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Abstract— A nonlinear estimation technique is proposed to
combine a precise but inaccurate sensor with an accurate but
imprecise one in such a manner that their fusion enables both
precise and accurate measurement of a physical quantity. This
estimation technique solely relies on certain bounds on the
measurement noise, rather than a detailed statistical description
of the noise and the measured quantity. The estimation strategy
is to estimate the slowly-varying offset of the inaccurate sensor
based on a dynamic model for its temporal evolution, and the
observations of the imprecise sensor. This measurement offset is
estimated by recursively generating some tight upper and lower
bounds for it, and then, taking the midpoint of these bounds
as its midrange estimation. This estimation technique is verified
effective both analytically and by Monte Carlo simulations.

I. INTRODUCTION

This paper presents a nonlinear estimation technique for
fusion of a precise but inaccurate sensor with an accurate but
imprecise counterpart in order to enhance both precision and
accuracy of measurement. The first sensor is precise in the
sense that its reading consistently stays the same in repeated
measurements of a constant quantity, and is inaccurate in the
sense that its reading is persistently biased with a fixed offset.
Conversely, the second sensor generates disperse readings of
the same fixed quantity in repeated trials, which of course,
are unbiased on average. By exploiting the precision of the
first sensor and compensating its inaccuracy using the second
one, the data fusion technique of this paper provides a precise
and accurate estimate of the measured quantity.

The motivating example of this paper is an application in
displacement (or position) measurement that combines two
types of optical encoders: incremental and absolute [1]. Both
these devices are widely used for measurement of linear and
angular positions, albeit with different concepts. Incremental
encoders are developed for high precision measurement of
relative position with respect to an unspecified initial point.
In other words, their highly precise readings are persistently
distorted by some unknown but constant offset, rendering
them inaccurate. Incremental encoders are used widely in the
computer numerical control (CNC) machines. In order to null
the measurement offset in these machines, a calibration phase
before normal operation is required to reset all moving parts
into some known initial position. Yet, any further inaccuracy
accumulated during the normal operation mode (often a long
time) is left uncompensated. The developments in this paper
provide a viable means to enhance the measurement accuracy
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by exploiting an auxiliary sensor of the absolute type, which
essentially measures the absolute position with low precision.

Sensor fusion has been the subject of substantial research
efforts [2]—[5] for a broad spectrum of applications [6]-[17],
following different estimation approaches [18]—-[23]. Most of
these approaches rely on detailed stochastic characterization
of the measurement noise and the temporal evolution of the
measured quantity. Unlike these approaches, the estimator of
this paper is based only on the knowledge of certain bounds
on the measurement noise and a deterministic dynamic model
for the slowly-varying offset of the inaccurate sensor.

The nonlinear estimator in this paper recursively estimates
this offset by establishing certain upper and lower bounds on
it in terms of the measurement history of both sensors. Then,
the midpoint between these bounds is taken as the midrange
estimation of the measurement offset of the inaccurate sensor.
This estimation is utilized then to compensate for this offset,
and thereby, exploit the precision of the inaccurate sensor.
Evidenced by analytical evaluation and numerical simulation
in this paper, the midrange estimator achieves a reasonable
performance for its simple structure and easy implementation
with minimal prior knowledge of the sensors.

II. PROBLEM STATEMENT

A scalar quantity z; is measured by a pair of sensors over
the discrete time ¢ = 1,2, 3,... . The first sensor is precise

but inaccurate with the reading value y; given by
yt:xt+901 t=1,23,..., (D

where the measurement offset 6y is an unknown constant in
the interval [—©, ©]. The second sensor, which is accurate
but imprecise, generates a reading z; which is a noisy version

of x; expressed as
t=1,2,3,.... 2)

