

To optimize the gain adaptation process, this paper takes an optimal control approach and constructs a quasi-quadratic cost
functional as a hybrid of J, in (3) and Jg in (6), given by

J= / (xf Wy + 7 (z1) (2] Qv + uf Ruy)) dt. (7
0

Here, Q@ and W are, respectively, positive definite and positive semidefinite matrices, and r (-) is a scalar function with certain
properties listed in Definition 1 below.

Definition 1: A scalar function r () : R™ — [1,00) belongs to the R-class functions if it is continuous, it holds 7 (x) > 1
for z #£ 0 and 7 (0) = 1, r ({x) is strictly increasing in £ for every fixed x € R™ — {0}, and r (z) — oo as ||z|| — oc.

The properties assumed for the R-class of functions explain the rationale for adoption of the cost functional (7). For those
initial states very close to the origin, i.e., ||zo|| =~ 0, this cost functional reduces to (6) with Qxr ~ @ + W, and as a result,
its associated optimal control law must be similar to the high gain linear control law g (z) = —Kpgx. For the initial states
far from 2 = 0, the values of 7 (x;) in the cost functional (7) are initially large, therefore this cost functional behaves similar
to (3) with Q; ~ @. Correspondingly, the optimal control law for large values of x is expected to be rather close to the low
gain linear control law py, () = —K 2. However, as x; gradually decreases toward the origin, uz, (-) smoothly evolves toward
pm ().

The difficulty with the cost functional (7) is that it may not produce optimal control laws in explicit form for every r (+)
arbitrarily taken from the R-class of functions. A major goal in this paper is to narrow down this class of functions into a
subclass for which the cost functional (7) admits closed-form optimal control laws. The quest for such subclass of functions
is an example of inverse optimal control [15]-[21].

The ultimate goal in this paper is to determine an optimal control law to minimize the quasi-quadratic cost functional (7)
subject to the linear system (1) and the control constraint (5). This goal is achieved in two steps. In the first step, the control
constraint is relaxed and Problem 1, stated below, is solved for an unconstrained control and initial state, similar to a classical
LQR problem. The solution to this problem in Section III is a family of stabilizing optimal control laws parameterized by
an R-class function r (-). In the second step, this function is properly constructed to maintain the control constraint (5). The
procedure for construction of this function and selection of the weighting matrices W, @), and R is presented in Section V
and summarized in Algorithm 1.

Problem 1: Suppose (A, B) is stabilizable and let x; be the state of the linear system (1) with the initial state xo and the
control vector u; arbitrarily chosen in R” and R”, respectively. Subject to the state and control of this linear system, construct
the infinite horizon cost functional (7) in terms of the R-class function  (-), the positive semidefinite matrix W, the positive
definite matrix @ (positive semidefinite if (A4, Q) is observable and W is positive definite), and the positive definite matrix R.
Consider the problem of minimizing this cost functional and address the following concerns:

i. Determine a subclass within the R-class of functions that only includes members r (-) for which this problem has an
analytical solution. This subclass must include a range of functions that can be flexibly shaped by varying a set of
parameters.

ii. For each r (-) in this subclass, obtain an explicit feedback law g (-) that minimizes the cost functional (7) when the state
feedback (2) is applied to the linear system (1).

A. Summary of Results
The solution of this paper for Problem 1 is a nonlinear state feedback law of the form
p(r) = =K (r(z))z, ®)
where 7 () is an R-class function with a specific construction discussed later in the paper, and K (-) : [1,00) — RF*" is

a matrix-valued function describing a parametric family of LQR gain matrices. Specifically, assume that the positive definite
matrix P (s) solves the algebraic Riccati equation

ATP (s)+P(s)A— %P(s) BR'BTP(s)+sQ+W =0 )



for each fixed s € [1,00). The gain matrix K (-) is then given in terms of P (-) by
1
K(s)=-R'BTP(s), secl,00). (10)
s

It is shown in the paper that under the optimal control law (8), the linear system (1) with an unconstrained u; has a unique
globally asymptotically stable equilibrium at x = 0, which is also globally exponentially stable under mild assumptions.

This paper presents a parametric subclass within the R-class of functions from which the function 7 (-) in (8) is taken. By
an appropriate choice of parameters in this subclass, r (-) can be flexibly shaped to achieve a desirable closed-loop dynamics
that confines the control u; of (1) within a bounded control set /. Section V presents a procedure for design of practical
feedback loops by embedding the control constraint (5) within the optimal control law (8). An illustrative design example for
a dc servomotor is offered in Section VI.

III. OpTIMAL CONTROL

This section presents a solution to Problem 1 which includes the detailed construction of r (-) in the optimal control law (8),
the proof of optimality of this control law, and the study of its key properties such as stability. The solution procedure begins
in Section III-A with a quick review of certain properties of the Riccati equation (9) frequently used in this paper. Next in
Section III-B, a subclass of the R-class functions is introduced for which Problem 1 admits explicit solutions. Moreover, some
properties of this subclass are discussed which are insightful for practical control design in Section V. The explicit form (8)
of the optimal control law is established in Section III-C and global asymptotic stability under this control law is proven.

A. Family of Algebraic Riccati Equations

The results of this paper rely on the solutions to the family of algebraic Riccati equations (9) and the family of LQR gain
matrices in (10). Certain properties of these families are crucial for the analysis of this paper, which are presented in Lemmas 1
through 3 below.

Lemma 1: In the algebraic Riccati equation (9), assume that the pair (A, B) is stabilizable, (4, Q) is observable, @ and W
are positive semidefinite, and R is positive definite. Then, this equation admits a unique positive definite solution P (s) for
each fixed s € [1, c0), and the family of these solutions defines a matrix-valued function P (-) : [1, 00) — R™*™. Furthermore,
this function is twice differentiable with a positive definite first derivative P’ (-) solving the Lyapunov equation

(A— BK (s))" P'(s) + P (s) (A— BK (s)) + S% P(s)BR'BTP(s)+Q =0, (11)
and a negative semidefinite second derivative P (-) solving
(A— BK (s))" P"(s) + P" (s) (A — BK (s)) — S%H (s) BR™'BTTI (s) = 0. (12)

Here, K (s) is given by (10) and II (s) is defined as
(s)=P(s)—sP'(s), s€]ll,o00). (13)

Proof: See Appendix A. [ ]
The matrix-valued function (13) plays a central role in the stability analysis of Section IV. Some relevant properties of this
function are summarized in the following lemma.
Lemma 2: Let the assumptions of Lemma 1 hold. Then, the matrix II (s) defined in (13) is the unique positive semidefinite
solution to the Lyapunov equation

(A— BK (s))" 11 (s) + 11 (s) (A— BK (s)) + W = 0 (14)
and admits a positive semidefinite derivative IT' (s). Moreover, if W is strictly positive definite, I (s) is also positive definite,
and the scalar function 1

A(8) = 5 Aman {72 (5) W2 ()}, 5 € [1,00) (1)

is strictly positive and decreasing in s. Here, IT"/2 () is the inverse square root of IT(-) and A, {-} denotes the smallest
eigenvalue of symmetric matrices.
Proof: See Appendix B. [ ]
The next lemma investigates the asymptotic behavior of the matrices P’ (s), K (s), and II (s) as s — oo, and establishes a
lower bound on the scalar function (15).



