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Abstract

Collaboration is crucial for reaching collective goals. However, its potential for effectiveness
is often undermined by the strategic behavior of individual agents — a fact that is captured by a
high Price of Stability (PoS) in recent literature [Blum et al., 2021a]. Implicit in the traditional
PoS analysis is the assumption that agents have full knowledge of how their tasks relate to one
another. We offer a new perspective on bringing about efficient collaboration across strategic
agents using information design. Inspired by the increasingly important role collaboration plays
in machine learning (such as platforms for collaborative federated learning and data coopera-
tives), we propose a framework in which the platform possesses more information about how
the agents’ tasks relate to each other than the agents themselves. Our results characterize how
and to what degree such platforms can leverage their information advantage and steer strategic
agents towards efficient collaboration.

Concretely, we consider collaboration networks in which each node represents a task type held
by one agent, and each task benefits from contributions made in their inclusive neighborhood
of tasks. This network structure is known to the agents and the platform. On the other
hand, the real location of each agent in the network is known to the platform only — from
the perspective of the agents, their location is determined by a uniformly random permutation.
We employ the framework of private Bayesian persuasion and design two families of persuasive
signaling schemes that the platform can use to guarantee a small total workload when agents
follow the signal. The first family aims to achieve the minmax optimal approximation ratio
compared to the total workload in the optimal collaboration, which is shown to be Θ(

√
n) for

unit-weight graphs, Θ(n
2

3 ) for graphs with edge weights lower bounded by Ω(1), and O(n
3

4 )
for general weighted graphs. The second family ensures per-instance strict improvement in the
total workload compared to scenarios with full information disclosure.
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1 Introduction

Collaboration is the cornerstone of modern achievements across various disciplines. Effective im-
plementation of collaborative systems has substantially increased what can be accomplished by the
limited capabilities of individual agents. For instance, the global collaboration between agencies
and institutions under the Genome-Wide Association Studies (GWAS) has enabled the decoding
of genetic foundations of diseases [Bergen and Petryshen, 2012]; collaborations across hundreds of
mathematicians have led to resolving longstanding open problems [Steingart, 2012]; collaboratively
maintained virus signature databases [AlienVault, 2012] have made technology safer; and collabo-
rative federated learning [McMahan et al., 2017] has led to the training of models with superior
performance on a large range of applications.

However, for every highly successful collaboration, there are many others that never came to fruition.
This is in part due to the inherently strategic nature of participants in a collaboration that can
be a significant barrier to the realization of optimal collaboration. On the one hand, achieving
optimal collaboration has been shown to typically require levels of effort from some participants
that surpass what is individually rational (the amount of work required when working alone) or
what is considered stable (the amount of work deemed reasonable given others’ contributions). On
the other hand, stable collaboration systems where everyone is satisfied with their assigned effort,
if exist, often suffer from significant inefficiency.

The above issues are evident even in a simple double-star network shown in Figure 1 where each
node represents an agent and their task, and each agent’s task benefits from both their own and
neighboring agents’ contributions1. For collaboration to be feasible, each agent’s task requires at
least one unit of contribution. Ideally, in the optimal collaboration that minimizes total workload,
the two central nodes take on the entire workload by each contributing one unit of effort to support
all their leaf neighbors. However, when incentives are factored in, both center nodes have the
incentive to unilaterally reduce their contribution, as they have already received enough support
from each other. In fact, in any stable collaboration in this network, the total workload inevitably
scales linearly with the number of agents, which implies that the benefits gained from collaboration
are merely marginal.

x0

x1

x2

x3

xk

y0

y1

y2

y3

yk

Figure 1: Double Star Graph. Formally, let θv denote the contribution of node v. The social optimum is achieved
when θx0

= θy0 = 1 with all other θv = 0. Feasibility requires that each agent v receives a total contribution
of θv +

∑
u:{u,v}∈E θu ≥ 1. Stability requires no node can unilaterally reduce their contribution without hurting

their own feasibility. Following are typical stable solutions: (1) One-sided leaf contribution, where θv = 1 for
v ∈ {x1, x2, . . . , xk, y0} and θv = 0 for the rest, and (2) Full leaf contribution, with θv = 1 for all leaf nodes
v ∈ {x1, x2, . . . , xk, y1, y2, . . . , yk}, while θx0

= θy0 = 0. Both solutions suffer from a total workload of Ω(k).

This example highlights the inefficiency of collaboration in the presence of strategic agents, which
is quantitatively reflected by a high Price of Stability (PoS) [Anshelevich et al., 2008, Blum et al.,

1A variant of this structure was used by Blum et al. [2021a] for establishing a lower bound on the PoS in several
abstractions of collaborative federated learning.
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2021a], a well-established concept in game theory measuring the ratio between the total workload
in the best stable solution and the socially optimal solution2.

However, the traditional notion of PoS may be overly pessimistic for analyzing collaboration net-
works for two primary reasons. First, it assumes that agents have full knowledge of their positions
and roles within the collaborative system. This overlooks real-life and practical uncertainties that
often exist in collaborations centered on data gathering and usage; for instance, in data coopera-
tives and federated learning, participants are often uncertain of how their data contribute to the
bigger picture, including their specific uses, their broader implications and value, and how they can
help solve tasks for other participants. Collaborations are often hosted on platforms, yet, platforms
lack the leverage to steer the agents toward more efficient collaborative outcomes in the traditional
notion of PoS. As a result, the system is severely affected by the misalignment between the strategic
agents’ incentives and the platform’s goal of improving the overall efficiency.

Inspired by the increasingly important role collaboration plays in machine learning, such as platforms
for collaborative federated learning and data cooperatives, we revisit the problem of efficient and
stable collaboration under a new framework. To address the aforementioned issues, it is crucial to
recognize that while agents typically have some understanding of the types of tasks in the system
and the general structure relating different task types, they often lack precise knowledge about how
their specific tasks relate to others. This precise knowledge is usually exclusive to the platform,
which highlights the platform’s crucial role in communicating this knowledge to the agents. This
level of uncertainty challenges the traditional PoS analysis that assumes complete knowledge of one’s
position and role. Yet, it also opens up new possibilities: by strategically distributing information
about agents’ task types, not only platforms can address these challenges but also they can create
opportunities for efficient collaboration that was previously thought to be impossible.

Reflecting this into the aforementioned double-star structure in Figure 1, we now consider a sce-
nario where agents are assigned to nodes of this network by a uniformly random permutation. That
is, while the network structure is known to the agents, they are unaware of their exact positions
within the graph. Not knowing whether one’s task is represented by a central node or a leaf node
significantly influences agents’ decisions and collaboration outcomes. This is where the platform’s
role of strategically sharing information becomes clear. If the platform withholds all information,
every agent will contribute constant effort because they face maximum and independent uncertainty
about whether their task is sufficiently covered by contributions of others. This high level of un-
certainty will lead agents to contribute an unnecessary amount of effort. On the other extreme,
full information disclosure removes all uncertainty, leading central nodes to reduce their contribu-
tions (as discussed above) and pushing leaf nodes into a less efficient pattern of contribution, thus
significantly increasing the PoS.

The crux of steering strategic agents into efficient collaboration lies in creating the right level of
correlated uncertainty. By controlling the flow of information, the platform can negatively correlate
the beliefs of central and leaf nodes, while maintaining a desirable level of uncertainty. The negative
correlation between agents’ beliefs ensures that agents would not perform unnecessary amount of
work simultaneously. Moreover, the remaining uncertainty (as well as negative correlation) leverages
the central agents’ fear that their tasks might have not received sufficient contributions from others,
thereby encouraging them to increase their effort.

This leads us to the main question of our study: Is it possible for the platform to always ensure

2In the original definition, PoS is the ratio between the cost of the best Nash equilibrium and that of the social
optimum. In our collaborative context, the Nash equilibrium analog is a stable solution conditioned on being feasible.
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efficient, stable collaboration among strategic agents by controlling the information flow about their
types? Specifically, we seek to determine whether a general information structure can be designed
to:

(1) Guarantee a sublinear3 upper bound on the PoS for all collaboration instances;

(2) Consistently improve the PoS compared to a scenario of full information revelation.

To address these questions, our approach builds on the framework of the private Bayesian persuasion
model in information design [Kamenica and Gentzkow, 2011, Arieli and Babichenko, 2019]. We
allow the platform to credibly commit to a signaling scheme, which is a probabilistic mapping from
the realization of joint types to private signals that are sent to each agent in the system. These
private signals distill the information about joint types into direct recommendations on how much
each agent should contribute. Key to this framework is the signaling scheme’s persuasiveness – it
guarantees that agents are incentivized to follow the recommendations. The platform facilitates
efficient collaboration by committing to persuasive signaling schemes with low total workload when
agents follow the recommendations.

1.1 Our Contribution

We initiate the study of improving the efficiency of stable collaboration through the lens of informa-
tion design. We formalize the private Bayesian persuasion problem in a linear collaborative network
and characterize the structural properties of persuasive signaling schemes. For a special class of
binary signaling schemes, we identify how its persuasiveness relates to graph characteristics such as
cuts and induced subgraphs.

Based on these structural insights, we design two families of signaling schemes that achieve the
aforementioned goals (1) and (2), respectively. We will use n to denote the number of agents
(nodes) in the network, and use benchmarks OPT, OPTIR and OPTstable to respectively quantify the
total workload under the optimal feasible collaboration as well as the optimal feasible collaboration
which also satisfies individual rationality (IR) and stability constraints.

Toward our first goal of achieving a nontrivial approximation ratio to OPT in the worst case, we
design a binary signaling scheme that achieves the approximation ratio of O(

√
n) in any unit-weight

graphs. In general weighted graphs, we argue that OPTIR serves as a more appropriate benchmark
than OPT, because OPT might require some agents to contribute more than their individually
rational amount, which rational agents cannot be persuaded to do. However, we show that binary
signaling schemes fail to achieve this goal. To address this, we introduce a third signal to achieve
the optimal approximation ratios of O(n

2

3 ) for graphs with lower bounded edge weights, and O(n
3

4 )
for general weighted graphs. Our results are summarized in Theorems 1.1 and 1.2.

Theorem 1.1. In any unit-weight graph, there exists a binary signaling scheme that is persuasive
and has cost O(

√
n · OPT). Moreover, the O(

√
n) approximation ratio is tight for certain graphs.

Theorem 1.2. In any weighted graph, there exists a ternary signaling scheme that is persuasive
and has cost O(n3/4 · (OPTIR)1/2). In addition, for graphs with all edge weights bounded below by δ,
the cost is improved to O((n · OPTIR)2/3 · δ−1/3), with the O(n2/3) approximation ratio being tight
on a family of graphs with δ = 1/2.

We introduce a different family of signaling schemes that achieve our second goal of strictly improving
OPTstable. This approach uses only two signals in unit-weight graphs and at most n + 1 signals

3Recall that worst-case PoS can be linear in the number of agents, as demonstrated by Figure 1
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in general weighted graphs. We summarize the results in Theorems 1.3 and 1.4. Despite the
substantial increase in the signal space required for weighted graphs, we demonstrate the infeasibility
of achieving this goal through binary or ternary signaling schemes, and leave the identification of
the minimum number of signals needed as an open problem discussed in Section 4.

Theorem 1.3. In any unit-weight graph, whenever OPT < OPTstable, there exists a binary signaling
scheme that is persuasive and has a cost strictly lower than OPTstable.

Theorem 1.4. In any general weighted graph, whenever OPTIR < OPTstable, there exists a signaling
scheme with at most n+ 1 signals that is persuasive and has a cost strictly lower than OPTstable.

1.2 Related Works

Collaborative federated learning. Our work connects to the broader topic of collaborative
and federated learning among strategic agents, where incentives and fairness have been extensively
explored [Donahue and Kleinberg, 2021a,b,c, Blum et al., 2021a]. Most related to us is the work of
Blum et al. [2021a] that introduces a formalism for collaborative learning among network of agents
and highlights the inefficiency in collaboration among strategic agents as captured by a high PoS.
Our work introduces a novel approach to reducing the PoS under a more realistic scenario where
agents face uncertainty regarding the types of their tasks.

Recent studies have adopted a mechanism design approach in federated learning, targeting objectives
such as incentivizing data contribution and preventing free-riding [Huang et al., 2023, Karimireddy et al.,
2022, Chen et al., 2023b, Xu et al., 2021], encouraging participation [Hu et al., 2023, Xu et al., 2023,
Cohen and Shao, 2023, Han et al., 2023], and promoting fairness [Lin et al., 2023, Lyu et al., 2020].
See recent surveys [Zhan et al., 2021, Tu et al., 2022] for a more comprehensive overview. Addi-
tionally, research on federated bandits [Wei et al., 2023] explores strategies to motivate agents to
share their data. However, these papers primarily rely on either monetary incentives or penalization
through reduced model accuracy and usually operate under the condition that agents know how
their data or tasks relate to those of others. In contrast, we assume that the platform possesses
more information about the agents’ types but without a direct control over the distribution of data,
gradients, or models.

In addition, there is research focusing on incentives and mechanism design in data markets where
consumers purchase data from the market [Agarwal et al., 2019, 2020, Jia et al., 2019], but they do
not focus on incentivizing collaboration among participants.

Another line of literature focuses on the communication cost [Blum et al., 2021b] or sample ef-
ficiency of collaborative learning without incentives [Blum et al., 2017, Nguyen and Zakynthinou,
2018, Chen et al., 2018, Haghtalab et al., 2022, Awasthi et al., 2023, Zhang et al., 2023, Peng, 2023].
In contrast, we achieve both efficiency and incentive-awareness through the lens of information de-
sign.

Information design. Bayesian persuasion, a seminal work of Kamenica and Gentzkow [2011]
rooted in the context of incomplete information games [Aumann et al., 1995], is a canonical model
for information design that studies how an informed sender can strategically share information
to influence the actions of a single uninformed receiver. This framework has been expanded
to multi-receiver settings [Bergemann and Morris, 2016] and explored through algorithmic per-
spectives [Dughmi and Xu, 2016, Dughmi, 2017], supporting its applications in diverse problems.
These applications include but are not limited to routing games [Das et al., 2017, Wu and Amin,
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2019], coordination games [Wu and Amin, 2019], voting [Schnakenberg, 2015, Alonso and Câmara,
2016, Bardhi and Guo, 2018, Wang, 2013, Arieli and Babichenko, 2019], and incentivizing explo-
ration [Mansour et al., 2020, 2022, Kremer et al., 2014]. We refer the readers to survey papers [Candogan,
2020, Kamenica, 2019] for a comprehensive overview.

The problem we study involves designing signaling schemes in a specific multi-receiver setting, where
the literature offers two general approaches: characterizing and selecting Bayes Correlated Equilibria
(BCE) based on sender utility [Bergemann and Morris, 2013, 2016, 2019, Taneva, 2019], and belief-
based optimization [Mathevet et al., 2020]. However, applying these approaches directly in our
context is computationally intractable due to the exponentially large state space. Indeed, finding
optimal signal schemes is proved hard even in some simple multi-receiver settings [Bhaskar et al.,
2016, Rubinstein, 2017, Dughmi, 2017], emphasizing the importance of leveraging our collaborative
network’s structural properties.

