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We prove novel algorithmic guarantees for several online problems in the smoothed analysis model. In this
model, at each time step an adversary chooses an input distribution with density function bounded above
pointwise by é times that of the uniform distribution; nature then samples an input from this distribution.
Here, o is a parameter that interpolates between the extremes of worst-case and average case analysis. Cru-
cially, our results hold for adaptive adversaries that can base their choice of input distribution on the decisions
of the algorithm and the realizations of the inputs in the previous time steps. An adaptive adversary can non-
trivially correlate inputs at different time steps with each other and with the algorithm’s current state; this
appears to rule out the standard proof approaches in smoothed analysis.

This paper presents a general technique for proving smoothed algorithmic guarantees against adaptive
adversaries, in effect reducing the setting of an adaptive adversary to the much simpler case of an oblivious
adversary (i.e., an adversary that commits in advance to the entire sequence of input distributions). We apply
this technique to prove strong smoothed guarantees for three different problems:

(1) Online learning: We consider the online prediction problem, where instances are generated from an
adaptive sequence of o-smooth distributions and the hypothesis class has VC dimension d. We bound
the regret by O(TdIn(1/5) +dIn(T/c)) and provide a near-matching lower bound. Our result shows
that under smoothed analysis, learnability against adaptive adversaries is characterized by the finite-
ness of the VC dimension. This is as opposed to the worst-case analysis, where online learnability
is characterized by Littlestone dimension (which is infinite even in the extremely restricted case of
one-dimensional threshold functions). Our results fully answer an open question of Rakhlin et al. [64].

(2) Online discrepancy minimization: We consider the setting of the online Komlés problem, where the
input is generated from an adaptive sequence of o-smooth and isotropic distributions on the ¢, unit ball.
We bound the s norm of the discrepancy vector by é(lnz(%)). This is as opposed to the worst-case
analysis, where the tight discrepancy bound is G)(\/T_/n). We show such polylog(nT /o) discrepancy
guarantees are not achievable for non-isotropic o-smooth distributions.

(3) Dispersion in online optimization: We consider online optimization with piecewise Lipschitz functions
where functions with ¢ discontinuities are chosen by a smoothed adaptive adversary and show that
the resulting sequence is (o/ \VTE, O(NTY))-dispersed. That is, every ball of radius o /VT is split by
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O(VTZ) of the partitions made by these functions. This result matches the dispersion parameters of
Balcan et al. [13] for oblivious smooth adversaries, up to logarithmic factors. On the other hand, worst-
case sequences are trivially (0, T)-dispersed.’
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1 INTRODUCTION

Smoothed analysis. Kryptonite for worst-case analysis comes in the form of algorithms for which
almost all inputs are “easy” and yet rare and pathological inputs are “hard.” Perhaps the most
famous example is the simplex method for linear programming, which empirically always runs
quickly but requires exponential time in the worst case (for all of the common pivot rules) [56].
Equally misleading is the worst-case exponential running time of many popular local search algo-
rithms, such as the k-means clustering algorithm [8] and the 2-OPT heuristic for the traveling
salesman problem (TSP) [67]; such behavior is literally never observed for these algorithms in
practice.? Taken literally, worst-case analysis recommends against using the simplex method to
solve linear programs or local search as a heuristic for the TSP, flatly contradicting decades of real-
world experience. Thus, for some important problems and algorithms, a more nuanced analysis
framework is called for.

But if not worst-case analysis, then what? Outside of applications with a stable and well-
understood input distribution, average-case analysis is far too specific an approach. Spielman and
Teng [69] introduced smoothed analysis, a novel interpolation between worst- and average-case
analysis that is ideally suited for the analysis of algorithms that almost always perform well. In
its original formulation, an adversary chooses an arbitrary (worst-case) input, which is then per-
turbed slightly by nature. Appealingly, the framework makes no assumptions about the input other
than a small amount of uncertainty (e.g., due to measurement errors).

In the more modern and general formulation of smoothed analysis, an adversary directly
chooses an input distribution from a family of permissible distributions; nature then samples an
input from the adversary’s distribution. An algorithm is evaluated by its worst-case (over the ad-
versarially chosen input distribution) expected (over the distribution) performance. Performance
guarantees in this model (e.g., on the expected running time of an algorithm) are generally param-
eterized by the “degree of anti-concentration” enjoyed by the allowed input distributions. The holy
grail in smoothed analysis is to prove guarantees on algorithm performance that, assuming only
a low level of anti-concentration in the possible input distributions, are far closer to average-case
guarantees than worst-case guarantees.

!An extended abstract was published in the Proc. of the 62nd Annual Symposium on Foundations of Computer Science
[42].

2Note that in all of these examples, the problem of constructing a hard instance is challenging enough to justify its own
research paper!
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Online learning, discrepancy minimization, and optimization. Smoothed analysis makes sense
for any numerical measure of algorithm performance, but to date the vast majority of work on
the topic concerns the running time of algorithms for offline problems, as in the famous exam-
ples above. Our work here focuses on online problems—online learning, online discrepancy min-
imization, and online optimization—in which the input arrives incrementally over time and an
irrevocable decision must be made at each time step. Online algorithms for these problems are
traditionally assessed by their solution quality or regret (with running time a secondary concern).
In the smoothed analysis version of these problems, the adversary is forced to choose each piece of
the input—a point from a domain, a vector, or a function—from a distribution with non-negligible
anti-concentration.

The analysis of online algorithms traditionally distinguishes between oblivious adversaries who
choose the entire input sequence up front (with knowledge only of the algorithm to be used) and
adaptive adversaries that can condition each part of the input on the past. In the worst-case model,
this distinction is relevant only for randomized algorithms, in which case adaptive adversaries
choose each part of the input as a function of the algorithm’s previous decisions. When the adver-
sary itself is forced to randomize, as in the smoothed analysis model, the distinction between obliv-
ious and adaptive adversaries takes on new meaning: while an oblivious adversary must choose a
sequence of input distributions up front, an adaptive adversary can base its current choice of an
input distribution on the decisions of the algorithm and the realizations of the inputs in previous
time steps.

Online learning, discrepancy minimization and optimization play integral roles in a wide range
of fields and applications, such as algorithm design [3, 7], game theory [29, 33], differential privacy
[32, 44, 46], control theory [1, 2], design of medical trials [47], and robust statistics [50]. In these
cases, adversary’s adaptiveness both serves as a natural abstraction for correlations between past
and present and is an essential piece of the technical analyses (such as algorithmic reductions) that
make these methods widely applicable.

The challenge of adaptive adversaries. A basic question is: For which online problems are adaptive
adversaries fundamentally more powerful than oblivious ones? In the smoothed analysis model,
there is strong intuition about why a guarantee against oblivious adversaries might not extend to,
or at least would be significantly harder to prove for, adaptive adversaries. A key to any smoothed
analysis is, of course, to determine how to leverage the assumed anti-concentration properties of
the permissible input distributions. With an oblivious adversary, the input distributions at each
time step are independent of each other and of the algorithm’s current state, and the assumed anti-
concentration can typically be directly and separately exploited at each time step. An adaptive
adversary, on the other hand, has the power to correlate inputs at different time steps with each
other and with the algorithm’s current state. This dependence seems to rule out the standard proof
approaches in smoothed analysis.

Our approach: Preserving anti-concentration through a coupling-based reduction. We introduce a
general technique for reducing smoothed analysis with adaptive adversaries to the much simpler
setting of oblivious adversaries. We consider adaptive adversaries that at each time step choose
an input distribution with density function bounded above pointwise by % times that of the uni-
form. The crux of our approach is a coupling argument, namely a joint distribution that connects T
random variables (X1, . .., Xr) generated by an adaptive smooth adversary with kT random vari-
ables Zlm for i € [k] and t € [T] that are generated ii.d. from the uniform distribution. A key
aspect of this coupling is a monotonicity property, that for k = ©(1/c), with high probability,

X Xr)y < (29 [ e [klj e [T1).
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The properties of this coupling allow us to translate typical algorithms and proofs from the
setting of oblivious adversaries to that of adaptive adversaries. For example, consider an algorithm
that fails only when Xj, ..., X7 “concentrate,” roughly meaning that many of the X;’s land in
an a priori chosen set of small measure (this is a recurring theme in the smoothed analysis of

algorithms). After substituting in {Z") | i € [k].j € [T]} 2 {Xi.....Xr}. the likelihood of this
event only increases. (See Section 2.2 for precise statements.) On the other hand, i.i.d. uniform
random variables (the Zi(i)’s) have ideal anti-concentration properties for a smoothed analysis.
The power of our coupling technique is in its versatility. To demonstrate this, we apply our cou-
pling approach to applications of online learning, online discrepancy minimization, and dispersion
in online optimization. In each of these problems, we show that existing analyses for oblivious
adversaries fundamentally boil down to a suitable anti-concentration result. For online learning
— where our work resolves an open problem of Rakhlin et al. [64] — what matters is the anti-
concentration of the input instances in the symmetric difference between a hypothesis and its
nearest neighbor in a finite cover of the hypothesis class. For online discrepancy minimization,
what matters is the anti-concentration of correlations between discrepancy vectors and inputs.
For dispersion, what matters is the anti-concentration of function discontinuities in small inter-
vals. After isolating these key steps, we prove that the coupling approach can be used to lift them
(and the algorithmic guarantees that they lead to) to the general case of adaptive adversaries.

1.1 Overview of Our Results

Throughout this paper we consider o-smooth adaptive adversaries. A o-smooth distribution D is
a distribution whose densities are bounded by 1/o times the density of the uniform distribution
over a domain. Formally this definition is captured as follows.

Definition 1.1 (o-smoothness). Let X be a domain that supports a uniform distribution U.> A
UA)

measure 4 on X is said to be o-smooth if for all measurable subsets A C X, we have p (A) < =

This parameterized definition of “sufficiently anti-concentrated” is the standard one that has
been used in smoothed analysis over the past decade, for example in all analyses of the smoothed
running time of local search heuristics [60]. It prevents an adversary from concentrating most of
its probability mass near a specific worst-case input (as is necessary for any interesting results)
without resorting to any parametric assumptions.

We focus on smoothed analysis of adaptive adversaries that at time ¢ pick a o-smooth distribu-
tion D, after having observed earlier instances x; ~ Dy, ..., x;-; ~ D;_; and algorithmic choices.
We denote an adaptive sequence of o distributions by 2. We use 2 to model smoothed analysis
of online learning, online discrepancy, and online optimization with an adaptive adversary.

