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Abstract— This paper presents experimental results to verify
a novel concept of magnetic manipulation in which arrays of
permanent magnets and electromechanical actuators generate
and effectively control magnetic fields, through which, magnetic
objects can be manipulated from a distance without any direct
contact. This concept is realized by an experimental setup that
consists of six diametrically magnetized permanent magnets
actuated by rotary servomotors to control their directions, by
which, the aggregate magnetic field is controlled in a planar
circular workspace. To leverage this magnetic field for control of
magnetic objects inside the workspace, a feedback loop must be
established to command the servomotors based on the positions
of these objects measured in real time. A suitable control law is
developed for this feedback loop, and is verified by experiments,
which demonstrate successful results. The experimental results
are compared with those generated by computer simulations
under similar conditions.

I. INTRODUCTION

This paper presents the experimental verification of a novel
concept for noncontact magnetic manipulation we proposed
in [1]-[3]. This concept was then implemented in [4] as the
experimental setup of Fig. 1, which was adopted with minor
modifications in this work for its experimental verification.
This setup consists of 6 diametrically magnetized permanent
magnets actuated by 6 rotary servomotors aimed to control
their headings, and thereby, their aggregate magnetic field
inside a circular workspace encircled by the magnets. This
magnetic field interacts with a small magnetic object inside
the workspace to drive it by an applied magnetic force along
any desired direction. By feedback control of this magnetic
force, the magnetic object is then precisely steered along a
desired reference trajectory. A similar concept for magnetic
manipulation has been also studied by other researchers [5].

In addition to experimental validation, this paper improves
our earlier control design procedures, specially, the optimal
linear feedback we developed in [3]. To develop a practical
controller for the highly nonlinear dynamics of the proposed
magnetic manipulator, we adopted a simple approach in [3]
that begins with linearizing the nonlinear dynamics around
an, as yet, undecided equilibrium point, then proceeds with
the design of a linear controller for the linearized model, and
finally ends up with optimizing the control performance with
the best choice of the equilibrium point. This paper improves
this procedure by including an additional step in which the
linear control is modified into a nonlinear control at a higher
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performance. Several experiments under the modified control
demonstrate successful steering of a small magnetic bead
along reference trajectories in the vicinity of the equilibrium
point. We are still working to implement more advanced
control techniques such as the feedback linearization in [2].
Our broader efforts to develop new approaches to magnetic
manipulation are mainly motivated by potential applications
in a range of minimally invasive medical procedures in which
external magnetic fields will be leveraged to safely navigate
magnetized surgical tools inside the patient’s body [6]-[12].
For these applications, relatively strong magnetic forces are
required at distances as far as several decimeters, which can
be more effectively generated by permanent magnets rather
than electromagnets [13], which are the conventional choice
for magnetic manipulation [14]-[18]. Hence, our research is
dedicated to the class of magnetic manipulators that combine
permanent magnets with electromechanical actuators in order
to generate and control magnetic fields [1]-[3], [19], [20].
The rest of this paper is organized as follows. In Section II,
a short description of the experimental setup is presented and
its dynamics is described by a set of nonlinear state-space
equations. The procedure for control design and optimization
is explained in Section III. Experimental results and their
comparison to simulated data are presented in Section IV.

II. EXPERIMENTAL SETUP AND ITS DYNAMICS

The experimental setup employed in this work is shown
in Fig. 1. The magnetic manipulator in this figure consists of
a circular flat workspace housing a Petri dish, an array of 6
diametrically magnetized permanent magnets placed at equal
distances around the workspace, and a rotary servomotor for
each magnet to independently control its direction. The Petri
dish is filled with a viscous fluid (corn syrup) and contains
a soft magnetic bead moving in a plane at the bottom of the
Petri dish under the aggregate magnetic force applied by all 6
magnets. A high-speed camera is fixed above the workspace
to measure the real-time position of the magnetic bead as it
moves within its plane of motion.

The overall system in Fig. 1 has been designed modularly
consisting of several replaceable parts designed separately by
SolidWorks and fabricated by 3D printing [4]. The diameter
of workspace in this system is 60 mm and the diameter of the
Petri dish is currently 39 mm (can be selected up to 60 mm).
The magnetic bead is a sphere of 3 mm diameter and 0.11 gm
mass made of steel with a magnetic susceptibility of 1000.
The permanent magnets in use are grade 42 NdFeB cylinders
of diameter and height 19.05 mm, the rotary servomotors are
Dynamixel model AX-18A, and the camera is a monochrome



Fig. 1. Experimental setup adopted from [4] with modifications in the size
of magnets, design of camera mount, and inclusion of a rigid base structure.
This magnetic manipulator (bottom left) utilizes 6 diametrically magnetized
cylindrical permanent magnets that can freely rotate a full 360° inside their
guiding cylinders using 6 independent servomotors (bottom right).