Our work also contributes to the recent line of work on information design in networks and plat-
forms. In the context of social networks, Candogan and Drakopoulos [2017], Candogan [2019],
Egorov and Sonin [2019] design optimal signaling schemes to maximize overall engagement, while
Arieli and Babichenko [2019] studies the setting when the sender’s utility is more general and non-
additive. Mathevet and Taneva [2022] studies vertical and horizontal information transmission,
identifying scenarios where single-meeting schemes — signals shared with and observed by a spe-
cific subset of agents — are optimal. Our analysis of signaling schemes in the collaboration network
also focuses on optimality but diverges in its definition: we assess optimality not by the ability to
implement all BCE, as previous studies do, but by achieving an optimal asymptotic approxima-
tion ratio compared to the socially optimal solution when agents are non-strategic. To the best
of our knowledge, we are the first work that focuses on the perspective of multi-receiver Bayesian
persuasion to enhance and encourage collaboration between strategic agents.

In the context of online platforms with strategic agents, Papanastasiou et al. [2018] studies infor-
mation provision policy for sequentially arriving consumers who choose among alternative products
or services, Bergemann et al. [2022], Chen et al. [2023a] focuses on maximizing revenues in click-
through auctions when the platform has exclusive knowledge about the true click-through rates,
among many other studies in this field. Our work complements the literature by studying the
efficiency of collaboration platforms.

1.3 Structure of the paper

We formally introduce our model in Section 2. In Section 3, we discuss structural results that
characterize the persuasiveness of signaling schemes, and provide a technical overview of our main
results. In Section 4, we discuss a few open problems and future research directions. In Section 5,
we focus on unit-weight graphs and prove the upper bounds in Theorems 1.1 and 1.3. We prove
the lower bound side of Theorem 1.1 in Section 6. For weighted graphs, we provide the upper
bounds (Theorems 1.2 and 1.4) in Section 7, and the lower bound (second half of Theorem 1.2) in
Section 8.

2 Model

2.1 Collaboration system

Task-based contribution. Let V be the set of task types in the collaboration system, with
|V | = n. Let θv ∈ R≥0 be the effort contributed directly towards solving task v, and let θ = (θv)v∈V

8



be its vector form. We assume that the total contribution that each type receives is a linear
combination of the direct contributions that are put into all tasks in the system, with coefficients
Wu,v that quantifies the extent to which efforts dedicated to a type-u task help complete a type-v
task. We assume that Wu,v = Wv,u ∈ [0, 1] and Wu,u = 1 for all pairs (u, v) ∈ V 2, i.e., W is an
n× n symmetric matrix with coefficients Wu,v and has a diagonal of all ones. For v ∈ V , we use uv
to denote the total contribution entering a type-v task, and let u = (uv)v∈V be its vector form. We
then have

uv(θ) =
∑

v′∈V
Wv,v′θv′ , and u(θ) = Wθ.

Graph representation. The task structure can be equivalently represented as a weighted undi-
rected graph G = (V,E,w), where each vertex is a task type in V . Each edge {v1, v2} ∈ E repre-
sents that efforts towards task v2 positively impact task v1. In other words, E = {{v1, v2} : v1, v2 ∈
V, v1 6= v2,Wv1,v2 > 0}. The weight function w : E → [0, 1] maps each edge {v1, v2} ∈ E to Wv1,v2

and reflects the coefficients between tasks. We also use N(v) to denote the open neighborhood of
vertex v ∈ V .

Strategic agents. Let there be n agents in the collaboration system. Each agent i is associated
with a unique task type ti ∈ V in the network. Task types for all agents form a type profile
t = (t1, . . . , tn), which is a permutation of the types in V , i.e., t ∈ Sym(V ) with Sym(V ) being the
symmetric group on V . Additionally, each agent i can take an action ai ∈ R≥0 that is the effort they
put into solving their own task. The action profile a and task type profile t ∈ Sym(V ) naturally
induce a type-based direct contribution profile θ(a; t) = (θv)v∈V , where ai = θti , or more succinctly
θ(a; t) = Π−1a. In the above equation, Π = (πi,j) is the n × n permutation matrix corresponding
to permutation t, where πi,j = 1 if j = ti and 0 otherwise. We abbreviate θ(a; t) to θ when it is
clear from context.

For each agent i, the quality of a collaborative solution, denoted with qualityi, is a function of
both a and t and equals the total contribution entering the task of type ti. We also use quality =
(quality1, · · · , qualityn) to denote the agent-based utility vector. Formally, we have

qualityi(a; t) = uti(θ(a; t)), and quality(a; t) = Π · u(θ(a; t)).

Strategic agents have three main concerns about the collaboration outcome: feasibility, individual
rationality (IR), and stability. Given a type profile t, an action profile a, and the type-based action
profile θ they induce, we say that a solution is feasible if all agents secure a quality goal of 1, i.e.,
quality(a; t) ≥ 1 or equivalently u(θ) ≥ 1 coordinate-wise — For example, when specializing our
model to the context of collaborative learning, qualityi represents the accuracy of the final model
on agent i’s learning task, and feasibility requires the model to achieve sufficient accuracy across
all agents’ tasks. IR is satisfied if participating in the collaboration system is more beneficial for
each agent than completing the task independently. Note that a solution satisfies IR iff a ≤ 1 (or
equivalently θ ≤ 1) coordinate-wise. This is because the matrix W has an all-one diagonal, implying
that completing a task independently would require a unit of effort. In addition, a feasible solution
is stable if, given the contribution of others, no agent can unilaterally reduce their contribution
without compromising their own feasibility. Formally, this requires

∀i, ai = min {x ≥ 0 | qualityi(x,a−i; t) ≥ 1} ⇐⇒ ∀v, θv = min {x ≥ 0 | uv(x,θ−v) ≥ 1} .
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2.2 Benchmarks and the price of stability

Our benchmarks are the minima of the total workload (i.e., ‖a‖1 = ‖θ‖1) among solutions that
satisfy different combinations of the feasibility, IR, and stability requirements. We introduce three
benchmarks: OPT as the optimal workload in feasible collaborations, and OPTIR, OPTstable as the
optimal workload subject to additional IR and stability constraints. Formally, they are solutions to
the following programs:

OPT = min
θ

‖θ‖1 s.t. u(θ) ≥ 1, θ ≥ 0;

OPTIR = min
θ

‖θ‖1 s.t. u(θ) ≥ 1, θ ≥ 0, θ ≤ 1;

OPTstable = min
θ

‖θ‖1 s.t. u(θ) ≥ 1, θ ≥ 0, θv = min {x ≥ 0 | uv(x,θ−v) ≥ 1} (∀v ∈ V ).

The price of stability (PoS) is formally defined as the gap between the socially optimal solution and
the optimal stable solution, i.e., PoS , OPTstable/OPT.

2.3 Information design and signaling schemes

Prior distribution and information asymmetry. We now introduce the information design
perspective of our model. Let τ be the prior distribution from which the type profile t is drawn. We
model τ as the uniform distribution over the symmetric group, i.e., τ = Unif(Sym(V )). As a result,
for each fixed agent i, the marginal distribution on its type ti is uniform over V . We assume that
the graph structure G and prior distribution τ are common knowledge, but the realization of the
true types t is exclusive knowledge held by the platform. The platform uses the private Bayesian
persuasion protocol to strategically communicate this exclusive knowledge to the agents.

Private Bayesian persuasion. A signaling scheme, denoted with ϕ : Sym(V ) → ∆(SV ), is a
mapping from the task type profile t ∈ Sym(V ) to a correlated distribution over private signals
s = (sv)v∈V ∈ SV , where S ⊂ [0, 1] is a finite space of signals, and each sv is the signal value sent to
the agent with type v.4 The interaction protocol between the platform and the agents is as follows:
initially, both the platform and the agents start with a common prior τ , and the platform credibly
commits to a signaling scheme ϕ, which also becomes common knowledge upon commitment. Then,
the true types t ∼ τ are realized from the prior distribution and observed by the platform. With the
knowledge of t, the platform generates a set of signals s = (sv)v∈V ∼ ϕ(t), and sends sti privately
to agent i for all i ∈ [n], which represents the recommended action to be taken. When an agent i
receives the private signal sti , they form a posterior belief about the type profile t and the signals
sent to other types s−ti , which we denote with µi:

µi(t, s−ti | sti) =
τ(t) · Prϕ(t) [sti , s−ti ]∑

t′,s′−ti

τ(t′) · Prϕ(t′)
[
sti , s

′
−ti

] . (1)

Persuasiveness. We say that a signaling scheme is persuasive if no agent has the incentive to
unilaterally deviate from the signal, assuming that all the other agents follow their signals. Formally,
this requires that for every agent i, the following two conditions hold:

4In the original definition, the signals should be sent to each agent rather than each type, but the two definitions
are equivalent as the platform can reassign the signals to agents according to Π · s.
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• (Feasibility) For every θ ∈ S, conditioning on receiving a private signal sti = θ, taking action
θ is feasible in expectation:

E
(t,s−ti

)∼µi(·|sti=θ)
[uti(θ, s−ti)] ≥ 1.

• (Stability) For every θ ∈ S, conditioning on receiving a private signal of value θ, the agent
cannot contribute strictly less than θ effort while still meeting the aforementioned feasibility
condition:

θ = min

{
x ≥ 0

∣∣∣∣∣ E
(t,s−ti

)∼µi(·|sti=θ)
[uti(x, s−ti)] ≥ 1

}
.

Equivalently, the feasibility condition must be tight whenever θ > 0.

The cost of a persuasive signaling scheme ϕ is the expected total contribution assuming that all
agents follow the signals. Formally,

Cost(ϕ) , E
t∼τ,s∼ϕ(t)

[‖s‖1] .

Identity-independent signaling schemes. Note that in the above formulation, since ϕ is a
function of permutations of V , the signal sent to each task type could depend on the identity of the
agent performing the task. Nevertheless, we claim that it is sufficient to consider signaling schemes
that are identity-independent : one such that the signal distribution is independent of the realized
permutation, i.e., there is a distribution Dϕ ∈ ∆(SV ) such that ϕ(t) = Dϕ holds for all t ∈ Sym(V ).
We prove the following lemma in Appendix A.2.

Lemma 2.1 (Identity-independent signaling schemes). For any persuasive signaling scheme ϕ, there
exists an identity-independent signaling scheme ϕ̃ that is persuasive and has Cost(ϕ̃) = Cost(ϕ).

Since identity-independent signaling schemes are equivalent to joint distributions on SV , this lemma
sets the groundwork for interpreting a signaling scheme as a “random labeling” or “random assign-
ment” that directly assigns values in S to types in V . In the rest of the paper, we will adopt this
terminology and refer to the signaling process in task structure graphs as “labeling” or “assigning”
randomized values to its vertices. Furthermore, Lemma 2.1 shows that, to lower bound the cost of
all persuasive signaling schemes on a particular instance, it suffices to prove such a lower bound
against identity-independent schemes.

3 Technical Overview and Structural Results

This section outlines our approach for proving all of our main results. In Section 3.1, we give a
sufficient and necessary condition for a signaling scheme to be persuasive and show that for binary
signaling schemes this condition reduces to a simple inequality involving cuts and induced sub-
graphs in the graph representation of the collaboration system. This characterization is useful both
for verifying the persuasiveness of the signaling schemes that we design, and for proving lower bounds
against persuasive schemes. With these tools in hand, we give an overview of our upper bounds for
unit-weight graphs (Section 3.2) and general weighted graphs (Section 3.3) starting from concrete
illustrative examples. We end the section by explaining how we use the LP duality framework to
prove our lower bounds.

11



3.1 Structural results

Consider an identity-independent signaling scheme Dϕ ∈ ∆(SV ) on a finite signal space S ⊂ [0, 1].
For each θ ∈ S, we introduce the concept of slack for receiving signal θ as follows:

Definition 3.1 (Slack). For a signaling scheme Dϕ ∈ ∆(SV ) and any θ ∈ S, we define Contribθ

as the expected total contribution entering vertices receiving θ, and Numθ as the expected number of
vertices receiving θ:

Contribθ , E
s∼Dϕ


∑

v∈V
1 [sv = θ]

∑

v′∈N(v)

Wv,v′sv′


 ; Numθ , E

s∼Dϕ

[
∑

v∈V
1 [sv = θ]

]
,

where N(v) stands for the open neighborhood of v. The slack of receiving signal θ, denoted with ∆θ,
is the difference between Contribθ and Numθ scaled by the factor (1− θ):

∆θ , Contribθ − (1− θ)·Numθ.

Lemma 3.2 (Persuasiveness of general signaling schemes). An identity-independent signaling scheme
Dϕ ∈ ∆(SV ) with finite S is persuasive if and only if the following conditions are met:

• For every θ ∈ S where θ > 0, the slack ∆θ must equal zero (∆θ = 0).

• If the signal space includes zero (0 ∈ S), the slack ∆0 must be non-negative (∆0 ≥ 0).

Proof sketch. Recall from the definition of persuasiveness, Dϕ is persuasive if and only if ∀θ ∈ S,
E(t,s−ti

)∼µi(·|sti=θ) [uti(θ, s−ti)] ≥ 1, with this inequality being tight for θ > 0. Therefore, to prove
Lemma 3.2, it suffices to show that

E
(t,s−ti

)∼µi(·|sti=θ)
[uti(θ, s−ti)] = θ +

Contribθ

Numθ
. (2)

This is because θ+ Contribθ

Numθ
≥ 1 ⇔ Contribθ−(1−θ) ·Numθ ≥ 0 when Numθ > 0, which is true because

it is without loss of generality to assume that every θ ∈ S is realized with a non-zero probability.
We establish Equation (2) by straightforward application of Bayes’ rule in Appendix B.1.

A special class of binary signals Consider a binary scheme ϕ with signal space S = {0, α}
for α ∈ (0, 1]. Recall from Lemma 2.1 that Dϕ can be interpreted as a random labeling of V using
either 0 or α. It is useful to view the random labeling s as first selecting a random subset S ⊆ V
from a distribution D over all subsets of V (namely 2V ), and then assigning sv = α · 1 [v ∈ S] for
each v ∈ V . Using this view, we can rewrite Contrib0 and Contribα using the random subset S ∼ D:

Contribα = E
s∼Dϕ


∑

v∈V
1 [sv = α]

∑

v′∈N(v)

Wv,v′sv′


 = α · E

S∼D


∑

v∈S

∑

v′∈S\{v}
Wv,v′


 ;

Contrib0 = E
s∼Dϕ


∑

v∈V
1 [sv = 0]

∑

v′∈N(v)

Wv,v′sv′


 = α · E

S∼D


∑

v 6∈S

∑

v′∈S
Wv,v′


 .

The above two quantities have graph-theoretical interpretation using the cut (S, V \ S) and the
subgraph induced by S. We define their total weight respectively as follows.
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Definition 3.3 (Weights of Cut and Induced Subgraph). The weight of the cut between S and its
complement V \ S, denoted Cut(S, V \ S), and the weight of the subgraph induced by S, denoted
Induced(S), are given by

Cut(S, V \ S) ,
∑

u∈S

∑

v∈(V \S)
Wu,v;

Induced(S) ,
∑

u∈S

∑

v∈S
Wu,v = |S|+ 2

∑

{u,v}⊆S

Wu,v.

Here, Cut(S, V \S) measures the total weight of edges crossing the cut from S to V \S, and Induced(S)
measures the total weight of all edges within S, including self-loops with Wv,v = 1, and counts each
undirected internal edge twice.