Online Learning. We work with the setting of smoothed online adversarial (and full-information)
learning. In this setting, a learner and an adversary play a repeated game over T time steps. For a
labeled pair s = (x, y) and a hypothesis h € H, [[h(x) # y] indicates whether h makes a mistake on
s. In every time step t € [T] the learner picks a hypothesis h; and adversary picks a distribution
D, whose marginal on X is o-smooth and then draws s; ~ D;. The learner then incurs penalty
of I[h(x;) # y:]. We consider an adaptive o-smooth adversary and denote it by &, where D is se-
lected by an adversary that knows the algorithm and has observed sy, ...,s;—; and hy,..., hy_1.
Our goal is to design an online algorithm A such that expected regret against an adaptive

3Such as X that is finite or has finite Lebesgue measure. The definition makes sense for arbitrary domains and fixed
measures p but for the sake of presentation, we restrict to the case of uniform distributions.
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adversary,

T
E[REGRET(?[,@)]::% Z I [ht(xt) * yt] - 22122 I [h(Xt) * yz] (1)
=1

t=1

is sublinear in T. This is the most well-studied domain for the application of our techniques.

In the worst case (without smoothness), Ben-David et al. [23] showed that the optimal regret in
online learning is characterized by finiteness of a combinatorial quantity known as the Littlestone
dimension, more formally, it is REGRET = ©(+4/LDim(7)T). Unfortunately, the Littlestone dimen-
sion can be large even for classes where the VC dimension is small. Rakhlin et al. [64], Haghtalab
[39], and Haghtalab et al. [41] considered the smoothed analysis of online learning and asked
whether regret bounds that are characterized by finiteness of VCDim(%H) are possible. For the
oblivious smooth adversaries, Haghtalab [39] answered this in the positive. However, for adaptive
smooth adversaries their best-known bounds are O(y/T - log N[j) where M| denotes the bracketing
number which can be infinite even when VCDim(?H) is constant.

In this paper, we bridge the gap between smoothed analysis of online learning with adaptive
and non-adaptive adversaries, answer an open problem of Rakhlin et al. [64] and Haghtalab [39],
and show that regret bounds against an adaptive smooth adversary are nearly the same as those
in agnostic offline learning.

Theorem 3.1 (Informal). Let H be a hypothesis class of VC dimension d. There is an algorithm A
such that for any adaptive sequence of o-smooth distributions 9 achieves a regret of

E[REGRET(A, D)] € O len(£)+dln(£) . (2)

We complement this by a nearly matching lower bound as follows.

Theorem 3.2 (Informal). For every d and o such that do < 1, there exists a hypothesis class H with
VC dimension d such that for any algorithm A there is a sequence of o -smooth distributions O where

1
E[REGRET(A, D)] € Q| +[Tdlog (_d) . (3)

o
Online Discrepancy. Our starting point is the Komlds problem. In this online discrepancy prob-
lem, we are given an online sequence of vectors vy, . . ., vr with||v;||, < 1. Upon seeing v; we need

to immediately and irrevocably assign sign €; € {—1, +1} to v;. Our goal is to keep the following

discrepency vector small
t

E €iUj
1 o0

i=

max
te[T]

This problem is interesting for various norms on the inputs and the discrepancy, here we restrict
ourselves to ¢, and {, norms, respectively.

It is not hard to see that in the fully adaptive setting, the adversary can pick a vector orthogonal
to the current discrepancy vector leading to the £, discrepancy norm growing as O(VT). To over-
come this, stochastic versions of this problem have been considered where vectors v; are picked
from a fixed and known distribution over a set of vectors with ||v;|| < 1. Bansal et al. [18] use a
potential-based approach to obtain a bound of O(log*(nT)) for the stochastic setting. Alweiss et al.
[5] strengthen these results to hold for any sequence of inputs that is chosen by an oblivious (even
deterministic) adversary and obtains O(log(nT)) on the discrepancy.
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We consider adversaries that pick a o-smooth distribution 9, at time t after having observed
the earlier instances vy, . .., v;—; and their assigned signs €y, . . ., €,_1 and then draw v, ~ D,. We
bound the discrepancy of this setting by O(log®(nT)).

Theorem 4.1 (Informal). Let vy, ...,vr be chosen from an adaptive sequence of o-smooth and
isotropic distributions 9. Then, there is an online algorithm for deciding the sign €; of v;, such that

with high probability
<ofer (22))
o

We note that our adaptive isotropic assumption is mild, as even for the case of stochastic uniform
inputs (which are isotropic) the first polylog(nT) bound was introduced by Bansal et al. [21] in
STOC 2020. Proving discrepancy lower bounds for isotropic adaptive distributions is an interesting
problem for future work. Our next theorem further justifies the use of isotropic distributions by
showing that smoothness alone is not enough to achieve a polylog(nT /o) bound on discrepancy
in presence of adaptive adversaries.

t

2,

i=1

max
t<T

Theorem 4.2 (Informal). For any online algorithm, there is an adaptive sequence of(ﬁ)—smooth
distributions on the unit ball such that, we have

o T
Zeivi >Q ( ;)

i=1
with probability 1 — exp(—% .

Dispersion in Online Optimization. In the online optimization setting, an adversary chooses a
sequence of loss functions uy, ...,ur and at each time step the learner picks an instance x; in

order to minimize regret
T

T
Z ur(xr) = rr;in Z ur(x).
t=1 t=1

Balcan et al. [13] studied this problem for piecewise Lipschitz functions and showed that regret
is characterized by a quantity called dispersion. At a high level, a sequence of functions is called
dispersed if no ball of small width intersects with discontinuities of many of these functions.

Definition 1.2 (Dispersion, [13]). Let uy,...,ur : [0,1] — R be a collection of functions such
that u; is piecewise Lipschitz over a partition #; of [0, 1]. We say that a partition ; splits a set A
if A intersects with at least two sets in #;. The collection of functions is called (w, k)-dispersed if
every interval of width w is split by at most k of the partitions %, . . ., Pr. This definition naturally
extends to loss functions over R? as well.

Additionally, Balcan et al. [13] showed that when an oblivious o-smooth adversary picks the
discontinuities of piecewise Lipschitz functions, the resulting sequence is with high probability
(o(T6)*7, O((T€)%))-dispersed, where a can be any value in [0.5, 1] where € is the number of dis-
continuities. We extend this result to the case of adaptive smooth adversaries and recover almost
matching bounds on dispersion parameters. Our work shows that adaptive smooth adversaries gen-
erate dispersed sequences in online optimization. This allows us to extend the power of algorithms
designed for dispersed sequences, such as efficient online and private batch optimization [13], to
the larger setting of adaptive adversaries.

Theorem 5.1 (Informal). Let u; . . . ur be functions from [0, 1] — R that are piecewise Lipschitz with
{ discontinuities each picked by a o-smooth adaptive adversary. Then, for any o > 0.5, the sequence
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Table 1. This Table Compares and Summarizes the Results of This Paper
and those from Previous Works

Worst Case Stochastic/ Oblivious Adaptive Smoothed
Online Learning | & (VT TDim] 6(vra) 6 ( T-dlog (1 /a))
[23] [39] Theorem 3.1
Online Discrepancy Q ( T/n) O (log (nT))[5] 0) (log2 (nT/O'))
[68] 0 (log4 (nT)) [18] Theorem 4.1 (also isotropic)
Dispersion (w.T0) (et 0(T0%)) | (om0 (T0)%))
Vw; (trivial) [13] Theorem 5.1

In this table, T is the time horizon, o is the smoothness parameter, d is the VC dimension of the hypothesis
class in online learning, n is the dimension of the space for online discrepancy, ¢ is the number of
discontinuities of piecewise Lipschitz functions in online optimization, and « € [0.5, 1] is arbitrary.

of functions uy . .. ur is (o(T€)*~",O((T€)*))-dispersed. A summary of our results can be found in
Table 1.

1.2 Related Work

In this section, we will survey other work related to the question that we study in this paper.

Online learning. Similar models of smoothed online learning have been considered in prior work.
Generally, previous works have focused on oblivious adversaries, more stylized noise distribu-
tions, or the performance of specific algorithms rather than aiming for characterizing the statistical
complexity of the learning problem. Rakhlin et al. [64] consider online learning when the adver-
sary is constrained in a general way and introduce constrained versions of sequential Rademacher
complexity for analyzing the regret. They work with general technique of sequential symmetriza-
tion and tangent sequences adapted to the constrained setting and show that the regret in the
constrained setting is bounded by the constrained sequential Rademacher complexity. While this
notion is general enough to capture our setting and has been applied successfully in other con-
strained adversary settings [57], the bound in terms of the constrained sequential Rademacher
complexity is not explicit, and it was not clear prior to our work how to relate this notion to the
statistical complexities of the learning problem such as the VC dimension (except in the special
case of halfspaces with additive noise).

Gupta and Roughgarden [38] consider smoothed online learning when looking at problems
in online algorithm design. They prove that while optimizing parameterized greedy heuristics
for Maximum Weight Independent Set imposes regret growing linear in T in the worst-case, in
the presence of smoothing (oblivious version of o-smoothed adversary model in our paper) this
problem can be learned with non-trivial sublinear regret (as long they allow per-step runtime that
grows with T). Cohen-Addad and Kanade [35] consider the same problem with an emphasis on
the per-step runtime being logarithmic in T. The models in these works differs from ours in the
obliviousness of the smoothed adversaries.

Smoothed analysis has also been used in a number of other online settings. For linear contextual
bandits, Kannan et al. [55] use smoothed analysis with Gaussian perturbations to show that the
greedy algorithm achieves sublinear regret even though in the worst case it can have linear regret.
Raghavan et al. [62] work in a Bayesian version (again with Gaussian perturbation) of this setting
and achieve improved regret bounds for the greedy algorithm. The results considered in the above
papers are focussed on the regret of particular algorithms rather than the statistical complexity of
the learning problem as in our case.

J. ACM, Vol. 71, No. 3, Article 19. Publication date: June 2024.



19:8 N. Haghtalab et al.

Generally, our work is also related to a line of work on online learning in the presence of ad-
ditional assumptions modelling properties exhibited by real life data. Rakhlin and Sridharan [63]
consider settings where the learner has additional information available in terms of an estimator
for future instances. They achieve regret bounds that are in terms of the path length of these es-
timators and can beat Q(VT) if the estimators are accurate. Dekel et al. [36] also considers the
importance of incorporating side information in the online learning framework and show that
regrets of O(log(T)) in online linear optimization maybe possible when the learner has access to
vectors that are weakly correlated with the future instances.

