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Abstract— A nonlinear estimation technique is proposed to
combine a precise but inaccurate sensor with an accurate but
imprecise one in such a manner that their fusion enables both
precise and accurate measurement of a physical quantity. This
estimation technique solely relies on certain bounds on the
measurement noise, rather than a detailed statistical description
of the noise and the measured quantity. The estimation strategy
is to estimate the slowly-varying offset of the inaccurate sensor
based on a dynamic model for its temporal evolution, and the
observations of the imprecise sensor. This measurement offset is
estimated by recursively generating some tight upper and lower
bounds for it, and then, taking the midpoint of these bounds
as its midrange estimation. This estimation technique is verified
effective both analytically and by Monte Carlo simulations.

I. INTRODUCTION

This paper presents a nonlinear estimation technique for

fusion of a precise but inaccurate sensor with an accurate but

imprecise counterpart in order to enhance both precision and

accuracy of measurement. The first sensor is precise in the

sense that its reading consistently stays the same in repeated

measurements of a constant quantity, and is inaccurate in the

sense that its reading is persistently biased with a fixed offset.

Conversely, the second sensor generates disperse readings of

the same fixed quantity in repeated trials, which of course,

are unbiased on average. By exploiting the precision of the

first sensor and compensating its inaccuracy using the second

one, the data fusion technique of this paper provides a precise

and accurate estimate of the measured quantity.

The motivating example of this paper is an application in

displacement (or position) measurement that combines two

types of optical encoders: incremental and absolute [1]. Both

these devices are widely used for measurement of linear and

angular positions, albeit with different concepts. Incremental

encoders are developed for high precision measurement of

relative position with respect to an unspecified initial point.

In other words, their highly precise readings are persistently

distorted by some unknown but constant offset, rendering

them inaccurate. Incremental encoders are used widely in the

computer numerical control (CNC) machines. In order to null

the measurement offset in these machines, a calibration phase

before normal operation is required to reset all moving parts

into some known initial position. Yet, any further inaccuracy

accumulated during the normal operation mode (often a long

time) is left uncompensated. The developments in this paper

provide a viable means to enhance the measurement accuracy
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by exploiting an auxiliary sensor of the absolute type, which

essentially measures the absolute position with low precision.

Sensor fusion has been the subject of substantial research

efforts [2]–[5] for a broad spectrum of applications [6]–[17],

following different estimation approaches [18]–[23]. Most of

these approaches rely on detailed stochastic characterization

of the measurement noise and the temporal evolution of the

measured quantity. Unlike these approaches, the estimator of

this paper is based only on the knowledge of certain bounds

on the measurement noise and a deterministic dynamic model

for the slowly-varying offset of the inaccurate sensor.

The nonlinear estimator in this paper recursively estimates

this offset by establishing certain upper and lower bounds on

it in terms of the measurement history of both sensors. Then,

the midpoint between these bounds is taken as the midrange

estimation of the measurement offset of the inaccurate sensor.

This estimation is utilized then to compensate for this offset,

and thereby, exploit the precision of the inaccurate sensor.

Evidenced by analytical evaluation and numerical simulation

in this paper, the midrange estimator achieves a reasonable

performance for its simple structure and easy implementation

with minimal prior knowledge of the sensors.

II. PROBLEM STATEMENT

A scalar quantity xt is measured by a pair of sensors over

the discrete time t = 1, 2, 3, . . . . The first sensor is precise

but inaccurate with the reading value yt given by

yt = xt + θ0, t = 1, 2, 3, . . . , (1)

where the measurement offset θ0 is an unknown constant in

the interval [−Θ,Θ]. The second sensor, which is accurate

but imprecise, generates a reading zt which is a noisy version

of xt expressed as

zt = xt + wt, t = 1, 2, 3, . . . . (2)

The measurement noise {wt} is zero-mean in the sense of

lim
T→∞

1

T

T
∑

t=1

wt = 0,

it is bounded within the interval [−W,W ], and entirely spans

this interval in the sense that

sup
t>1

wt = − inf
t>1

wt = W. (3)

The goal in this paper is to develop an estimation law Et (·)
to map the observation set (y1, y2, . . . , yt, z1, z2, . . . , zt) into

an estimate of xt of the form

x̂t = Et (y1, y2, . . . , yt, z1, z2, . . . , zt) , t = 1, 2, 3, . . .,



in such a manner that the resulting estimator outperforms the

individual readings of the sensors in some reasonable sense.

