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Abstract— This paper presents the concept, implementation,
feedback control, and experimental verification of a noncontact
magnetic manipulator that relies on a controllable array of
permanent magnets to manipulate magnetized objects inside a
workspace encircled by the magnets. To gain control over the
aggregate magnetic field inside the workspace, the position of
each magnet is independently controlled by a linear servomotor
that dynamically changes the distance between that magnet and
the workspace. By feedback control of the array of servomotors,
the magnetic force applied to a magnetized object inside the
workspace is dynamically adjusted to steer it along a desired
reference trajectory. The successful steering of a small magnetic
bead is demonstrated by experiments performed on a planar
magnetic manipulator, designed and prototyped with six linear
servomotors and six permanent magnets.

I. INTRODUCTION

This paper presents preliminary results from our ongoing
work on noncontact magnetic manipulation based on arrays
of permanent magnets and linear servomotors (LSM). The
magnetic manipulator proposed in this paper is schematically
illustrated in Fig. 1 and consists of an array of six axially
magnetized permanent magnets, each independently actuated
by an LSM to effectively control its distance from a circular
workspace. The aggregate magnetic field generated by the
array of magnets and controlled by the array of servomotors
is then leveraged to exert force on magnetized objects inside
the workspace, aimed to drive them in desired directions. By
feedback control of the array of servomotors, the magnetized
objects can be effectively steered along reference trajectories
within the workspace.

The magnetized object controlled inside the workspace can
be, for instance, a magnetically tipped catheter or any other
medical devices used for non- or minimally invasive surgical,
imaging, or drug delivery procedures [1]-[11]. These devices
can be safely navigated inside the patients’ natural pathways
by means of external magnetic fields produced and controlled
by a magnetic manipulator such as the one introduced in this
paper. For medical applications, magnetic manipulators often
need to produce relatively strong magnetic fields at distances
as far as several decimeters, which are more technically
feasible and economically viable to produce using permanent
magnets rather than electromagnets with substantially larger
size, weight, and cost [12]. Hence, the magnetic manipulator
proposed in this paper offers a more compact, less expensive
alternative to the existing electromagnet-based designs.
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The magnetic manipulator in this paper is composed of six
magnetomechanical units shown in Fig. 2, each consisting of
a permanent magnet bar and a linear actuator to adjust its
position along a nonmagnetic guiding cylinder. Each of the
units effectively emulates an electromagnet, and can replace
electromagnets in well established existing designs such as
OctoMag [13]. An important advantage of the proposed units
is that by pulling their magnets back from the workspace,
their magnetic fields can be practically turned off, as a safety
requirement not provided by other permanent magnet-based
designs [14]-[17].

To realize and experimentally validate the early concept of
this paper, we developed a benchtop experimental setup and
an early-stage feedback law for its closed-loop control. This
feedback law is aimed to drive a magnetic bead along desired
reference trajectories in the workspace of the experimental
setup by measuring its real-time position and correcting its
trajectory accordingly via the LSMs that control the magnetic
field inside the workspace. The control design procedure in
this paper is mainly inspired by our earlier work on magnetic
manipulators with rotatable permanent magnets [17].

The rest of this paper is organized as follows. In Section II,
first the concept of magnetic manipulation using permanent
magnets and linear actuators is presented, and then, the
implementation of this concept as an experimental setup is
discussed. Next in Section III, the dynamics of this set up is
modeled by a set of nonlinear state-space equations, which
is exploited in Section IV to develop a feedback control law.
Finally, experimental and simulation results are presented in
Section V to evaluate the performance of the developed setup
under feedback control.

II. BASIC CONCEPT AND SYSTEM DESIGN

The magnetic manipulator proposed in this paper relies on
arrays of magnetomechanical units encircling a workspace
in which magnetic objects can be manipulated without direct
contact. Each of these units consists of an axially magnetized
permanent magnet attached to a servomotor that can move it
back and forth inside a nonmagnetic guiding cylinder. Fig. 2
shows a prototype of such units developed in this work, and
Fig. 1 schematically illustrates a planar magnetic manipulator
formed by placing six of these units at equal distances around
a circular workspace. Obviously, 3D magnetic manipulators
can be developed based on 3D arrangements of a suitable
number of these magnetomechanical units.

The total magnetic field produced by the magnets of these
units can be effectively controlled inside the workspace via
controlling the distances of the magnets from the workspace



Fig. 1.  Schematic diagram of the magnetic manipulator proposed in
this paper with 6 axially magnetized permanent magnets around a circular
workspace. The magnetic field inside this workspace is controlled by 6
servomotors via adjusting the distances of the magnets from the workspace.