Lemma 3: Under the assumptions of Lemma 1, let P’ (s) be the solution to the Lyapunov equation (11), and define K (s)
and II (s) by (10) and (13), respectively. Then, the limits

lim P’ (s) = Pl (16)
lim K (s) = R'BTP (17)
g, T (e) = I

exist, where P/_ is the solution to the Riccati equation

ATP! 4+ P _A-P.BR'BTP_+Q=0. (18)

Furthermore, if W is strictly positive definite, A () in (15) is bounded below by
AL = %)\mm {Hgol/QWHgol/Q} . (19)
Proof: See Appendix C. [ ]

B. Tractable Subclass of R-Class Functions

This section constructs a subclass embedded in the R-class of functions for which the optimal control Problem 1 admits an
explicit solution of the form (8). The functions in this subclass are constructed in terms of another scalar function taken from
the I'-class functions defined below.

Definition 2: A scalar function v (+) : [1,00) — [0, 00) is in -class if it is strictly increasing, strictly convex, continuously
differentiable, it holds (1) = 0, and its derivative +' (-) holds the conditions 7' (1) = 0 and 7 (s) — oo as s — oo. Besides,
this derivative must admit a continuously differentiable inverse function p (-) : [0,00) — [1, c0) that holds

p(7 (s)) =5, s€ll,o00).
Remark 1: An example of a I'-class function is given by
1) =15

with constant parameters ¢ > 0 and 0 < p < 1. The derivative of this function admits a continuously differentiable inverse

pz)=1+ (z)l/p.

c

(s—-1ﬁ1+p) (20)

Remark 2: Since v (+) is strictly convex by definition, 4/ (+) is strictly increasing, and therefore, its inverse function always
exists and is strictly increasing. If further, 4’ (-) is continuously differentiable and " (s) # 0, s € [1, 00), its inverse p (-) is
also continuously differentiable on [0, c0). Yet, the converse is not true. In case of (20), for example, p (-) is differentiable on
[0, 00) but v’ (-) is not differentiable at s = 1. The goal in Definition 2 is to broaden the scope of I'-class as much as possible
subject to the requirements of this paper.

Lemma 4 below explains how the R-class function r (-) in the optimal control law (8) is constructed based on a I'-class
function. Furthermore, this lemma introduces another scalar function V (-) later adopted in Theorem 1 as the value function
for the optimal control Problem 1.

Lemma 4: Assume that (A, B) is a stabilizable pair, (A4, Q) is observable, @ and W are positive semidefinite matrices, and
matrix R is positive definite. Let P (-) : [1,00) — R™*™ be a matrix-valued function defined as the positive definite solution
to the algebraic Riccati equation (9) for each fixed s € [1,00). Denote the derivative of this function by P’ () and its second
derivative by P (-). Using P (-) and the I'-class function v (), construct V' (-) : R™ — [0,00) and 7 () : R™ — [1,00) as the
scalar functions

V () = max{a" P (s)x =7 (s)} 1)
r(z) = arg max {xTP (s)z—~(s)}. (22)

Then, these functions are well-defined with unique values and hold the following properties:
i. The scalar function 7 (-) is in the R-class of functions and is differentiable with a gradient explicitly given by
20 (7 (r () P (r (z)) =
L=p (7 (r(2)) 2 P" (r(z))

where p (+) is the inverse function of 4’ (-) and p’ (+) is its derivative.

Vr(z) =

(23)



ii. The scalar function V' (-) is positive definite in the sense that it holds V (0) = 0 and V (z) > 0 for every  # 0. In
addition, this function is continuously differentiable with a gradient of the explicit form

VV (z) = 2P (r (z)) . (24)

Proof: See Appendix D. [ ]
Remark 3: The scalar function r () in (22) can be obtained either by solving the optimization problem (21) or, as shown in
the proof of Lemma 4, by solving the algebraic equation

v (s) =a" P (s) (25)

with respect to s for each fixed z. Since s = r (x) solves this equation, the level sets of r (-) can be easily obtained by noting
that the set of points holding r (x) = 7 for some constant 7 is the same as the set of points on the hyperellipsoid

zt (Pl (T)) r=1 7¢e[l,00).

' (F)

C. Optimal Control Law

The core results of this paper are presented in Theorem 1 below. Using the results of Lemma 4, this theorem proves that for
any R-class function r (-) defined by (22), the optimal control Problem 1 has a value function V (-) explicitly given by (21).
Moreover, this theorem presents the explicit form (8) for the optimal control law and ensures that under this control law, the
closed-loop system is globally asymptotically stable.

Theorem 1: Suppose that W is positive semidefinite, () is positive definite (positive semidefinite if (A, @) is observable and
W is positive definite), and R is positive definite. Define the scalar functions V' (-) and 7 (-) via (21) and (22), and in terms
of 7 (-) construct the infinite horizon cost functional (7) along the state and control trajectories of the linear system (1) with a
stabilizable (A, B). Using the gain matrix K () in (10) establish the nonlinear state feedback

up = —K (r(z)) x (26)
and apply it to the linear system (1) to generate the closed-loop nonlinear dynamics
iy = (A= BK (r (1)) . (27)

Then, the following statements hold:

i. For any initial state o € R™, the ordinary differential equation (27) admits a unique solution on ¢ € [0, 00).
ii. The closed-loop system (27) has a unique equilibrium at the origin « = 0, which is globally asymptotically stable.
iii. Along the closed-loop state trajectory, r (z;) is decreasing in ¢ and tends to 1 as t — oo.
iv. The state feedback (26) minimizes the cost functional (7) among all control laws, and the minimum value of this cost
functional for an initial state z is given in terms of the value function V (-) by

Proof: For the sake of readability, the proof is outlined here, while its technical details are presented in Appendix E.

Statement i: It is shown in Appendix E that the right-hand side of (27) is globally Lipschitz continuous. Then, according to
[22, Thm. 3.2], the state-space equation (27) admits a unique solution on ¢ € [0, 00).

Statement ii: As K (s) is an LQR gain matrix, A — BK (s) is a stable matrix [14, Thm. 21.2], and as a result, nonsingular.
Consequently, the algebraic equation (A — BK (r (x))) x = 0 cannot admit any solution except for = 0, i.e., x = 0 is the
unique equilibrium of the state-space equation (27).

To analyze the stability of this equilibrium, V' () in (21) is taken as a Lyapunov function. By Lemma 4, this function is
positive definite, and as shown in the proof of this lemma, it holds the inequality V (z) > 27 P (1) x for z € R™. As P (1) is
positive definite, the right hand side of this inequality tends to oo as ||z|| — oo, which ensures V' (-) is radially unbounded,
ie., V(z) = oo as ||z]| — oco. The gradient of V (-) in (24) and the algebraic Riccati equation (9) imply that

(VV (2))" (A - BE (r (z)))z = —27 (r (@) (Q+ KT (r (z)) RK (r (z)) + W))x (29)

is strictly negative for all z # 0, since r () @ + W is positive definite. Then, the unique equilibrium at = 0 is globally
asymptotically stable by [22, Thm. 4.2].
Statement iii: Using the gradient (23) of r (-) and the results of Lemma 1, it is shown in Appendix E that

d
7 r(x) = (Vr (a:t))T:'ct <0. (30)



This inequality implies that r (x;) is decreasing in ¢. Moreover, since x = 0 is the unique stable equilibrium of (27), it holds
that lim;_, o, 2; = 0. Then, the continuity of  (-) and r (0) = 1 imply that

tlggor(:ct) =1.