2t = Ty + Wy,

The measurement noise {w;} is zero-mean in the sense of

1 I
i, 75 2 e =0
t=1
it is bounded within the interval [—W, W], and entirely spans

this interval in the sense that

supw; = — inf w, = W. 3)
t>1 t>1

The goal in this paper is to develop an estimation law &; (+)

to map the observation set (y1,¥y2, ..., Yt, 21, 22, - - - , 2¢) iNt0
an estimate of z; of the form
Tt =& (Y1,Y2, - Yt, 21,22, - -, 2t), t=1,2,3 ...,



in such a manner that the resulting estimator outperforms the
individual readings of the sensors in some reasonable sense.
In particular, the estimate ; must be at least as precise as
the accurate sensor (with reading z;) in the sense that

|.I't—i't|<W, t:1,2,3,.... (4)

Moreover, it must be asymptotically consistent in the sense
t— o0

In a more practical scenario, the measurement offset of the
inaccurate sensor slowly varies with time, i.e., 8y in (1) is
replaced with 6;. This offset is assumed bounded within the
interval 6, € [—0O, O] and evolves in time according to a first
order linear dynamics. Then, the reading of the inaccurate
sensor is expressed as

Oy =abi_1 + (1 —a)&,
Yr = ¢ + Oy,

t=1,2,3,... (6a)

(6b)

where 0 < o < 1 is a constant, &, t = 1,2,3,... is a noise
sequence confined within the interval & € [—©, 0], and the
initial state 6y is an unknown in the interval 6y € [—O, O].
To enforce the assumption that y; is the reading of a precise
sensor, the constant ratio

(16?6 )
must be much smaller than 1 (i.e., 0 < n < 1), maintaining
that 6; only slowly varies in time. Moreover, © > W reflects
the assumption that y; is inaccurate compared to z;.

Even though the measurement model (1) is a special case
of (6) with o = 1, the behavior of its associated estimator
fundamentally differs from the more general case of o # 1.
For o # 1, it is usually impossible to develop an estimator Z;
to be asymptotically consistent in the sense (5). Hence, the
consistency requirement is relaxed into the weaker condition

’[’I:

|It—ii?t|<<W, t — o0

for a # 1. Yet, the condition (4) is attainable for o # 1, and
is met by the estimator developed in this paper.

The problem setting in this paper does not include any
specific model for the noise sequences {&; } and {w;} beyond
the bounds |£;| < © and |w;| < W, and for the initial state 6,
beyond |0y| < ©. Also, it does not involve any model for the
temporal evolution of the measured quantity x;. Therefore,
the estimator design procedure in Section III is based only
on the bounds on noise and initial state without any reference
to the nature of the measured quantity. Later in Section IV,
the estimation performance is evaluated statistically based on
stochastic models for {&;}, {w;}, and 6.

III. MIDRANGE ESTIMATOR

This section proposes a nonlinear estimator in a recursive
form in order to address the estimation problem of Section II.
The development process for this estimator is similar for both
cases of « =1 and « # 1, while its performance evaluation
is presented separately for these cases.

Since a specific model for the measured quantity x; is not
available, this quantity is first removed from the measurement
models by subtracting (2) from (6b). Next, (6) is rewritten as
the linear state-space model

Oy =abi1 + (1 — )&,

Yo — 2 = 0y — wy

t=1,2,3,... (8a)

(8b)

with the state ;, the output y; — 24, the process noise &;, and
the measurement noise —w;. Based on this model, a state
estimator is developed next to generate 0, as an estimate for
the measurement offset 6;. By replacing 6; in (6b) with ét,
an estimate of x; is constructed as

Ty =y — ét-

To generate the estimation 0;, the strategy in this paper is
to establish an upper bound U; and a lower bound L; on 6;,
and then, take the midpoint

A L+ U
b, = t+ U
2
between these bounds as the estimate ét for 6;. As shown

in Proposition 1 below, such upper and lower bounds can be
obtained recursively from the nonlinear state-space equations

©)

Ly =max{aL;1—(1—a)O,y: — 2z — W}  (10a)

Uy =min{alU;—1+ (1 — )0,y — 2z: + W} (10b)
fort =1,2,3,..., starting from the initial state

—Lo=Uy=0. an

Then, in terms of L; and U, the estimate &, of x; is given by

AL (12)

referred to as midpoint estimator in this paper.