More broadly, our work is among a growing line of work on beyond the worst-case analysis
of algorithms [66]. Examples of this in machine learning mostly include improved runtime and
approximation guarantees of supervised (e.g., [9-11, 37, 53, 54]), and unsupervised settings (e.g.,
[6, 12, 14, 24, 25, 45, 59, 61, 70]).

Discrepancy. Discrepancy is well-studied area in computer science and combinatorics with rich
connections to various areas. For a general overview of the area see [34]. Many classical settings
such as the Spencer problem, Komlos problem, Tusnandy problem and the Beck-Fiala problem
continue to inspire active research. A recent line of work has been developing algorithmic tech-
niques for many new settings that were previously only dealt with non-constructively and were
even believed to be non-tractable [15-17, 58, 65].

A setting that has also recently received attention is the online discrepancy setting. Bansal and
Spencer [22] consider the setting where the inputs are all uniform on {—1, 1}" and geta O(v/nlog T)
bound for the £ discrepancy. Motivated by questions in envy minimization, Bansal et al. [21] and
Jiang et al. [52], consider the stochastic problem with general distributions, along with several
geometric discrepancy problems such as the Tusnady problem. Bansal et al. [21] give a O(n? log T)
discrepancy in the £*° norm algorithm when the input is in [—1, 1]". As discussed earlier, Bansal
etal. [18] provide a vnlog*(nT) in the same setting. They also consider various other settings such
as the online Banaszczyk problem and a weighted multicolor discrepancy problem. Alweiss et al.
[5] consider a non-stochastic version of the problem where the vectors are obliviously picked from
[-1,1]" and propose a beautiful randomized algorithm that achieves v/nlog(nT) bound.

Subsequent Work. Following the original publication of this paper [42, 43], several works have
appeared that further contribute to the framework of smoothed analysis in online settings. A pair
of works (concurrent to one another) by Block et al. [26], Haghtalab et al. [40] study the com-
putational complexity of online learning in the smoothed setting. Their main motivation is to
understand whether smoothed analysis can be used to circumvent strong impossibility results for
oracle-efficient online learning [49]. Block et al. [26], Haghtalab et al. [40] answer this question
in the affirmative and show that there are oracle-efficient algorithms that achieve regret depend-
ing only on the VC dimension, similar to our Theorem 3.1, albeit with worse dependence on the
smoothness parameter ¢. To achieve some of their results, Haghtalab et al. [40] and Block et al.
[26] use and, indeed, strengthen our probability coupling approach in different ways. Their re-
sults bring a computational lens to the statistical problem studied in this work. Together, their
works demonstrate that online learning is computationally as easy as offline learning, as our work
establishes that that it is statistically as easy as offline learning.

Block and Simchowitz [28] also study computational complexity of online learning with
smoothed adversaries for generalized linear functions in the realizable and construct algo-
rithms that achieve optimal dependence on the smoothness parameter, bridging the statistical-
computational gap between our work and those of Haghtalab et al. [40] and Block et al. [26] in
this special case.
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Haghtalab et al. [40] studies several other constrained and classical adversarial model, such as
existing and new variants of transductive online learning and prediction in small domains. They
show, through a more detailed perspective, that the probability coupling approach introduced in
our work can be used to draw parallels between several different lines of work on online learning,
beyond the classical worst-case setting.

Bansal et al. [19] study the problem of prefix discrepancy problem for unit vectors under
a smoothed analysis setting. They show that for smoothed instances a discrepancy bound of
ylogd +loglog T where d is the dimension and T is the time horizon which improves the depen-
dence on the time horizon compared to known bounds for worst-case instances. Bansal et al. [20]
study the offline Komlds setting (balancing ¢, unit vectors in the ¢, norm) in the smoothed analy-
sis setting. They show that, for sufficiently large number of vectors, the discrepancy of smoothed
instances inversely polynomial in the dimension, resolving the Komlés conjecture for such
instances.

Janardhan Kulkarni and Rothvoss [51] study the online discrepancy problem against oblivious
adversaries and show (nonconstructively) that there is an algorithm that assigns signs to the vec-
tors v;, with||v;||, < 1, presented online, such that }}; ., €;v; is 10-subguassian for all ¢. This gives
a discrepancy bound of O(+/logT) i.e., HZLI eivi” < O(+4/log T) at all times ¢, matching the lower
bound for the online discrepancy problem for oblivious adversaries.

2 OVERVIEW OF THE TECHNIQUES AND ANALYSIS

We introduce a general technique for reducing smoothed analysis with adaptive adversaries to the
much simpler setting of oblivious adversaries. Our main general technique is a coupling argument
between random variables that are generated by an adaptive smooth adversary and those that are
generated i.i.d. from a uniform distribution. This coupling, that is a joint distribution between two
random processes, demonstrates structural properties that are ideal for preserving and analyzing
anti-concentration properties of smooth adversaries. This allows us to tap into existing techniques
and algorithms that are designed for oblivious smooth adversaries and only rely on some anti-
concentration properties of the input.

We first give an overview of our coupling technique and its analysis in Section 2.1 and then in
Section 2.2 we give a general framework for applying coupling for smoothed analysis with adaptive
adversaries.

2.1 Coupling Definition and Theorem Statement

In this section, we will give an overview of the coupling between smooth adaptive adversaries
and the uniform distribution. A coupling is a joint distribution between two random variables,
or random processes, such that the marginals of this coupling are distributed according to the
specified random variables. A more formal definition of a coupling is as follows.

Definition 2.1 (Coupling). Let u and v be two probability measures on the probability space
(X, .7) respectively. Then, a coupling between p and v is a measure y on (X X X,.# ® .%) such
that for all A € .7, we have y (Ax X) = p(A) and y (X X A) = v(A). This definition can be
generalized in a natural way to multiple measures.

Our main coupling theorem states that given any adaptive sequence of o-smooth distributions,
9, there is a coupling between a random sequence (X, ..., Xr) ~ 2 and uniformly distributed

random variables Zlm such that (with high probability) the set of uniform random variables in-
cludes the set of adaptively generated o-smooth variables.
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THEOREM 2.1. Let 2 be an adaptive sequence of o -smooth distribution on X. Then, for each k > 0,
there is a coupling 11 such that (X1, Zil), o, Z](:), X Zit), o, Z]it)) ~ 11 satisfy
a. Xi,...,X; is distributed according to 9.
b. Zl.(j) are uniformly and independently distributed on X.

c. {Zi(j) | j = t,i € [k]} are uniformly and independently distributed on X, conditioned on

Xty Xp1.
d. With probability at least 1 — (1 — o), {X1.....X,} € {ZY) | i e [K].j € [1]} .

The key aspect of this theorem is the monotonicity property {Xi,...,X;} C {Zi(j) |ielk],je

[t]} that holds with high probability. This monotonicity and the fact that Zl@ are uniform are the
crucial properties that allow us to reduce algorithm design and analysis against online adaptive
adversaries to those designed against oblivious stochastic adversaries. We will give examples of
how this coupling will be used in Section 2.2.

In the remainder of this section, we give an overview of the construction of this coupling and the
proof sketch for Theorem 2.1. For ease of exposition, we give a proof that combines elements of
two subsequent works by Haghtalab et al. [40] and Block et al. [26] that generalized and simplified
our original proof of this lemma appearing in [42]. Here, we restrict our proof overview to the
finite universe X = [n] and defer the fully general case to Appendix B.

Let us first consider a single round of coupling between a random variable that is uniformly
distributed over S C [n] of size on, and the uniform random variables over [n]. At a high level,
this is done via rejection sampling. For a more detailed exploration of the connection to rejection
sampling, see [27]. Let D be a smooth distribution, i.e., D(x) < @ = % where D(x) is the
probability of x under 9. Draw k samples Y1, . . ., Y; from the uniform distribution on [n]. Initialize
a set S that is empty. For each i, add Y; to S with probability noD(Y;). Note that crucially this is
a well-defined probability due to smoothness, that is, smoothness implies cn?D(Y;) < 1 which
allows it to be used as a probability. If S is non-empty, let X be a uniform sample from S. Else, let
X be sampled according to D independent of Y1, ..., Y.

First, let us show that the distribution of X is indeed D. In the case when S is empty, X is
distributed according to O since it is independently sampled from the distribution. When S is non-
empty, let us consider the distribution of ¥; conditioned on the event that they were added to set
S. We call this event “Y; being accepted”. The probability that Y; is accepted is

1
Pr[Y; is accepted] = Z Pr[Y; = x] - Pr[Y; is accepted |Y; = x| = Z —-noD(x)=o.
n

x€[n] x€[n]
Thus, we have
. 1 . 1 1
Pr[Y; = x|Y; is accepted] = — - Pr[Y; = x| - Pr[Y; is accepted|Y; = x] = — - — - noD(x) = D(x).
o o n

Thus, any Y; is distributed according to ©. Furthermore, we set Z; = Y;, which gives the indepen-
dent uniform distribution.

It remains to show the monotonicity property. Note that we have X; € {Zi,...,Z;} when-
ever S is non-empty. As we saw above Y; € S with probability ¢ independently of Y; for i # j.
Thus, we have that the probability that S is empty is given by (1 — o)k This establishes that
X; € {Zy,...,Z;} with probability 1 — (1 — o) as required.

Next, we create a coupling for adaptive o-smooth distributions 2. Recall that in this set-
ting an adaptive sequence corresponds to X, being sampled uniformly from a distribution
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2. (X1,...,X:-1), i.e,, the distribution at time 7 is adaptively chosen given the earlier realiza-
tions. We construct the coupling inductively using the same ideas discussed for the single round
coupling, but at each step using 2, (X1, ..., X,-1). Formally, the coupling is as below:

—Forj=1...¢,
— Draw k samples Yl(j), e, Ylgj ) from the uniform distribution.
— Let Sj =0.
~ For each Y, add Y to S; with probability on - 2;(X1, . .., X;-1)(Y").
- If S; # 0, then sample X; uniformly from S;.
- Else, sample X from 2;(X, ..., X;_1).
— Set ZZ.O) = Yim for all i.
—output (X;, 2", ...,z X, 20,20,

We prove that this coupling works inductively. Fixing Xy, ..., X,_1, we get D, (X1, ..., X-1).
Note that the coupling in stage 7 is similar to the single round coupling. From a similar argu-
ment, we get that X, is distributed according to 2, (X3, ..., X;-1). Similarly, one can argue that
Zir), cees Z](:) are independent and uniform. The monotonicity property follows from the mono-
tonicity in each stage and a union bound.