Leveraging the characteristics of S defined in Definition 3.3, we provide a graph-theoretical charac-
terization of the persuasiveness of a binary signaling scheme in the next lemma. The detailed proof
mirrors the arguments used in Lemma 3.2 and is deferred to Appendix B.2.

Lemma 3.4 (Persuasiveness of binary signaling schemes). Let D ∈ ∆(2V ) be a distribution over
subsets of V . If D satisfies the following inequality,5

ES∼D [Cut(S, V \ S)]
ES∼D [|V \ S|] ≥ ES∼D [Induced(S)]

ES∼D [|S|] ,

for α = ES∼D[|S|]
ES∼D[Induced(S)] , there exists an identity-independent persuasive signaling scheme Dϕ ∈

∆
(
{0, α}V

)
that assigns sv = α · 1 [v ∈ S] according to a random subset S ∼ D. The cost of this

signaling scheme is Cost(ϕ) = (ES∼D[|S|])2
ES∼D[Induced(S)] ≤ ES∼D [|S|].

Corollary 3.5 (Cost of the no-information scheme). When D in Lemma 3.4 is the degenerate
distribution at V , the resulting signaling scheme is persuasive for α = n

Induced(V ) and incurs a cost

of n2

Induced(V ) . Using m =
∑

{v1,v2}∈E Wv1,v2 to denote the total edge weights in the graph, the cost

simplifies to n2

n+2m = O(n
2

m ). This scheme, by not differentiating between vertices, essentially conveys
no information. Therefore, its cost is equal to the total contribution of agents when no signal is sent.

3.2 Overview of upper bounds in unit-weight graphs

We start by sketching the proof of Theorem 1.1, which gives a binary signaling scheme with an
O(

√
n · OPT) cost. Recall that by Lemma 2.1, a signaling scheme is equivalent to a randomized

labeling of vertices with values between 0 and 1.

A signaling scheme for the double-star graph. Our proof is best illustrated by the double-
star example from Figure 1, on which the signaling scheme simply randomizes between the following
two plans for some small ǫ > 0:

• Plan A: Label the two centers with 1− ǫ. Label the 2k leaves with 0.

• Plan B: Label the two centers with 0. Label the 2k leaves with 1− ǫ.

Plan A is almost the same as the socially optimal solution (without the stability constraint), in which
each center contributes a unit amount. While Plan A has a low cost, we should not always follow it,

5When D is the degenerate distribution at V , the left-hand side is treated as +∞.
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Figure 2: Plan A (left) and Plan B (right) for the double-star graph. The shaded vertices are labeled
with 1− ǫ. The empty vertices are labeled with 0.

for two different reasons. First, it violates the stability condition: conditioning on receiving signal
1− ǫ, the agent knows for sure that one of their neighbors will play 1− ǫ, and thus has an incentive
to deviate and play a much lower value. Second, it violates feasibility: conditioning on receiving 0,
the agent expects a total contribution of 1 − ǫ from their neighbors, so following the signal would
not satisfy their demand. On the other hand, while Plan B appears extremely inefficient at first
glance, it does remedy both issues of Plan A by reducing the slack when signal 1 − ǫ is received,
and increasing the total contributions from neighbors when the signal is 0.

With the notation from Definition 3.1 (i.e., ∆θ denotes the amount of slack corresponding to signal
θ), always following Plan A gives

∆1−ǫ = 2 · (1− ǫ)− ǫ · 2 = +Θ(1), ∆0 = 2k(1 − ǫ)− 1 · 2k = −Θ(kǫ),

whereas following Plan B gives

∆1−ǫ = 0− ǫ · 2k = −Θ(kǫ), ∆0 = 2k(1 − ǫ)− 1 · 2 = +Θ(k).

A simple calculation shows that, for some ǫ, p = Θ(1/
√
k), we can ensure ∆1−ǫ = 0 and ∆0 ≥ 0 by

following Plan A with probability 1− p and following Plan B with probability p. The resulting cost
would then be (1− p) · 2 · (1− ǫ) + p · 2k · (1− ǫ) = O(

√
k) = O(

√
n) as desired.

A binary signal perspective. To generalize this result to all unit-weight graphs, it is helpful to
view the signaling scheme above through the lens of Lemma 3.4, our characterization of persuasive
binary signaling schemes. Recall that the lemma states that a distribution D ∈ ∆(2V ) gives a
persuasive binary signaling scheme if the following inequality holds:

ES∼D [Cut(S, V \ S)]
ES∼D [|V \ S|] ≥ ES∼D [Induced(S)]

ES∼D [|S|] . (3)

Furthermore, the cost of the scheme is at most ES∼D [|S|].
In the double-star example, let DS be the set of the two centers, and IS be the set of the 2k leaves.
(The names are justified since DS is a dominating set of the graph, and IS is an independent set.)
When D is the degenerate distribution at DS, Equation (3) reduces to 2k

2k ≥ 4
2 , which does not hold.

In contrast, when D is the degenerate distribution at IS, Equation (3) gives 2k
2 ≥ 2k

2k , which not
only holds, but holds with a large margin! Again, it follows from an elementary calculation that,
Equation (3) can be satisfied by setting D(DS) = 1− p and D(IS) = p for some p = Θ(1/

√
k), and

the resulting cost is, as expected, bounded by ES∼D [|S|] = (1− p) · |DS|+ p · |IS| = O(
√
n).
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Signaling scheme for general unit-weight graphs. In general, we choose DS as a minimum
dominating set of G, and choose IS as a maximal independent set of the sub-graph induced by
V \ DS. As in the double-star graph, DS gives a good approximation of the socially optimal
cost OPT, but does not guarantee persuasiveness. Concretely, |DS|/OPT is upper bounded by
the integrality gap of the LP relaxation of the dominating set problem, which is O(log n) (e.g.,
[Williamson and Shmoys, 2011, Section 1.7]). To see that DS might not be persuasive, note that
the left-hand side of Equation (3), Cut(DS,V \DS)

|V \DS| , can be as small as 1, while the right-hand side
Induced(DS)

|DS| can be as large as |DS|, when the induced sub-graph of DS is a clique.

Once again, the other set IS comes to the rescue of persuasiveness. By the independence of IS, the
right-hand side of Equation (3) gives Induced(IS)

|IS| = 1. For the left-hand side, we note that

Cut(IS, V \ IS) = Cut(IS,DS) + Cut(IS, V \ (IS ∪ DS)) ≥ |IS|+ |V \ (IS ∪ DS)| = n− |DS|,

V \ (DS ∪ IS)

IS

DS

Figure 3: Cut(IS, V \IS). Every vertex in IS has a neighbor
in DS; every vertex in V \ (DS ∪ IS) has a neighbor in IS.

The first step holds since DS and V \ (IS ∪ DS)
partitions V \ IS (see Figure 3 for a pictorial
illustration). In the second step, Cut(IS,DS) ≥
|IS| since DS is a dominating set of G, which
guarantees that every vertex in IS ⊆ V \DS has
a neighbor in DS. Meanwhile, the maximality of
IS implies that every vertex in V \(DS∪IS) has a
neighbor in IS. This gives Cut(IS, V \(IS∪DS)) ≥
|V \ (IS ∪ DS)|. Therefore, the left-hand side
of Equation (3), Cut(IS,V \IS)

|V \IS| , is at least n−|DS|
n−|IS| ,

which is typically strictly larger than 1. This
shows that Equation (3) holds with a margin
for IS.

By carefully randomizing between DS and IS, we obtain a persuasive binary signaling scheme with
cost O(

√
n) · |DS|, which is an O(

√
n · log n)-approximation of OPT. To shave this extra log n factor,

our actual proof replaces DS with a distribution over sets obtained from an independent rounding
of the optimal solution. This essentially preserves all the desirable properties of DS, while reducing
the cost from |DS| to OPT.

Strict improvement upon OPTstable. We sketch the proof of Theorem 1.3, which states that
there is a binary signaling scheme with a strictly lower cost than OPTstable, whenever OPT <
OPTstable. A key ingredient of the proof is the construction of a binary scheme with cost exactly
OPTstable, which is based on the following structural result regarding stable solutions in unit-weight
graphs.

Lemma 3.6. Let θ ∈ [0, 1]V be an arbitrary stable solution on a unit-weight graph G = (V,E).
There exists a distribution D ∈ ∆(2V ) supported over the independent sets of G, such that for every
v ∈ V , PrS∼D [v ∈ S] = θv.

We prove Lemma 3.6 in Section 5 by rounding the fractional solution θ (which satisfies stability)
into an integral solution (i.e., a subset of V ), via a rounding scheme known as competing exponential
clocks. Given the lemma, it then follows quite easily that such a distribution D satisfies Equation (3),
and gives a binary signaling scheme of cost exactly OPTstable. To see this, note that since every
set in the support of D is an independent set, we have ES∼D [Induced(S)] = ES∼D [|S|], i.e., the
right-hand side of Equation (3) is 1. Then, using the assumption that θ is a stable solution, along
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· · ·

Figure 4: A weighted graph on which all binary schemes fail. There are k triangles in total. Each thick line indicates
the edges between a center and all the three vertices in a triangle. Every edge is of weight 1/2.

with the fact that the marginal of D exactly matches θ, we can prove that ES∼D [Cut(S, V \ S)] ≥
n− ‖θ‖1 = ES∼D [|V \ S|]. This lower bounds the left-hand side of Equation (3) by 1.

The other ingredient of our proof is an argument based on LP duality, which shows that, whenever
OPT < OPTstable, there exists an optimal stable solution θ ∈ [0, 1]V such that the rounding of
θ actually satisfies Equation (3) with a positive margin. This allows us to randomize between
this scheme (with cost OPTstable) and an independent rounding of the optimal solution (with cost
OPT < OPTstable), and achieve a cost strictly below OPTstable.

3.3 Overview of upper bounds in weighted graphs

Recall that for unit-weight graphs, our binary signaling scheme is based on sending a positive signal
to either DS (a minimum dominating set) or IS (a maximal independent set of the sub-graph induced
by V \DS), each with a carefully chosen probability. Sending signal 1 to the vertices in DS gives a
low cost, guarantees feasibility, but might not be stable. The purpose of the set IS is to reduce the
slack introduced by DS.

What goes wrong when we repeat this strategy on weighted graphs? The argument about DS

generalizes easily. On unit-weight graphs, a dominating set is equivalent to an integral solution, in
which the contribution from each vertex is either 0 or 1. Naturally, for weighted graphs, we choose
DS as the set corresponding to the optimal integral solution. Towards satisfying Equation (3), the
feasibility of the integral solution guarantees Cut(DS, V \ DS) ≥ |V \ DS|, i.e., the left-hand side of
Equation (3) is lower bounded by 1. Under mild assumptions on the edge weights, we can still show
that |DS| is not much larger than OPTIR, the optimal fractional solution subject to IR.

Unfortunately, as we demonstrate in the example below, it might be impossible to find an analogue
of IS for our purpose.

A concrete example where binary schemes fail. The graph is shown in Figure 4. Every edge
in the graph has a weight of 1/2. The graph contains two “centers” and k triangles (consisting of
3k “leaves”). Each center is connected to all other vertices in the graph.

On this graph, the optimum subject to IR, OPTIR = 2, is achieved when each center plays 1. As
discussed earlier, we pick DS as the set of the two centers. If we, as in unit-weight graphs, pick IS

as a maximal independent set of the induced sub-graph of V \ DS, IS would contain exactly one
vertex in each triangle. However, it can be verified that no distribution D supported over {DS, IS}
satisfies Equation (3). Therefore, we cannot derive a persuasive binary signaling scheme following
the previous approach.

In fact, this is not even a problem with this specific choice of DS and IS — in Theorem 8.1, we show
that every persuasive binary signaling scheme has a cost of Ω(n) on the instance above!
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Solution: a third signal. While binary schemes are insufficient for weighted graphs, a minimal
fix — adding a third signal — would solve the problem. Concretely, for the graph in Figure 4, there
is a non-trivial signaling scheme via randomizing among the three plans below:

• Plan A: Label the centers with 1− ǫ. Label the leaves with 0.

• Plan B: Label one vertex from each triangle with 1− ǫ. Label all other vertices with 0.

• Plan C: Label the leaves with α. Label the centers with 0.

· · · · · · · · ·

Figure 5: The three plans (left: Plan A; middle: Plan B; right: Plan C) of signaling for the graph from Figure 4.
Shaded circle vertices are labeled with 1 − ǫ. Empty circle vertices are labeled with 0. Shaded square vertices are
labeled with α.

To ensure persuasiveness, we go back to the characterization in Lemma 3.2. The three plans, when
we follow each of them alone, give

• Plan A: ∆1−ǫ = (1− ǫ)− ǫ · 2 = +Θ(1) and ∆0 = 3k(1− ǫ)− 1 · 3k = −Θ(kǫ).

• Plan B: ∆1−ǫ = 0− ǫ · k = −Θ(kǫ) and ∆0 = 2k(1− ǫ)− 1 · (2k + 2) = −Θ(1 + kǫ).

• Plan C: ∆0 = 3kα − 1 · 2 = 3kα − 2 and ∆α = 3kα − (1− α) · 3k = 6kα− 3k.

To satisfy the constraint ∆α = 0, we set α = 1/2. The effect of Plan C is then simplified to

∆0 = +Θ(k) and ∆1/2 = 0.

In hindsight, the introduction of Plan C and the third signal α is natural. Our previous strategy,
which corresponds to randomizing between only Plans A and B, cannot guarantee both ∆1−ǫ = 0
and ∆0 ≥ 0 — enforcing ∆1−ǫ = 0 inevitably results in ∆0 < 0. The purpose of Plan C is then to
bring ∆0 back to 0, without introducing additional slacks.

Formally, it can be verified that, for some ǫ, p, q = Θ(1/
√
k), following the three plans with prob-

ability 1 − p − q, p, and q respectively gives a persuasive scheme. The resulting cost is given
by

(1− p− q) · 2(1− ǫ) + p · k(1− ǫ) + q · 3kα = O(
√
k) = O(

√
n).

Upper bound for general graphs. For general weighted graphs, generalizing the ternary sig-
naling scheme above gives a cost of n|DS|/

√
|IS|, where IS is an independent set of the graph. In

particular, the first two plans still correspond to assigning signal 1 − ǫ to DS and IS, respectively,
while Plan C assigns a different non-zero value to V \ DS, in the hope of making the slack at 0
non-negative. When we can find a large IS, this would give a non-trivial approximation of |DS|,
which in turn approximates OPTIR. What if there are no large independent sets, e.g., when the
graph is dense?

Assuming a lower bound on the non-zero edge weights, this issue can be resolved via a win-win
argument. Suppose that the edge weights are at least δ > 0. Let m be the total edge weight in the
graph. If m is large, by Corollary 3.5, we have a persuasive signaling scheme with cost O(n2/m).
If m is small, by our assumption on the edge weights, there are at most m/δ edges in the graph.
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Intuitively, this sparse graph must have a large independent set. Indeed, we can lower bound |IS|
by Ω(δn2/m). Then, regardless of the value of m, the better between the two schemes gives an
O((n · OPTIR)2/3 · δ−1/3) cost.