Allied Vision Mako U-130B with a ON Semi PYTHON 1300
image sensor a resolution of 1280 x 1024 pixels at 169 fps.

The goal of magnetic manipulation in this work is to drive
the magnetic bead along reference trajectories confined in a
plane at the bottom of the Petri dish. This control task is
realized by a feedback loop that measures the position of the
magnetic bead in real time, and generates suitable reference
signals to the array of servomotors, updated every 90 msec.
This control loop is set up by a desktop computer connected
to the servomotors at one end and to the camera at another
end. This computer runs the real-time software LabVIEW
for two purposes: extracting the position of the magnetic
bead from images captured by the camera, and incorporating
this position into the feedback law of Section III to generate
references for the servomotors.

A. Dynamics of the Magnetic Manipulator

The dynamics of the magnetic manipulator in Fig. 1 was
extensively studied in [1]-[3]. This dynamics is described in
this paper by a state-space model adopted from [3] with some
modifications in the dynamics of the servomotors. The model
utilized in this paper includes 16 state variables forming two
2-dimensional vectors r (¢) and v (¢), and two 6-dimensional
vectors 6 (t) and w (t). Here, 7 (t) denotes the position of the
magnetic bead at time ¢ in a planar coordinate system at the
center of the circular workspace. Also, v (t) = 7 (¢) denotes
the velocity of the magnetic bead with respect to the same
coordinate system. The 6-dimensional vectors 6 (¢) and w ()
contain the angular positions (with respect to certain fixed
references) and angular velocities of the servomotors.

The control input u (¢) to the overall magnetic manipulator
is a 6-dimensional vector including the reference signals to 6
servomotors, each reference controlling the angular position
of its corresponding servomotor. These reference inputs are
calibrated in such a manner that 6 (¢) closely tracks w (t)
to ideally achieve 6 (¢) = u (¢t). For a practical servomotor,

this ideal relationship must be modified properly to reflect
its actual dynamics. Specifically, the servomotor dynamics in
this paper is described by the second-order transfer function

w2

Hservo (S) = m s (1)
where w,, and ( are positive constants known as the natural
frequency and damping ratio of the servomotor, respectively.
For the servomotor used in this paper, the numerical values
wy = 75 rad/sec and ( = 0.75 have been determined in [19]
by experiments, which are identically adopted in this work.

The dynamics of the magnetic manipulator of Fig. 1 is
represented by the nonlinear state-space equations

(t) = v (t) (22)
0 (t) = —ov(t) +g(r(t),0(t)) (2b)
0(t) =wl(t) (2¢)
W (t) = —2Cwnw (t) — w26 (t) + w2u (t) . (2d)

Among these equations, (2a) is simply the trivial relationship
between the position and velocity of the magnetic bead,
while (2c) and (2d) represent the transfer function (1) in the
time domain and a vector form. The state equation (2b) is
highly nonlinear and is derived from Newton’s second law,
describing the motion of the magnetic bead under an applied
magnetic force and the Stokes drag force acting against the
motion as it moves inside a viscous fluid. This equation is
examined in more detail next.

The magnetic bead is a sphere of radius p and mass m,
and the viscosity of its surrounding fluid is . The magnetic
force is a function Fy, (r, 6) of the position r of the magnetic
bead and the angular positions 6 of the permanent magnets.
The Stokes drag is known [16] to be 6mpnuv (t). Newton’s
second law of motion implies that

mi (t) = —6mpnu (t) + Fo (7 (t),0 (1)),
which can be rewritten as (2b) by defining the vector function

F, (r,0)

m

g (Tv 0) =

and the positive parameter o = 6wpn/m. A numerical value
of o = 642.6 1/sec was determined for this parameter for
p =15 mm, m=0.11 gm, and 1 = 2.5 Pa.sec.

The vector function g (r, #) represents the magnetic force
per unit of mass and can be regarded as magnetic acceleration
at a point r of the workspace. An explicit expression for this
function has been derived in [1]-[3] in terms of the geometry
of the magnetic manipulator, the known relationship between
magnetic force and magnetic field, and a model of magnetic
field for the individual permanent magnets. Throughout this
work, this explicit expression was adopted for computation
of g (r,0) or its partial derivatives, whenever necessary. The
magnetic field of the individual magnets was constructed by
a combination of COMSOL finite element simulations and
least squares interpolation techniques.