The final main property that needs to be argued is that Z © ., Z](f> are independent of all the

past random variables Xi,...,X,;_; and {Zl.(j) | i € [k],j < 7 — 1}. The key property needed
here is that in the single-round coupling, the distribution of Z; is oblivious to the choice of the

distribution 9. We prove this formally in Appendix B. This ensures that {Zl.(j) | j >t,i€[k]}are
uniform and independent of the past.

2.2 The General Framework for Applying the Coupling

In most applications where smoothed analysis has led to significant improvements over the worst-
case analysis, these improvements hinge on the proof techniques and algorithmic approaches that
leverage the anti-concentration properties of the smoothed input. However, as the process of creat-
ing an input becomes more and more adaptive, that is, as the adversary correlates the distribution
of the current input with the realizations of earlier inputs and decisions the randomness and anti-
concentration properties of the input and the state of the algorithm may weaken. Additionally,
correlations between future and past instances present novel challenges to the methodology used
against oblivious smooth adversaries, which often rely heavily on the independence of the input.
Our coupling approach overcomes these challenges in two ways. First, by coupling an adaptive
smooth process with a non-adaptive uniform process, it implicitly shows that anti-concentration
properties of the input and the algorithm do not weaken significantly in presence of adaptive
adversaries. Second, it allow us to lift algorithmic ideas and proof techniques that have been de-
signed for oblivious smooth or stochastic adversaries to design and analyze algorithms that have
to interact with adaptive smooth adversaries.

An important property of our coupling is its monotonicity, i.e., with high probability,

{Xi1,...,X;:} C {Zi(j) | i € [k],j € [t]}. This monotonicity property paired with the fact that th)
are 1.i.d. uniform variables are especially useful for lifting algorithms and proof techniques from
the oblivious world that rely on anti-concentration. That is, if an algorithm’s failure mode is only

triggered when Xj, ..., X; concentrate, then replacing in {Zl.(j) | i€ [k],je[t]} 2 {X1,...,X:}
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can only increase the likelihood of hitting the failure mode. On the other hand, i.i.d. uniform ran-
dom variables Z Et)s demonstrate excellent anti-concentration properties that are superior to most
other offline stochastic or oblivious smooth distributions. This shows that existing techniques and
algorithms that work well in the stochastic or oblivious smooth settings will continue to work well
for adaptive smooth adversaries.

As a general blueprint for using our coupling for smoothed analysis with adaptive adversaries,
first consider how you would handle smooth oblivious or stochastic adversaries and identify steps
that rely on an anti-concentration property. Sometimes, this is more easily done by identifying
where existing approaches rely on the obliviousness and stochasticity of the adversaries and then
finding concentration properties, potential functions, or other monotone set functions that im-
plicitly measure concentration of some measure. Next, apply the coupling to replace T adaptive
smooth random variables with Tk i.i.d. uniform random variables and show that the previous anti-
concentration (or other monotone properties) are only moderately affected by the fact that we
have a larger number of random variables. Finally, use the original algorithm or technique for
leveraging anti-concentration and complete the proof.

In the remainder of this section, we show how the above blueprint can be applied to three
important examples from online learning, discrepancy, and optimization.

Online Learning. One key property that enables learnability in the offline agnostic, offline PAC,
and oblivious smooth online setting is that a hypothesis class H can be approximated via a finite
cover H’ and algorithms such as ERM and Hedge can be run on H’ without incurring a large
error [39, 41]. This is due to the fact that the performance of the best hypothesis in H is closely
approximated by the performance of the best hypothesis in H’ when instances are drawn from an
offline stochastic or an oblivious sequence of smooth distributions. At the heart of this property is
an anti-concentration of measure in the class of symmetric differences between hypotheses h € H
and their proxies h’ € H’. More formally, for a fixed distribution 9, such as the uniform distri-
bution, consider H’ C H that is an e-cover of H with respect to D so that for every hypothesis
h € H there is a proxy h; € H’ with Prp[h(x) # h} (x)] < €. The set H" is a good approximation
for H under distribution D if not too many instances fall in any symmetric difference, that is, if
with high probability,

T
Vhe = 31 [hx) # i) s e
=1
In the offline or oblivious smooth online setting this is done by leveraging the independence be-
tween x;s and using techniques from the VC theory to show that each function hAhy, is close to
its expectation.

We note that maxpeq X yes I[h(x) # hj (x)], which measures concentration, is a monotone set
function that only increases when replacing random variables Xj, . .., X7 with random variables
{th) | i € [k],t € [T]} 2 {Xi,...,Xr}. This shows that the concentration of measure over a
T-step adaptive smooth sequence of distributions & is bounded by the concentration of measure
over a kT draws from the uniform distribution. We can now use the anti-concentration properties
of i.i.d. uniform random variables and techniques from the VC theory (which were used for the
oblivious smooth and stochastic case) to show that each function hAhy, is close to its expectation.

Online Discrepancy. Most existing approaches for designing low discrepancy algorithms, such
as [18, 21] control and leverage anti-concentration properties of the discrepancy vector and its
correlations. In particular, Bansal et al. [18] introduces a potential function @, that, roughly speak-
ing, is exp(Ad;] W) where W is a mixture of the future random variables and test directions. They
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use the fact that X;s are generated i.i.d. from a fixed and known distribution to bound the tail
probabilities for exp(Ad” | X;) > @,_;.
Note that the event exp(/ld:_lX ;) > ®;_; is monotone, i.e.,

Z exp(/ldtT,lZE”) > exp(Ad;_, X;),
ielk]

when X; € {th) | i € [k]}. Therefore, the coupling argument allows us to bound the tail prob-
ability of crossing the threshold k®;_;. In other words, we bound the tail probabilities of having
large correlation with an adaptive o-smooth variable X; in terms of the tail probability of having
correlations with at least one of k ii.d. uniform random variables.

With these tail bounds in place, we now have a high probability event that exp (Ad X;) <
k®;_;. Then, as Bansal et al. [18] argues, when ®,_; is large and as result Ad:_lX, by comparison
cannot be large, there will be only a small increase in the potential function. Since ®;s also measure
correlations with the test vectors, an upper bound on ®,;s also bounds the discrepancy.

It is important to note that discrepancy itself is not a monotone set function as additional vectors
can significantly reduce the discrepancy and stop it from growing it large over time. However, anti-
concentration techniques that are at the core of analyzing discrepancy are monotone and therefore
can be easily used with our coupling.

Dispersion. At its core, dispersion is an anti-concentration property for the number of function
discontinuities that fall in any sufficiently small interval. Existing results of Balcan et al. [13] lever-
ages anti-concentration of oblivious smooth adversaries, who generate independently distributed
discontinuities, and argues that the resulting sequence is dispersed with high probability. That
is, when the jth discontinuity of the tth function, d; ;, is drawn independently, with high proba-
bility for all intervals J with small width, 3, ;T [dt, i€ ] is small. Balcan et al. [13] proves this
using the independence between d; js and the fact that VC dimension of the class of intervals is
a constant.

In an approach that mirrors our online learning analysis, we emphasize that

T

m]ax Z I|dy; €]

ds ;€S

that measures concentration of function discontinuities is a monotone set function over S and only
increases when replacing random variables d; ;s with random variables {th’j ) |ielk],te[T],je
[€]} 2{d:; | j € [€],t € [T]}. This shows that the concentration of discontinuities over a T{-step
adaptive smooth sequence of distributions 2 is bounded by the concentration of discontinuities
from a kT (-step uniform distribution. We can now use the anti-concentration properties of uniform
and independent random variables and the fact that the VC dimension of intervals is small to show
that adaptive smooth adversaries also create dispersed sequences.

3 REGRET BOUNDS AGAINST SMOOTH ADAPTIVE ADVERSARY

In this section, we obtain regret bounds against adaptive smooth adversaries that are solely defined
in terms of VC dimension of the hypothesis class and the smoothness parameter.

Recall that an adaptive adversary at every time step t € [T] chooses D, based on the actions of
the learner hy, ..., h;_; and the realizations of the previous instances (x1, 1), . . ., (x;-1, y;—1) and
then samples (x;,y;) ~ D;. Our main result in this section is as follows.
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THEOREM 3.1 (REGRET UPPER BOUND). Let H be a hypothesis class of VC dimension d. There is
an algorithm A that, for any adaptive sequence of o-smooth distributions 9, achieves a regret of

E[REGRET(A, D)] < O len(l)+dln(T) )
do do

In the above O hides factors that are loglog (T/do).

We complement this result by providing nearly matching lower bounds. We show that
Theorem 3.1 is tight up to a multiplicative polylog(T) and polyloglog(1/cd) factors and an ad-
ditive d log(T/do) term. We provide a proof of Theorem 3.2 in Section 3.4.

THEOREM 3.2 (REGRET LOWER BOUND). For every d and o such that do < 1, there exists a hy-
pothesis class H with VC dimension d such that for any algorithm A there is a sequence of o -smooth
distributions D where

1
E[REGRET(A, D)] € Q| /dT log (_d) .
o

In order to prove Theorem 3.1, we follow the general approach for using our coupling theorem
(Theorem B.2) as outlined in Section 2.2. That is, in Section 3.1, we first review the algorithmic
result of Haghtalab [39] for obtaining regret bounds against non-adaptive smooth adversaries and
identify steps for which non-adaptivity is crucial for that approach. In Section 3.2, we then alter
those steps to work for adaptive smooth adversaries via the coupling argument. Lastly, in Sec-
tion 3.3, we combine the steps to complete the proof of Theorem 3.1.