Fig. 2. Prototyped magnetomechanical unit consists of a permanent magnet
(inside the green holder) moving back and forth inside a nonmagnetic
guiding cylinder (white) using an LSM (black).

using the servomotors embedded in the units. This magnetic
field interacts with magnetic objects inside the workspace to
exert a controllable magnetic force on them, through which,
they can be driven in desired directions. By feedback control
of the magnetic force, the magnetic objects are then steered
along desired reference trajectories inside the workspace. The
feedback loop is established by measuring the positions of
these objects in real time, and feeding the measured values
to control algorithms that provide inputs to the servomotors.
To experimentally prove the proposed concept of magnetic
manipulation, we developed the benchtop experimental setup
of Fig. 3 to realize the magnetic manipulator of Fig. 1. This
setup utilizes six magnetomechanical units in Fig. 2, and a
high-speed camera fixed above the workspace to measure the
real-time position of a magnetic bead steered along reference
trajectories inside the workspace. This magnetic bead resides
inside a Petri dish housed within the workspace and filled
with a viscous fluid (corn syrup). For feedback control of the
magnetic bead, we developed an early-stage control law (12),
which was implemented on a desktop computer running the
real-time software LabVIEW. In addition, built-in modules
of LabVIEW were utilized to extract the position of magnetic
bead from the images captured by the camera in real time.

A. Experimental Setup

The experimental setup of Fig. 3 consists of several parts
and components, each separately designed using SolidWorks
and fabricated by 3D printing. The individual components
were next installed on a 3D-printed foundation that provides
six slots for installation of six magnetomechanical units in
Fig. 2, a holder for the Petri dish housing the magnetic bead,
and three holders for an adjustable camera mount. A 3-screw
mechanism was embedded in the foundation for its horizontal
adjustment using two orthogonal spirit levels. The structure

Fig. 3. Prototyped magnetic manipulator with 6 permanent magnet bars
evenly spaced around a circular workspace containing a magnetic bead. A
high-speed camera positioned on top of the workspace is utilized to estimate
the position of the magnetic bead to establish a feedback loop.

and design of the components comprising the setup of Fig. 3
are discussed below.

1) Magnetomechanical Unit: The main component of the
setup of Fig. 3 is the magnetomechanical unit of Fig. 2. This
unit consists of a cylindrical magnet bar attached to the rod
end of an LSM, both housed in a 3D-printed rigid structure.
The magnet bar is a grade N52, NdFeB, axially magnetized
cylinder of diameter 25.4 mm and height 25.4 mm, with a
strong surface field of 662 mT. The LSM is a mightyZAP
model L12-20PT-6 with 34 N maximum load, 80 mm/sec
maximum speed, and 56 mm stroke. It is attached to the
magnet by a 3D-printed connector that houses the magnet in
one side and connects to the rod end of the LSM from the
other side.

2) Workspace and Magnetic Object: The workspace is a
flat, circular area of diameter 64 mm, which can hold Petri
dishes of different diameters up to 64 mm. For experiments in
this work, a Petri dish of diameter 39 mm was used, and was
filled with transparent corn syrup to allow for optical tracking
of a magnetic bead inside the Petri dish. This magnetic bead
was chosen as a sphere of 3 mm diameter and 0.11 gm mass,
made of steel with a magnetic susceptibility of 1000.

3) Camera and Its Adjustable Mount: For tracking the
magnetic bead inside the workspace, the developed setup was
equipped with an Allied Vision Alvium 1800 U-158 camera
with a Moritex 5 Mpixel lens. This camera has a maximum
frame rate of 257 fps at 1.6 Mpixel. The video feed from
this camera is processed in real time by the Vision Assistant
module of LabVIEW relying on a computer vision algorithm
to estimate the position of the magnetic bead.

To properly focus the camera on the workspace, it is
installed on a 3D-printed adjustable mount, which is rigidly
attached to the foundation of the developed setup. The
camera mount can adjust the distance of the camera from the
workspace to attain the widest field of view and the highest
image resolution, which in turn, leads to the most accurate
estimates for the position of the magnetic bead. A pair of
orthogonal spirit levels are embedded in the camera mount
to adjust the axis of camera perpendicular to the workspace.