Statement iv: Since (A, B) is stabilizable, there exist linear feedback laws to asymptotically stabilize the linear state-space
equation (1), and under such stabilizing feedback control, the cost functional (7) stays bounded. Hence, the optimal control
law is necessarily stabilizing, otherwise, its cost value would be unbounded (@) or W is positive definite), which exceeds the
cost of any stabilizing linear control. As a result, the search for an optimal control law is restricted to the set of asymptotically
stabilizing control laws. For controls in this set, Appendix E rewrites the cost functional (7) as

J—V(xo)—l-/ooor(xt)Hut—l-K(r (:zrt)):zrtH;dt, (31)

where |[|-|| ; denotes the norm ||z|| , = V27 Rz. Therefore, to minimize .J, the control u; must be taken as (26), which leads
to the minimum cost (28). |

Remark 4: The minimum cost (28) indicates that V' (-) must be the value function for the cost functional (7) subject to the
linear system (1). This result is consistent with the fact implied by (24) and (9) that V' (-) solves the Hamilton-Jacobi-Bellman
(HJB) equation

5161%1}6{ (Vv (:c))T (Az + Bu) + 2T Wz + 7 (2) (:CTQ:C + uTRu)} =0.

As a result of the infinite horizon of the cost functional (7), this HIB equation is stationary with (9/9t) V (-) = 0.

The classical setting of LQR problem allows the weighting matrix @ in the quadratic cost functional

J = / (x;*Fth + u;*FRut) dt
0

to be only positive semidefinite, provided that the pair (A, Q) is observable. This case is not easily extendable to the results of
Theorem 1 that requires @) (or alternatively W) to be strictly positive definite. The difficulty originates in the proof of global
asymptotic stability in statement ii of the theorem, which in turn, undermines the argument of statement iv on optimality of
the control law (26). Indeed, the Lyapunov function V' (-) can only prove the marginal stability of x = 0 if both @) and W are
positive semidefinite, since the right-hand side of (29) can be only proven to be nonnegative. If by any possible means, the
global stability of z = 0 can be verified, all other results of Theorem 1 hold identically, as stated in the following corollary.

Corollary 1: Suppose (A, Q) is an observable pair while @ and W are positive semidefinite matrices. Then, statement i of
Theorem 1 holds and the closed-loop system (27) has a unique equilibrium at £ = 0. Moreover, if this equilibrium is globally
asymptotically stable, statements iii and iv of Theorem 1 hold identically.

Proof: The proof parallels that of Theorem 1 with minor modification. The proof of statement iv uses the fact that the
cost functional (7) is unbounded under non-stabilizing controls as a result of positive definiteness of ) or W. This statement
is proven via the following argument under the assumptions of this corollary. Assume that the linear system (1) is under some
non-stabilizing control. If for this control, ||u|| does not tend to 0 as ¢ — oo, the cost functional (7) will be unbounded due

to its strictly positive integrand 7 (z;) u Ruy. In the opposite case of lim; o ||u¢| = 0, the state z; of the system tends to
the unbounded solution of &; = Ax;, which again results in an unbounded cost, due to the term a:tTQ:rt and the observability
assumption on (A4, Q). [ |

IV. EXPONENTIAL STABILITY

Theorem 1 guarantees that the closed-loop system (27) has a globally asymptotically stable equilibrium at the origin = = 0.
This section investigates the exponential stability of x = 0 and estimates the convergence rate toward this equilibrium. First,
Proposition 1 proves the local exponential stability of = 0 for the most general case in which both Q and W are positive
semidefinite matrices. Moreover, it is shown that for the initial states close enough to the equilibrium, the convergence rate is
close to that attained under the high feedback gain K (1). Next, the global exponential stability is studied in Theorem 2 and a
lower bound on the convergence rate is established. This lower bound is comparable to the convergence rate achieved under
the low feedback gain K (c0). The weakness of Theorem 2 is an assumption requiring W to be strictly positive definite. To
relax this assumption, Theorem 3 establishes the exponential stability of the closed-loop equilibrium in a quasi-global sense,
which is weaker but still comparable to the global sense.

Proposition 1: Let the same assumptions of Lemma 4 hold, highlighting that () and W are positive semidefinite matrices
and (A, Q) is observable. Then, the unique equilibrium x = 0 of the closed-loop system (27) is locally exponentially stable.

Proof: The Jacobian matrix of the right-hand side of (27) is obtained in Appendix E, which takes a value (4 — BK (1))
at z = 0. Since K (1) is an LQR gain matrix, (A — BK (1)) is a stable matrix [14, Thm. 21.2], which implies that z = 0 is
locally exponentially stable [23, Cor. 5.5.26]. [ ]



Remark 5: The core idea in Proposition 1 is that the closed-loop system (27) behaves similar to its linear approximation
iy = (A— BK (1))z (32)

in a neighborhood of its equilibrium x = 0. Therefore, after the closed-loop state reaches this neighborhood, it continues to
decay toward x = 0 with an exponential rate comparable to that of the linear system (32) with a high gain linear feedback.

To study the global exponential stability, the scope of results is narrowed down to a strictly positive definite W for which
the stability analysis is facilitated by the Lyapunov function

U(z) =TT (r (2)) x, (33)

where the positive definite matrix IT(-) is given by (13). In the next lemma, an exponentially decaying upper bound with a
time-varying decay rate is established on U (x;) along the state trajectories of the closed-loop system (27). This upper bound
is adopted by Theorem 2 to prove the global exponential stability of the closed-loop equilibrium point at = 0.

Lemma 5: Suppose that the assumptions of Theorem 1 hold and that W is positive definite. Let x;, ¢ > 0 be the state of
the closed-loop system (27) with an initial state 2. Define the scalar functions A () as (15) and U (-) as (33). Then, U (x) is
upper bounded by

U (¢) < U (o) exp <_2/01t A(r (z,)) dr> ) (34)

Proof: See Appendix F. [ ]
The next theorem derives an upper bound on ||a¢|| from (34) to prove the global exponential stability of z = 0 for a strictly
positive definite .
Theorem 2: Under the assumptions of Theorem 1 narrowed down to a strictly positive definite W, let x, ¢t > 0 be the state
of the closed-loop system (27) with the initial state xo. Then, a positive constant ¢; > 0 exists such that

t
el < ex [lzoll exp (— [ e <xr>>dw) >0, (35)
0

where )\ (-) is a scalar function given by (15). Moreover, the equilibrium point of the closed-loop system (27) at x = 0 is
globally exponentially stable with a rate of convergence not smaller than Az, defined in (19).

Proof: Lemmas 2 and 3 indicate that II (-) is increasing in the matrix ordering sense and Il = lim,_, o IT () exists. It
is then concluded for every x € R™ that

m ||9c||2 < 2T Dz <U(x) < 2T r < oo ||£CH2,

where 71 and 7, denote the smallest eigenvalue of II (1) and the largest eigenvalue of I1.,, respectively. Also, 71 and 7, are
strictly positive since II (-) is positive definite by Lemma 2. Then, by taking ¢; = /7o /71, the upper bound (35) is easily
derived from (34).