3.1 Overview of Existing Approaches and their Need for Obliviousness

Haghtalab [39], Haghtalab et al. [41] considered regret-minimization problem against non-
adaptive smooth adversaries. This approach considered an algorithm A that uses Hedge or any
other standard no-regret algorithm on a finite set H’. H’ is chosen to be an e-cover of H with
respect to the uniform distribution. It is not hard to see (e.g., [41, Equation (1)]) that regret of algo-
rithm A decomposes to the regret of Hedge on the cover 4’ and the error caused by approximating
H by its cover H’ as follows:

E[ReGRET(A, D)) so( Tln(l?{’l))HEg max rlré% (h(xt);th’(xt)) . )

Given that any hypothesis class H has an e-cover of size (41/€)VP™(*) (see [48] or [30, Lemma
13.6]) the first term of Equation (4) can be directly bounded by O(\/T VCDim(H)In(1/¢)). To bound
the second term of Equation (4), for any h € H consider the A’ € H’ that is the proxy for h. Then,
define g » = h ® h’ where h @ h’ is the function that is 1 if exactly one of h or A’ is 1. Note
that Ex.y[gn w(x)] < €, where U is the uniform distribution over X. Let G = {gn.nr | Vh €
H and the corresponding proxy h’ € H'’}. Note that,

D |heHh

T
E |sup inf Z (h(x) # h'(x1)) g su Z ()] - (5)

Note that for any fixed gp» € G and even an adaptive sequence of o-smooth distributions,
Eg[ Yoy gnw(x0)] < 07 Byy[X]_; gnw(x1)] < Te/o.
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Up to this point, the above approach applies equally to adaptive and non-adaptive adversaries. It
remains to establish that with small probability over all (infinitely many) functions in G, the real-
ized value of g is close to its expected value. This is where existing approaches rely on obliviousness
of the adversary. When the adversary is non-adaptive, instances x, ~ D, are independently (but not
necessarily identically) distributed. Existing approaches such as [39] leverage the independence be-
tween the instances. Though the instances are not identically distributed, the independence allows
one to adapt standard techniques such as symmetrization to establish uniform convergence. For-
mally, previous work establishes that when D is a non-adaptive sequence of smooth distributions,

4 Te T
E sung(xt) <—+0 len(—) . 6)
D geg = o o

=1

Using € = ¢T~'/? in Equations (6) and (4) gives an upper bound on the regret against an oblivious

smooth adversary that only depends on VC dimension of H and the smoothness parameters.

3.2 Reducing Adaptivity to Obliviousness via the Coupling

We emphasize that Equation (6) is the only step in existing approach that relies on the obliviousness
of the adversary. In this section, we show how the coupling lemma can be used to obtain an upper
bound analogous to the Equation (6) for adaptive adversaries. The main result of this section is as
follows,

LEMMA 3.3. Let G be defined as described in Section 3.1, d = VCDim(H), and let 9 be an adaptive
sequence of o-smooth distributions. We have

T
€ €
g sung(xi) <O \/;Tln(T)dln(l/e)+Tln(T);

9€G i1

odlog(4e?/e
forany e > —STIE’](T) )

Proor oF LEMMA 3.3. Here we bound the value of a T-step adaptive process. To prove this
lemma, we use the coupling described in Section 2.1 to reduce the problem of bounding the value
of a T-step adaptive process by the value of the a O(T/o)-step uniform process. We then bound
the value of the uniform process using the fact that uniform process is an oblivious process.

Cramv 3.4. Let o = 10In(T) and k = a/o, and let U denote the uniform distribution over the
domain. We have

9€G i51 u 9€G ;¢
JjelT]

T A
g sup Zg(xi) <T*(1-0)s +E |sup Z g (ZI(J)) .
(k]

Proor oF Craim 3.4. Consider the coupling Xi, ... Xr, ZEI), .. Z](CT) described in Appendix B.2
for for k = @/o and @ = 10In(T). We will denote this by II. First note that every g € G is positive,
since it is a symmetric difference between two functions h and h’. Therefore, for any two sets A
and B, such that A C B, we have

sup )" g(x) < sup > g(x)

9EG xeA 9€G xeB
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Let & denote the event {X1,..., X7} & {Zl.(j) | i € [k],j € [T]}. From Theorem 2.1, we know that
Pr(8]<T(1- cr)%. Moreover, from Theorem 2.1 we have that X ... Xy is distributed according

to 2 and Zl.(j) are i.i.d. according to U, thus

]E sung(x, = ]E sung(X) and E sup Z (Z(J)) = ]E sup Z (Z(J)) . (D
7 |ge6 4= Ul9<6 {qr 9€G je[k]
JElT] jelT]

Next note that

E sung(X) —E 1(&)- sung(X) +E ]I( ) sung(X)

9geG = ge 9eG =

T
<T*(1-0)° +]§ 11(8) 'Zlelg;g(xi)

<T*(1 —0)% +I§ }I(g) Zgg;g(z’(]))

<T’(1-o0)° +E supZ (Z(])) ,

QEQU

where the second transition uses the fact that Pr[E] < T (1 - G)% and that sup, .o ZiTzl g(X;) <
T given that Vg € G.,g(x) < 1. The third transition uses the fact that conditioned on &,

(). . . . .
{X1,....Xr}y € {Z; | i € [k],]j € [T]}. Using Equation (7) completes the proof of Claim 3.4. O

120d log(4e®
Cramm 3.5. Foranyk and any e > %, we have

E sup Z g(Zi(j)) < 72yJeTkdlog(1/e) + Tke.
[T]

9€G iclklje

ProoF SKETCH OF CLAIM 3.5. The crux of this proofis that random variables Z l.(J) are drawn i.i.d.
from the uniform distribution, therefore, standard VC theory arguments provide uniform conver-
gence bounds for them. We use Bernstein-style uniform convergence bound and leverage the fact
that for all g € G, Eq/[g(Z)] < € to get a variance that shrinks with e. That is, in Lemma A.2, we
have that error grows as O(VeTd) whereas if just a Hoeffding bound were used, the error would
grow as O(VTd) which would have resulted in a regret of O(VTdo~1) instead of O(1/Td log(1/0)).

The proof of this claim follows from [30, Theorem 13.7] and is included in Appendix A for

completeness. O
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Combining Claims 3.4 and 3.5, replacing in values of & = 101In(T), k = /0, and (1 — 0)*/7 <
exp(—a), we have that

T
g Zlelg ;g(xi) < T?exp(—a) + O (\/ngn(T)dlog (1/€) + Tln(T)g)

<0 (\/ngn(T)d log (1/€) + Tln(T)g) :

where the last transition is due to T?exp(-10In(T)) € o(1). This completes the proof of
Lemma 3.3. O

3.3 Proof of Theorem 3.1
The proof of Theorem 3.1 follows the proof outline for oblivious smooth adversaries described
with Section 3.1 with the exception of using Lemma 3.3 that holds for adaptive smooth adversaries
in place of Equation (6) bound.

Let d = VCDim(H). Using the regret decomposition from Equation (4), an upper bound on the
size of an e-cover such as |H| < (41/€)? (see [48] or [30, Lemma 13.6]), and Lemma 3.3, we have

T

E[REGRET(A, D)] < O[+|TdIn (1) +E sung(xt)
€ 2 |9e6 5

<0 ,/len(l) +\/5T1n(T)dlog(1/e) +TIn(T)< |,
€ o2 o

1 2
Recall that we needed € > %. This can be satisfied by setting ¢ =

O(% log( I 1;5 L )) and we have that

E[REGRET(A, D)] < O|+|TdIn (l) +dlIn (L))
do do

as required.

3.4 Proof of Theorem 3.2

In this section, we provide a proof for the tightness of our regret bounds. In order to do this, we
first formally define the notion of Littlestone dimension of a class.

Definition 3.1 (Littlestone Dimension, [23]). Let X be an instance space and ¥ be a hypothe-
sis class on X. A mistake tree is a full binary decision tree whose internal nodes are labelled by
elements of X. For every choice of labels {y;}2, Every root to leaf path in the mistake tree corre-
sponds to a sequence {(x;, yi)};’lzl by associating a label y; to a node depending on whether it is
the left or right child of its parent. A mistake tree of depth d is said to be shattered by a class 7 if
for any root to leaf path {(x;, yl-)}flzl, there is a function f € ¥ such that f (x;) = y; for all i < d.
The Littlestone dimension of the class # denoted by LDim (%) is the largest depth of a mistake
tree shattered by the class 7.

As an example, the Littlestone dimension of the class of thresholds on {1,. .., n} is log,(n). The
following theorem shows that the Littlestone dimension captures the regret in the online learning
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game against a class. We will only need the lower bound but we will state the full theorem for
completeness.

THEOREM 3.6 ([4, 23]). Let X be an instance space and ¥ be a hypothesis class on X. Then, there
exists an online learning algorithm A such that

REGRET(A) < O (\/LDim(T) T) )

Furthermore, for any algorithm A’, we have that

Recrer (A') 2 Q (VIDIm (7)) .

Using the above theorem, we lower bound the regret in the online learning against smoothed
adversaries. We do this by reducing the smoothed case to the worst case for a related class and
lower bound the worst case regret using the above theorem.

Proor oF THEOREM 3.2. We will first construct a class on the domain [1/s] = {1,..., %} with
VC dimension d and Littlestone dimension ©(d log(1/ds)). For simplicity, assume o~! and d to be
powers of two. Divide [1/s] into d subsets each of equal size, denoted by A;. On each of these
subsets instantiate the class of thresholds, i.e., for each y € A;, hy (x) = I[x > y] for x € A; and 0
for x ¢ A;. For a d-tuple of thresholds (hy, ... h,,) with y; € A;, define the function

d
hyor oy (¥) = D Tl € Afl by, (x).

i=1

This function can be seen as the union of the thresholds h,,. Define H to be the class of all such
functions. Note that this class has VC dimension d. The VC dimension is at most d since if any
more than d points would mean at least one of the A; must have two points but this cannot be
shattered by thresholds on A;. The VC dimension can be seen to be at least d by taking one point
in each of the A;.

We claim that this class has Littlestone dimension ©(d log(1/sd)). At a high level, the Littlestone
dimension of the class of thresholds defined over A; is log,(!/sd). Moreover, our definition of a
d-tuple threshold is a disjoint union of d thresholds. This allows us to combine the mistake trees
for A,..., Ay, by gluing a copy of the mistake tree for A;,; at each of the leaves of the mistake
tree for A;, recursively. This results in a mistake tree of depth ©(d log(1/oa)). For more detail, see
Lemma C.1.

Next consider the set [0, 1] and divide it into contiguous subintervals of length 0. We define the
projection function IT : [0,1] — [!/o] by II(x) = i if x is in the ith subinterval. Define the class
G on [0, 1] by composing H with I1, i.e., G = {g : g = h o I1}. Note that the uniform distribution
on each subinterval is o-smooth. Thus, in a smoothed online learning game with the class G, an
adversary who plays only uniform distributions on the subintervals defined above corresponds to
an adversary in the worst-case online learning game on [1/s] against class H. In particular, any
algorithm for G against such an adversary can be converted to an algorithm for H with the same
regret. From Theorem 3.6, we have that the regret against H is lower bounded by

VTLDim (H) = 1/dT log (V/od)

Thus, the regret in the smoothed online learning game for G is lower bounded by /dT log (1/sd) as
required. We note that this reduction goes through even for non-adaptive smooth adversaries. O
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4 DISCREPANCY

In this section, we consider the online vector balancing problem with adaptive smooth adversaries
and achieve bounds that are almost as small as the stochastic setting where instances are drawn
from the uniform distributions.