Fig. 4. Planar diagram of the magnetic manipulator of Fig. 3 illustrating
a coordinate system (r1 and rg denote its two orthogonal axes) fixed at
the center of workspace, the position vector r of the magnetic bead in that
coordinate system, and a reference point for the position of magnet k.

III. SYSTEM DYNAMICS

This section follows [15]-[17] to develop a set of nonlinear
state-space equations that represent the motion of a magnetic
bead moving in a viscous fluid inside the workspace of the
magnetic manipulator of Fig. 1. The magnetic bead has a
mass m and moves under the total magnetic force fiqq (7, Y)
generated by all magnets, and the Stokes’ drag fgrqq (V)
(fluid friction) according to Newton’s second law of motion

mo (t) = fmag (T‘ (t) Y (t)) + fdrag (U (t)) : (D

Here, r (t) is a 2-dimensional vector representing the planar
position of the magnetic bead at time ¢ with respect to the
coordinate system of Fig. 4, and v (¢) = 7 () is its velocity in
the same coordinate system. The magnetic force fiqq (7, Y)
is a function of the position r of the magnetic bead, and also,
the positions of all 6 permanent magnets, gathered into the
6-dimensional vector y. The Stokes’ drag fgrqq (v) is known
to be proportional to the velocity v of the magnetic bead [18],
ie., farag(v) = —pu, where p is a positive constant that
depends on the size of the magnetic bead and the viscosity
of its surrounding fluid.
By defining the constant o = p/m and the vector function
g (T‘, y) = Mv 2

m
the Newton’s second law (1) is rewritten as

0(t)=—ov(t)+g(r(t),y (). ©)

The vector function g (r,y) in (2) represents magnetic force
per unit of mass or magnetic acceleration, and is determined
in Section III-A for the magnetic manipulator of Fig. 1.

The vector y in (2) contains the elements y1, Yo, ..., ¥g,
each representing the position of a permanent magnet with
respect to the center of workspace, as shown in Fig. 4. In
particular, y; denotes the position of the center of magnet
k=1,2,...,6 along the direction

_ [cos (bk} g =

sin ¢y,

(k=1

TR “)

and with respect to a point at a distance ¥,y from the center
of workspace.

The control input to the magnetic manipulator of Fig. 1 is
a 6-dimensional vector u (¢) containing the reference signals
uy (t),uz (t),...,ug(t) to 6 servomotors, each controlling
the position yy, (t) of its corresponding permanent magnet.
The relationship between the output yy, (¢) and input uy (¢)
of each servomotor is described by a second-order linear
dynamics [19] via the transfer function

2
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where w,, and { are positive constants known as the natural
frequency and damping ratio of the servomotor, respectively.

By representing this transfer function in time domain and
in vector form, and then concatenating the resulting equations
with 7 (¢) = v (t) and Newton’s second law (3), the dynamics
of the magnetic manipulator is expressed by the nonlinear
state-space equations

7 (t) =v () (5a)
v(t)=—ov(t)+g(rt),y) (5b)
g (t) = vy (t) (5¢)
by (t) = —why (t) = 2wn vy () +wpu(t).  (5d)

Here, v, (t) is a vector containing 6 servomotor velocities.

A. Modeling of Magnetic Acceleration

The magnetic field at a point r inside the workspace of the
magnetic manipulator of Fig. 1 is generated by 6 magnets
located at points represented by the vector y. This magnetic
field, denoted by h (r, y), is the source of the magnetic force
fmag (r,y) inside the workspace. The relationship between
these two fields is known [20] to be

Fmag (1y) = EnV ||h (1, 9)]17, (6)

where k,, is a positive constant depending on the volume and
permeability of the magnetic object receiving the force, V
is the operator of gradient with respect to r, and ||-|| denotes
the Euclidean norm of vectors. By defining H () as the 2 x 2
Jacobian matrix of h (-) with respect to r and dividing both
sides of (6) by m, the magnetic acceleration is obtained as

2%,
g(ry) = WH(T, y)h(r,y). @)

A mathematical model of h (r,y) is developed in the rest of
this section.