ITT. CONTROLLER DESIGN

This section develops a simple, yet effective, feedback law
for the magnetic manipulator of Fig. 1, which aims to drive
small magnetic beads along planar reference trajectories near
the center of its workspace. The control design is performed
in several steps: linearization of the nonlinear dynamics (2)
around an optimally selected equilibrium point, reducing the
dimension of the linearized model, design of a linear control
for the reduced order linear model, mapping this control back
to the original high dimensional state space, and optimizing
the control performance in this high dimensional state space.

A. Linearization and Model Reduction

To facilitate the control design procedure, the nonlinear
state-space equations (2) are linearized around an equilibrium
point at the center r = 0 of the workspace. For any constant
vector 6, that holds ¢ (0, 6.) = 0, application of u () = 6, to
the state-space equations (2) creates an equilibrium point at
(r,v,0,w) = (0,0,80.,0). For the purpose of this paper, 6. is
chosen to be a vector with equal elements 9, i.e., ., = V15,
where 1 denotes a 6 x 1 vector with all elements 1. It is easy
to verify that g (0,91¢) = 0 due to the geometric symmetry
of the magnetic manipulator around its center.

To linearize the state-space equations (2), g (r, 6) in (2b) is
approximated by the first two terms of its Taylor series as

g(r,0) ~ Gy (0,0.)r+ Gy (0,0.) (6 —6,). 3)

Here, G, (0,6.) and Gy (0,6.) are 2 x 2 and 2 X 6 Jacobian
matrices of g(r,6) with respect to r and 6, respectively. In
particular, for 6, = 91, the Jacobian matrix G, (0,91g) is
diagonal with equal diagonal elements a (). For the sake of
simplicity, the Jacobian matrix Gy (0,91g) is denoted by the
2 x 6 matrix B (). Then, the linear approximation of the
state-space equations (2) around (0, 0,91, 0) is given by

i (t) = v () (4a)
() =—ov(t)+a@)r(t)+B(W)0()  (4b)
0(t) =w(t) (4c)
W) = =2wnw (t) — w20 (1) +wia(t),  (4d)

where 0 (t) = 0 (t) —91¢ and @ () = u (t) — 91¢ denote the
state and control vectors of the linearized model.

The set of linear state-space equations (4) includes 16 state
variables, which can be readily reduced to 8 by adopting new
state vectors 0 (£) = B (9) 0 (t) and ws (t) = B (9) w (t) of
the lower dimension 2, and a 2-dimensional control vector

2(t) =B (9)a(t).

Left multiplying (4c) and (4d) by B (1) and using the new
vectors 65, wo, and z, the state-space equations (4) reduce to

(t) =v(t)
o (t) = —ov (t) +a @) r(t)+ 02 (t)
0 (t) = wo (1)
Wa () = —2Cwnwa (1) — w20 () + w2z (1)

This reduced set of equations includes 4 2-dimensional state
vectors and all coefficients in their right-hand side appear as
scalars, rather than matrices. Hence, the dynamics of the first
and the second elements of these vectors are decoupled and
can be independently controlled by the first and the second
elements of z (¢). The relationship between element ¢ = 1,2
of r(t) and the element i« = 1,2 of z (¢) is given by the
transfer function

1 w?
H = . n .
() s24+o0s—a(¥) s24+2(wns+ w2 )

B. Design of Linear Control

Once the value of 9 is decided, the transfer function (5) is
fully known and a linear controller can be readily designed
for it. The aim of this controller is to drive a magnetic bead
along a planar reference trajectory denoted by 4 (t), i.e., the
position r (¢) of the magnetic bead must closely track rq (¢).
As a starting point, this paper adopts a simple proportional
integral (PI) controller for this purpose, while more advanced
controllers that, for instance, combine a state feedback with
a state observer will be considered in future work. This PI
controller is expressed in a vector form as

0= Kr(ra )= (0) + K1 [ (ar)=r(m)dr ©

with scalar parameters K p and K determined, for instance,
using the root locus method.

For the optimal value ¥* = 36° obtained in Section III-D,
the numerical value a (9*) = 256.9 1/sec? was estimated for
the parameter a (¢) in the transfer function (5). The numeric
values of other parameters were taken as o = 642.6 1/sec,
wyn = 75 rad/sec, and ¢ = 0.75. Based on these values, two
pairs of PI parameters were obtained as Kp = 1900, Ky =0
(no integral action) and Kp = 1600, K; = 4 1/sec, which
were used in the experiments reported in Section IV.