In particular, the estimate x̂t must be at least as precise as

the accurate sensor (with reading zt) in the sense that

|xt − x̂t| 6 W, t = 1, 2, 3, . . . . (4)

Moreover, it must be asymptotically consistent in the sense

lim
t→∞

|xt − x̂t| = 0. (5)

In a more practical scenario, the measurement offset of the

inaccurate sensor slowly varies with time, i.e., θ0 in (1) is

replaced with θt. This offset is assumed bounded within the

interval θt ∈ [−Θ,Θ] and evolves in time according to a first

order linear dynamics. Then, the reading of the inaccurate

sensor is expressed as

θt = αθt−1 + (1− α) ξt, t = 1, 2, 3, . . . (6a)

yt = xt + θt, (6b)

where 0 < α < 1 is a constant, ξt, t = 1, 2, 3, . . . is a noise

sequence confined within the interval ξt ∈ [−Θ,Θ], and the

initial state θ0 is an unknown in the interval θ0 ∈ [−Θ,Θ].
To enforce the assumption that yt is the reading of a precise

sensor, the constant ratio

η =
(1− α) Θ

W
(7)

must be much smaller than 1 (i.e., 0 < η ≪ 1), maintaining

that θt only slowly varies in time. Moreover, Θ ≫ W reflects

the assumption that yt is inaccurate compared to zt.
Even though the measurement model (1) is a special case

of (6) with α = 1, the behavior of its associated estimator

fundamentally differs from the more general case of α 6= 1.

For α 6= 1, it is usually impossible to develop an estimator x̂t

to be asymptotically consistent in the sense (5). Hence, the

consistency requirement is relaxed into the weaker condition

|xt − x̂t| ≪ W, t → ∞

for α 6= 1. Yet, the condition (4) is attainable for α 6= 1, and

is met by the estimator developed in this paper.

The problem setting in this paper does not include any

specific model for the noise sequences {ξt} and {wt} beyond

the bounds |ξt| 6 Θ and |wt| 6 W , and for the initial state θ0
beyond |θ0| 6 Θ. Also, it does not involve any model for the

temporal evolution of the measured quantity xt. Therefore,

the estimator design procedure in Section III is based only

on the bounds on noise and initial state without any reference

to the nature of the measured quantity. Later in Section IV,

the estimation performance is evaluated statistically based on

stochastic models for {ξt}, {wt}, and θ0.

III. MIDRANGE ESTIMATOR

This section proposes a nonlinear estimator in a recursive

form in order to address the estimation problem of Section II.

The development process for this estimator is similar for both

cases of α = 1 and α 6= 1, while its performance evaluation

is presented separately for these cases.

Since a specific model for the measured quantity xt is not

available, this quantity is first removed from the measurement

models by subtracting (2) from (6b). Next, (6) is rewritten as

the linear state-space model

θt = αθt−1 + (1− α) ξt, t = 1, 2, 3, . . . (8a)

yt − zt = θt − wt (8b)

with the state θt, the output yt−zt, the process noise ξt, and

the measurement noise −wt. Based on this model, a state

estimator is developed next to generate θ̂t as an estimate for

the measurement offset θt. By replacing θt in (6b) with θ̂t,
an estimate of xt is constructed as

x̂t = yt − θ̂t.

To generate the estimation θ̂t, the strategy in this paper is

to establish an upper bound Ut and a lower bound Lt on θt,
and then, take the midpoint

θ̂t =
Lt + Ut

2
(9)

between these bounds as the estimate θ̂t for θt. As shown

in Proposition 1 below, such upper and lower bounds can be

obtained recursively from the nonlinear state-space equations

Lt = max {αLt−1 − (1− α) Θ, yt − zt −W} (10a)

Ut = min {αUt−1 + (1− α) Θ, yt − zt +W} (10b)

for t = 1, 2, 3, . . ., starting from the initial state

−L0 = U0 = Θ. (11)

Then, in terms of Lt and Ut, the estimate x̂t of xt is given by

x̂t = yt −
Lt + Ut

2
(12)

referred to as midpoint estimator in this paper.

Proposition 1: Suppose that θt is generated by (8a) with

the initial state θ0 ∈ [−Θ,Θ], the process noise ξt ∈ [−Θ,Θ],
and the measurement noise wt ∈ [−W,W ]. Let yt − zt be

given by (8b) and assume that Lt and Ut, t = 1, 2, 3, . . .
are generated recursively from the state-space equations (10)

with the initial state (11). Then, θt is bounded in the interval

θt ∈ [Lt, Ut] , t = 1, 2, 3, . . . . (13)

Proof: The proof is straightforward by induction. By

taking (11) as the initial state, (13) trivially holds for t = 0.