Consider a coordinate system attached to magnet k with its
first axis aligned with —p;, defined in (4), and its other axis
perpendicular to pg. In this coordinate system, the magnetic
field of this magnet is denoted by h.. (). Referring to Fig. 4,
let r be a point in the circular workspace, represented in the
r1—7y coordinate system at the center of the workspace. This
same point is represented in the coordinate system attached
to the magnet k as

7’2 = Rg (r— (yref + Yk) Pr)



where Ry, is a rotation matrix given by

Ry — — [cos ¢r —sin gbk} .

sin g cos P

The total magnetic field h (r,y) is the superposition of 6
individual magnetic fields, with the contribution of magnet &
given by Ryh, (r},), that is

6
h (’f‘, y) = Z Rk hc (Rg (T - (yref + yk) pk)) .
k=1

The Jacobian matrix of this vector field is readily obtained as

6

H(r,y) = > R He (RE (r = (yres +yi) p1)) RE
k=1

in terms of the Jacobian matrix H, (-) of h. (-). Throughout
this paper, h. (-) and its partial derivatives are computed
numerically via a combination of COMSOL finite element
simulations and least squares interpolation techniques.

IV. CONTROLLER DESIGN

For early experiments on the experimental setup of Fig. 3,
a simple linear controller is designed as a point of departure.
We are currently working to develop more effective control
laws based on more advanced control techniques such as
feedback linearization [16]. Our current linear controller is
designed based on an approximate model derived from the
nonlinear state-space equation (5) by linearizing it around its
equilibrium point at (r,v,y, v,) = (0,0,0,0).

Based on the geometric symmetry of the magnets around
the center of workspace, it can be verified that ¢ (0,0) = 0.
Then, the magnetic acceleration g (r, y) can be approximated
by the first two terms of its Taylor series as

g(r,y) ~ G, (0,0)r +G,(0,0)y, (®)

where G, () and Gy, (+) denote the 2 x 2 and 2 x 6 Jacobian
matrices of g (-) with respect to 7 and y, respectively. Again,
as a result of geometric symmetry, G, (0, 0) is diagonal with
equal diagonal elements «, i.e., G, (0,0) = alzx2, where
I5«2 denotes the 2 x 2 identity matrix. Also, the Jacobian
matrix Gy, () is denoted by B, for the sake of simplicity.
Then, by replacing (8) into (5b), the nonlinear dynamics of
the magnetic manipulator is approximated by the linear state-
space equations

7 (t) =v () (9a)
) (t) = ar(t) —ov(t) + By (t) (9b)
y(t) = vy (1) (9¢)
by (1) = —wp y (8) = 2wn vy (8) +wpu(t).  (9d)

The control mission is to drive a small magnetic bead
along planar reference trajectories near the center of circular
workspace in the magnetic manipulator of Fig. 3. This goal
requires our designed controller to maintain the position 7 ()
of the magnetic bead close to a reference trajectory 74 (t). To
control the 2-dimensional output vector r (), only 2 degrees
of freedom out of 6 control variables of u (t) are required.

Therefore, the control u (t) can be constrained to stay in the
column space of BT by defining the 2-dimensional auxiliary
control z (t) and generating u (¢) according to

u(t)=B" (BBT) ' 2(1).

Substituting this expression into (9d) and then applying
Laplace transform to the linear state-space equations (9), the
relationship between r (¢) and z (¢) can be expressed in the
Laplace domain as

R(s)=H (s)Z(s), (10)

where R (s) and Z (s) are 2-dimensional vectors denoting
the Laplace transforms of 7 (¢) and z (t), respectively, and
the transfer function H (s) is given by
1 w2

2+ 2wn s w2 (i

It is observed from (10) that the dynamics of the first and
the second elements of r (¢) are decoupled and are controlled
independently by the first and the second elements of z ()
via the transfer function (11). For each of these single-input-
single-output dynamics, a proportional controller is designed
by the root locus of the transfer function (11). With a gain k),
the resulting controller is expressed in the vector form

H(s) =

s24+ 05—«

u(t)=—k, B (BB") ' (r(t) —ra(t)).  (12)

The performance of this feedback law is evaluated next by
experiments.

V. EXPERIMENTAL RESULTS

The feedback control (12) was implemented as a module in
the graphical environment of LabVIEW, updating the control
value every 96 msec. A gain value of k, = 121 was initially
obtained for this control using the root locus method with the
parameter values w,, = 39.8 rad/sec, ( = 0.7, 0 = 415 1/sec,
and o = 72.3 1/sec? for the transfer function (11). Then, by
observing the performance of the controller in practice, the
numerical value of gain was fine-tuned to k, = 66 for the
best performance. This value was used for experiments under
different reference trajectories shown in Figs. 5, 8, and 9.