Without such a lower bound δ, we still have a non-trivial approximation of OPTIR. The key obser-
vation is that IS does not need to be an independent set — the same proof strategy goes through
as long as, in the sub-graph induced by IS, every vertex has a (weighted) degree of O(ǫ). Going one
step further, we do not need IS to be a deterministic set at all! In our actual proof, we replace IS

with a random set ĨS ⊆ V , obtained from including each vertex in the graph with a fixed, carefully

chosen probability. This gives the O(n3/4 ·
(
OPTIR

)1/2
) bound for the general case.

3.4 Overview of lower bounds

To prove the tightness of our approximation guarantees, we start by reverse-engineering the proofs
of the upper bounds, and identifying graphs on which the analyses are tight. For unit-weight graphs,
the hard instance is exactly the double-star graph in Figure 1. For graphs with edge weights bounded
by Ω(1), we modify the construction in Figure 4 by replacing the Θ(n) triangles with Θ(n2/3) copies
of a clique of size Θ(n1/3).

The more difficult part is, of course, to lower bound the cost of all persuasive signaling schemes on
these graphs. To this end, we revisit the characterization of persuasiveness in Lemma 3.2: Dϕ ∈
∆(SV ) is persuasive if and only if the induced slacks satisfy ∆0 ≥ 0 and ∆θ = 0 for all θ ∈ S\{0}. By
Definition 3.1, each ∆θ can be expressed as an expectation over the distribution Dϕ. Therefore, the
family of persuasive signaling schemes with signal space S is exactly a subset of ∆(SV ) defined by
finitely many linear constraints. Consequently, the minimum-cost persuasive scheme is characterized
by a linear program.

This simple observation leads us to lower bound the cost of persuasive signaling schemes by con-
structing a feasible solution of the dual LP. Concretely, suppose that we could find a function
f : [0, 1] → R such that f(0) ≥ 0 and, for any S and degenerate distribution at s ∈ SV (i.e., a
deterministic labeling of V using values in S), the resulting slacks satisfy

‖s‖1 ≥
∑

θ∈S
f(θ) ·∆θ + C. (4)

Then, for any persuasive signaling scheme Dϕ ∈ ∆(SV ), the linearity of expectation gives

E
s∼Dϕ

[‖s‖1] ≥
∑

θ∈S
f(θ) ·∆θ + C ≥ C.

The last step above holds since when θ = 0, f(0)·∆0 ≥ 0 holds as both f(0) and ∆0 are non-negative.
When θ 6= 0, ∆θ = 0 implies f(θ) ·∆θ = 0.

Our proof of the Ω(n2/3) lower bound (for graphs with edge weights lower bounded by Ω(1)) proceeds
by carefully choosing the function f(θ), and proving Equation (4) for a sufficiently large C via an
involved case analysis. For unit-weight graphs, while the Ω(

√
n) lower bound admits a simpler proof,

in the proof we implicitly consider a dual solution, in which f is a piece-wise constant function f
that takes a negative value with a large magnitude when θ is close to 1.
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4 Discussion and Future Directions

In this section, we highlight a few concrete open problems and discuss a few natural extensions of
our model.

The power of simple signaling schemes. A recurring theme in our positive results is the
surprising effectiveness of simple signaling schemes that only use a few different signal values. The
only exception is Theorem 1.4: we use Ω(n) different signals to achieve a cost below OPTstable. Can
we reduce the number of signals to O(1)? In Appendix C.1, we explain the technical difficulties in
proving such a result, and give instances which suggest that the binary and ternary schemes that
we consider are insufficient in general.

Tight approximation ratio for weighted graphs. In terms of worst-case approximation guar-
antees, the only result that is not shown to be optimal is the O(n3/4) approximation on general
weighted graphs. In Appendix C.2, we give a concrete instance on which the n3/4 ratio is conjec-
tured to be tight, and discuss why the conjecture does not following easily from our current proof
strategy.

Alternative collaboration systems. Our work focuses on collaboration systems in which the
quality of each agent’s task is a linear combination of the agent’s own contribution and the amounts
contributed by the neighbors. In the context of collaborative federated learning, this corresponds
to the random discovery model proposed by Blum et al. [2021a]. A non-linear version of the col-
laboration system is another model of Blum et al. [2021a], termed random coverage, in which each
agent is associated with a (discrete) data distribution, and the accuracy of each agent’s task is linear
in the total probability mass of the elements sampled by the agent themself and their neighbors.
This formulation brings more structure to the relation between each pair of agents’ tasks and might
allow us to circumvent some hard instances in the linear model. For instance, agent i’s data are
maximally effective for another agent j only if they share the same distribution, and this property
would be transitive. In contrast, in our current model, there might exist task types i, j, and k such
that Wi,j = Wj,k = 1 yet Wi,k = 0.

Alternative models of incentives. Another modeling assumption that we made is regarding
the agents’ incentives. Implicit in the definition of persuasiveness (Section 2.3) is that each agent
prioritizes satisfying feasibility, and exactly minimizes their own effort subject to the feasibility con-
straint. A natural relaxation is to allow approximate stability, i.e., a signaling scheme is considered
stable as long as no agent has the incentive to decrease their action by some ǫ > 0. We may also
consider alternative models in which each agent maximizes the expected quality of their task minus
a penalization term that depends on their own workload.

5 Upper Bounds for Unit-Weight Graphs

In this section, we prove the upper bounds in Theorems 1.1 and 1.3. To this end, we first state
a few bounds on the cuts and induced sub-graphs in the unit-weight graph representation of the
collaboration system. We then present a binary signaling scheme that is shown to be persuasive and
achieve an O(

√
n) approximation of OPT. Towards proving Theorem 1.3, we give a binary scheme

with a cost of exactly OPTstable, which, under the additional assumption that OPT < OPTstable,
easily implies a strict improvement upon OPTstable.
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5.1 Weights of cuts and induced sub-graphs

We start by stating several elementary bounds on the cuts and induced edge weights (from Definition 3.3)
for dominating sets and maximal independent sets in a graph. These bounds will be used towards
constructing binary signaling schemes via Lemma 3.4. We defer the proofs to Appendix D.

The first bound is regarding maximal independent sets in an induced sub-graph obtained from
removing a dominating set.

Lemma 5.1. Let DS denote a dominating set of a unit-weight graph G = (V,E), and IS be an
arbitrary maximal independent set of the sub-graph induced by V \ DS. Then, Cut(IS, V \ IS) ≥
|V | − |DS|.

The second lemma considers a random set D̃S obtained from the independent rounding of a feasible
solution that satisfies the IR requirement as defined in Section 2.2. This lemma holds for weighted
graphs as well.

Lemma 5.2. Let G = (V,E,w) be a weighted graph, and W be the corresponding matrix. Let
θ ∈ [0, 1]V denote a feasible solution subject to IR, i.e., Wθ ≥ 1 and θ ≤ 1 hold coordinate-
wise. Let D ∈ ∆(2V ) denote the distribution of a random subset of V that includes each v ∈ V
independently with probability θv. Then, the following bounds hold:

• ES∼D [|S|] = ‖θ‖1.
• ES∼D [Induced(S)] ≤ ‖θ‖21 + ‖θ‖1.
• ES∼D [Cut(S, V \ S)] ≥ |V | − 2‖θ‖1.

5.2 General unit-weight graphs

In this section, we prove the O(
√
n ·OPT) upper bound in Theorem 1.1 by designing a distribution

D ∈ ∆(2V ) that satisfies Lemma 3.4. Our proof closely relies on the properties developed in
Section 5.1. Before the proof, we first present a lemma on the integrality gap of OPT. Note
that the program for computing OPT is essentially the relaxed program determining the minimum
dominating set of a graph. Therefore, our lemma follows from the integrality gap upper bound for
the dominating set problem, e.g., see [Williamson and Shmoys, 2011, Section 1.7].

Lemma 5.3 (Integrality gap). There exists a dominating set DS ⊆ V such that |DS| = O(log n ·
OPT). Moreover, the set DS can be computed efficiently through randomized rounding of OPT.

We are now ready to prove the upper bound theorem.

Theorem 5.4 (Upper bound part of Theorem 1.1). In any unit-weight graph, there is a persuasive
signaling scheme with a cost of O (

√
n · OPT).

Proof of Theorem 5.4. We start with constructing a family of distributions Dp ∈ ∆(2V ) parametrized
by p ∈ [0, 1], and then show that there exists a choice of p such that the binary signaling scheme
induced by Dp is persuasive and has a small cost.

Let θ⋆ ∈ [0, 1]V be a socially optimal solution that achieves ‖θ⋆‖1 = OPT. We define DA ∈ ∆(2V )

to be the distribution of a random subset D̃S ⊆ V that includes each v ∈ V independently with
probability θ⋆v — we call D̃S ∼ DA an independent rounding of θ⋆. In addition, let DS be a
dominating set satisfying Lemma 5.3. Then, DB ∈ ∆(2V ) is defined as the degenerate distribution
on IS where IS is a maximal independent set of V \DS.
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We set the probability mass function of the distribution Dp to be

∀S ⊆ V, Dp(S) = (1− p) · DA(S) + p · DB(S).

Recall from Lemma 3.4 that Dp induces a persuasive binary signaling scheme if it satisfies

ES∼Dp [Cut(S, V \ S)]
ES∼Dp [|V \ S|] ≥ ES∼Dp [Induced(S)]

ES∼Dp [|S|]
. (5)

We analyze each term separately to obtain a sufficient condition for eq. (5) to hold. For brevity, we
denote β , |IS|.

• Applying the first property in Lemma 5.2 to DA gives

E
S∼Dp

[|S|] = (1− p) · E
S∼DA

[|S|] + p · E
S∼DB

[|S|] = (1− p) · OPT+ p · β,

and thus, ES∼Dp [|V \ S|] = n− ES∼Dp [|S|] = (1− p) · (n− OPT) + p · (n− β).

• For the expected size of the cut, we can lower bound it as below.

E
S∼Dp

[Cut(S, V \ S)] =(1− p) · E
S∼DA

[Cut(S, V \ S)] + p · E
S∼DB

[Cut(S, V \ S)]

≥(1− p) · (n− 2OPT) + p · (n− |DS|)
≥(1− p) · (n− 2OPT) + p · (n− ι ·OPT) .

In the above equations, the second step uses the third property of Lemma 5.2 and Lemma 5.1.
In the last step, we denote |DS| by ι ·OPT with ι = O(log n) according to Lemma 5.3.

• For the expected size of induced subgraphs, we upper bound it using the second property of
Lemma 5.2 and the independence of IS,

E
S∼Dp

[Induced(S)] =(1− p) · E
S∼DA

[Induced(S)] + p · E
S∼DB

[Induced(S)]

≤(1− p)
(
OPT2 + OPT

)
+ pβ.

Plugging the above bounds into eq. (5), we obtain a sufficient condition for persuasiveness:

(1− p) (n− 2OPT) + p (n− ι ·OPT)
(1− p)(n− OPT) + p · (n− β)

≥ (1− p)(OPT2 + OPT) + pβ

(1− p)OPT+ pβ
. (6)

For the remaining proof, we assume OPT ≤ √
n/C and β ≥ C

√
n · OPT for a constant C =

10. The first assumption is WLOG because if OPT >
√
n/C, Corollary 3.5 guarantees a cost of

O( n2

n+2m ) = O(n) by not sending any signals, which is already an O(
√
n) approximation to OPT.

The second assumption is WLOG because if β = |IS| < C
√
n · OPT, we can expand IS into a

maximal independent set of V by including some additional vertices from DS. The size of the
resulting maximal independent set is at most |IS| + |DS| = β + ι · OPT = O(

√
n + log n) · OPT.

Therefore, sending signal 1 to the resulting maximal independent set gives a persuasive binary
signaling scheme with cost O(

√
n ·OPT).

Under these two additional assumptions, there always exists p ∈ [0, 1] that satisfies eq. (6) — for
example, taking p = 1 satisfies eq. (6) by making the left-hand side > 1 and the right-hand side
= 1. However, since

Cost(Dp) ≤ E
S∼Dp

[|S|] = (1− p) · OPT+ p · β,
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the larger p is, the more costly the signaling scheme would be. Therefore, we seek the smallest p
that satisfies eq. (6). To do so, we continue simplifying eq. (6) by subtracting 1 from both sides:

(6) ⇐⇒(1− p) (−OPT) + p (β − ι ·OPT)
(1− p)(n− OPT) + p · (n− β)

≥ (1− p)OPT2

(1− p)OPT+ pβ
.

Dividing (1− p) on both denominators and enumerators and setting κ = p/(1− p) gives us:

(6) ⇐⇒−OPT+ κ (β − ι · OPT)
(n− OPT) + κ(n − β)

≥ OPT2

OPT+ κβ

⇐⇒ (−OPT+ κ(β − ι ·OPT)) (OPT+ κβ) ≥ ((n− OPT) + κ(n − β))OPT2

⇐⇒κ2β(β − ι · OPT) ≥ OPT2(n − OPT+ κ(n − β)) + OPT2 − κ((β − ι · OPT)OPT− βOPT)

⇐⇒κ2β(β − ι · OPT) ≥ OPT2(n − OPT+ κ(n − β + ι) + 1).

In the last equation above, we have β − ι · OPT ≥ β
2 for all sufficiently large n, by the assumption

that β ≥ C
√
n · OPT and the fact that ι = O(log n). In addition, we upper bound the right-hand

side by dropping the negative terms. This gives the following sufficient condition:

(6) ⇐=
κ2β2

2
≥ (2 + 2κ)nOPT2,

which can be satisfied by choosing κ = Θ(
√
nOPT/β). In particular, under this choice, we have

κ = O(1) due to the assumption that β ≥ C
√
nOPT, so both the left- and right-hand sides are of

the order Θ(nOPT2). This gives us the choice of p via κ = p
1−p .

Finally, by Lemma 3.4, the cost of the resulting signaling scheme satisfies

Cost(Dp) ≤ E
S∼Dp

[|S|] = (1− p) ·OPT+ p · β ≤ OPT+ κβ ≤ O(
√
n ·OPT).

5.3 Matching the cost of full revelation

Towards proving Theorem 1.3, in this section, we give a binary signaling scheme with a cost of
exactly OPTstable.

Theorem 5.5. For any unit-weight graph G, there is a binary signaling scheme with cost OPTstable.

Note that Theorem 5.5 would be trivial if we allow signaling schemes with a large signal space. This
is because, for any optimal stable solution θ⋆ ∈ [0, 1]V , labeling each vertex v ∈ V with θ⋆v gives
a persuasive signaling scheme with cost OPTstable. Indeed, the interesting aspect of Theorem 5.5
is that, while θ⋆ might contain many different entries, it is possible to achieve the same cost, via
signaling, using only two different values.

Recall that Lemma 3.6 states that any stable solution in a unit-weight graph can be written as the
marginal of a distribution over independent sets. We first show that the lemma immediately implies
Theorem 5.5.

Proof of Theorem 5.5. Let θ⋆ ∈ [0, 1]V be an optimal stable solution for graph G = (V,E) with
‖θ⋆‖1 = OPTstable. We consider the binary signaling scheme defined by distribution D ∈ ∆(2V )
obtained from θ⋆ via Lemma 3.6.
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By Lemma 3.4, to verify the persuasiveness of the binary signaling scheme, it suffices to show that

ES∼D [Cut(S, V \ S)]
ES∼D [|V \ S|] ≥ ES∼D [Induced(S)]

ES∼D [|S|] .