Recall that in the online vector balancing or discrepancy problem, at every round ¢ the algorithm
sees a new vector X; with bounded norm and has to assign a sign €, € {—1, 1} to it. The goal of
the algorithm is to ensure that for all t < T,

t

ZeiXi

i=1

(e8]

is small. This problem is studied under different choice of norms, but we restrict our our discus-
sion to the infinity norm. In the adaptive adversarial model, where the adversary’s choice of vec-
tor X; could depend on the past choices of the algorithm and the adversary, i.e., €1, ..., €1 and
X1, ...,X;_1, no algorithm can obtain discrepancy bound of O(VT). On the other hand, recent
works of Bansal et al. [18] and Alweiss et al. [5] have shown that polylog(nT) discrepancy bounds
are achievable when X;s are drawn from a fixed distribution or are fixed by an oblivious adversary
in advance.

We consider the online discrepancy problem under against an adaptive o-smooth adversary.
That is, the adversary chooses a o-smooth distribution for X after having observed €y, ..., ;1
and Xi, ..., X;_1. We also restrict our attention to the isotropic case where the covariance matrix
Ex,[X,X]] = cI for some c.

In this section, we give discrepancy bounds that smoothly interpolate between the stochastic
and adaptive cases.

THEOREM 4.1. Let D be an adaptive sequence of o-smooth distributions, such that the distribution
of Xi, with||X;|| < 1, at time i is decided after observing X1, ...,Xi_1,€1,...,€i_1. Furthermore, let
Ex,[X:X][] = cI for some some ¢ € [0,1/n]. Then, there is an online algorithm for deciding the sign
€; of X; such that with probability 1 — T™* forallt < T

x| <o (2]

PILEY
i=1

We complement this upper bound by showing that we cannot get the logarithmic dependence on
smoothness parameter o, n and T simultaneously without further assumptions on the distribution
such as isotropy.

THEOREM 4.2. For any online algorithm, there is an adaptive sequence of (1/20n*12)-smooth distri-
butions on the unit ball such that, we have

T
Z €;Vj >Q Z
i=1 n
with probability 1 — exp (—T/12).

4.1 Overview of Existing Approaches and their Need for Obliviousness

Bansal et al. [18] consider various versions of the online discrepancy problem where the vectors
are chosen stochastically from a fixed known distribution. One such problem is the stochastic
online variant of the Komlés problem, where the input vectors come from a fixed distribution
supported on the unit Euclidean ball, and the algorithms goal is to minimize the infinity norm of
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the discrepancy vector, i.e., ||d; || To do this, Bansal et al. [18] introduced the following potential
function
o, = E [cosh (Ad;rW)] s
W~p
where p denotes a mixture between sampling from the fixed distribution the vectors are drawn
from and the basis vectors e;s. This potential can be seen as the exponential moment of the random
variable dtT_IW that both bounds )LdtT_IX ; <0 (log (TCDt_l)) and induces an anti-concentration
constraint on the correlations of the discrepancy vector d;_;. [18] then uses an algorithm that
at time ¢ observes X; and picks the sign €, that minimizes the increase in the potential function
®, — ®;_, that is A® = Eyyp[cosh(A(d;—1 + €,X;)"W)] — Ey~p[cosh(Ad]_,W)]. At the heart of
the analysis of [18] is to show that in expectation over the choice ofX; from the fixed distribution,
A® remains small at every time step. It is not hard to see that once the expected increase in the
potential is upper bounded, standard martingale techniques can be used to bound the potential
and thus the discrepancy at every time step.
To bound A®, Bansal et al. [18] considers Taylor expansion of the potential function as follows

AD < 6;}. E
W~p

sinh (Ad}_lw) XTw

+2 B [ sinh (/IdtT_IW) WTXXT W] .®

Bansal et al. [18] leverages the the obliviousness of the adversary, i.e., the fact that X; arrive from a
fixed distribution, and isotropy of X to directly bound the linear and quadratic terms of the Taylor
expansion as follows.

The second term of Equation (8) is bounded using the isotropy of the vector X; as follows

2 E
W~p

sinh (Ad{_lw)

1
WX, X[ W< =A*E
n W-~p

sinh (Ad7_, W)

As for the first term of Equation (8), note that since the algorithm picks €; to minimize the po-
tential rise, it is sufficient to upper bound Ex, [—|A Ey ~,[sinh(Ad;_, W)X W]|]. Since the potential
is the exponential moment of the /ldtTlet and X;s are drawn from an oblivious distribution, we
have that Ad]” | X; < O(log(T®;-1)) with high probability. Thus, we get

]
Xt

: T T
3B sinh (Adt_lw) XTw

1
>—FE
] ~ ln(Tth_l) Xy

2 A B
nln(Td,—1) w~p |

2 E [sinh (2d7w) d X7 W]

W~p
. 2} ,

using the fact that a sinh(a) > \sinh (a)| — 2 and the isotopy of the distribution. Summing these two
terms, we get

AD < —; E
nln(Tth,I) W~p
< 2.

sinh (Adj,lw)

] 1
sinh (Ad{_lw)' —2|+-2* B
In ~P

sinh (Ad}_lw)'

We choose A such that ™! < log (T®,;_;) if ® < poly (T). This tells us that that if the potential is
small, then the change in the potential is small as required.

Let us now review the steps where the obliviousness of the adversary was crucial for the analysis
of Bansal et al. [18]. The main step is the definition and the interpretation of the potential function,
that controls the moments of d;_ X, assuming that X; comes from a fixed distribution and the
future vector that are represented in W ~ p. That is, obliviousness is primarily used to show that
M X; < O(In(T®,_;)). In an adaptive (smooth) setting where the distribution of X, and the
future vectors differ and are unknown an adversary can correlate X; and the future vectors with
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d;—1. It is not immediately clear how to directly adapt the potential function to account for the an
evolving sequence of distributions. A possible approach for directly altering the potential function
is to work with the worst-case evolution of smooth distribution across a single time step. This
seems both algorithmically challenging to deal with and, as we see next, unnecessary.

4.2 From Adaptive to Oblivious through Coupling

We emphasize that the main step in which Bansal et al. [18] leveraged the obliviousness of the
adversary is to show that their potential function defined over random X; and a random W ~ p
that balances between future observations and the standard basis has the property that Ad X, <
O(In(T®;_1)). We use the coupling argument to show that a similarly defined potential function in
our case also demonstrates the same bounds. The main observation that allows us to move from
the oblivious adversary to the adaptive adversary is that the coupling discussed in Section 2.1 gives
us a way to upper bound the probability that d;_, X, is large under an adaptive sequence of smooth
distributions in terms of the probability under the uniform distribution.

Let us start by defining the algorithm that obtains our results of Theorem 4.1 analogously to
the algorithm of Bansal et al. [18] for the uniform distribution. At step t, our algorithm observes
vectors the discrepancy vector d;_; (which is a function of ¢; . .., €,—; and the previous vectors)
and receives a new vector X; that is to be colored. Let ¢; denote the sign that our algorithm will
assign to X; and let d; = d;—1 + €;X;. Let p denote the following distribution.

Z~U with probability 1
e; where e; ~ ppasis  With probability % ’

where pp,sis is the uniform distribution on the standard basis vectors (with both positive and neg-
ative signs). Defined the potential function

d, = W]]:Ep [cosh (Ad:W)] ,

for A = 1000 In (knT) where k is a parameter to be set later. At step ¢ observing X; our algorithm
greedily picks the €, minimizes the potential difference, that is

O, — Dy = WElp [cosh (A(dt,l + etXt)TW)} - W@p [COSh (Ad:_1W)] .

The following lemma uses the coupling argument to bound the probability tails of d;_, X;.

LEmMA 4.3. Consider any fixed d,—; vector and X, that is sampled from an arbitrary o-smooth
distribution. Then,

4k®d,_
Pr|Ad_,X; > 4In (—tl)l <(1-0)F+5.
X; 1
Proor. We will use the coupling from Appendix B. In particular, we can use a single-step cou-
pling from Lemma B.1 that shows that there exists a coupling IT on (XN}, Z{t), . ,Z](f)) such that

Xt has the same distribution as X;, ZY), .

with probability at most (1 — O')k, we have )Zt ¢ {th), . ,Z](f)}. Let & denote the event where

s Z](:) are uniformly and independently distributed and
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X; ¢ {Z(t), e ,Z;:)}. Then, for any 0

E’(r [Ad]_ X, > 6] =Pr [exp (Ad,T_IXt) > exp(@)]

= II’]r EA {exp (Ad:_l}zt) > exp(G)} + Ir’lr EA {exp (Ad;_l)zt) > exp(G)}
S (2)
k rel T t
<(1-0)+ II’]r EA izgl exp (Adt_lZl. ) > exp(0)

[ &
<(1-o)f+ %r Z exp (Ad:_lZEt)) > exp(6)

i=1

k
<(1-o)+ exp(—@)lg Z exp (Ad:_lZEt)) (By Markov inequality)
i=1
k
<(1-0)+2 exp(~6) E Z cosh (Adj_lzl@) (By exp(x) < 2 cosh(x))
i=1

k
<(1-o0)f+4 exp(—0) Z WE [cosh (Ad;r_1W)] (p is w.p. 0.5 uniform)
iz P

< (1-0)* + 4k®,_; exp(-0),

t—1

Setting 6 = ln(‘lk%) completes the proof. ]

4.3 Proof of Theorem 4.1

Our proof follows the same approach as that of Bansal et al. [18] outlined in Section 4.1 and aims
to bound Ex, [®;] — ®;_; at every time step. The main technical challenge is to upperbound the
linear term Ex, [—|L(X;)|] in A®, as a function of the correlation between d;_; and X; drawn from
a o-smooth distribution. We then use our Lemma 4.3 that controls this correlation to bound the
linear term.

Recall from Section 4.2 that our algorithm observes X; and picks the ¢; that minimizes the
potential difference, that is

O, —D,q = W}Eip [cosh (A(dt_l + etXt)TW)] - WIEEP [cosh (AdtTIW)} )

The next lemma shows that when the potential at time ¢ — 1 is small, the expected increase in
®; over the choice of X; is small.

LEMMA 4.4. At any time t, if ®;—; < T, then Ex, [®;] — ®,_; < 2.
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Proor. Denote A® = &, — ®,_;. As in [18], we decompose this as
AD(X;)= E [cosh (A(d:_l + etXt)W)] - E [cosh (/I(d:_l)W)]
W~p W~p

<ed E |sinh (Adj_lw)xf w
W~p

+22 E [
W~p

sinh (Ad}_lw)‘ WX X W]

+ 22 B (WX X[ W].
W~p
Using notation similar to that of Bansal et al. [18], we will denote the first term in last equation as
€:L (X;), the second as Q (X;) and the third as Q. (X;). We need to upper bound Ex, [A®(X;)] and
thus it suffices to bound these three quantities.