In the experiments, the reference input r4 (¢) was changed
in small steps, with a maximum deviation of 0.5 mm in each
direction. Also, the time interval between each incremental
change was maintained at a minimum of 1 sec, allowing the
magnetic bead to reach the steady-state in each small step.
The experimental results were compared with their simulated
counterparts in order to investigate possible discrepancies
between the experimental setup and its mathematical model.

In the first experiment, a square of 6 mm side length
centered at the origin was adopted as the reference trajectory,
shown in blue in Fig. 5. At the beginning of the experiment
t = 0, the magnetic bead was positioned at the origin, and
then, the reference input 74 (¢) was changed from (0,0) mm
to (3,3) mm in small steps. This segment of the reference
trajectory is shown (in blue) more clearly in Fig. 6(a). Next,
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Fig. 5. Trajectory of a magnetic bead (red) tracking a square-shaped
reference (blue) of side length 6 mm, generated by (a) experiment, and (b)
computer simulation.

starting from (3,3) mm, the reference input was changed
until completing the trajectory. The trajectory of the magnetic
bead is shown (in red) in Figs. 5(a) and 6(a).

It is observed from these figures that the magnetic bead
closely tracks the reference trajectory, while the simulation
results in Figs. 5(b) and 6(b) indicate a significant deviation
from this trajectory. This observation can be explained by
a mismatch between the experimental setting and the model
parameters. The first element 7 (¢) of the position 7 (¢) is
illustrated versus time in Fig. 7 for the same experiment
of Fig. 6. Even though the simulation results demonstrate a
relatively large tracking error, this error is much smaller for
experiment. Completing the entire reference trajectory has
taken around 35 sec for the actual magnetic manipulator,
versus 30 sec for its simulator.

Next, the control performance was evaluated when 74 (¢)
changes at large steps. For this purpose, a square of 4 mm
side length was considered, and the reference input r4 (t) was
abruptly changed from one vertex to another within 1 sec
for each jump, starting from the first vertex (2,2) mm. The
trajectory of the magnetic bead under this reference input is
shown in Fig. 8. Instead of travelling 3 mm within 35 sec in
Fig. 7, the magnetic bead in Fig. § travels 16 mm in 4 sec at
a much higher speed. However, closely observing the path
traced by the magnetic bead in Fig. 8 indicates an increased

(a) (b)

4 4
—~3 —~3
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Fig. 6. Comparison of the trajectories of magnetic bead (red) generated

by (a) experiment and (b) simulation for a reference input (blue) changing
from (0, 0) to (3, 3).

(a) (b)

Fig. 7. Position of magnetic bead along r1 axis versus time (red), generated
for the same reference trajectory (blue) of Fig. 6 by (a) experiment and (b)
simulation.

tracking error compared to that of Fig. 5(a).

In the last experiment, the path tracking performance was
evaluated for more complex reference trajectories in Fig. 9.
A major observation in this experiment is a gradual increase
in the tracking error as the magnetic bead moves away from
the center of workspace. Since the controller was designed
based on a linearized model, the most likely cause of this
observation is the nonlinearity of the magnetic manipulator,
not reflected in its approximate linear model, particularly as
the magnetic bead moves away from the equilibrium point.

VI. CONCLUSION

A novel concept for magnetic manipulation was proposed,
implemented as a benchtop setup, and validated by a series of
experiments. Magnetic manipulation by this concept relies on
arrays of magnetomechanical units consisting of permanent
magnets moving back and forth inside nonmagnetic guiding
cylinders. Each of these units effectively emulates the same
functions of an electromagnet in generation and control of
magnetic fields, but control over the magnetic field is gained
in these units by adjusting the position of magnets inside
their guiding cylinders, versus terminal voltages in the case
of electromagnets. At similar strength of magnetic field, these
units can be manufactured smaller in size and weight and less
expensive in cost, and therefore, offer a viable alternative to
electromagnets, in particular for medical applications which
often need strong magnetic fields at relatively far distances.



Fig. 8.

Magnetic bead tracking (red) a square-shaped reference trajectory

(blue) of 4 mm side length under the control law (12). Starting at ¢ = 0,
Figs. 8(a) through 8(d) have been recorded at ¢ = 1.00 sec, ¢t = 1.90 sec,
t = 3.10 sec, and ¢t = 4.10 sec, respectively.

(b)

Fig. 9. Trajectories of a magnetic bead (red) tracking complex references
(blue): (a) spiral trajectory with 15 mm maximum distance from the center;
and (b) SIU-shaped trajectory. The tracking error grows considerably large
with the distance from the center of workspace.
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