C. Optimization of Control Effort

After computation of z (¢) from (6) or any other linear
control law, the control % (¢) of the linearized model (4) can
be readily determined as the solution to the system of linear
algebraic equations

BW)a(t)=z(t).

This system of equations is underdetermined as it includes 2
equations but 6 unknowns. Hence, it admits infinitely many
solutions, among which, some are preferred for their higher
control performance, which are identified by the optimization
procedure explained next.

Noting that 6 (t) = 0 (£)—191g is the deviation of § (¢) from
its equilibrium value 91, smaller values of || (¢)]| render (3)
a more accurate approximation, under which the nonlinear
dynamics (2) is well described by the linear model (4). On
the other hand, small values of || (t)|| are typically generated
by small values of ||@ (¢)||, which motivates the constrained
optimization problem

minimize  ||al|
i€ [ 7° (7

subject to B (¢)a = z (¢)
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Fig. 2. Block diagram of the closed-loop system under the control (8). The
control @* (¢) is generated in terms of the position 7 (¢) of the magnetic
bead and the reference trajectory r4 (¢).

as a machinery to construct an optimal control ||@* (¢)].
By adopting a 2-norm in this optimization problem, its
solution is simply given as the linear control law

@ (t) = BT (9) 2 (t), ®)
where BT is the Moore—Penrose inverse of B defined as
B = B" (BBT) .

Under the co-norm, which is a more reasonable choice here,
the optimization problem (7) does not have a known closed-
form solution. Since numerically solving this problem in real
time can be a challenge, an approximate closed-form solution
for the problem is presented next.

The core idea of this approximation is to obtain a scalar «
and a vector g of the smallest possible 2-norm such that

U = q + asignv (BT () z (t))

satisfies the constraint B (¢) & = z (t) of (7). Here, signv (+)
is a vector-valued sign function defined such that

signv () = [sign (z1)  sign (z2) sign (,)]"

forz = [z1 w2 xn]T. Then, the optimal values of «
and ¢ are obtained from the constraint optimization problem

minimize llg]l5
geRb aeR
subject to B (¥9) (¢ + asignv (BT (¥) 2 (1)) = 2 (¢).

This optimization problem can be analytically solved for
_ 1B (9) () |11

I1BT (9) B (9) signv (BT (9) 2 (1)) |13
¢ (t) =B (9) (a* (t) B () signv (BJf (9) z (t)) —z (t))

o (1)

that leads to the nonlinear control law
@ (t) = ¢ (t) + o* (t)signv (B (9) 2 (1)) . 9)

The block diagram of Fig. 2 explains how this control law is
implemented to establish a feedback loop.

D. Optimization of Equilibrium Point

The control laws (8) and (9) are both parameterized by
and their performance depends on this scalar parameter. This
parameter is optimized for the best control performance,
following a procedure proposed in [3]. Here, the performance
measure is the norm || ()] of the control vector, which must
be minimized in some reasonable sense. Certainly, || (¢)||
is a function of time and cannot be minimized directly to

IBT(9)]l2

0 20 40 60 80
9 (deg)

Fig. 3. Optimal value of ¥ for selecting the best equilibrium point. The
optimization process is performed according to (10) with induced 2-norm
of the matrix BT ().

(a) (b)

Fig. 4. Trajectory of magnetic bead starting at r (0) = (1.5, 1) in its plane
of motion and moving toward (0,0) under 4 (t) = O applied to (a) the
linear control law (8), and (b) the nonlinear control law (9). The solid and
dashed lines represent the results of experiment and simulation, respectively.

obtain a constant ¥*. Thus, a new performance measure, not
depending on time, must be adopted in such a manner that its
small values imply small values of || (¢)|| for most instances
of t. This goal can be achieved via a minimax formulation.

In particular, for the linear control law (8), this minimax
problem is given by

minimize maximize HBJr (9) 2|,

Jef0,m/2] |z =1
which is reduced to

1B @)l

minimize

9e0,1/2] (10)

in terms of the induced matrix norm HBT () H In Fig. 3, this
optimization problem is solved numerically for induced 2-
norm. A similar process can be formulated for the nonlinear
control law (9), albeit at a higher computational cost.

IV. EXPERIMENT AND SIMULATION RESULTS

We conducted a series of experiments on the setup of
Fig. 1 under both the linear control law (8) and its nonlinear
counterpart (9). Each experiment was paired with computer
simulations under similar conditions to examine the possible
mismatch between the real-world setup and its mathematical
model. The results of this study are presented in this section.