Since every S in the support of D is an independent set, we have ES∼D [Induced(S)] = ES∼D [|S|].
It remains to show that ES∼D [Cut(S, V \ S)] ≥ ES∼D [|V \ S|].
Again, since S is always an independent set, the cut size |Cut(S, V \ S)| is equal to

∑
v∈S deg(v).

Then, we have

E
S∼D

[|Cut(S, V \ S)|] =
∑

v∈V
Pr
S∼D

[v ∈ S] · deg(v) (S is an independent set)

=
∑

v∈V
θ⋆v · deg(v) (property of D from Lemma 3.6)

=
∑

v∈V

∑

u∈N(v)

θ⋆v =
∑

v∈V

∑

u∈N(v)

θ⋆u

≥
∑

v∈V
(1− θ⋆v) (θ⋆ is a feasible solution)

= n− ‖θ⋆‖1 = E
S∼D

[|V \ S|] .

The fourth step holds since both the third line and the fourth line are equal to
∑

{u,v}∈E(θ
⋆
u + θ⋆v).

This proves persuasiveness.

By Lemma 3.4, the cost of this scheme is exactly

(ES∼D [|S|])2
ES∼D [Induced(S)]

= E
S∼D

[|S|] =
∑

v∈V
Pr
S∼D

[v ∈ S] =
∑

v∈V
θ⋆v = ‖θ⋆‖1 = OPTstable.

The third step above applies the property of D guaranteed by Lemma 3.6.

Now we prove Lemma 3.6 via rounding the stable solution through a correlated rounding method.
The method is referred to as the competing exponential clocks in the context of approximation
algorithms (e.g., [Buchbinder et al., 2013]).

Proof of Lemma 3.6. Let V ′ := {v ∈ V : θv > 0} be the support of the stable solution θ ∈ [0, 1]V .
We define D ∈ ∆(2V ) as the distribution of the set S ⊆ V generated by the following process:

• For each v ∈ V ′, independently draw Xv ∼ Exponential(θv).

• Choose the set S as
{
v ∈ V ′ : Xv < minu∈N(v)∩V ′ Xv

}
.

It is clear that S must be an independent set: if S contains two neighbouring vertices u and v, we
must have both Xu < Xv and Xv < Xu, a contradiction.

For every v ∈ V \ V ′, we clearly have PrS∼D [v ∈ S] = 0 = θv. To see that PrS [v ∈ S] = θv holds
for every v ∈ V ′, we use the condition θv +

∑
u∈N(v)∩V ′ θu = 1, which follows from stability. Then,

the property of the exponential distribution shows that minu∈N(v)∩V ′ Xu follows the exponential
distribution Exponential(1− θv) and is independent of Xu. Therefore, we have

Pr [v ∈ S] = Pr

[
Xv < min

u∈N(v)∩V ′
Xu

]
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= E
Xv∼Exponential(θv)

[exp(−(1− θv)Xv)]

=

∫ +∞

0
θv exp(−θvx) · exp(−(1− θv)x) dx = θv,

as desired.

5.4 Strict improvement upon full revelation

In this section, we build on Theorem 5.5 and characterize conditions under which signaling results
in a strict improvement compared to OPTstable and the amount of improvement achieved.

Theorem 5.6 (Formal version of Theorem 1.3). On any unit-weight graph that satisfies OPTstable >
OPT, there exists a binary signaling scheme Dϕ with Cost(ϕ) = OPTstable − ǫ(OPTstable − OPT),
where

ǫ = max

{
min

{
1

2
,

PoS − 1

PoS + 2n
PoS+1

}
,

PoS − 1

PoS + (n− OPT)

}
> 0, (7)

and PoS = OPTstable/OPT is the price of stability.

To prove Theorem 5.6, we first present two technical lemmas that connect the “wastefulness” of the
optimal stable solution to the gap OPTstable−OPT. Formally, we call a feasible solution θ ∈ [0, 1]V

wasteful if it satisfies Wθ 6= 1. Recall that feasibility requires Wθ ≥ 1 coordinate-wise. Therefore,
a wasteful solution is one in which at least one of the tasks receives strictly more contribution than
what is required. Our first lemma states that, even on general weighted graphs, every non-wasteful
feasible solution must be optimal. In particular, assuming OPTstable > OPT, the lemma below
implies that the optimal stable solution must be wasteful, and this wastefulness allows us to design
a signaling scheme with a cost strictly below OPTstable.

Lemma 5.7. In a general weighted graph, if there exists a non-wasteful feasible solution θ ∈ [0, 1]V ,
it holds that OPT = ‖θ‖1.

Proof. Recall from the definition that OPT can be computed by the following linear program:

min
θ∈Rn

1
⊤θ (primal LP)

s.t. Wθ ≥ 1;

θ ≥ 0.

Since W = W⊤, the dual linear program of (primal LP) is given by:

max
φ∈Rn

1
⊤φ (dual LP)

s.t. Wφ ≤ 1;

φ ≥ 0.

Since θ is feasible and non-wasteful, we have Wθ = 1, which implies that θ is feasible solution for
both (primal LP) and (dual LP), and achieves the same objective value of 1⊤θ = ‖θ‖1. Therefore,
θ must be an optimal solution for (primal LP), and we have OPT = ‖θ‖1.
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The second lemma quantitatively captures the gap OPTstable − OPT in terms of the “wastefulness”
of the optimal stable solution θ⋆, i.e., the gap ‖Wθ⋆‖1−n, in the case of unit-weight graphs. Again,
we state a more general result, and will apply it specifically to the optimal stable solution.

Lemma 5.8. Let θ ∈ [0, 1]V be a feasible solution on a unit-weight graph. Then,

‖Wθ‖1 ≥ n+ ‖θ‖1 − OPT.

We prove Lemma 5.8 in Appendix D.2. The high-level idea of the proof is to convert θ, which is
a feasible solution of (primal LP), into a feasible solution φ⋆ of (dual LP) by lowering the contri-
butions that enter wasteful coordinates. Through our careful construction, we ensure the resulting
decrease in the objective value (i.e., 1⊤θ − 1

⊤φ⋆) is upper bounded by the wastefulness of θ (i.e.,
‖Wθ‖1 − n). Finally, we establish the lemma by invoking weak duality to show that 1

⊤φ⋆ ≤ OPT.

Now we prove Theorem 5.6 by constructing a signaling scheme that randomizes between an inde-
pendent rounding of OPT and the signaling scheme in Theorem 5.5.

Proof of Theorem 5.6. Let θ⋆ ∈ [0, 1]V be an optimal solution with cost OPT, and θ ∈ [0, 1]V be an
optimal stable solution with cost OPTstable. Then, let DA be the distribution defined by rounding
θ⋆ independently, and DB be the distribution obtained from rounding θ according to Lemma 3.6.
We define a parametrized family of distributions Dǫ ∈ ∆(2V ) for ǫ ∈ [0, 1] as

∀S ⊆ V, Dǫ(S) = ǫ · DA(S) + (1− ǫ) · DB(S).

Recall from Lemma 3.4 that the distribution Dǫ induces a persuasive binary signaling scheme if the
following inequality holds:

ES∼Dǫ [Cut(S, V \ S)]
ES∼Dǫ [|V \ S|] ≥ ES∼Dǫ [Induced(S)]

ES∼Dǫ [|S|]
. (8)

We analyze each term separately to obtain a sufficient condition for eq. (8) to hold.

• For the expected size of |S| and |V \ S|, we combine Lemma 3.6 with the first property of
Lemma 5.2 to get

E
S∼Dǫ

[|S|] = ǫ E
S∼DA

[|S|] + (1− ǫ) E
S∼DB

[|S|] = ǫOPT+ (1− ǫ)OPTstable;

E
S∼Dǫ

[|V \ S|] = n− E
S∼Dǫ

[|S|] = n− OPTstable + ǫ(OPTstable − OPT).

• For the expected size of the cut, we have

E
S∼DB

[Cut(S, V \ S)] = E
S∼DB

[
∑

v∈S
deg(v)

]
(S ∼ DB is an independent set)

=
∑

v∈V
Pr

S∼DB

[v ∈ S] · deg(v) (linearity of expectation)

=
∑

v∈V
θv · deg(v) (property of DB from Lemma 3.6)

= θ⊤(W1− 1) (W is the adjacency matrix of G)

= ‖Wθ‖1 − ‖θ‖1 (θ⊤W1 = (Wθ)⊤1 = ‖Wθ‖1)
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≥ (n+ OPTstable − OPT)− OPTstable (Lemmas 3.6 and 5.8)

= n− OPT.

Combining the above inequalities with the third property of Lemma 5.2 gives us

E
S∼Dǫ

[Cut(S, V \ S)] = ǫ E
S∼DA

[Cut(S, V \ S)] + (1− ǫ) E
S∼DB

[Cut(S, V \ S)]

≥ ǫ (n− 2OPT) + (1− ǫ)(n− OPT)

= n− (1 + ǫ)OPT.

• For the expected size of induced subgraphs, we upper bound it using the second property of
Lemma 5.2 and the independence of subsets drawn from DB (Lemma 3.6).

E
S∼Dǫ

[Induced(S)] = ǫ E
S∼DA

[Induced(S)] + (1− ǫ) E
S∼DB

[Induced(S)]

≤ ǫ
(
OPT2 + OPT

)
+ (1− ǫ)OPTstable.

Plugging the above bounds into Equation (8), we obtain its sufficient condition:

n− (1 + ǫ)OPT

n− OPTstable + ǫ(OPTstable − OPT)
≥ ǫ

(
OPT2 +OPT

)
+ (1− ǫ)OPTstable

ǫOPT+ (1− ǫ)OPTstable
(9)

We first show the existence of ǫ ∈ (0, 1] to make eq. (9) hold. Note that when ǫ = 0, it reduces to

n− OPT

n− OPTstable
≥ OPTstable

OPTstable
= 1,

which holds with a strict inequality because OPTstable > OPT. Since both sides are continuous in ǫ,
there should exist a small neighborhood of ǫ around 0 that all satisfies eq. (9).

Moreover, according to Lemma 3.4, the cost of the signaling scheme induced by Dǫ is

Cost(Dǫ) ≤ E
S∼Dǫ

[|S|] = ǫOPT+ (1− ǫ)OPTstable = OPTstable − ǫ(OPTstable − OPT).

Therefore, to prove Theorem 5.6, it remains to show that the choice of ǫ in eq. (7) satisfies eq. (9).
We start with simplifying the condition by subtracting 1 on both sides:

(9) ⇐⇒ OPTstable − OPT− ǫOPTstable

n−OPTstable + ǫ(OPTstable − OPT)
≥ ǫOPT2

ǫOPT+ (1− ǫ)OPTstable
.

On the one hand, since lower bounding the left-hand side and upper bounding the right-hand side
results in a sufficient condition, we use ǫOPT+ (1− ǫ)OPTstable ≥ OPT and obtain

(9) ⇐=
OPTstable − OPT− ǫOPTstable

n− OPT
≥ ǫOPT2

OPT

⇐⇒ OPTstable − OPT

n− OPT
≥ ǫ

(
OPT+

OPTstable

n−OPT

)

⇐⇒ ǫ ≤ OPTstable − OPT

OPT(n− OPT) + OPTstable
=

PoS − 1

PoS + (n− OPT)
,
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where PoS = OPTstable/OPT is the price of stability. This justifies the second choice of ǫ in
Equation (7).

On the other hand, under the condition of ǫ ≤ 1
2 , we have ǫOPT+ (1− ǫ)OPTstable ≥ OPT+OPTstable

2 .
We use this to provide an alternative sufficient condition to eq. (9).

(9) ⇐=
OPTstable − OPT− ǫOPTstable

n
≥ ǫOPT2

OPT+OPTstable

2

⇐⇒ OPTstable − OPT ≥ ǫ

(
2nOPT2

OPT+ OPTstable
+ OPTstable

)

⇐⇒ ǫ ≤ OPTstable − OPT

2nOPT2

OPT+OPTstable + OPTstable
=

PoS − 1

PoS + 2n
PoS+1

,

which justifies the first option of ǫ when ǫ ≤ 1
2 .

6 Lower Bounds for Unit-Weight Graphs

In this section, we prove the lower bound part of Theorem 1.1 by showing that on the double-star
graph in Figure 1, every persuasive signaling scheme must have an Ω(

√
n) cost, while the optimal

total workload is O(1). Therefore, the O(
√
n) approximation guarantee in Theorem 1.1 cannot be

significantly improved, even when non-binary schemes are allowed.

Then, we prove a more general lower bound, which states that for any n and k ∈ [2, n], there is
an instance on which OPT = Θ(k), OPTstable = Θ(n), and no persuasive signaling scheme can
achieve a cost that is much better than min{k√n, n}. Recall that by Theorems 1.1 and 1.3, on this
instance there is a persuasive binary signaling scheme with cost O(min{OPT · √n,OPTstable}) =
O(min{k√n, n}). Therefore, for a wide range of OPT, between the two signaling schemes that we
develop for unit-weight graphs, the better one is essentially optimal.

6.1 Lower bound for the double-star graph

Theorem 6.1 (Lower bound part of Theorem 1.1). On the double-star graph with n = 2k + 2
vertices, every persuasive signaling scheme has a cost of Ω(

√
n).

Proof. For clarity, we rename the vertices in the graph with V = {(c, 1), (c, 2)} ∪ {(i, j) : i ∈ [2], j ∈
[k]}, where (c, i) is the center of the i-th star, and (i, j) is the j-th leaf in the i-th star.

Fix a persuasive signaling scheme for the graph. By Lemma 2.1, it is without loss of generality to
assume that the scheme is identity-independent and is specified by Dϕ ∈ ∆(SV ) on signal space
S. In other words, the signaling scheme samples (sc,1, sc,2, s1,1, . . . , s1,k, s2,1, . . . , s2,k) ∈ SV from
Dϕ, labels the two centers with sc,1 and sc,2, and labels the j-th leaf in the i-th star with si,j .
For brevity, we use x and y as shorthands for sc,1 and sc,2, and let random variable sum denote
x+ y +

∑2
i=1

∑k
j=1 si,j . Then, the cost of the scheme is given by EDϕ [sum].

Let C := 3. We will show that, under the assumption that EDϕ [sum] ≤
√
k/C, the persuasiveness

of Dϕ implies EDϕ [sum] = Ω(
√
k). Therefore, EDϕ [sum] = Ω(

√
k) = Ω(

√
n) always holds.
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By Lemma 3.2, the persuasiveness of Dϕ implies that for every θ ∈ S,

0 ≤ ∆θ = E
Dϕ


∑

v∈V
1 [sv = θ]


 ∑

u∈N(v)

su − (1− sv)




 .

Summing over all θ ∈ S gives

0 ≤
∑

θ∈S
∆θ = E

Dϕ


∑

v∈V


sv +

∑

u∈N(v)

su − 1




 = E

Dϕ

[
∑

u∈V
su (1 + |N(u)|)

]
− n.