Our approach for upper bounding Ex,[Q (X;)] and Ex,[Q. (X;)] is similar to that of Bansal
et al. [18] and uses that fact that the distribution of X is isotropic (without the need to bring
in smoothness). We state these bounds in the following claim and include the proof of them for
completeness in Appendix D.

Cramm 4.5. Let Q and Q.. be defined as above. Then,

E[QX)] <ct* B ] and )Ig [0.(X))] < %

X W~p [

sinh (Ad{_lw)

To upper bound E[e;L(X;)], we need to use both the smoothness of X; and their isotropic nature.
First note that since €, is chosen to minimize the potential drop, we can bound Ex, [EtL (X t)] <
—-Ex, HL (Xt)ﬂ. So it’s sufficient to lower bound Ex, |]L(Xt)|].

CrLam 4.6. Let L be defined as above. Then,

ch
BN = o =757, [

sinh (AdtT_IW)H ~1

PrROOF OF CLAIM 4.6. Let B = In (4k®;_1/5) and let G be the event that A|le_1Xt| < B. Note
that|L (Xt)| >L(X;) f(Xy) /”f“oo for any function f. We will use the function f (X;) = d X, -
I[X; € G] and note that”f”oo < B/A. This allows us to decompose |L| further as follows.

2

EfLexoll = E|5 B [sinh (Ad7w) d XX W 1X, € G)]
A2 : T T T
=3B, |sinh (AdHW) dfy BIXX[IW

A? )

-5, [smh (Ad}_lw) 4, B [XeX[1(X £ 6)] W] .

Looking at the second term in the above equation and using the fact that X is an isotropic distri-
bution and Lemma 4.3 (which used the smoothness of X), we have

E[X.X]I(X; ¢G)]|| <Pr[X;¢Gl<(1-0)f+6.

Xt

op

Ensuring that k >> ¢~'1n (1/5) by k = 1000~" In (T In (T)) and noting that [|d, ;|| < T
d_ E [X:X[1(X, ¢ G)| W < 26T.
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Picking 57! = 2A®, T, we get

A

d;_, B [X: X/ 1(X: ¢ G| W

<ol

Now let us consider the first term of the above decomposition. Using the fact that X is an isotropic
random variable, we have

AZ

. cA
i WIEiP [smh (/ld,T,IW) d_, )}(E;[XtXtT]W] =

E
W~p
Sy

B w~p

where the last inequality used the fact that asinh (a) > \sinh(a)| — 2. Putting the inequalities to-
gether, we get

sinh ()tdLW) Ad,TlW]

sinh (AdtT_IW)‘ - 2] )

A [l . A .
)IE [IL (X,)” > CE W]Eip » sinh (Ad;r_1W) - 2] - %@t_ll W]E;p [ sinh (Ad;r_IW)H
> 5 |lsinh (Adj_lw) ] L
B wp | B B
A e
> CE WI@P » sinh (AdtT_1W) ] -1,

where the second transition is by the definition of ®,_; and the third transition is by the values
of ™! = 10001In(knT), B = In(8AkT®?_,), and the assumption that ®;_; < T°. This completes the
proof of Claim 4.6. o

We now use Claims 4.5 and 4.5 to finish the proof of Lemma 4.4 as follows.
E[A2(X)] < B [-ILI+Q+0Q.]

A
g
B w~p

cA?

n

IA

[5pt] sinh (Adj_lw) JE |[sinh (Adj_lw) +

+1+cd> E [

<2

Here, we use the fact that A < B! which follows from A™! = 1000 In(knT), B = In(8AkT®?_), and
the assumption that ®;_; < T®. This completes the proof of Lemma 4.4. ]

Note that the above argument gives us Ey, [A<I>|d>,,1] < 2 given that ®,_; < T°. We truncate @,
at TS, ie., setting &, = @, till &, < T® and &, = T afterwards. Using this and the Doob maximal
martingale inequality, it follows that ®, < T® with probability 1 — T* as required.

Next, we will see why bounding the potential suffices to bound the discrepancy. Recall that the
potential was defined as ®; = Ey -,[cosh(Ad; W;)]. Since with probability 1/2, p samples uniformly
from the set of basis vectors ppqsis and given that exp(x) < 2cosh(x), we have exp(/1|d:ei|) <

o exp(A\dtTejD < 8nd; for all basis vectors e;. Thus, we have

t

ZeiXi

i=1

ldtlleo = < A7'In (4nd;).
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Recall that 17! = 1000 ln(@), which gives us that

sé@%gn

t

Z € X,

i=1

as required.

4.4 Proof of Theorem 4.2

Here, we show that the isotropy condition is required for our online discrepancy upper bound. Re-
call that the worst-case adversary for discrepancy generated vectors that were orthogonal to the
current discrepancy vector at each time. The idea for this proof is that even with the smoothness
requirements, the adversary can generate vectors such that the inner products are concentrated
near zero, leading to high discrepancy. Let the discrepancy vector at time ¢ be denoted by d;. Con-
sider the set S; = {x : [|x|l, < 1,(x,d;—1)| < n"2T72||d;—1|l,}. Note that the uniform distribution
on S, is cn 2T~% smooth for some constant c. To see this, let U denote the uniform distribution on
the unit ball and let V}, denote the volume of the unit ball in n dimensions. Then,

n-1

n=2T7?
1 =
Pr [XeS;]= —/ (1 —xz) * Ve_idx
X~U Vi J-

n n=2T—2
1 T 1\
> — 1- Vn_ldx
Vn —n-2T-2 niT*
S Vi1 ) 1
V., 2n?T?
1
> —.
20n2T2

The second inequality follows by noting that (1 — n“‘T“})"Ti1 > 1/4. With this, we describe the
adversary’s strategy. At time t, the adversary picks v; uniformly from S;. We will measure the
squared 2-norm of the discrepancy vector.

e 113 = llexvr + di-all3

= efllocllz +llde-illz + 2 (or, d)

20ld; I
2 [[oell} +ldeill; = =
2
2 2
2 |lollz +llde-1llz = T

Note that Pr [||v;]l, < 1/2] < 27("=D_ This can be seen by noting that the probability can be com-
puted with an integral similar to the one above but with ball of radius 1/2 instead of the ball of
radius 1. Also, note that the lengths||v;||, are independent across i (even though v; themselves are
not independent). Denote z; as a random variable which is 1 if||v;|| > 1/2 and 0 otherwise. Then,

t

t
DT I

i=1
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Applying a Chernoff bound to z;, we get

t
t t
Pr lanné << (1- 2‘<d‘1>)l <et,

i=1
Thus with probability 1 — e,
t 2t t
— >
16 n®T — 20
We get the desired result by relating the 2-norm and co-norm.
This shows that we cannot get the logarithmic dependence on smoothness parameter o, n and

T simultaneously without further assumptions on the distribution such as isotropy.

2
ld: 15 =

5 ADAPTIVE SMOOTH ADVERSARIES AND DISPERSED SEQUENCES

In this section, we consider the problem of online optimization and show that adaptive smooth
adversaries create dispersed sequences. Recall that in the online optimization settings, an adversary
chooses a sequence of functions us, ..., ur such that u; : X — [0, 1] and the learner responds by
taking instances x1,...,xr € X with a goal of minimizing the regret. The main theorem of this
section shows that when u;s are piecewise Lipschitz functions and are chosen by an adaptive
smooth adversary in such a way that the discontinuities of these functions are is smoothed, the
resulting sequence of functions is dispersed.

THEOREM 5.1 (ADAPTIVE SMOOTHNESS LEADS TO DISPERSION). Let uy,...,ur be functions from
[0,1] — R that are piecewise Lipschitz with € discontinuities each. Let d; j denote the discontinuities
of u; and that are sampled from an adaptive sequence of o -smooth distributions. Then, forany a > 0.5,
with probability 1 — § the sequence of functions uy . .. ur is (w, k)-dispersed for

w=0o(TO*" and k=0 ((Tf)“ In (3) +1In (l)) .
1) o

5.1 Overview of Balcan et al. [13] and the Need for Obliviousness

Balcan et al. [13, Lemma 13] showed a similar result to Theorem 5.1 but for sequences that are
generated by an oblivious smooth adversary. The crux of their argument is showing that for the
number of points that can lie in any ball of small radius is small when these points are drawn
independently from a non-adaptive sequence of o-smooth distributions. More formally, they show
that ¢ points are picked from a non-adaptive sequence of o-smooth distributions over [0, 1], then
with probability 1 — §, any interval of width w contains at most

0 T% + 1/mog(%) )

points. Setting w = o(T{)*"! for an @ > 0.5 then [13] showed that for a non-adaptive smooth
adversary, with probability 1 — &, u; . .. ur is (a(T€)*™, O((T€)* ln(%)))-dispersed.

The only step in the existing analysis that requires the adversary to be non-adaptive is that of
proving Equation (9). Here, Balcan et al. [13] relies on the obliviousness of the adversary an uses
the fact that points drawn from a non-adaptive sequence of smooth distributions are independently
(but not identically) distributed. Their approach leverages this independence between the instances
and the fact that VC dimension of intervals is 2 to use the double sampling and symmetrization
tricks from VC theory and establish a uniform convergence property on the number of instances
that can fall in any interval of width w.
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5.2 Reducing Adaptivity to Obliviousness for Dispersion via the Coupling

We emphasize that Equation (9) is the only step in the existing approach that relies on the oblivi-
ousness of the adversary. In this section, we show how the coupling lemma can be used to obtain
(almost) the same upper bound as of Equation (9) for adaptive adversaries. Our approach is essen-
tially the same as the proof of Lemma 3.3 used for regret minimization, where we had to bound the
expected maximum number of smooth adaptive instances that can fall in any function g € G of
bounded VC dimension. In this case, we can apply the same results to the class of intervals, which
has a VC dimension of 2, and bound the number of discontinuities than fall in any interval. We
make another small change to our previous approach to achieve high probability bounds instead
of bounds on the expectation.