By Lemma 3, A (-) is lower bounded by Az, which implies the right-hand side of (35) is bounded above by e~*%*. Then,

]| < 1 f|woll e, ¢t>0 (36)

indicates that the unique equilibrium z = 0 of (27) is globally exponentially stable with the convergence rate Ay, > 0. [ ]
Remark 6: In the upper bound (35), A (r (z:)) is interpreted as the instantaneous rate at which ||z;| decays exponentially
toward 0. This instantaneous rate monotonically increases with time, since r (z;) is decreasing in ¢ by Theorem 1 and A (s)
is decreasing in s by Lemma 2.
Remark 7: The positive constant Az, in (19) is an estimate for the rate of convergence of the low gain linear system

iy = (A — BK (00)) . (37)

Therefore, Theorem 2 suggests that the state of the nonlinear closed-loop system (27) converges to the equilibrium at z = 0
at least as fast as the linear system (37).

For the case in which @ in the cost functional (7) is positive definite but W is only positive semidefinite, the stability of
the closed-loop system (27) can be analyzed using

U(z)=2TP(r(z))z (38)

as a Lyapunov function. The difficulty with this function when compared to its counterpart (33) is that P (c0) is not bounded,
as is the case for II (c0). Despite this difficulty, an upper bound analogues to (34) can be established on U (z¢); however, due
to unboundedness of P (co), an upper bound on ||z;|| similar to (35) cannot be derived, unless ¢; is taken a function of zg.
Yet, from such xp-dependent upper bound, conclusions can be drawn which are slightly weaker but still comparable to global

exponential stability, as stated in the next theorem.



Theorem 3: Under the same assumptions of Theorem 1, the unique equilibrium of the closed-loop system (27) at x = 0 is
quasi-globally exponentially stable in the following sense: for any arbitrarily large ¢ > 0, a positive constant ¢ (9) exists to
hold the inequality )

lzell < 2 () lzoll e, Jlzol <o, =0 (39)

for some A > 0 not depending on p. Here, z; is the state of the closed-loop system (27) with the initial state xg.
Proof: See Appendix G. [ ]

V. ENFORCEMENT OF CONTROL CONSTRAINT

This section presents a feedback design procedure to exploit the optimal control law (8) in practical applications that require
the enforcement of the control constraint (5). First, the required technical background is provided in Section V-A, and next, the
design procedure is detailed in Section V-B. A computationally efficient numerical implementation of the resulting controller
is presented in Section V-C. Later in Section VI, the overall design procedure is demonstrated for a practical application in
feedback control of dc servomotors.

A. Technical Background

The control design procedure presented in this paper relies on Theorem 4 of this section, which in turn, is concluded from
the following lemma.

Lemma 6: Suppose that U is a compact set holding (4), B is full rank, and K (-) is given by (10). Under the assumptions
of Lemma 1 define the scalar function

1 -1
g(s) = 0125 vl (K (s) (P’ (s)) K7 (s)) v. (40)

Let r () be an R-class function expressed as (22) in terms of a I'-class function ~ (-) that for some 7, > 1 satisfies
V() <g(s), s€llrml (41
Then, any « € R™ that holds r (x) < r,, also holds
—K (r(x)z el. (42)

Proof: See Appendix H. [ ]
The following theorem is the keystone of the control design procedure in Section V-B.
Theorem 4: Under the assumptions of Lemma 6, let v () be a I'-class function holding (41) and ~' (ry,) = g (rs,) for some
constant r,, > 1. Associated with ~ (-), construct the R-class function r (-) via (22). Let z; be the state of the closed-loop
system (27) for ¢ > 0, starting from an initial state zy in the bounded set &j that holds

Xo C{z eR" 2" P (rm)z < g(rm)}. (43)

Then, under the same assumptions of Theorem 1, the feedback control (26) stays in the compact control set I/ for every t > 0,
that is
—K(r(z))xr €U, t=0. (44)

Proof: Tt is noted that r (z¢) < ry,, holds for all zg € X, since otherwise, 7 (xg) > 7., leads to the inequality
g P’ (r (z0)) 0 < 0" P (1) w0 < g (rm) =7 (rm) <7 (r (20))

which contradicts the fact that r (-) is the solution to (25). This inequality is concluded from the facts that P’ (-) is decreasing
in the matrix ordering sense (by Lemma 1), and ' (-) is strictly increasing (as  (+) is strictly convex by definition). As 7 ()
is decreasing in ¢ by Theorem 1, r (z;) < r (zg) < 7, holds for ¢ > 0. Then, Lemma 6 implies (44). |

B. Control Design Procedure

The control design procedure offered in this section is aimed at determining proper parameter values for the optimal control
law (8) under which the closed-loop system (27) achieves two major objectives. First, r (x;) must stay as close as possible
to its minimum value 1 in order to exploit the advantages of the largest possible feedback gain K (7 (x;)). Second, for any
initial state in the bounded set X{, the feedback control (26) must stay in the compact control set I/ over the entire course of
control, as expressed mathematically by (5). The parameters to be chosen are the weighting matrices W, @, and R in the cost
functional (7), the I'-class function v (-) generating r (-) in this cost functional, and the constant r,,, > 1 in Theorem 4. These
parameters are chosen to meet the assumptions of Theorem 4, and therefore, satisfy the control constraint (44). The design
procedure is summarized in Algorithm 1 and is discussed in detail as follows.
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In the first step, the positive definite matrices Q@ = @) + W and R are chosen such that minimizing the cost functional (6)
results in a high gain control uv; = —Kgx; which perfectly meets the control design objectives when applied to the linear
system (1) in the absence of any control constraints. This is a classic LQR problem and is not discussed in detail here.

In the next step, the positive definite matrix Q7 < Qm and the constant 1 < r,,, < oo are chosen to ensure that (43) holds
under @ + W/r,, = Q. The selection procedure for this pair of parameters is explained shortly. Upon choosing Q g, Q1,
and r,,, the matrices W and @) are simply obtained from

T'm

W= _——(Qu—-CQr) (45a)

T 1
Q= (QL - — QH) : (45b)

Tm — 1 Tm

Let Py, be the solution to the algebraic Riccati equation
ATP, + PLA—P,BR'BTP, +Q.L =0 (46)
and define the low gain matrix

K;, =R 'BTP;. 47)

Also, assume that IT;, is the solution to the Lyapunov equation
(A—BKp)" I + 11, (A - BK1) + Qn — Q1 = 0.
Then, it is concluded from (9), (10), (13), (14), and (45) that

K(rm) =Kj, (48a)
P'(rp) =P — (rm — 1) 0L (48b)
Fix a constant 0 < € < 1 and choose )1, sufficiently small to hold the inequality
sup 27 Prz < (1 —¢) inf v R (BTPLB)ilR’U. (49)
reXy vgU