Since |N(u)| = 1 when u is a leaf and |N(u)| = k + 1 when u is a center, we have

n ≤ E
Dϕ

[
∑

u∈V
su (1 + |N(u)|)

]
= 2 E

Dϕ

[
∑

v∈V
sv

]
+ k · E

Dϕ

[sc,1 + sc,2] = 2 E
Dϕ

[sum] + k · E
Dϕ

[x+ y] ,

which further implies EDϕ [x+ y] ≥ n−2EDϕ [sum]

k . By the assumption that EDϕ [sum] ≤
√
k/C, we

have

E
Dϕ

[x+ y] ≥ 2k + 2− 2
√
k/C

k
≥ 2− 2

C
√
k
.

Let ǫ := 1/
√
k. Since 2− (x+ y) is always non-negative, by Markov’s inequality, we have

Pr
Dϕ

[x+ y < 2− ǫ] = Pr
Dϕ

[2− (x+ y) > ǫ] ≤ EDϕ [2− (x+ y)]

ǫ

≤
2−

(
2− 2

C
√
k

)

1/
√
k

=
2

C
. (EDϕ [x+ y] ≥ 2− 2/(C

√
k))

Equivalently, we have PrDϕ [x+ y ≥ 2− ǫ] ≥ 1− 2/C.

As long as k ≥ 2, we have 1− ǫ = 1− 1/
√
k > 0, so Lemma 3.2 implies

∑
θ∈S ∆θ · 1 [θ ≥ 1− ǫ] = 0,

which is equivalent to

E
Dϕ


∑

v∈V
1 [sv ≥ 1− ǫ]


sv +

∑

u∈N(v)

su − 1




 = 0.

The left-hand side above can be written as the sum of the following four terms:

• T1 := EDϕ

[
1 [x+ y ≥ 2− ǫ] ·

(
2(x+ y − 1) +

∑2
i=1

∑k
j=1 si,j

)]
, the contribution from the

two centers when x+ y ≥ 2− ǫ. Note that this condition implies both x ≥ 1− ǫ and y ≥ 1− ǫ.

• T2 := EDϕ

[
1 [x+ y < 2− ǫ ∧ x ≥ 1− ǫ]

(
x+ y − 1 +

∑k
i=1 s1,i

)]
, the contribution from the

center of the first star, when x+ y < 2− ǫ.

• T3 := EDϕ

[
1 [x+ y < 2− ǫ ∧ y ≥ 1− ǫ]

(
x+ y − 1 +

∑k
i=1 s2,i

)]
, the contribution from the

center of the second star, when x+ y < 2− ǫ.

• T4 := EDϕ

[∑
v∈V \{(c,1),(c,2)} 1 [sv ≥ 1− ǫ]

(
sv +

∑
u∈N(v) su − 1

)]
, the contribution from the

leaves.
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Recall that we showed PrDϕ [x+ y ≥ 2− ǫ] ≥ 1− 2/C earlier, so the first term T1 satisfies

T1 ≥ E
Dϕ

[1 [x+ y ≥ 2− ǫ] · 2(x+ y − 1)] ≥ E
Dϕ

[1 [x+ y ≥ 2− ǫ] · 2(2 − ǫ− 1)]

= Pr
Dϕ

[x+ y ≥ 2− ǫ] · (2− 2ǫ) ≥ (1− 2/C) · 2 · (1− ǫ) ≥ 2 · (1− 2/C − ǫ).

For the second term, note that when x ≥ 1− ǫ holds, x+ y − 1 +
∑k

i=1 s1,i ≥ x− 1 ≥ −ǫ. Thus,

T2 ≥ −ǫ · Pr
Dϕ

[x+ y < 2− ǫ ∧ x ≥ 1− ǫ] ≥ −ǫ · Pr
Dϕ

[x+ y < 2− ǫ] ≥ −2ǫ/C.

By symmetry, we also have T3 ≥ −2ǫ/C. For the same reason, the last term can be lower bounded

by −ǫ · EDϕ

[∑
v∈V \{(c,1),(c,2)} 1 [sv ≥ 1− ǫ]

]
. Note that

E
Dϕ

[sum] ≥
∑

v∈V \{(c,1),(c,2)}
E
Dϕ

[sv] ≥
∑

v∈V \{(c,1),(c,2)}
(1− ǫ) · Pr

Dϕ

[sv ≥ 1− ǫ]

= (1− ǫ) · E
Dϕ


 ∑

v∈V \{(c,1),(c,2)}
1 [sv ≥ 1− ǫ]


 ,

so we have T4 ≥ − ǫ
1−ǫ EDϕ [sum].

Recall that T1 + T2 + T3 + T4 = 0. Therefore, combining the four lower bounds gives

0 ≥ 2 · (1− 2/C − ǫ)− 2ǫ/C − 2ǫ/C − ǫ

1− ǫ
E
Dϕ

[sum] ,

which is equivalent to

E
Dϕ

[sum] ≥ 1− ǫ

ǫ
· [2 · (1− 2/C − ǫ)− 4ǫ/C].

By our choice of C = 3 and ǫ = 1/
√
k, the right-hand side above is Ω(

√
k) = Ω(

√
n) for all

sufficiently large k. This establishes the Ω(
√
n) lower bound on the cost.

6.2 A more general lower bound via k-stars

The previous lower bound gives an instance where OPT = O(1) and the optimal persuasive signaling
scheme has an Ω(

√
n) cost. Now, we present a more general lower bound in Theorem 6.2 that holds

for a wider range of OPT. The proof of Theorem 6.2 is deferred to Appendix E.

Theorem 6.2. For any n ≥ k ≥ 2, there is a unit-weight graph with ≤ n vertices, on which the
following hold simultaneously:

• OPT = Θ(k).

• OPTstable = Ω(n).

• Every persuasive signaling scheme has a cost of Ω(min{k√n, n}).
When n is sufficiently large, the Θ(·) and Ω(·) notations above hide universal constants that do not
depend on n and k.
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When k = O(
√
n), we consider a generalized version of the double-star construction, in which there

are k disjoint stars, each with Θ(n/k) leaves. The centers of the k stars form a clique. This gives an
instance on which OPT = k and OPTstable = Ω(n). By a similar analysis to that of the double-star
graph, we show that every persuasive signaling scheme has an Ω(k

√
n) cost on this k-star graph.

When k ≫ √
n, the above construction cannot be directly used for establishing an Ω(n) lower

bound. This is because the k-clique formed by the centers already contains Ω(k2) ≫ n edges; by
Corollary 3.5, an O(n2/m) = o(n) cost can be achieved. Instead, we apply this construction on
n′ = (n/k)2 and k′ = n/k (so that k′ = O(

√
n′) still holds), and construct n/n′ = k2/n disjoint

copies of such a graph. Intuitively, the optimal solutions in the large graph must be n/n′ times
those for a single copy. This gives OPT = (n/n′) · k′ = k, OPTstable = (n/n′) · n′ = n, and the cost
of every persuasive scheme is lower bounded by (n/n′) · Ω(n′) = Ω(n).

7 Upper Bounds for Weighted Graphs

In this section, we prove upper bounds in weighted graphs using the ternary signaling approach
outlined in Section 3.3. Together, they give the upper bound part of Theorem 1.2. We also prove
Theorem 1.4, which states that we can achieve a cost strictly lower than OPTstable whenever OPTIR <
OPTstable.

7.1 Upper bound for approximating OPT
IR

Before presenting the formal theorem statements, we first establish the following technical lemma,
which shows that if the graph contains a large set that is “almost independent”, we have a good
approximation of OPTIR.

Lemma 7.1. Suppose that distribution D ∈ ∆(2V ) satisfies

E
S∼D

[Induced(S)] ≤ (1 + γ) · E
S∼D

[|S|] .

Then, there is a persuasive signaling scheme with a cost of

O

(
OPTIR + γn+

n · OPTIR

√
ES∼D [|S|]

)
.

Note that if γ = 0, the condition ES∼D [Induced(S)] ≤ (1 + γ) ·ES∼D [|S|] is equivalent to that D is
supported over independent sets of V . When γ > 0, we allow some edges (with a small total weight)
in the sub-graph induced by a random S ∼ D, at the cost of an additional γn term in the cost of
the resulting signaling scheme.

We include a proof of Lemma 7.1 in Appendix F.1. The proof is based on optimizing the probabilities
of sending signals to D̃S, ĨS ∼ D, and V \ D̃S as well as the values of the three signals, as described
in Section 3.3. In particular, let θ⋆ ∈ [0, 1]V be an optimal solution subject to IR with cost ‖θ⋆‖1 =
OPTIR. We consider the following family of ternary signaling schemes with parameters p, q ≥ 0 and
ǫ, α ∈ [0, 1]:

• With probability 1
1+p+q , draw a random set D̃S ⊆ V that includes each v ∈ V independently

with probability θ⋆v . Label (the vertices in) D̃S with 1− ǫ, and label V \ D̃S with 0.

30



• With probability p
1+p+q , draw a random set ĨS ∼ D. Label ĨS with 1− ǫ, and label V \ ĨS with

0.

• With probability q
1+p+q , draw a random set D̃S ⊆ V that includes each v ∈ V independently

with probability θ⋆v . Label V \ D̃S with α, and label D̃S with 0.

In the next section, we prove the upper bound side of Theorem 1.2 by instantiating Lemma 7.1 with
specific choices of D.

In Theorem 7.2, we provide the O(n3/4) approximation guarantee for general weighted graphs. The
distribution D is chosen as the distribution of a random subset of the vertices sampled with a
carefully chosen probability. The proof of Theorem 7.2 is in Appendix F.2.

Theorem 7.2 (The first upper bound in Theorem 1.2). In any weighted graph, there exists a ternary

signaling scheme that is persuasive and has cost O
(
n3/4 ·

(
OPTIR

)1/2)
.

When the edges in the graph have weights lower bounded by δ > 0, we apply Lemma 7.1 with
γ = 0 and choose D as a degenerate distribution at an independent set of the graph. The proof of
Theorem 7.3 is in Appendix F.3.

Theorem 7.3 (The second upper bound in Theorem 1.2). In any weighted graph, if every edge has a

weight of at least δ, there is a persuasive ternary signaling scheme with a cost of O
((

n · OPTIR
)2/3 · δ−1/3

)
.

7.2 Strict improvement upon full revelation

In this section, we state and prove a more formal version of Theorem 1.4 regarding strict improve-
ment upon OPTstable.

Theorem 7.4 (Formal version of Theorem 1.4). In any weighted graphs, if OPTIR < OPTstable,
there exists a persuasive signaling scheme that uses at most (n+ 1) signals and achieves a cost of

Cost = OPTstable − ǫ(OPTstable − OPTIR), where ǫ =
PoS − 1

PoS − 1 + OPTIR(n−OPTIR+1)

OPTIR+1

> 0, (10)

and PoS = OPTstable/OPT is the price of stability.

Similar to Theorem 5.6, our proof relies on quantifying the wastefulness of any feasible solution.
We first present a quantitative version of Lemma 5.7 in the case of weighted graphs.

Lemma 7.5. Let θ be a feasible solution in a general weighted graph. Then, we have

‖Wθ‖1 ≥ n+
‖θ‖1 − OPT

OPT
.

The proof of Lemma 7.5 (deferred to Appendix F.4) mirrors that of Lemma 5.8 and follows from a
different construction of the feasible dual variables. Leveraging this lemma, Theorem 7.4 is achieved
by randomizing between the independent rounding of the optimal IR solution and the degener-
ate scheme of deterministically sending the optimal stable solution. We prove this theorem in
Appendix F.5.
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8 Lower Bounds for Weighted Graphs

In this section, we prove the lower bound part of Theorem 1.2. Even when all the edges are of
weight 1/2, there are graphs on which OPTIR is a constant, yet no signaling scheme achieves a cost
lower than n2/3. In addition, when restricted to binary signaling schemes, the gap becomes Ω(n).

We start with the lower bound against binary signaling schemes. In contrast to the unit-weight
case, we cannot achieve any non-trivial approximation via a binary signaling scheme as before. This
shows that the introduction of a third signal in Theorem 1.2 is necessary. The proof of the following
theorem is in Appendix G.1.

Theorem 8.1. There exists a family of weighted graphs on which (1) all edge weights are 1/2; (2)
OPTIR = O(1); (3) every persuasive binary signaling scheme has a cost of Ω(n).

The rest of this section is devoted to proving the lower bound part of Theorem 1.2.

Theorem 8.2 (Lower bound part of Theorem 1.2). There exists a family of weighted graphs on
which (1) all edge weights are 1/2; (2) OPTIR = O(1); (3) every persuasive signaling scheme has a
cost of Ω(n2/3).

Recall that when the edge weights are 1/2, our proof of Theorem 7.3 implies a signaling scheme
with a cost of

O

(
min

{
OPTIR

√
n+m,

n2

m

})
,

where m is the total edge weight in the graph. In order to establish an Ω(n2/3) gap, we need
OPTIR = Θ(1) and m = Θ(n4/3). This naturally leads to the following construction, which is a
modified version of the graph in Figure 4:

• The graph contains n = k3 + 2 vertices: two centers and k3 leaves.

• The k3 leaves form k2 disjoint cliques, each of size k.

• Each of the two centers is adjacent to every other vertex in the graph.

We indeed have OPTIR = 2 = O(1) (achieved by letting both centers play 1) and m = Θ(k4) =
Θ(n4/3). In the rest of this section, we show that any persuasive signaling scheme for this graph
must have an Ω(k2) = Ω(n2/3) cost.

Our proof of Theorem 8.2 can be divided into the following three steps. We provide a sketch in the
remainder of this section and offer more details in Appendices G.2 to G.4.

Step 1. Dimensionality reduction. By Lemma 2.1, it suffices to consider an identity-independent
persuasive signaling scheme specified by Dϕ ∈ ∆(SV ) with signal space S. According to Lemma 3.2,
the persuasiveness of such a signaling scheme is characterized by |S| constraints on the slack for
each signal, which are linear in the n-dimensional probability simplex. As a result, the optimal
signaling scheme with minimum cost can be characterized by a linear program. In Appendix G.2,
we show that this is equivalent to considering the projection of Dϕ onto a lower-dimensional prob-
ability simplex supported on k + 2 vertices — two centers and a random clique of size k. As a
result, we obtain a k + 2-dimensional distribution D′ and significantly simplify the constraints for
persuasiveness.
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Step 2. Choosing test functions. In the second step, we aim to use the duality of linear
programs to lower bound the cost of D′. We consider two choices of test functions f : S → R≥0: a
constant function f1(θ) = 1, and a function that puts more weight on larger signal values f2(θ) = θ

1−θ .
Since the second test function is ill-defined at θ = 1, we additionally show that it is without loss of
generality to consider signaling schemes without the signal 1, as the restriction of distribution D′

to S \ {1} incurs at most a constant blow-up in the cost. With this, the outputs of the two test
functions essentially serve as two sets of dual variables — they give rise to

∑
θ∈S f1(θ)∆θ ≥ 0 and∑

θ∈S f2(θ)∆θ = 0. See more details in Appendix G.3.