Assuming that (13) holds for t− 1, the bounds

αLt−1 − (1− α)Θ 6 θt 6 αUt−1 + (1− α)Θ (14)

on θt are imposed by (8a), while (8b) bounds θt within

yt − zt −W 6 θt 6 yt − zt +W. (15)

Then, (13) must hold for t as the intersection of (14) and (15).

For the special case of α = 1, the recursive equations (10)

reduce to

Lt = max {Lt−1, yt − zt −W}
Ut = min {Ut−1, yt − zt +W}



with the initial state −L0 = U0 = Θ. An argument parallel to

the proof of Proposition 1 indicates that Lt and Ut bound θ0
within the interval θ0 ∈ [Lt, Ut], t = 1, 2, 3, . . . .

For the midrange estimator (12), the estimation error

εt = xt − x̂t

is equal to

εt = θ̂t − θt. (16)

This error is clearly bounded within the uncertainty interval

εt ∈ [−rt, rt] , t = 1, 2, 3, . . .,

where the uncertainty range rt > 0 is defined as

rt =
Ut − Lt

2
. (17)

Therefore, the bounds Lt and Ut determined from (10), not

only provide an estimation for xt, but also offer a bound on

the estimation error, which is dynamically adjusted in time.

The performance of the estimator (12) can be conveniently

evaluated in terms of the size and temporal evolution of the

uncertainty range rt. To facilitate the evaluation process, both

variables rt and εt are expressed solely in terms of the initial

state θ0 and the noise sequences {ξt} and {wt} by defining

δLt = Lt − θt 6 0, δUt = Ut − θt > 0.

It is straightforward to conclude from (8) and (10) that δLt

and δUt evolve in time according to

δLt = max {αδLt−1 − (1− α) (ξt +Θ) ,−wt −W}
δUt = min {αδUt−1 − (1− α) (ξt −Θ) ,−wt +W} (18)

with the initial state

δL0 = −θ0 −Θ, δU0 = −θ0 +Θ.

Then, εt and rt are expressed in terms of δLt and δUt as

εt =
δLt + δUt

2
(19)

rt =
δUt − δLt

2
. (20)

The following proposition establishes bounds on εt and rt
and verifies that the estimator (12) meets its requirement (4).

Proposition 2: Let the assumptions of Proposition 1 hold

and define εt and rt according to (16) and (17), respectively.

Then, εt and rt are bounded within the intervals

εt ∈ [−W,W ] , rt ∈ [0,W ] , t = 1, 2, 3, . . . . (21)

Proof: It is concluded from (18) that δLt > −wt −W
and δUt 6 −wt+W . Substituting these inequalities into (20)

results in rt 6 W , which in turn leads to rt ∈ [0,W ] as rt is

nonnegative by construction. Using the triangle inequality, it

is concluded from (19) that |εt| 6 rt, which further results

in |εt| 6 W , or equivalently εt ∈ [−W,W ].
For the special case of α = 1, typically, the uncertainty

in the measurement offset θ0 is much larger than that of the

measurement noise {wt}, i.e., Θ ≫ W . Therefore, Θ can be

effectively taken as Θ → ∞. In this case, the bounds δLt

and δUt are independent of θ0 and are explicitly given by

δLt = − min
16k6t

wk −W

δUt = − max
16k6t

wk +W.

These explicit expressions, in turn, lead to

εt = −1

2

(

min
16k6t

wk + max
16k6t

wk

)

(22)

rt = W − 1

2

(

max
16k6t

wk − min
16k6t

wk

)

, (23)

which simply confirm the same bounds (21) in Proposition 2.

Moreover, under the assumption (3) on {wt}, they result in

lim
t→∞

εt = 0, lim
t→∞

rt = 0,

which clearly verify the consistency condition (5).

IV. STATISTICAL PERFORMANCE ANALYSIS

This section is dedicated to performance evaluation of

the midrange estimator (12) by exploiting stochastic models.

Specifically, {wt} and {ξt} are characterized by statistically

independent white sequences uniformly distributed over the

intervals [−W,W ] and [−Θ,Θ], respectively. Also, the initial

state θ0 is represented by a random variable with a uniform

distribution on [−Θ,Θ] and independent of {wt} and {ξt}.

Based on these stochastic models, the performance of (12) is

separately analyzed for two cases of α = 1 and 0 < α < 1,

corresponding to a constant measurement offset θ0 and a

time-varying θt, respectively.