For an open-loop stable system (i.e., the eigenvalues of A have negative real parts), this objective is always achievable for any
bounded A&{) regardless of its size. The reason is that as @)y, in the Riccati equation (46) decreases toward 0, the solution Py,
to this equation decreases toward 0 as well, and as a result, the left-hand side of (49) decreases toward 0, while its right-hand
side increases toward oco. Hence, small enough values of () must exist to satisfy (49). For open-loop unstable systems, on
the other hand, Py, tends to a nonzero matrix as ()7, tends to 0. As a consequence, suitable values of Q7 to hold (49) may or
may not exist, depending on the size of Aj. In case such values of () do not exist, the control design specifications must be
realistically modified for a smaller Aj.
After selecting @, the parameter 1 < r,,, < oo is chosen as the smallest value that simultaneously holds

Qu———Qu >0 (500)

" 1

m — 1

The first inequality here guarantees that () is positive definite, while the second one enforces (43) by the following argument.
For K, defined as (47), it is straightforward to show that

EPL — HL > 0. (SOb)
T

(1-¢)R(B"P,B) 'R= (KL((l —e) PL)‘lKLT)

Moreover, (50b) can be rewritten as
(1—¢e)PL < Pp—(rp—1)" "Iz,

which together with (48) leads to

(1-e)R(B"P,B) 'R< (K (rm) (P’ (rm)) 'K (rm))
Then, applying this inequality to (49) using the definition (40) of ¢ (), and noting from (48b) that P’ (r,,) < Pr, result in
sup 27 P/ (1) @ < g ()
reXy

which implies (43).
The control design procedure is completed by constructing a I'-class function ~ (-) to satisfy the conditions of Theorem 4,
namely, v’ (s) must lower bound g (s) over s € [1,7y,] and hold +' (r,,) = g (7). For the best control performance, ' ()
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Algorithm 1 Control Design Procedure.

Input: A, B, U, Xp
Output: W, Q, R, v (-), r
1: Select Qg and R such that minimizing (6) subject to (1) yields an LQR gain Ky that perfectly meets the control design objectives in
the absence of control constraints.
Fix 0 < € < 1 and choose @, sufficiently small such that the solution Pz, to the Riccati equation (46) holds (49).
Determine 7, > 1 as the smallest value that holds (50).
Compute @ and W from (45).
Construct ¢ (+) on [1, 7] from (40).
Construct a I-class «y (-) such that 7' (+) be the tightest lower bound of g (-) on [1,7,,] that holds ' (r.,) = g (Tim)-

A A

must be ideally the tightest possible lower bound of g (-) which satisfies the structural constraints Definition 2 imposes on the
I'-class functions. Such tightest lower bound yields an instance of r (-) with lowest possible values, which in turn, leads to the
largest possible gain K (r (x;)) over the course of control.

As a practical example, in the design problem of Section VI, the parametric form (20) is adopted as + (+) and its ¢ parameter
is chosen as ¢ = g (r,,) (1, — 1) * to ensure that

, s—11\"
=g(rm)| —— 51
V9 =gt (22 51)
holds 4/ (r,) = g (7). The parameter p is optimized then to render (51) the tightest lower bound of g (s) over s € [1,7,].
Since (51) is decreasing in p € (0, 1] for each fixed s € [1,7y,], the smallest p that holds (41) is the optimal value.

C. Numerical Implementation

Upon completing the design procedure of Section V-B, the resulting control law of the form (8) must be implemented on a
digital computer for practical use. Since digital computers can only process discrete-time signals, the implemented controller
will be a discrete-time approximation of the continuous-time state feedback (26), and is mathematically represented as

utZ—K(T‘(fL'iT))SCiT, ZT+d<t<(Z+1)T+d, 1=20,1,2,....

Here, ;7,7 =0,1,2,... are the samples of the state vector x; taken at the multiples of the sampling time 7, and 0 < d < T
is an inherent delay introduced by the time needed to compute the control for each new sample z;7. A shorter computation
time d clearly allows for a higher sampling rate, which in turn, results in a lower approximation error introduced by sampling.
This can be achieved either by employing faster computers or more efficient computational techniques.

At each sampling time i7", a fresh sample z;7 of the state vector is taken and during the next d seconds, the numerical
value of —K (7 (x;7)) x;7 is computed via a procedure that includes solving the optimization problem (22) for r (x;r), and
computation of K (r (z;7)) from (10). Both these steps rely on numerical solution of the Riccati equation (9), which typically,
is computationally expensive and can be overwhelming for the optimization problem (22) that requires many times solving
this equation. Yet, real-time solution of the Riccati equation (9) can be circumvented using a precomputed lookup table [24].

To construct this lookup table, the search space s € [1,r,,] of the optimization problem (22) is approximated by a discrete
set {s1,82,...,8N}, in which, 1 = 81 < 83 < --- < sy = 1y, are chosen sufficiently close to keep the approximation error at
an acceptable level. The lookup table is then constructed in N rows, with row j = 1,2,..., N containing s;, 7y (Sj), and the
elements of the matrix P (s;). Based on this table, real-time computation reduces to a quick search for the maximum value
of xiTTP (sj)xir —~v(s;) on j =1,2,...,N, and then, using the maximizer s* € {s1,s2,...,Sn} to compute the numeric
value of the control —R™*BT P (s*) x;r/s*.

Since P (s;) is n x n and symmetric, each row of the lookup table includes n (n + 1) /2 4+ 2 elements, and as a result, a
table of NV rows includes a total of N (n (n + 1) /2 + 2) elements. For the servomotor example of Section VI with n = 3 state
variables, a lookup table with N = 500 rows consists of 4000 elements, which needs only 64K bytes of computer memory
for storage in a double-precision floating-point format. Such a small block of memory is often affordable even for inexpensive
embedded systems.

V1. FEEDBACK DESIGN FOR DC SERVOMOTORS

This section demonstrates the feedback design procedure of Section V-B for a practical application in position control of dc
servomotors. First in Section VI-A, the open-loop dynamics of dc motors is represented by a linear state-space equation with
a constrained control input. In Section VI-B, this dynamics is stabilized by a nonlinear regulator of the form (8) satisfying
the control constraint. This nonlinear regulator is then modified in Section VI-C for the purpose of trajectory tracking. In both
Sections VI-B and VI-C, numerical results for evaluation of the control performance are presented.
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A. Dynamical Model of DC Motors

A dc motor is regarded in this paper as a dynamical system with a single control input and three state variables. The motor
is controlled via its armature voltage that ranges in [—V;,, V},], and the state variables are its armature current, shaft speed,
and shaft position. For the sake of simplicity, these variables are normalized in amplitude, and then, represented respectively
by the functions vy, 74, wy, and 6, of the normalized time ¢. The procedure for normalization is explained below.

The armature voltage is simply normalized by its maximum value V;,, such that |v;| < 1. Suppose under this maximum
voltage, the motor runs in steady state at an angular velocity €2 under the armature current /,. The actual armature current and
its shaft speed are normalized then by I, and {2 to construct 7; and wy, respectively. The angular position 6, is dimensionless
in essence and is measured in radians.

The time axis is normalized by the mechanical time constant of the dc motor, i.e., this time constant is chosen as the unit
of time. The mechanical time constant 7,,, is given by the ratio of the moment of inertia to friction coefficient of the armature
and its mechanical load. Heuristically, 1/7,, represents the rate of exponential decay in the shaft speed when the armature is
open circuited. The dynamics of a dc motor further includes an electrical time constant 7. defined as the RL time constant of
its armature winding when the armature is stalled. This time constant is typically smaller than the mechanical time constant
by an order of magnitude.