Proposition 1: Suppose that 6, is generated by (8a) with
the initial state 6 € [—©, O], the process noise §; € [0, O],
and the measurement noise w; € [—W, W]. Let y — z: be
given by (8b) and assume that L; and U, t = 1,2,3,...
are generated recursively from the state-space equations (10)
with the initial state (11). Then, 6, is bounded in the interval

GtE[Lt,Ut], t=1,2,3,.... (13)

Proof: The proof is straightforward by induction. By
taking (11) as the initial state, (13) trivially holds for ¢ = 0.

Assuming that (13) holds for ¢ — 1, the bounds
ali 1—(1-a)0<t:<ali1+(1—a)® (14)

on 6, are imposed by (8a), while (8b) bounds 6; within

yr— 2z —W <0, <y — 2z +W. (15)
Then, (13) must hold for ¢ as the intersection of (14) and (15).
|

For the special case of a = 1, the recursive equations (10)
reduce to

Lt = Imax {Ltfl, Yt — 2t — W}
Uy =min {U;_1,y: — 2e + W}



with the initial state —Lg = Uy = O. An argument parallel to
the proof of Proposition 1 indicates that L; and U; bound 6
within the interval 6y € [L;, U], t =1,2,3,....

For the midrange estimator (12), the estimation error

€¢ = Xy — &y

is equal to

&t = ét — 9,5. (16)

This error is clearly bounded within the uncertainty interval

et € [—reme], t=1,2,3,..,

where the uncertainty range 7, > 0 is defined as

U - L
-2

Therefore, the bounds L; and U; determined from (10), not
only provide an estimation for x, but also offer a bound on
the estimation error, which is dynamically adjusted in time.

The performance of the estimator (12) can be conveniently
evaluated in terms of the size and temporal evolution of the
uncertainty range 7. To facilitate the evaluation process, both
variables r; and ¢, are expressed solely in terms of the initial
state 6y and the noise sequences {{;} and {w;} by defining

Ty a7

(SLt:Lt—9t<O, 5Ut:Ut—9t>O

It is straightforward to conclude from (8) and (10) that § L,
and dU; evolve in time according to
0Ly = max{adLli—1 — (1 —a) (& +0O),—w — W} (18)
0U; = min{adUs—1 — (1 — ) (& — O), —w, + W}

with the initial state

0Ly = —6y — O, oUp = —6y + O.
Then, ¢; and r,; are expressed in terms of dL; and dU; as
= 5Lt—;-5Ut (19)
n:ﬂ%ﬁﬁ. (20)

The following proposition establishes bounds on €; and r
and verifies that the estimator (12) meets its requirement (4).

Proposition 2: Let the assumptions of Proposition 1 hold
and define ¢; and r; according to (16) and (17), respectively.
Then, ¢; and r; are bounded within the intervals

g €[-W,W], relo,W], t=1,2,3,.... (1)

Proof: 1t is concluded from (18) that 6L; > —w; — W

and 0U; < —wy+W. Substituting these inequalities into (20)
results in 7, < W, which in turn leads to r; € [0, W] as r; is
nonnegative by construction. Using the triangle inequality, it
is concluded from (19) that |e;| < 74, which further results
in |g,] < W, or equivalently &, € [-W, W]. [ |
For the special case of o = 1, typically, the uncertainty
in the measurement offset 6 is much larger than that of the
measurement noise {w;}, i.e., © > W. Therefore, © can be

effectively taken as ©® — oo. In this case, the bounds §L;
and 0U; are independent of 6y and are explicitly given by
0L; = — min w, — W
1<k<t
0U; = — max wy + W.

1<

VX

These explicit expressions, in turn, lead to

1 .
o= (min, v+ o ) 22)
1 .
=W (o ). @9

which simply confirm the same bounds (21) in Proposition 2.
Moreover, under the assumption (3) on {w;}, they result in

lim g, = 0, lim r, =0,
t—o0 t—o00

which clearly verify the consistency condition (5).