A. Constant Measurement Offset

Under α = 1, the estimation error εt and the uncertainty

range rt are explicitly given by (22) and (23), respectively.

The odd symmetry of εt with respect to w1, w2, . . . , wt as

indicated by (22) implies

E [εt] = 0, t = 1, 2, 3, . . .,

which means the estimator (9), and consequently (12), are

unbiased. The mean absolute and mean squared estimation

errors E [ |εt| ] and E
[

ε2t
]

, as well as the mean uncertainty

range E [rt] are explicitly determined in the next proposition.

Proposition 3: Assume {wt} is a sequence of independent

random variables uniformly distributed on [−W,W ]. Then,

for εt and rt given by (22) and (23), it holds that

E [ |εt| ] =
1

2
E [rt] =

W

t+ 1
(24)

E
[

ε2t
]

=
2W 2

(t+ 1) (t+ 2)
. (25)

Proof: Since the distribution of mt , max16k6t wk

and −min16k6t wk are the same, (23) implies that

E [rt] = W − E [mt] .



With some efforts, the probability density function of mt is

obtained as

fmt
(z) =

t

2W

(

z +W

2W

)t−1

, |z| 6 W,

which leads to

E [rt] = W −
∫ W

−W

t

2W

(

z +W

2W

)t−1

zdz =
2W

t+ 1
.

With more efforts, the probability density function of εt
in (22) can be determined as1

fεt (z) =
t

2W

(

1− |z|
W

)t−1

, |z| 6 W.

Using this function, the right-hand sides of (24) and (25) are

derived from the integrals

E [ |εt| ] =
∫ W

−W

t

2W

(

1− |z|
W

)t−1

|z| dz

E
[

ε2t
]

=

∫ W

−W

t

2W

(

1− |z|
W

)t−1

z2dz.

Proposition 3 indicates that the midrange estimator (12)

not only is unbiased, but also is (weakly) consistent (i.e., εt
tends to 0 in probability as t → ∞). Moreover, the estimation

error converges rapidly to 0 with a high rate of 1/t, which is

substantially faster than the convergence rate 1/
√
t of linear

estimators. In particular, consider the linear estimator

ϑ̂t =
1

t

t
∑

k=1

(yk − zk) , t = 1, 2, 3, . . .

that recursively estimates the constant offset θ0 by averaging

the observation sequence {yt − zt} over time. Even though

this estimator is unbiased, its mean squared estimation error

slowly converges to 0 according to

E
[

(

ϑ̂t − θt
)2
]

= E





(

1

t

t
∑

k=1

wt

)2


 =
W 2

3t
,

where 1
3W

2 is the variance of wt. A comparison between

this mean squared error and its counterpart (25) reveals the

absolute advantage of the midrange estimator for all t > 1.

For instance, at t = 100, the midrange estimator achieves the

same mean squared error that the linear estimator achieves

at t = 1717.

B. Time-Varying Measurement Offset

The performance of the midrange estimator (12) for α 6= 1
is analyzed in this section using stochastic models. The first

result of this section indicates that the midrange estimator is

unbiased, i.e., E [εt] = 0. The second main result establishes

a convergent upper bound 2Wρt on E [rt] such that

E [ |εt| ] 6 E [rt] 6 2Wρt, t = 1, 2, 3, . . . . (26)

1The proof will be presented in a future publication.

In addition, for η defined in (7), it is shown that

ρ∞ = lim
t→∞

ρt 6

√
η

α
,

√
η 6 α (1− η) ,

which leads to

lim sup
t→∞

E [|εt|] 6 lim sup
t→∞

E [rt] 6 2W

√
η

α
(27)

for any η and α holding
√
η 6 α (1− η). The derivation of

these results is presented in the remainder of this section.

To facilitate the derivation process, {ξt}, {wt}, and θ0 are

normalized into

ξ∗t = − (1− α) (ξt −Θ)

2ηW
, t = 1, 2, 3, . . .

w∗

t = −wt −W

2W
, t = 1, 2, 3, . . .

θ∗0 = − (1− α) (θ0 − Θ)

2ηW
.