The dynamics of dc motors has been extensively studied in the literature (see for example [25, p. 188]). For the specific
normalization scheme adopted in this paper, this dynamics is represented by the linear state-space equation

d it — —% 0 it 1%.[77
E w| = 1 —1 0 we | + 0 Vg (52)
ot O B O 9t O
with the control v; in the compact control set
U={ueR|-1<u<g1}. (53)

This equation is parameterized by « = 7,,, /7, the efficiency 7 of the motor, and 8 = 7,,Q. Here, the efficiency is defined as
the ratio of the output mechanical power to the input electrical power when the motor runs at a constant speed. The numerical
values of these parameters are chosen as = 25, 7 = 0.8, and S = 100.

B. Controller Design

The control design procedure in Algorithm 1 is applied to the dynamical system (52) with the state vector x = (i, w, 6) and
the control variable ¥ = v in the compact control set (53). This linear system has n = 3 open-loop real poles at 0, —6.37,
and —19.63. The weighting matrix Qg = diag (1,10, 1000) is chosen together with R = 1 in order to place the closed-loop
poles at —37.35 + j40.90 and —128.87 in a high gain regime. Since the control goal is to regulate the angular position 6;, the
weighting matrix Qg penalizes this variable with a large coefficient 1000, versus smaller coefficients 1 and 10 for the other
two state variables.

The controller in this paper is designed for the initial states taken from the bounded set

XOZ{(O,O,90)|—7T<00<7T}.

Then, it is ensured that the control variable stays in (53) if the dc motor is initially at rest while its shaft position deviates up
to 180° from its reference.

The weighting matrix @, is chosen proportional to Q7 and the proportionality constant is determined as 5 x 10~ in order
to satisfy (49) with € = 0.05. Next, r,, =4 X 10° is taken as the smallest value holding (50). In terms of Qg, @1, and 7y,
the weighting matrices W and () are computed from (45) as

W =diag (0.99995,9.9995, 999.95)
Q =diag (4.75 x 107°,4.75 x 107%,4.75 x 1072) .

Based on the numerical values of W, @, and r,, the scalar function g () is numerically computed from (40) over [0, r.,].
The parametric form (20) is next adopted for + (-) and via the procedure explained in Section V-B [see (51)], the parameters
of this family are determined as ¢ = 0.0022 and p = 0.288. Under these parameter values, the resulting +' (-) is the tightest
lower bound of g (-) over [1,r,,] that holds ¥’ (r,,) = g (1), as shown in Fig. 1.

For the purpose of computer simulations, the control law (8) was numerically implemented on MATLAB via the procedure
of Section V-C. The lockup table prescribed in this procedure was generated with NV = 500 logarithmically distanced points
distributed on the interval [1, 4 % 105}. Under the developed feedback controller, the dynamical system (52) was simulated
numerically. As baselines for comparison, this system was also simulated under two alternative controls: a low gain linear state
feedback u; = —Kpx; and a high gain u; = —sat (Kya:) with the saturation nonlinearity

sat (z) = min {|z|, 1} sign ().
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Fig. 1. Scalar functions 7/ (-) and g (+) in (40) plotted over [1,7,,]. The parametric form ¢ (s — 1) is assumed for 4’ (s) and the parameters ¢ and p are
determined in such a manner that 4’ (-) be the tightest lower bound of g (+) that holds ¥ (rs,) = g (7m) for 7, = 4 x 105.
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t
Fig. 2. Regulation performance for an initial state zo = (0,0, 7) under the optimal control (26), the low gain linear control uy = — K x¢, and the high
gain nonlinear control u; = —sat (K gx¢). The graphs from top to bottom represent the angular position 6; (output), the armature voltage v; (control), the

scalar function 7 (z¢), and the Euclidean norm of the gain matrix (for the optimal control) versus time.

The simulation results are illustrated in Fig. 2, which verifies the effectiveness of the optimal control law developed in this
paper, particularly compared to its constant gain alternatives. As observed from this figure, a low gain linear state feedback
necessarily yields a slow dynamics in order to keep the control effort below the saturation level. On the other hand, a high gain
linear control requires a large control effort causing frequent actuator saturation, which in turn, results in a rough oscillatory
response with a long settling time. Fig. 2 further explains how temporal variations of r (z;) dynamically adjust the feedback
gain to prevent actuator saturation whenever necessary.

C. Trajectory Tracking

The optimal regulator designed in Section VI-B can be used for trajectory tracking by slight modifications in its structure.
The goal in this control scenario is to constrain the position 6; of the motor shaft to closely track a reference input 6} over the
course of control. This goal is achieved by replacing 6, in the optimal regulator (8) with 6, — 0. Then, this regulator drives
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Fig. 3. Tracking performance for a typical reference trajectory (light solid line) under the nonlinear control (54) and the baseline controls (55). The graphs
from top to bottom represent the angular position 6 (output), the armature voltage vy (control), the scalar function r (z¢ — e36} ), and the Euclidean norm
of the gain matrix [for the nonlinear control (54)] versus time.

the tracking error §; — 6} toward O to fulfil the requirement of trajectory tracking. The resulting feedback law is expressed as
Up = —K(r (¢ — 639,’;)) (2 —es0y), (54)

where e denotes the unit vector ez = (0,0, 1).
The dynamical system (52) was simulated under this control law for a typical reference trajectory. The simulation results
are illustrated in Fig. 3 together with their baseline counterparts generated under the low gain and high gain controllers

up = —Kp (2 — e3)) (55a)
Up = —sat(KH (¢ — 639{)). (55b)

According to this figure, the nonlinear controller (54) performs effectively in tracking the reference trajectory (light solid line),
and substantially outperforms both its counterparts (55). Fig. 3 also demonstrates the gain adaptation mechanism embedded in
the control law (54) to effectively adjust the feedback gain during the course of control.

VII. CONCLUSION

Within an optimal control framework inspired by the notion of LQR, a class of nonlinear control laws was developed aimed
at feedback control of linear systems with control constraints. The control laws in this class resemble a linear state feedback
with a gain matrix chosen dynamically from a family of LQR gains. An adaption law was introduced to continuously adjust
this gain to prevent any violations of the control constraints by reducing the gain whenever necessary and increasing it again
whenever possible. Relying on this adaptation law, a feedback system can benefit from the advantages of a high feedback gain
without violating the control constraints typically promoted by large loop gains. Moreover, it was shown that the developed
control law is stabilizing, and is optimal in a sense analogous to the LQR optimality. Practical application of this control law
was demonstrated for feedback control of dc servomotors, and the performance of control for this application was verified by
computer simulations.
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APPENDIX
PROOF OF THEOREMS AND LEMMAS
A. Proof of Lemma 1

By [26, Lem. 4.1], the pair (A, sQ + W) is observable, and as a result, the Riccati equation (9) admits a unique positive
definite solution [26, Thm. 2.1]. Differentiating both sides of this equation with respect to s and then rearranging terms yield
the Lyapunov equation (11) for P’ (s). Similar procedure applied to (11) results in (12) for P’ (s). As K (s) is an LQR
gain matrix, A — BK (s) is stable [26, Thm. 2.1], and thereby, the Lyapunov equations (11) and (12) admit unique solutions
which are positive and negative semidefinite, respectively [27]. The existence and uniqueness of these solutions imply that the
functions P’ () and P” () are well-defined. Furthermore, since (A, @) in the Lyapunov equation (11) is an observable pair,
an argument paralleling [14, Note 12, p. 202] confirms that P’ (s) is indeed strictly positive definite.