IV. STATISTICAL PERFORMANCE ANALYSIS

This section is dedicated to performance evaluation of
the midrange estimator (12) by exploiting stochastic models.
Specifically, {w;} and {&} are characterized by statistically
independent white sequences uniformly distributed over the
intervals [—W, W] and [—©, O], respectively. Also, the initial
state y is represented by a random variable with a uniform
distribution on [—©, O] and independent of {w;} and {&}.
Based on these stochastic models, the performance of (12) is
separately analyzed for two cases of a =1 and 0 < a < 1,
corresponding to a constant measurement offset 6y and a
time-varying 6, respectively.

A. Constant Measurement Offset

Under o = 1, the estimation error €, and the uncertainty
range r; are explicitly given by (22) and (23), respectively.
The odd symmetry of ¢; with respect to w1, wa,...,w; as
indicated by (22) implies

Ele]=0, t=1,2,3,...,

which means the estimator (9), and consequently (12), are
unbiased. The mean absolute and mean squared estimation
errors E[|e;|] and E [¢7], as well as the mean uncertainty
range E [r;] are explicitly determined in the next proposition.

Proposition 3: Assume {w,} is a sequence of independent
random variables uniformly distributed on [—W, W]. Then,
for £; and r; given by (22) and (23), it holds that

1 W
Efled] = 5Bl = 77 24)
o 22
Blel= ey )

Proof: Since the distribution of m; £ max k<t W
and — min; ¢r<¢ Wy are the same, (23) implies that

E[rt]:W—E[mt]



With some efforts, the probability density function of my is
obtained as

t W\t
)= g () < W
which leads to
w t—1
t z+ W 2W
E =W - — dz = ——.
8 /—W2W< 2w ) T

With more efforts, the probability density function of &
in (22) can be determined as'

o) =g (1

Using this function, the right-hand sides of (24) and (25) are
derived from the integrals

%% t—1
t 2|
E|le]] = —(1-Z d
Lled] /_W 2W< W) 2] dz

2 Vot 2| o 2
E[at}_/wz_<1__) 22dz.
||

Proposition 3 indicates that the midrange estimator (12)
not only is unbiased, but also is (weakly) consistent (i.e., €;
tends to O in probability as ¢ — co). Moreover, the estimation
error converges rapidly to 0 with a high rate of 1/¢, which is
substantially faster than the convergence rate 1/+/¢ of linear
estimators. In particular, consider the linear estimator

t—1
) , 2l < WL

t

19t:¥;(yk—zk), t=1,2,3,...

that recursively estimates the constant offset 6y by averaging
the observation sequence {y; — z:} over time. Even though
this estimator is unbiased, its mean squared estimation error
slowly converges to 0 according to

B|(0i—0)°] = E (%iwty =V§—:,

k=1

where %Wz is the variance of w;. A comparison between
this mean squared error and its counterpart (25) reveals the
absolute advantage of the midrange estimator for all ¢ > 1.
For instance, at t = 100, the midrange estimator achieves the
same mean squared error that the linear estimator achieves
att =1717.

B. Time-Varying Measurement Offset

The performance of the midrange estimator (12) for o # 1
is analyzed in this section using stochastic models. The first
result of this section indicates that the midrange estimator is
unbiased, i.e., E [¢;] = 0. The second main result establishes
a convergent upper bound 2Wp; on E [r;] such that

EHEtHgE[Tt]ngpta t:172537'-" (26)

IThe proof will be presented in a future publication.