In the first experiment, a magnetic bead was driven from
an initial position 7 (0) = (1.5,1) mm toward (0,0) under
the constant reference signal r4 (t) = 0. This experiment was
performed under a pure proportional control (K; = 0) with
the gain K, = 1900. For this experiment, the trajectory of
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Fig. 5. Position of the magnetic bead versus time generated by experiment
(solid line) and simulation (dashed line) under (a) the linear control law (8),
and (b) the nonlinear control law (9). The control goal is to drive the
magnetic bead from r (0) = (1.5, 1) to (0,0) by setting 4 (t) = 0.
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Fig. 6. Servomotor positions versus time generated by simulation (top)
and by experiment (bottom) under (a) the linear control law (8), and (b) the
nonlinear control law (9). The control goal is similar to Fig. 5.

magnetic bead in its plane of motion is illustrated in Fig. 4,
the position of magnetic bead versus time in Fig. 5, and the
angular positions of the servomotors versus time in Fig. 6.
Throughout the experiment, the magnetic bead was driven
toward the center » = 0 of the workspace with an average
velocity of 0.52 mm/sec under the linear control law (8)
and 0.60 mm/sec under the nonlinear control law (9). These
numbers predict a settling time of 3.5 sec for the former
and 3.0 sec for the latter. The settling time was estimated
by computer simulations around 4.0 sec, which considerably
differs from its experimental value. The most likely cause of
this difference is a mismatch between the numerical value of
viscosity (of corn syrup) in experiment and simulations.
The performance of trajectory tracking under both control
laws (8) and (9) was evaluated in the second experiment. To
that end, a slowly-varying reference r4 () was applied to the

Fig. 7. Trajectory of the magnetic bead (blue line) near a square reference
trajectory (red line) with a side length of 6 mm, generated under (a) the
linear control law (8), and (b) the nonlinear control law (9).
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Fig. 8. Position of magnetic bead (solid line) and the reference trajectory
(dashed line) in the experiment of Fig. 7 versus time, generated under the
linear control law (8).

closed-loop system to create a series of reference trajectories,
from simple to more complex. For instance, a square of 6 mm
side length is considered as the reference trajectory in Fig. 7.
For this reference trajectory, the position r () of the magnetic
bead and the reference input 74 (t) are also illustrated versus
time in Fig. 8. The performance of trajectory tracking under
more complex references is presented in Fig. 9. It is observed
from Figs. 7 through 9 that the proportional control utilized
in the experiments overall is capable of steering a magnetic
bead along complex trajectories, albeit with a significant
tracking error. The average tracking error under this control
was estimated around 25%.

To compensate for the relatively large tracking error under
the proportional control, a PI controller was adopted with
the parameter values Kp = 1600 and K; = 4. The average
tracking error for this control was computed at much lower
level of only 3%. This error is at the level of measurement
error due to the finite resolution of camera, and most likely,
is not caused by the control algorithm. Fig. 10 illustrates the
performance of the PI controller in tracking a spiral reference
trajectory. The travel time of the magnetic bead along this



Fig. 9. Trajectories of magnetic bead (blue line) tracking complex reference
trajectories (red line) under (a) the linear control law (8), and (b) the
nonlinear control law (9). The reference trajectory on top consists of three
squares with side lengths of 2 mm, 4 mm, and 6 mm. The SIU-shaped
trajectory (bottom) fits within a square of 6 mm side length.

Fig. 10. Comparison between (a) pure proportional and (b) PI controllers
embedded into the linear control law (8). The proportional control results in
a larger tracking error but is capable of driving the magnetic bead faster. In
particular, the travel time under the proportional control is 106 sec versus
295 sec for the PI control. In this figure, the blue and red lines represent
the position of the magnetic bead and the reference trajectory, respectively.

trajectory was recorded as 106 sec under proportional control
and 295 sec under PI control. These numbers indicate 2.7
times reduction in the speed of the magnetic bead, which is
the price paid for a lower tracking error.

V. CONCLUSION

The major results of this work are twofold. First, the early
concept of magnetic manipulation using permanent magnets
and electromechanical actuators was realized and validated
by experiments. The success in these experiments motivates
further research efforts on this concept, which eventually can
yield a framework for design and development of magnetic
manipulators suited for a range of medical applications. As
the second major result, a procedure for design of feedback
control laws was developed, which can be adopted, or at least
modified, for magnetic manipulators of different geometries.
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