B. Proof of Lemma 2

By multiplying both sides of (11) by s and then subtracting the resulting equation from (9), the Lyapunov equation (14)
is determined for II (s). As A — BK (s) is a stable matrix, this equation admits a unique positive semidefinite solution for a
positive semidefinite W, and strictly positive definite if W is positive definite [27]. The derivative IT' (s) = —sP" (s) taken
from (13) is positive semidefinite by Lemma 1. The scalar function (15) can be equivalently expressed as

()_1 . 2TW2
2T o T (s) z

which is well-defined and strictly positive when W is positive definite. Moreover, since 27Tl (s) z is increasing in s, A (-) is
a decreasing function.

C. Proof of Lemma 3

For any fixed z € R™ — {0} define f (s) = 2T (P (s) /s) z as a scalar function of s. The derivative of this function is given
by f'(s) = —z" (II(s) /s®) z in terms of II(s) in (13), which is positive semidefinite by Lemma 2. This implies f’ (s) < 0,
which verifies that f (-) is a decreasing function. Since f (-) is also nonnegative, its limit as s — oo exists, which implies that
lims_, 00 P () /s exists. Application of this limit to (10) verifies that K (0o) = lims_,o K () exists, which in turn, proves
the existence and boundedness of I1, = lims_,~ II (s) as the unique solution to the Lyapunov equation

(A — BK (00))" o + Il (A — BK (00)) + W = 0.

The existence of Il = lim,_,o II (s) further indicates that the scalar function A () in (15) has a limit at co and that limit is
the constant Az, in (19). Moreover, since A (+) is a decreasing function by Lemma 2, it is lower bounded by its limit Ay,.

Dividing both sides of (9) by s and taking limit as s — oo confirm that P/, = lims_,o, P (s) /s must solve (18), which in
turn, verifies (17). Moreover, the existence and boundedness of lim;_, o II (s) result in

Jim (113(3)_13' (s)) — lim ~TI(s) = 0

s—00 \ S 5—00 8

which proves (16).

D. Proof of Lemma 4

For x = 0, the optimization problem (21) admits a unique maximizer r (0) = 1 since —~ (s) is strictly negative for s > 1
and it holds —v (1) = 0. For z # 0, this optimization problem admits a unique maximizer r (x) > 1 since 27 P (-)x — 7 (+)
is a strictly concave function with one and only one stationary point on (1,c0). To maintain - (27 P (s)z —(s)) = 0, this
point must solve the algebraic equation 27 P’ (s) z =+ (s), which indeed has a unique solution by the following argument.
At s = 1, the left-hand side 27 P’ (1) x is strictly positive by Lemma 1 while its right-hand side + (1) is 0 by definition. In
addition, the left-hand side of the equation is decreasing by Lemma 1, while its right-hand side ' (s) is strictly increasing,
as 7y (+) is strictly convex by definition. Moreover, 4’ (s) tends to co as s — oo, by definition. Hence, the continuous graphs
of the left- and right-hand sides necessarily intersect at one and only one point on the interval (1,00). Since the optimization
problem (21) admits a unique maximizer, both functions (21) and (22) are well-defined.

Statement i: By construction, r (z) holds the identity

e P (r @)z =9 (r(2)) =0, zeR (56)
which is rewritten in terms of the inverse p (-) of 7' (-) as

r(z)=p@'P (r(z)z), zeR™ (57)



16

If r (-) admits a gradient, that gradient Vr (-) must necessarily solve the algebraic equation
Vr(z) = Vp (2" P' (r (z)) z)
=p (7P (r (z)) ) V(2" P (r (z)) )

=0 (0 (@) (2P (r (@) & + 2" P (r () V7 ()

for every « € R™. Furthermore, if this equation has a unique solution Vr (z) for every = € R", that solution is the gradient of
r (+). This indeed is the case, and as a linear equation, it has a unique solution explicitly given by (23). The denominator of
the solution (23) is strictly positive, implying that the solution exists for every z € R™, and therefore, is well-defined. This is
concluded from the fact that p (-) is increasing, so p’ () > 0, and from Lemma 1 which states P” (-) is negative semidefinite
and thereby I P (r (z;)) 7, < 0.

Since r (-) is differentiable, it is also continuous. Moreover, it is already shown that r (z) > 1 for  # 0 and r (0) = 1. To
prove that (22) is an R-class function, its other two properties are verified next. First, to show that r () — oo as ||z|| — oo,
the smallest eigenvalue of P/ = lims_,o, P’ (s) (which exists by Lemma 3) is denoted by n; > 0 and the matrix inequality

r(@) > p (" Pla) > p (mllo]?) (58)

is concluded from (57), the fact that p (-) is increasing, and the matrix inequality P, < P’ (r (x)) implied by P” (-) < 0 in
Lemma 1. It is next observed that the right-hand side of (58) tends to oo as ||z|| — oo, noting that p (z) — oo as z — oo,
since by definition, 7' (s) — oo as s — oc.

Finally, it is shown that r ({z) is strictly increasing in £ for each fixed z # 0. To that end, d% r(éx) = 7Vr (€x) is
considered and by replacing Vr () from (23), it is confirmed that £€7'Vr (£x) > 0. This ensures that r (£2) is increasing in &.
To show r (£z) is strictly increasing, by contradiction assume that & # &; exist to hold r (§;2) = r (§22) = 8. Then, § must
solve the algebraic equation &127 P! (3) 2 = &1 P (3) x, but this equation does not admit any solution unless & = &o.

Statement ii: It is already shown that r (0) = 1, which leads to V (0) = 0. To verify V (x) > 0 for z # 0, the maximum
in (21) is first lower bounded by 7' P (1) — ~ (1), and then, the property v (1) = 0 is applied to obtain V (z) > 2T P (1) z.
However, P (1) is positive definite by Lemma 1, which implies that V' (z) > 0 for z # 0.

To show that (24) is the gradient of the scalar function V (-), this function is expressed equivalently as

V(z)=a"P(r(z)z—7(r (),
and its gradient is obtained then as
VV (z) =2P (r(z))z+ (2" P (r (z))z — 7' (r (2))) Vr (z).

This gradient reduces to (24), noting that = (x) satisfies (56). Clearly, (24) is a continuous function as both P (-) and r (-) are
continuous.