LEMMA 5.2. Let J be the set of all intervals of width at most w over [0,1]. Fori € [T] andj € [(],
let d; j be drawn from a TC-step adaptive sequence of o-smooth random variables over [0, 1]. Then,
with probability 1 — 6,

10T¢ log (2T¢/8
maxz [d, € 7] < T2 (2§€)+1\/”W1 (zz;g)ln(;)+1010g(—og( /))

i€[T] od
Jjeld]

Proor. Let 9 represent the T¢-step adaptive sequence of o-smooth distributions from which

In(2T¢/5)

d; js are drawn. Let k = and consider the coupling IT described in Appendix B.2 over

(dij, Zl(i’j) o Z]Ei’j)),-em, je[e], where d; ;s are distributed according to 2 and Zﬁ,l;’j )s are distributed
according to the uniform distribution over [0,1]. Let & be the event {d;; | Vi € [T],j € [(]} €
(289 | vm € [k],i € [T],] € [€]}. By Theorem 2.1, Pr[&] < Te(1 — o)k

We now bound the probability that the number of instances d; ;s that fall in any interval of size
w is bigger than a threshold 6, using the coupling argument. We have

P@r r]rle?;ﬂ[di,j 6]] >0 =II’]r r]nea}}(;jﬂ[di,j E]] >0

I
=7

8/\1’]1163‘1}(;1[[‘1[,]6]] >0
+Pr 8/\maleI ,JEJ >9

k
<Tt(1-o0) +Pr 8/\r]n€e?<z1l ,Je] >9

ok aprlE (@)
<TC(1-0) +I;[r8/\r]n€aj}gz1l[2m e]]z@

i,j,m

- Y [(z:j) ]> )
<Tt(1-o0) +I;[r r]nea?ZI[Zm eJ| >t

i,j,m
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Now, using uniform convergence bounds (see e.g., [31, Page 201]) for J, which has a VC dimension

of 2 and the fact that for any J € 7, Pr[Z,(,:’j) € J] £ w, we have that

N>

Pr |max > ﬂ[zi,i’ﬂ € J] > Tthkw + 10yTewk In(TCk/3) + 10log (10Tk/8) | <
i,j,m

U | Jeg

In(2T¢/6)
o

Replacing in values of k = and using the result of the above coupling, we have

Tlw 2T¢ Twl 2T¢ 1 10T¢ log (2T¢/9)
.. > —_ —_ —_— —_ _— <
Pr rjnea?zﬂ[dl,] eJ| > . log( 3 )+10\/ . log( 3 )ln(5)+1010g( =5 <és

i,j

as required. ]

5.3 Proof of Theorem 5.1

The proof of this theorem follows directly from Lemma 5.2 and by setting w = o(T¢)*! for

a > 0.5. a
We note that Theorem 5.1 shows that even adaptive smooth adversaries generate sequence of

functions that are sufficiently dispersed. This result enables us to directly tap into the results and

algorithms of Balcan et al. [13] that show that online optimizing on any dispersed sequence enjoys

improved runtime and regret bounds.

APPENDICES
A  UNIFORM CONVERGENCE BOUNDS UNDER INDEPENDENCE

LeEmMA A.1 (LEMMA 13.5 AND THEOREM 13.7 IN [30]). Let A be a countable class of measurable
subsets of X with VCDim (A) = d. Let Z1, . . . Z,, be independent random variables taking values in
X. Assume that Pr[X; € A] < € forall Ae A. Let

n

1
0= $:£;(ﬂ[xi € Al -Pr[X; € A]).

Then,
4 2
E [Q] < 724/edlog (%)

120 log( 1)
whenever € > ——————=

We use the above theorem to get the required bound for the expected maximum of the process
indexed by a VC class under our coupling.

LEMMA A.2. Let G be a class with VCDIim(G) = d and g € G, Eg(y) < € where y is uniformly
distributed. Then, for {yi} I independently and uniformly distributed,

i€[Tk
E sung(yi) < 724/eTkdlog (1/€) + Tke
geG

120d log(4ez/e)
fore > ————=.
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Proor. Consider the random variable Q = \/% [sup,eg S7T% g (yi) —Elg(y:)]] where y; are inde-

pendent uniform random variables. Note that E[g(y;)] < €. Note that this satisfies the conditions
of Lemma A.1 Thus,

E|[Q]| <72 edlog(%ez),

4e?
whenever € > %,%(‘). Thus, we have
Tk 1e?
E sung(yi) —-Elg(yi)]| <72 edelog(—).
9€G im1 €
Recalling that E [g (y,-)] < €, we get the desired result. O

B COUPLING ARGUMENT

In this section, we will produce a coupling between a adaptive sequence of o-smooth distributions
2 and independent draws from the uniform distribution. In fact, we will prove the argument
for a more general setting where smoothness is defined with respect to a general measure p over
the domain X. This proof is based on a generalization and simplification by Block et al. [26] and
Haghtalab et al. [40] of our original coupling argument that appeared in [42].
That is, a distribution D is o-smooth with respect to yu if for any S € X, we have D(S) < @
Using the Radon-Nikodym theorem, we can prove that this is equivalent to
dp 1
—_— S —_
dp o
where % represents the Radon-Nikodym derivative of O with respect to y. For readers unfamilar

with measure-theoretic notation, it suffices to think of ‘fi—D as the ratio of either the probability den-

sity functions or the probability mass functions of D and y. In particular, for uniform distributions
this corresponds to Definition 1.1.

B.1 Warm-up: Coupling for a Single Round

As awarm-up, let us look at the coupling for a single smooth distribution 9. Consider the following
coupling.

— Draw k samples Y; ... Yi from p.

— Initialize S = 0.

— For each i, add Y; to S with probability o - %.

—If S is non-empty, pick X; randomly from S. Else, then sample X; independently
from D.

— Output (Xl, Zl, e Zk)

The key thing to note is that the above algorithm is well-defined due to smoothness. That is,
smoothness implies ij—f < 1 which allows it to be used as a probability. In the following lemma,

we capture the required properties of the coupling.

LEMMA B.1. Let (X1, Z1,...Z;) be as above. Then,

a. Xy is distributed according to D.
b. Z; is distributed according to .
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c. Furthermore, Z1, . .., Zy are independent.
d. With probability 1 - (1 - o), X; € {Z1,..., Z}.
Proor. For any set A C X, we have
Pr[X; € A] = Pr[S is empty] Pr [X; € A|S is empty|
+ Pr [X1 € AlSis non—empty] - Pr[S is non-empty]
= Pr[S is empty|D(A) + Pr [Yi € AlY; € S] - Pr[S is non-empty]
Pr[Y; € S|Y; € A] - Pr[Y; € A] - Pr[S is non-empty]

= Pr[S is empty]| D(A) +

Pr[Y; € S]

fA o%= dy Pr[S is non-empty]

=Pr[Si t A
r[S is empty | D(A) + PIY, € 5]

fA dp Pr[S is non-empty]

= Pr[S is empty]|D(A) +
./X v dp

= Pr[S is empty|D(A) + Pr[S is non- empty]Z)(A)

= D(A).

This proves that the distribution of X; is 9. The distribution Z; according to y and their indepen-
dence follows from that of Y;.

Finally, note that X; ¢ {Z;,...,Z;} only if S is empty. For each Y;, we saw above that the
Pr[Y; € S] = fX o‘fi—fdp = 0. Thus, the probability that S is empty is bounded by (1 — &)~ as
required. ]

B.2 Adaptive Coupling

Moving to the case of a sequence of distributions, given a smooth sequence of distribution 2, we
would like to find a coupling with a sequence of independent samples from the uniform distribu-
tion. We first note that an adaptively chosen sequence of distribution 2 corresponds to a sequence
of distributions 2; such that X; ~ 2; where 9, depends on the instantiations of X; for j < i. To
make this dependence explicit will denote this as 2; (X, ... X;_1). We would like to construct a
coupling similar to the one in Appendix B.1. Consider the following coupling.

—Forj=1...1,
() 0)
- Draw k samples Y7/, ..., Yk from p.
— Initialized S; = 0.
— For each i, add Y(j) to S; with probability o -
- If S; is non-empty, pick X; randomly from S;. Else, then sample X; independently
from 2 (Xi,....Xj-1).
~ Set ZU> Y.
— Output (Xl,zi”, oz xn 2P, ZD).

dD;(X1....X; 1)
—a

TueoreM B.2. Let (X3, Zil), e Z](cl), .. ,Xt,ZY), .. ,Z](:)) be as above. Then,
a. Xi,...,X; is distributed according 9.
() o . .
b. Z;/ are distributed independently according to .
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c. Furthermore, {Zi(j) | j = t,i € [k]|} are independently distributed as p, conditioned on
X1y, X1,

d. With probability at least 1 — t (1 — o) {X1,.... X} C {Zi(j)}ie[k]’je[t] )
Proor. To see that X;...X; is distributed according to 2, note that from the construc-

tion and Lemma B.1, we have that conditioned on X;...Xj_y, X; is distributed according to
9i(Xy, ..., Xi_1) as required.
Note that Zl.(]) = Yl.O), and their distribution does not depend on X ... X;_;, we have that Zl.(])

are independently distributed according to y even conditioned on Xj ... X;_;.

As in Lemma B.1, we have that the probability that X; ¢ {Zl(])} is bounded by (1 — o)¥. By the
union bound, we have

Pr [3] X ¢ {Zl.(j)}] <t-(1-0)

as required. O

C PROOFS FROM SECTION 3

LEmMA C.1. Let H be the class defined on [1/0'] as the disjoint union of d thresholds as in Section 3.4.
Then, the Littlestone dimension of H is lower bounded by Q(+/d log(1/do)).

Proor. In order to prove this associate to each string {0, 1}dl°g(1/ 24) a function in H as follows.
Partition the string into blocks of size é. We think of each of these blocks as forming a binary
search tree for the subset A; by associating 1 to the right child of a node and 0 to the left child. Thus,
every path on this tree corresponds to a threshold by associating it with the threshold consistent
with the labels along the path. Doing this association separately for each block, we can associate
the set of strings {0, l}dlog(l/ d) with a binary search tree with the leaves labeled by elements in
H. Also, note that this forms a fully shattered tree as required by the definition of the Littlestone
dimension. Thus, the Littlestone dimension of H is d log (1/0'd). |

D PROOFS FROM SECTION 4
LeEmmA D.1 ([18]).

}]% [Q(X0)] < eA? WEEP

sinh (Adj_lw)'

and
2

A
Elo.(x] < =
Proor.

>]<Et lotn] = )I<Et [/12 wl%p

sinh (Adj_lw)' WX, X W]

=) E
W~p

sinh (Ad{lw)‘ WTE [ X[ W

=c’ E
W~p

sinh (Ad:_lw)‘
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Similarly,
_ 2 T T
Elo.x)] =B |¥ B WIX:X[W
< iy
n
as required. O
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