Step 3. Verify the dual feasibility In the final step, we consider the dual variables β1f1(θ)−
β2f2(θ) with carefully chosen constants β1, β2, and verify the feasibility by establishing the inequality

E
D′

[sum] ≥
∑

θ∈S
(β1f1(θ)− β2f2(θ))∆θ +Ω(1) ≥ Ω(1),

where sum is the sum of the signals sent to the randomly selected clique. We prove the above
inequality by an involved case analysis in Appendix G.4. As a result, this implies that Cost(Dϕ) ≥
k2 ED′ [sum] ≥ Ω(k2) = Ω(n

2

3 ) and completes the proof of Theorem 8.2.
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A Omitted Proofs from Section 2

A.1 Alternative Benchmarks

Recall that in Section 2.2, we defined the benchmarks assuming agents all know the type profile
t = (t1, . . . , tn). In this section, we discuss alternative benchmarks for the Bayesian setting where
the agents only know the prior distribution τ of t but not its actual realization. In this case,
agents evaluate the quality of a collaborative solution in expectation under the type distribution

τ . We start by defining the alternative benchmarks OPT,OPT
IR
,OPT

stable
, then show how they

can be easily achieved by a no-information signaling scheme and discuss the comparison with the
benchmarks defined in Section 2.2.

We define benchmarks OPT as the optimal total workload of a feasible action profile a, and

OPT
IR
,OPT

stable
as the optimal workload under additional IR and stability constraints.

OPT = min
a

‖a‖1 s.t. E
t∼τ

[quality(a; t)] ≥ 1, a ≥ 0;

OPT
IR

= min
a

‖a‖1 s.t. E
t∼τ

[quality(a; t)] ≥ 1, a ≥ 0, a ≤ 1;

OPT
stable

= min
a

‖a‖1 s.t. E
t∼τ

[quality(a; t)] ≥ 1, a ≥ 0;

∀i ∈ [n], ai = min
{
x ≥ 0

∣∣∣ E
t∼τ

[qualityi(x,a−i; t)] ≥ 1
}
.

In is not hard to see that because qualityi(t,a) = ΠWΠ−1a for the permutation matrix that cor-

responds to t, the benchmarks OPT,OPT
IR
,OPT

stable
for W equals the corresponding benchmarks

under the original definition for a different problem instance W with entries

W ij = E
t∼τ

[
Wti,tj

]
=

{
1, i = j,
Induced(V )−n

n(n−1) , i 6= j,

in which the unique optimal solution for all three benchmarks is n2

Induced(V ) . According to Corollary 3.5,
one can achieve this cost by either incorporating a degenerate signaling scheme or not sending any
signals at all. Therefore, we do not use these alternative benchmarks to evaluate our signaling
schemes.

Next, we use the comparison of OPT and OPT in unit-weight graphs as an example to show that
the two sets of benchmarks are incomparable in general.

• Consider a unit-weight graph that consists of a complete subgraph Kn
2

and n
2 isolated vertices.

In this graph, we have OPT = Θ(n) as all isolated vertices have to contribute unit effort.
On the other hand, OPT = Θ(1) because Induced(V ) = Θ(n2). This shows the possibility of
having OPT ≪ OPT.

• Consider a star graph with n − 1 leaves. We have OPT = 1, achieved by having the center
node contribute unit effort. However, OPT = Θ(n) as Induced(V ) = Θ(n). Therefore, it is
also possible to have OPT ≫ OPT.

A.2 Proof of Lemma 2.1

Let ϕ : Sym(V ) → ∆(SV ) be a persuasive signaling scheme that is not necessarily identity-
independent. Consider the following identity-independent signaling scheme ϕ̃ that always chooses
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ϕ̃(t) = Dϕ̃ to be the mixture of {ϕ(t) | t ∈ Sym(V )}, i.e.,

Dϕ̃(s) =
1

|Sym(V )|
∑

t∈Sym(V )

ϕ(t)(s).

We show that ϕ̃ is persuasive. Let µi, µ̃i be the posterior distribution of agent i under signaling
schemes ϕ and ϕ̃, respectively. Since ϕ̃(t) is defined to be independent of t, we have

µ̃i(t, s−ti | sti) = τ(t) ·
∑

t′∈Sym(V ) Prϕ(t′)

[
st′i , s−t′i

]

∑
s′
−t′

i

∑
t′∈Sym(V ) Prϕ(t′)

[
st′i , s

′
−t′i

] =
1

|Sym(V )|
∑

t′∈Sym(V )

µi(t
′, s−t′i

| st′i).

where the last step follows from τ(t) = 1
|Sym(V )| and the definition of µi in Equation (1). Therefore,

for the expected quality under the posterior distribution µ̃i, we have

E
(t,s−ti

)∼µ̃i(·|sti=θ)
[uti(θ, s−ti)] =

1

|Sym(V )| E
t∼τ


 ∑

t′∈Sym(V )

E
(t′,s−t′

i
)∼µi(·|st′

i
=θ)

[
ut′i(θ, s−t′i

)
]

 ≥ 1,

where the inequality is because the persuasiveness of ϕ implies that

E
(t,s−ti

)∼µi(·|sti=θ)
[uti(θ, s−ti)] ≥ 1

for any agent i ∈ [n] and any θ ∈ S, which holds with equality when θ > 0. We have thus established
the persuasiveness of ϕ̃.

Finally, as for the cost, we have

Cost(ϕ̃) = E
s∼Dϕ̃

[‖s‖1] =
1

|Sym(V )|
∑

t∈Sym(V )

E
s∼ϕ(t)

[‖s‖1] = E
t∼τ,s∼ϕ(t)

[‖s‖1] = Cost(ϕ).

B Omitted proofs from Section 3.1

B.1 Proof of Lemma 3.2

In this subsection, we finish the proof of Lemma 3.2 by establishing eq. (2), which is restated as
follows:

E
(t,s−ti

)∼µi(·|sti=θ)
[uti(θ, s−ti)] = θ +

Contribθ

Numθ
.

We begin by substituting the expression for the posterior µi(· | sti = θ) from eq. (1):

∑

t,s−ti

µi(t, s−ti | sti=θ) · uti(θ, s−ti)
(a)
=

∑

t,s−ti

τ(t)Dϕ(θ, s−ti)∑
t′,s′−ti

τ(t′)Dϕ(θ, s′−ti
)
· uti(θ, s−ti)

(b)
=

∑
t,s τ(t)Dϕ(s) · 1 [sti = θ] · uti(s)∑

t′,s′ τ(t
′)Dϕ(s′) · 1

[
s′ti = θ

] =
Es∼Dϕ [

∑
t τ(t) · 1 [sti = θ] · uti(s)]

Es′∼Dϕ

[∑
t′ τ(t

′) · 1
[
s′ti = θ

]]

(c)
=

Es∼Dϕ

[∑
v∈V

1
n · 1 [sv = θ] · uv(s)

]

Es′∼Dϕ

[∑
v∈V

1
n · 1 [s′v = θ]

] (d)
=

Es∼Dϕ

[∑
v∈V 1 [sv = θ] ·

(
θ +

∑
v′∈N(v) Wv,v′sv′

)]

Es′∼Dϕ

[∑
v∈V 1 [s

′
v = θ]

]
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= θ +
Contribθ

Numθ
.

In the above equations, step (a) uses the expression of posterior µi in eq. (1) together with the
identity-independent property of scheme Dϕ. Step (b) follows from Dϕ(θ, s−ti) =

∑
sti

Dϕ(s) ·
1 [sti = θ], and that uti(θ, s−ti) = uti(s) when sti = θ. Step (c) is because

∑
t:ti=v τ(t) = 1

n
since the marginal distribution of τ on ti is uniform over V . Step (d) follows from uv(s) = θ +∑

v′∈N(v) Wv,v′sv′ when sv = θ. The final step uses the linearity of expectations.

B.2 Proof of Lemma 3.4

We prove Lemma 3.4 using the characterizations in Lemma 3.2. If the signaling scheme Dϕ induced
by sending α to a random subset of vertices S ∼ D is persuasive, its slack (defined in Definition 3.1)
must satisfy ∆0 ≥ 0 and ∆α = 0 for all α ∈ (0, 1]. We have

∆α = Contribα − (1− α)Numα

= E
s∼Dϕ


∑

v∈V
1 [sv = α]


 ∑

v′∈N(v)

Wv,v′sv′ − (1− α)






= E
S∼D


∑

v∈S


 ∑

v′∈S\{v}
Wv,v′ · α− 1 + α




 (sv′ = α · 1 [v′ ∈ S])

= E
S∼D

[
α ·

∑

v∈S

∑

v′∈S
Wv,v′ − |S|

]
(Wv,v = 1)

= α · E
S∼D

[Induced(S)]− E
S∼D

[|S|] .

Therefore, to make Dϕ persuasive, we should set α = ES∼D[|S|]
ES∼D[Induced(S)] .

Similarly, for ∆0, we have

∆0 = Contrib0 − Num0 = E
S∼D


∑

v 6∈S

(
∑

v′∈S
α ·Wv,v′ − 1

)
 = α · E

S∼D
[Cut(S, V \ S)]− E

S∼D
[|V \ S|] .

Plugging in the choice of α, to make ∆0 ≥ 0, the distribution D should satisfy

ES∼D [Cut(S, V \ S)]
ES∼D [|V \ S|] ≥ ES∼D [Induced(S)]

ES∼D [|S|] ,

which is exactly the inequality in Lemma 3.4. Finally, for the cost of Dϕ, we have

Cost(Dϕ) =α · E
S∼D

[|S|] = (ES∼D [|S|])2
ES∼D [Induced(S)]

.

C Details for Section 4

C.1 Conjectured impossibility of matching OPT
stable using O(1) signals.

We conjecture that, in general, ω(1) different signals are needed to achieve a cost below OPTstable.
On a technical level, even if it is possible to achieve a cost of OPTstable using O(1) different signals,
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such a result is unlikely to follow from a “natural” proof strategy, because signaling schemes with
small signal spaces do not compose well.

On a graph G that consists of several disjoint components G1, G2, . . ., a natural proof strategy
would first derive a signaling scheme ϕi with a constant-size signal space for each Gi (such that
Cost(ϕi) = OPTstable(Gi)), and then appropriately combine them into a scheme for G. While the
direct product of ϕ1, ϕ2, . . . does give a persuasive scheme for the larger graph G, the number of
different signals also gets added up, and may scale with the size of G.

Another natural idea is to mimic our approach to designing binary schemes — we view the signaling
scheme as a randomized partitioning of Gi into O(1) parts6, and take the direct product of each
Di instead. Unfortunately, this breaks even for the case of binary schemes: Recall from Lemma 3.4
that Di ∈ ∆(2Vi) gives a persuasive binary scheme for Gi if and only if

ES∼Di
[Cut(S, Vi \ S)]

ES∼Di
[|Vi \ S|]

≥ ES∼Di
[Induced(S)]

ES∼Di
[|S|] . (11)

If we choose D as the direct product of D1,D2, . . ., the corresponding condition reduces to
∑

i ES∼Di
[Cut(S, Vi \ S)]∑

i ES∼Di
[|Vi \ S|]

≥
∑

i ES∼Di
[Induced(S)]∑

i ES∼Di
[|S|] . (12)

Perhaps counter-intuitively, even if Equation (11) holds for every i, the combined inequality in
Equation (12) might not hold!7

Based on this technical insight, we found a simple instance on which a numerical optimization
over ternary signaling schemes suggests that three different signals are not enough to achieve a
cost of OPTstable. We consider a graph that consists of multiple connected components G1, G2, . . .
with vertex sets V1, V2, . . .. Each graph Gi admits a persuasive binary signaling scheme with cost
OPTstable(Gi) induced by a distribution Di ∈ ∆(2Vi) that satisfies Equation (11). Towards ensuring
that the direct product of D1,D2, . . . does not give a persuasive signaling scheme, we choose these
components such that: (1) Equation (11) is tight for each i; (2) the two sides of Equation (11) take
different values for different values of i.

Concretely, we consider the graph that consists of:

• Component 1: Three vertices that form a path with two unit-weight edges.

• Component 2: Two additional vertices connected by an edge of weight 1/2.

In the optimal stable solution, the vertex in the middle of the 3-path plays 1, while both vertices in
the other component play 2/3. Recall that a binary signaling scheme is specified by a distribution
over 2V , which is a 31-dimensional simplex on this specific graph. Therefore, the optimal binary
signaling scheme is characterized by a constrained continuous optimization problem on this simplex,
in which the constraint is given by Lemma 3.4. We relax this optimization problem to multiple linear
programs, and numerically verified that no binary signaling scheme achieves a cost of OPTstable or
lower.

The same idea gives another graph that consists of:

6For instance, the distribution D ∈ ∆(2V ) that specifies a binary scheme is essentially a randomized 2-partition
of V .

7This is similar to Simpson’s paradox in statistics. For unit-weight graphs, we avoided this issue by showing that
the left-hand side of Equation (11) is always lower bounded by 1, which in turn upper bounds the right-hand side.
This stronger condition does imply Equation (12) when multiple components are combined.
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• Component 1: Three vertices that form a path with two unit-weight edges.

• Component 2: Two vertices connected by an edge of weight 2/3.

• Component 3: Three vertices that form a triangle with three edges of weights 1/2, 3/4, and
3/4.

A similar but more complicated numerical optimization on ternary signaling schemes indicates that
no ternary scheme achieves a cost of OPTstable or lower.

Despite this negative evidence, it might still be possible to achieve an O(OPTstable) cost using
O(1) signals. However, such a constant factor approximation, in conjunction with our proof of
Theorem 1.4, would not guarantee a strict improvement upon OPTstable.

C.2 Conjectured Ω(n3/4) lower bound

We conjecture that the n3/4 ratio is tight on the following instance: The graph consists of two
centers connected by a unit-weight edge, along with n−2 leaves that form a clique with edge weight
n−3/4. In addition, each center is connected to each leaf by an edge of weight 1/2.

When only the centers play 1 each, we obtain a feasible IR solution with cost 2 = O(1), whereas
our approach at best gives an O(n3/4) cost on this graph. For a sanity check, note that the total
edge weight in the graph is m = Θ(n2 · n−3/4 + n) = Θ(n5/4). Our proof of Theorem 1.2 (more
specifically, Theorem 7.2) gives a persuasive signaling scheme with cost upper bounded by a constant
factor times

min

{
(OPTIR)2/3m1/3n1/3 + OPTIR ·

√
n,

n2

m

}
,

yet both terms reduce to Θ(n3/4) when we plug in OPTIR = Θ(1) and m = Θ(n5/4).

The graph above resembles the hard instances for the other cases on which we manage to prove
tight lower bounds, so why is it harder to prove an Ω(n3/4) bound? Recall from Section 3.4 that we
prove lower bounds by carefully choosing a dual solution f : [0, 1] → R to the LP that characterizes
the optimal scheme. On the lower bounds that we managed to prove, we could choose f as a linear
combination of the constant function and the function f(θ) = θ/(1− θ). This choice gives a simple
closed-form expression, and satisfies concavity and Lipschitz continuity (except when θ is close to
1). These make the choice of f relatively amenable to formal proofs. However, in the hard instance
defined above, a numerical computation suggests that the optimal dual solution is much more ill-
behaved — it is non-convex, non-concave, and has a large derivative around 1/2. Therefore, we
expect that, even if the instance above does witness an Ω(n3/4) bound, the proof would involve a
much more complicated choice of f , and a more involved analysis.

D Omitted Proofs from Section 5

D.1 Technical Lemmas in Section 5.1

We prove Lemmas 5.1 and 5.2 stated in Section 5.1.