In addition, for n defined in (7), it is shown that

. 7
pm:tgrgloptii, Vi <

a 0(1_77)7

which leads to

limsup E [|e;]] < limsupE [r] < 2W@ (27)
t— 00 «

t— o0
for any 1 and « holding \/n < a (1 — 7). The derivation of
these results is presented in the remainder of this section.
To facilitate the derivation process, {&:}, {w:}, and 6, are
normalized into

. (1-)(&—-9)
= t=1,2,3,...
gt 277W 9 7537
*__U}t—W -
wf=——, =123,

g (=) (80— ©)

o— a8 1 -

2nW

Clearly, {&;}, {w}}, and 6 are statistically independent and
uniformly distributed on [0, 1]. Then, 6L; and 0U; can be
expressed as 0L; = 2W/{; and 0U; = 2Wwu,, where the
normalized variables u; and ¢; are recursively generated by

6 =max{ali1+n(& —1),wf —1} (28a)
uy = min {ou—1 + &, wi'} (28b)
with the initial state
lo=n(1—a)"" (6;-1) (29a)
w =n(1—a) 6 (29b)

Proposition 4: Suppose {w;} in (2) is a white sequence
with uniform distribution on [—T, W]. Let the initial state 6,
of (6a) be a random variable and {&,} a white sequence, both
uniformly distributed on [—©, ©] and mutually independent
of {w;}. Assume that the estimation & of x; is generated via
the midrange estimator (12) in terms of L; and U, recursively
constructed by (10), starting from the initial state (11). Then,
this estimation is unbiased in the sense that

E[It—it]:E[Et]:O, t:1,2,3,....
Moreover, for the uncertainty range r; in (17) it holds that

Elr] =2WE[w], t=1,2,3,...,

where u; is generated by (28b) with the initial state (29b).
Proof: Multiplying both sides of (28a) and (29a) by —1,
it is straightforward to show that

(=) = min{a (=f1) +7(1 = &), 1 —wi}
(—to) =n(1—a)"' (1-6p).

Comparing these equations with (28b) and (29b) and noting
that 1 —wy, 1 — &/, and 1 — 6§ have distributions identical
to wy, &, and 6, it is concluded that E [—¢;] = E [u;]. This
result along with § L, = 2W ¥, 06U, = 2Wuy, (19), and (20)
complete the proof. [ ]

The cornerstone of the analysis in this section is a scalar
function ¢ (), which is defined in the following proposition
and its relevant properties are presented.



Proposition 5: Let w* and £* be independent random
variables distributed uniformly on [0, 1], and define the scalar
function ¢ (-) : [0,00) — [0,1/2] as

¢ (u) = E(gr ) [min {u+n¢&*, w*}} )

Then, this function is both concave and differentiable, and
its derivative holds 0 < ¢’ (+) < 1.

Proof: Since min {u 4+ n&*, w*} is concave in u for any
fixed £* and w*, its expected value ¢ (u) is also concave.
The expected value in (30) can be expressed as

(30)

b (u) = /0 E,- [min {u + 1€, w*}]de

1[urn
= 5/ E,- [min {s, w*}]ds,

which clearly admits the derivative

o (u) = Ey [min {u + 7, w*};7 — Ey+ [min {u, w*}] '

This expression is rewritten as
Ey+ [min {u, w* — n}] — Ey+ [min {u, w*}]
Ui

to verify ¢’ (-) < 1, noting that the second term on the right-
hand side is nonpositive. Furthermore, ¢ (-) is an increasing
function, which verifies ¢’ () > 0. [ |
The next proposition together with Proposition 4 establish
the upper bound (26) on the mean absolute estimation error.
Proposition 6: Suppose the deterministic sequence {p; } is
generated recursively by

o (w)=1+

t=1,2,3,... (31a)

(31b)

pt = ¢ (api-1),
-1
po=13n(1—a)
in terms of the scalar function ¢ (-) in (30). Assume further

that the random sequence {u;} is generated by (28b) with
the initial state (29b). Then, it holds that

E[ut]épt, t:1,2,3,.... (32)

Moreover, the sequence pi, p2, p3,... is convergent to the
unique solution to the algebraic equation

Poo = (b (apoo) . (33)

Proof: Taking the expected value of both sides of (28b)
results in

E[u] = E [min {aw; 1 + &, wi }]
= E[E [min {aw;—1 + n&, w; } |ui—1]]
=E [QZS (autfl)] ’
where the second equality is the law of total expectation [24],
and the third one is concluded from the definition of ¢ (-)
in (30) and the fact that (£, w;) and u,—; are mutually

independent. As ¢ (+) is concave by Proposition 5, Jensen’s
inequality [24] implies

Efu] < ¢ (ak[ui]).