Clearly, {ξ∗t }, {w∗

t }, and θ∗0 are statistically independent and

uniformly distributed on [0, 1]. Then, δLt and δUt can be

expressed as δLt = 2Wℓt and δUt = 2Wut, where the

normalized variables ut and ℓt are recursively generated by

ℓt = max {αℓt−1 + η (ξ∗t − 1) , w∗

t − 1} (28a)

ut = min {αut−1 + ηξ∗t , w
∗

t } (28b)

with the initial state

ℓ0 = η (1− α)
−1

(θ∗0 − 1) (29a)

u0 = η (1− α)
−1

θ∗0 . (29b)

Proposition 4: Suppose {wt} in (2) is a white sequence

with uniform distribution on [−W,W ]. Let the initial state θ0
of (6a) be a random variable and {ξt} a white sequence, both

uniformly distributed on [−Θ,Θ] and mutually independent

of {wt}. Assume that the estimation x̂t of xt is generated via

the midrange estimator (12) in terms of Lt and Ut recursively

constructed by (10), starting from the initial state (11). Then,

this estimation is unbiased in the sense that

E [xt − x̂t] = E [εt] = 0, t = 1, 2, 3, . . . .

Moreover, for the uncertainty range rt in (17) it holds that

E [rt] = 2WE [ut] , t = 1, 2, 3, . . . ,

where ut is generated by (28b) with the initial state (29b).

Proof: Multiplying both sides of (28a) and (29a) by −1,

it is straightforward to show that

(−ℓt) = min {α (−ℓt−1) + η (1− ξ∗t ) , 1− w∗

t }
(−ℓ0) = η (1− α)

−1
(1− θ∗0) .

Comparing these equations with (28b) and (29b) and noting

that 1− w∗

t , 1− ξ∗t , and 1 − θ∗0 have distributions identical

to w∗

t , ξ∗t , and θ∗0 , it is concluded that E [−ℓt] = E [ut]. This

result along with δLt = 2Wℓt, δUt = 2Wut, (19), and (20)

complete the proof.

The cornerstone of the analysis in this section is a scalar

function φ (·), which is defined in the following proposition

and its relevant properties are presented.



Proposition 5: Let w∗ and ξ∗ be independent random

variables distributed uniformly on [0, 1], and define the scalar

function φ (·) : [0,∞) → [0, 1/2] as

φ (u) = E(ξ∗,w∗)

[

min {u+ ηξ∗, w∗}
]

. (30)

Then, this function is both concave and differentiable, and

its derivative holds 0 6 φ′ (·) 6 1.

Proof: Since min {u+ ηξ∗, w∗} is concave in u for any

fixed ξ∗ and w∗, its expected value φ (u) is also concave.

The expected value in (30) can be expressed as

φ (u) =

∫ 1

0

Ew∗

[

min {u+ ηξ, w∗}
]

dξ

=
1

η

∫ u+η

u

Ew∗

[

min {s, w∗}
]

ds,

which clearly admits the derivative

φ′ (u) =
Ew∗

[

min {u+ η, w∗}
]

− Ew∗

[

min {u,w∗}
]

η
.

This expression is rewritten as

φ′ (u) = 1 +
Ew∗

[

min {u,w∗ − η}
]

− Ew∗

[

min {u,w∗}
]

η

to verify φ′ (·) 6 1, noting that the second term on the right-

hand side is nonpositive. Furthermore, φ (·) is an increasing

function, which verifies φ′ (·) > 0.

The next proposition together with Proposition 4 establish

the upper bound (26) on the mean absolute estimation error.

Proposition 6: Suppose the deterministic sequence {ρt} is

generated recursively by

ρt = φ (αρt−1) , t = 1, 2, 3, . . . (31a)

ρ0 = 1
2η (1− α)

−1
(31b)

in terms of the scalar function φ (·) in (30). Assume further

that the random sequence {ut} is generated by (28b) with

the initial state (29b). Then, it holds that

E [ut] 6 ρt, t = 1, 2, 3, . . . . (32)

Moreover, the sequence ρ1, ρ2, ρ3, . . . is convergent to the

unique solution to the algebraic equation

ρ∞ = φ (αρ∞) . (33)

Proof: Taking the expected value of both sides of (28b)

results in

E [ut] = E [min {αut−1 + ηξ∗t , w
∗

t }]
= E

[

E [min {αut−1 + ηξ∗t , w
∗

t } |ut−1]
]

= E [φ (αut−1)] ,

where the second equality is the law of total expectation [24],

and the third one is concluded from the definition of φ (·)
in (30) and the fact that (ξ∗t , w

∗

t ) and ut−1 are mutually

independent. As φ (·) is concave by Proposition 5, Jensen’s

inequality [24] implies

E [ut] 6 φ (αE [ut−1]) .

This result along with E [u0] =
1
2η (1− α)

−1
verifies (32).