E. Technical Details of the Proof of Theorem 1
Statement i: It is shown that the vector-valued function

f(x) = (A= BEK (r(2)))z (59)
is globally Lipschitz. By [22, Lem. 3.1], it is equivalently shown that the Jacobian matrix F (-) of this function holds
|F(z)| <L <oo, xeR" (60)
for some bounded constant L. By substituting K () from (10) into (59), the Jacobian matrix is determined as
. . z (Vr ()"
F(z)=A—- —BR'BTP BR™'BTTI —
(0=~ (r () + @) gy

where the matrix II (+) is given by (13). Based on the triangle inequality and the submultiplicative property of induced matrix
norms, it is concluded that
- P(r (=) [ - [Vr (@)]]
F < ||A BR™'BT|| . || ——2 —_—— . 61
P @ <+ 5o | 2EG R o
The derivative of P (s) /s is determined as —II(s) /s?, and by Lemma 2, II (s) is positive semidefinite under a positive
semidefinite TW. Hence, P (s) /s is a decreasing function of s in the matrix ordering sense, and therefore, it takes its largest
value at s = 1, i.e., |P (r (2)) /r (z)|| < ||P (1)||. Lemmas 2 and 3 further imply that ||II (v (2))|| < ||IIs||- By defining
x| - ||Vr (z
TER™ r (1’)

]+HBR”BTHWHome
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and applying these results to (61), it is concluded that
IF ()] < Al + [BRZ'BY[| (1P ()] + L' el

By showing next that L’ is bounded and the fact that all other terms on the right-hand side are bounded, (60) is established.
To show that L’ is bounded, Vr (x) is substituted from (23) into (62) and the upper bound

/ / Iz]1* o' (' (r (2)))

L <2 P ()] sup LI (63)
is established. To derive this inequality, the submultiplicative property ||P’(r (z))z| < ||P'(r (z))| - ||z|| of the induced
matrix norms is applied to ||Vr (z)|| and two additional facts are used. First, ||[P’ (r (z))|| < ||P’ (1)|| implied by Lemma 1,
and second, the denominator of (23) is not less than 1 as p’ () is positive and P” (-) is negative semidefinite by Lemma 1.

Since « (+) is strictly convex by definition, 7’ () is strictly increasing. Using this fact and noting that 7’ (-) is the inverse of
p (), it is concluded from (58) that ||z||> <~/ (r (z)) /n1. Applying this result to (63) leads to

< 2[|[P" (V)| sup v (r(x)p (v (r(x)))
m xeR™ T2 (.CC)
2P () zp' (2)
= sup — .
m 220 p*(2)

However, the function zp’ (2) /p? (2) is continuous, and as a result, bounded on any closed interval. The proof is completed
by confirming that its limit is also bounded as z — co. To that end, consider the integral

/ooo S Zpg/g)) 4= /ooo (‘diﬁ)) o

=1

)

determined based on the facts that p (0) = 1 and p (z) — oo as z — oc. Since zp’ (z) /p? (2) is nonnegative, to maintain the
integral on the left-hand side bounded, it is necessary that
/
i 202
200 p? (2)

=0.

Statement iii: By substituting the gradient Vr (-) from (23) into (30), it is shown that % r (z;) < 0 holds. This substitution

results in
t ir(xt) _ 20" (' (1 (21))) ftTP/ (1 (24)) ¢
dt L—p/ (7 (r (@) af P (r (w¢)) e

Noting that P’ (-) is the solution to the Lyapunov equation (11) and that i; is given by (27), it is concluded that

) P (r(x)) BR™'BTP (r (24))
T pr T

P =—

SIP (r (a0t = o g

In addition, it is shown in the proof of Lemma 4 that p’ (-) > 0 and that the denominator of (64) is strictly positive. These
facts confirm that the right-hand side of (64) is nonpositive.

Statement iv: For the gradient VV () given by (24) and the gain matrix K (-) given by (10) in terms of the solution P (-)
to the Riccati equation (9), it can be shown that the equality

(64)

TWax +r(2) (xTQ:c + uTRu) = |ju+ K (r (z)) xH; —(VV (a:))T (Az + Bu)

holds for every x and u (see for example [14, p. 194]). In this equality, « and u are respectively replaced by the state x; and
the control u; of the linear state-space equation (1) to obtain

d

af Way + 1 (z) (vf Que + uf Ruy) = [Jug + K (r (24)) :CtH; - V (x¢).

Integrating both sides of this equation on [0, c0) results in
o 2 .
T=V @)+ [ o) |+ K () e = iV (z).
0 o0

However, for the class of globally asymptotically stabilizing controls, lim;—,+, V (2) = 0 holds, which proves (31).
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FE. Proof of Lemma 5
The upper bound (34) is established by solving a differential inequality for U (), obtained via the following steps:

d : ' d
7 Ul(xy) = 2a:tTH (r(zy)) & + xtTH (r (z4)) xta r ()
< 22T (r (x4)) (A= BK (r ()
= —a] Wa,
xtTW:zrt
T o TL(r (24)) o4 U ()

< =20 (7 (20)) U ()

Here, the first inequality is derived by replacing ; in the first equality with (27) and using the fact that the second term on
the right-hand side of this equality is nonpositive, as II' (+) is positive semidefinite by Lemma 2 and % r (2;) is nonpositive
by Theorem 1. The second equality is concluded from the fact that IT (-) solves the Lyapunov equation (14). The last equality
is a trivial result of U (x;) = I TI (7 (x¢)) 2+ # 0. Finally, the last inequality is determined by lower bounding the fraction in
the third equality with 2A (r (zy)).

G. Proof of Theorem 3

Theorem 1 assumes that either () or W is positive definite. For the case that W is positive definite, the theorem statement
is immediately concluded from (36) in the proof of Theorem 2 by taking ¢z (9) = ¢; and A = Ap. For the case of a positive
definite ), the statement of theorem is proven by adopting (38) as a Lyapunov function. Following a procedure paralleling the
proof of Lemma 5, it is first shown that

U(xt) < U (20) 6725\”&, t>0, (65)

where Ay is the strictly positive constant

5, = % Anin { P2 (1) QP12 (1))

Similar to the proof of Lemma 5, this result is derived from a differential inequality of the form % U (x¢) < —2A.U (24),
obtained by first differentiating U (z;) = xI P (r (z;)) z; and then using the facts that P (-) solves the Riccati equation (9)
and P’ (-) is positive definite (by Lemma 1).

Since P (s) is increasing in s (in the matrix ordering sense), it is concluded that
U (xe) > af P (1) 2¢ = Ain {P (D)} e

Moreover, for any z in the ball ||z]| < o, it holds that

U (z0) < sup z P (r(2))zo
llzll<e

< lzol* sup Amaa {P (r (2))}
I=l<e

where Apmqq {-} denotes the largest eigenvalue of a symmetric matrix. Applying these inequalities to (65) leads to (39) with

c2(0) = <SUPIIz||<Q Amaz {P (r (Z))}> 1/2.

Amin {P (1)}

H. Proof of Lemma 6
Using the definition of K (s) in (10), it is first shown that

inf  2TP'(s)z=inf min 2TP'(s)z

—K(s)z¢U v¢U —K(s)z=v
_ —1
= 12{{ vT (K (s) (P’ (s)) KT (s)) v
=9(s).
Let z be a vector such that r (x) = s € [1,7,,]. Then, the fact that s = r (x) solves the algebraic equation (25) implies that
T pr ! : T pr
z P (s)x = s)<g(s)= inf 2" P'(s)z.
(o= ()<l = nf TP

Since the convex function z7 P’ (s) z has only one stationary point at z = 0 not belonging to —K (s) z ¢ U, the infimum on
the right-hand side is attained on the boundary of the compact set . Therefore, 7 P’ (s) x is strictly larger than this infimum
for any z holding — K (s) z ¢ U. This implies —K (s) x € U, which together with s = r () results in (42).
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