This result along with E [ug] = 17 (1 — )" verifies (32).

Since 0 < ¢’ (+) < 1 holds by Proposition 5, ¢ (a(+)) is a
contraction mapping for 0 < o < 1. Therefore, the algebraic
equation (33) admits a unique solution, which is the limit of
the sequence {p:} as t — oo. [ |

Proposition 7 below together with Proposition 4 establish
the upper bound (27) on the mean absolute estimation error.

Proposition 7: For any 0 < o < 1 and /5 < a (1 —1),
the solution p., to the algebraic equation (33) holds

<V

0< poo < o (34)

Proof: For any u < (1 —n) and 0 < n < 1, the scalar
function ¢ (-) defined in (30) is explicitly expressed as

¢ (u) =3n(1—3n) + (1-gn)u— 3%
For this expression, the algebraic equation (33) is given by
ango—i—Z(l—a—l-%na)poo—77(1—%77) =0,
which can be rearranged as
a?p? —n= —2(1—04—1—%77@);)00— %772 <0.
Then, (34) is concluded by solving the inequality
a2pio —n<0.

Of course, this result holds true if po < (1 —n), which is
clearly implied by \/n < a (1 —n). ]

C. Simulation Results

The performance of the midrange estimator (12) is further
investigated by computer simulations. With the parameter
values 1 — a = 5 x 1077 and 5 = 0.001, sample paths of
the normalized variables e} = ;/2W and 7} = r;/2W were
generated in terms of ¢; and u, recursively computed via (28)
and (29). For these parameter values, the variance of 0, is the
same as w; in the steady state. Typical sample paths of {£}}
and {r;} are illustrated in Fig. 1 during the initial transient
period (top) and in the stationary regime (bottom).

The expected values E [|e}|] and E [r}] were numerically
computed for ¢ = 1,2,...,500 by averaging over 200, 000
sample paths generated independently. In addition, the upper
bound p; was recursively computed from (31) for the same
period t = 1,2,...,500. The results of these computations
are illustrated in Fig. 2.

According to this figure, the transient time of the proposed
midrange estimator is about 7" = 100 samples, which is far
shorter than the transient time of the measurement offset 6;,
noting that o’ ~ 1 — 5 x 1075 ~ 1. It is further observed
from Fig. 2 that p; is a relatively tight upper bound of E [r}],
but E [r}] is not necessarily the same tight bound for E [ |}]].
Specifically, in the steady state, p; is only 1.13 times larger
than E [rf], while E [r}] is 3.34 times larger than E [|]]].

The numerical results in Fig. 2 predict a steady-state mean
absolute error of about E [|e;|] = 0.008W for the midrange
estimator (12) versus E [|w;|] = 0.5W, obtained analytically
for the “single-measurement” estimator 27 = z;. Hence, the
two-sensor scheme of this paper, equipped with the midrange
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mean uncertainty range E [r}], and the upper bound p; versus time.

estimator (12), improves the accuracy of measurement by a
factor of 0.5/0.008 = 62.5 compared to a single imprecise
sensor. Note that for the latter simple measurement scheme,
the estimation Z7 = z; is the only option, since a model for
the temporal evolution of the measured quantity x; does not
exist, or it exists but is not informative. A rapidly varying xz,
for instance, might be modeled by a high bandwidth Markov
process (or even white process), but dynamic estimation with
such a rapidly varying signal can barely improve & = z;.

V. CONCLUSION

A nonlinear estimator was developed to integrate a pair of
sensors, one precise but inaccurate and the other one accurate
but imprecise, into a single measurement unit with enhanced
precision and accuracy. This estimator has a simple recursive
structure, and is implemented based on minimal knowledge
of the measurement noise. Despite its simple structure, the
proposed estimator was verified effective both analytically
and by Monte Carlo simulations.
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