Since 0 6 φ′ (·) 6 1 holds by Proposition 5, φ (α (·)) is a

contraction mapping for 0 < α < 1. Therefore, the algebraic

equation (33) admits a unique solution, which is the limit of

the sequence {ρt} as t → ∞.

Proposition 7 below together with Proposition 4 establish

the upper bound (27) on the mean absolute estimation error.

Proposition 7: For any 0 < α < 1 and
√
η 6 α (1− η),

the solution ρ∞ to the algebraic equation (33) holds

0 6 ρ∞ 6

√
η

α
. (34)

Proof: For any u 6 (1− η) and 0 < η < 1, the scalar

function φ (·) defined in (30) is explicitly expressed as

φ (u) = 1
2η
(

1− 1
3η
)

+
(

1− 1
2η
)

u− 1
2u

2.

For this expression, the algebraic equation (33) is given by

α2ρ2
∞

+ 2
(

1− α+ 1
2ηα

)

ρ∞ − η
(

1− 1
3η
)

= 0,

which can be rearranged as

α2ρ2
∞

− η = −2
(

1− α+ 1
2ηα

)

ρ∞ − 1
3η

2 6 0.

Then, (34) is concluded by solving the inequality

α2ρ2
∞

− η 6 0.

Of course, this result holds true if ρ∞ 6 (1− η), which is

clearly implied by
√
η 6 α (1− η).

C. Simulation Results

The performance of the midrange estimator (12) is further

investigated by computer simulations. With the parameter

values 1 − α = 5 × 10−7 and η = 0.001, sample paths of

the normalized variables ε∗t = εt/2W and r∗t = rt/2W were

generated in terms of ℓt and ut recursively computed via (28)

and (29). For these parameter values, the variance of θt is the

same as wt in the steady state. Typical sample paths of {ε∗t}
and {r∗t } are illustrated in Fig. 1 during the initial transient

period (top) and in the stationary regime (bottom).

The expected values E [ |ε∗t | ] and E [r∗t ] were numerically

computed for t = 1, 2, . . . , 500 by averaging over 200, 000
sample paths generated independently. In addition, the upper

bound ρt was recursively computed from (31) for the same

period t = 1, 2, . . . , 500. The results of these computations

are illustrated in Fig. 2.

According to this figure, the transient time of the proposed

midrange estimator is about T = 100 samples, which is far

shorter than the transient time of the measurement offset θt,
noting that αT ≃ 1 − 5 × 10−5 ≃ 1. It is further observed

from Fig. 2 that ρt is a relatively tight upper bound of E [r∗t ],
but E [r∗t ] is not necessarily the same tight bound for E [ |ε∗t | ].
Specifically, in the steady state, ρt is only 1.13 times larger

than E [r∗t ], while E [r∗t ] is 3.34 times larger than E [ |ε∗t | ].
The numerical results in Fig. 2 predict a steady-state mean

absolute error of about E [ |εt| ] = 0.008W for the midrange

estimator (12) versus E [ |wt| ] = 0.5W , obtained analytically

for the “single-measurement” estimator x̂s
t = zt. Hence, the

two-sensor scheme of this paper, equipped with the midrange



t

t

ε∗ t
,
r∗ t

ε∗ t
,
r∗ t

ε∗t
r∗t
−r∗t

Fig. 1. Typical sample paths of {ε∗
t
} and {r∗

t
}: (top) during the initial

transient period, and (bottom) in the stationary regime.
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Fig. 2. Normalized mean absolute estimation error E [ |ε∗
t
| ], normalized

mean uncertainty range E [r∗
t
], and the upper bound ρt versus time.

estimator (12), improves the accuracy of measurement by a

factor of 0.5/0.008 = 62.5 compared to a single imprecise

sensor. Note that for the latter simple measurement scheme,

the estimation x̂s
t = zt is the only option, since a model for

the temporal evolution of the measured quantity xt does not

exist, or it exists but is not informative. A rapidly varying xt,

for instance, might be modeled by a high bandwidth Markov

process (or even white process), but dynamic estimation with

such a rapidly varying signal can barely improve x̂s
t = zt.

V. CONCLUSION

A nonlinear estimator was developed to integrate a pair of

sensors, one precise but inaccurate and the other one accurate

but imprecise, into a single measurement unit with enhanced

precision and accuracy. This estimator has a simple recursive

structure, and is implemented based on minimal knowledge

of the measurement noise. Despite its simple structure, the

proposed estimator was verified effective both analytically

and by Monte Carlo simulations.
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