Proof of Lemma 5.1. Since DS and V \ (IS ∪ DS) partitions V \ IS, we have

Cut(IS, V \ IS) = Cut(IS,DS) + Cut(IS, V \ (IS ∪ DS)).
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Since DS is a dominating set of G, every vertex in IS ⊆ V \ DS has a neighbour in DS, so we have
Cut(IS,DS) ≥ |IS|. Since IS is maximal with respect to the induced sub-graph of V \ DS, every
vertex v ∈ V \ (DS ∪ IS) has a neighbour in IS; otherwise, v can be added to IS to give a larger
independent set. This gives Cut(IS, V \ (IS ∪ DS)) ≥ |V \ (IS ∪ DS)|. Therefore, we conclude that

Cut(IS, V \ IS) ≥ |IS|+ |V \ (IS ∪ DS)| = |V | − |DS|.

Proof of Lemma 5.2. The first bound follows easily from the fact that each vertex is included inde-
pendently with probability θ⋆v . For the second bound, note that

E
S∼D

[Induced(S)] ≤
∑

u,v∈V
Pr
S∼D

[u, v ∈ S] .

By definition of D, PrS∼D [u, v ∈ S] is given by θuθv if u 6= v, and θu if u = v. It follows that

E
S∼D

[Induced(S)] ≤
∑

u,v∈V :u 6=v

θuθv +
∑

u∈V
θu ≤

(
∑

u∈V
θu

)2

+

(
∑

u∈V
θu

)
= ‖θ‖21 + ‖θ‖1.

For the third bound, note that

E
S∼D

[Cut(S, V \ S)] =
∑

u,v∈V
Wu,v · Pr

S∼D
[u /∈ S ∧ v ∈ S] =

∑

u∈V

∑

v∈N(u)

Wu,v · (1− θu) · θv.

For each u ∈ V , the condition Wθ ≥ 1 implies
∑

v∈N(u) Wu,vθv ≥ 1− θu, and it follows that

E
S∼D

[Cut(S, V \ S)] =
∑

u∈V
(1− θu)

∑

v∈N(u)

Wu,vθv ≥
∑

u∈V
(1− θu)

2 ≥
∑

u∈V
(1− 2θu) = |V | − 2‖θ‖1.

D.2 Proof of Lemma 5.8

Proof of Lemma 5.8. Recall from the proof of Lemma 5.7 that OPT is characterized by the linear
program in (primal LP), and its dual is given by (dual LP). In the following, we construct a feasible
solution φ⋆ to the dual LP, such that 1

⊤(θ − φ⋆) ≤ ‖Wθ‖1 − n. By the weak duality of LP, we
have 1

⊤φ⋆ ≤ OPT. It follows that

‖θ‖1 − OPT ≤ 1
⊤θ − 1

⊤φ⋆ ≤ ‖Wθ‖1 − n,

which is equivalent to the desired bound.

Now we show how to construct φ⋆. Without loss of generality, the vertices of the graph are labeled
with V = [n]. Let θ(0) = θ. For i = 1, 2, . . . , n, we examine the i-th coordinate of Wθ(i−1). If
(Wθ(i−1))i ≤ 1, we set θ(i) = θ(i−1) and move on to the next coordinate. If (Wθ(i−1))i > 1, we
choose vector θ(i) such that:

• θ
(i)
i +

∑
j∈N(i) θ

(i)
j = 1, and θ

(i)
j ∈

[
0, θ

(i−1)
j

]
holds for every j ∈ N(i) ∪ {i}. This is possible

since θ
(i−1)
i +

∑
j∈N(i) θ

(i−1)
j = (Wθ(i−1))i > 1.

• θ
(i)
j = θ

(i−1)
j for each j /∈ N(i) ∪ {i}.
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If (Wθ(i−1))i ≤ 1, we immediately obtain (Wθ(i))i = (Wθ(i−1))i ≤ 1; otherwise, our choice of θ(i)

guarantees
(Wθ(i))i = θ(i) +

∑

j∈N(i)

θ
(i)
j = 1,

Thus, in both cases, the dual constraint Wφ ≤ 1 is satisfied by φ = θ(i) on the i-th coordinate.
Furthermore, it is clear from our procedure that 0 ≤ θ(n) ≤ θ(n−1) ≤ · · · ≤ θ(0) = θ holds
coordinate-wise. Since all entries in W are non-negative, Wθ(n) ≤ Wθ(n−1) ≤ · · · ≤ Wθ(0) = Wθ

also holds coordinate-wise.

Therefore, if we let φ⋆ = θ(n), it holds for every i ∈ [n] that

(Wφ⋆)i = (Wθ(n))i ≤ (Wθ(i))i = 1.

In other words, φ⋆ is a feasible solution to (dual LP). Moreover, for each i ∈ [n], if θ(i) is different
from θ(i−1), we have

1
⊤
(
θ(i−1) − θ(i)

)
=


θ

(i−1)
i +

∑

j∈N(i)

θ
(i−1)
j


−


θ

(i)
i +

∑

j∈N(i)

θ
(i)
j


 = (Wθ(i−1))i − 1 ≤ (Wθ)i − 1.

If θ(i) remains the same as θ(i−1), we trivially have

1
⊤
(
θ(i−1) − θ(i)

)
= 0 ≤ (Wθ)i − 1,

where the last step follows from the feasibility of θ. Therefore, we have 1
⊤
(
θ(i−1) − θ(i)

)
≤

(Wθ)i − 1 in both cases, and the desired bound follows from

1
⊤ (θ − φ⋆) =

n∑

i=1

1
⊤
(
θ(i−1) − θ(i)

)
≤

n∑

i=1

[(Wθ)i − 1] = ‖Wθ‖1 − n.

E Omitted Proofs from Section 6

Proof of Theorem 6.2. We start with the case that k = O(
√
n). The k ≫ √

n case would easily
follow from the lower bound for the first case.

The k = O(
√
n) case. Concretely, we assume that k ≤ √

n/2. Consider the following graph:
There are k star graphs, each with a center connected to l := ⌊nk ⌋ − 1 leaves. The k centers of
the stars form a clique. For this graph, we have OPT = k (achieved when each of the k centers
contributes 1) and OPTstable = Ω(n) (e.g., achieved when the center in one of the stars and the
leaves in all the other stars contribute 1 each). We will show that every persuasive signaling scheme
must have a cost of Ω(k

√
n) = Ω(min{k√n, n}).

Again, we assume that there is a signaling scheme with cost ≤ k
√
n/C where C := 20, and we will

still derive a lower bound of Ω(k
√
n) on the cost under this assumption. By Lemma 2.1, without

loss of generality, the signaling scheme is identity-independent and is specified by a distribution
Dϕ ∈ ∆(SV ). In other words, the scheme samples ((sc,1, . . . , sc,k), (si,j)i∈[k],j∈[l]) ∈ SV from Dϕ,
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labels the center of the i-th star with sc,i and labels the j-th leaf in the i-th star with si,j . For
brevity, we shorthand xi for sc,i, and let sum :=

∑k
i=1 xi +

∑k
i=1

∑l
j=1 si,j denote the sum of the

signals.

We first use the persuasiveness of Dϕ to derive a lower bound on EDϕ

[∑k
i=1 xi

]
, the expected total

signal received by the k centers. By Lemma 3.2, it holds for every θ ∈ S that

0 ≤ ∆θ = E
Dϕ


∑

v∈V
1 [sv = θ]


 ∑

u∈N(v)

su − (1− sv)




 .

Summing over θ ∈ S gives

0 ≤
∑

θ∈S
∆θ = E

Dϕ


∑

v∈V


sv +

∑

u∈N(v)

su − 1




 = E

Dϕ

[
∑

u∈V
su (1 + |N(u)|)

]
− k(l + 1).

Since |N(u)| = 1 when u is a leaf and |N(u)| = l + k − 1 when u is a center, we have

k(l + 1) ≤ E
Dϕ

[
∑

u∈V
su (1 + |N(u)|)

]
= 2 E

Dϕ

[sum] + (l + k − 2) · E
Dϕ

[
k∑

i=1

xi

]
.

Applying the assumption that EDϕ [sum] ≤ k
√
n/C gives the desired lower bound on EDϕ

[∑k
i=1 xi

]
:

E
Dϕ

[
k∑

i=1

xi

]
≥ k(l + 1)− 2EDϕ [sum]

l + k − 2
≥ k(l + 1)− 2k

√
n/C

l + k
.

Let y :=
√
n√

n+2k
and define the random variable X :=

∑k
i=1 1 [xi ≥ y]. Next, we use the lower

bound on EDϕ

[∑k
i=1 xi

]
to lower bound the expectation of X by Ω(k). Applying the inequality

1 [xi ≥ y] ≥ xi−y
1−y gives

E
Dϕ

[X] ≥
ED

[∑k
i=1 xi

]
− ky

1− y
≥

k(l+1)−2k
√
n/C

l+k − ky

1− y

=
kl(1− y) + k − 2k

√
n/C − yk2

(1− y)(l + k)

≥ kl

l + k
− 2k

√
n

C(1− y)(l + k)
− yk2

(1− y)(l + k)
.

Plugging y =
√
n√

n+2k
into the last term above gives

kl

l + k
− n+ 2k

√
n

C(l + k)
− k

√
n

2(l + k)
.

Recall that k ≤ √
n/2, l = ⌊n/k⌋ − 1 = (n/k) · (1 + on(1)) and C = 20. For all sufficiently large n,

the three terms above can be bounded as follows:

kl

l + k
=

k

1 + k/l
=

k

1 + k2/n · (1 + on(1))
≥ k

1 + 1/4 + on(1)
≥ k

2
,
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n+ 2k
√
n

C(l + k)
≤ 2n

Cl
=

k

10
(1 + on(1)) ≤

k

8
,

and
k
√
n

2(l + k)
=

k

2(
√
n/k + k/

√
n)

· (1 + on(1)) ≤
k

2 · (2 + 1/2)
· (1 + on(1)) ≤

k

4
.

Therefore, we conclude that EDϕ [X] ≥ k/2− k/8 − k/4 = k/8.

Since k −X is always non-negative, by Markov’s inequality, we have

Pr
Dϕ

[
X ≤ k

10

]
= Pr

Dϕ

[
k −X ≥ 9k

10

]
≤ EDϕ [k −X]

9k/10
≤ 7k/8

9k/10
=

35

36
,

which implies PrDϕ

[
X ≥ k

10

]
≥ 1

36 .

Applying Lemma 3.2 again gives

0 =
∑

θ∈S
∆θ · 1 [θ ≥ y] = E

Dϕ


∑

v

1 [sv ≥ y]


 ∑

u∈N(v)

su − (1− sv)






≥ E
Dϕ




k∑

i=1

1 [xi ≥ y] ·
(

k∑

i=1

xi − 1

)
+

k∑

i=1

l∑

j=1

1 [si,j ≥ y] (y − 1)




= E
Dϕ

[
X

(
k∑

i=1

xi − 1)

)]
− (1− y) E

Dϕ




k∑

i=1

l∑

j=1

1 [si,j ≥ y]


 .

(13)

In the second line above, we drop the contributions from the leaves when xi ≥ y, and drop the
contribution from the incident center when a leaf satisfies si,j ≥ y.

In the rest of the proof, we will first lower bound the EDϕ

[
X

(∑k
i=1 xi − 1)

)]
term. By Equation (13),

this gives a lower bound on (1− y)EDϕ

[∑k
i=1

∑l
j=1 1 [si,j ≥ y]

]
, which, in turn, lower bounds the

cost.

Note that

X ·
(

k∑

i=1

xi − 1

)
≥ X ·

(
k∑

i=1

y · 1 [xi ≥ y]− 1

)
= X · (yX − 1),

and the minimum of the quadratic function x 7→ yx2 − x is −1/(4y). By the assumption that

k ≤ √
n/2, we have y =

√
n√

n+2k
∈ [1/2, 1], which implies X ·

(∑k
i=1 xi − 1

)
≥ −1/(4y) ≥ −1/2.

When X ≥ k/10, we have a stronger lower bound of X ·
(∑k

i=1 xi − 1
)
≥ (k/10) · [y · (k/10) − 1].

It follows that

E
Dϕ

[
X

(
k∑

i=1

si − 1)

)]
≥ E

Dϕ

[
1

[
X ≥ k

10

]
· k

10
·
(
ky

10
− 1

)
+ 1

[
X <

k

10

]
· (−1/2)

]

≥ Ω(k2) · Pr
Dϕ

[
X ≥ k

10

]
− 1

2
≥ Ω(k2).

The last step follows from the inequality PrDϕ [X ≥ k/10] ≥ 1/36 that we proved earlier. Plugging

the above into Equation (13) gives (1− y)EDϕ

[∑k
i=1

∑l
j=1 1 [si,j ≥ y]

]
≥ Ω(k2).
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Finally, we conclude that

E
Dϕ

[sum] ≥ y · E
Dϕ




k∑

i=1

l∑

j=1

1 [si,j ≥ y]


 ≥ Ω(k2) · y

1− y
≥ Ω(k

√
n),

where the last step follows from y =
√
n√

n+2k
. This completes the proof for the k ≤ √

n/2 case.

The k ≫ √
n case. We handle the k >

√
n/2 case by a reduction to the first case. Let k′ :=

⌊n/(4k)⌋ and n′ = 4(k′)2. Since k′ ≤
√
n′/2, our proof for the first case gives a graph G′ with

n′ vertices, on which OPT = k′, OPTstable = Ω(n′), and every persuasive signaling scheme has an
Ω(k′

√
n′) = Ω(n′) cost.

Let m := ⌊n/n′⌋ = Θ(k2/n). Consider the graph G that consists of m disjoint copies of G′, denoted
by G′

1 through G′
m. It is clear that the benchmarks OPT and OPTstable are additive on a graph

consisting of multiple connected components. Thus, on the graph G, we have OPT = m · k′ = Θ(k)
and OPTstable = m · Ω(n′) = Ω(n).

It remains to show that the lower bound on the cost of persuasive signaling schemes also composes.
Suppose that Dϕ is a persuasive signaling scheme for graph G, with a cost of C. Consider the
following induced signaling scheme D′

ϕ for graph G′: Pick i ∈ [m] uniformly at random, draw
s ∼ Dϕ, and choose the signal as the restriction of s to G′

i. Let ∆ and ∆′ denote the slacks induced
by the signaling schemes Dϕ and D′

ϕ, respectively. Note that D′
ϕ is still persuasive, since for every

θ ∈ [0, 1], we have

∆′
θ =

1

m

m∑

i=1

E
Dϕ


∑

v∈G′
i

1 [sv = θ]


 ∑

u∈N(v)

su − (1− sv)




 =

∆θ

m
≥ 0,

and the inequality is tight for all θ > 0. Moreover, the cost of the signaling scheme D′
ϕ is given by

C/m.

Now, applying the lower bound for graph G′ shows that C/m ≥ Ω(k′
√
n′) = Ω(n′). Therefore,

we have C ≥ Ω(mn′) = Ω(n). In other words, every persuasive signaling scheme must have an
Ω(n) = Ω(min{k√n, n}) cost on graph G. This completes the proof.

F Omitted Proofs from Section 7

F.1 Proof of Lemma 7.1

Proof of Lemma 7.1. Let θ⋆ ∈ [0, 1]V be an optimal solution subject to IR with cost ‖θ⋆‖1 = OPTIR.
Consider the following signaling scheme with parameters p, q ≥ 0 and ǫ, α ∈ [0, 1].

• With probability 1
1+p+q , draw a random set D̃S ⊆ V that includes each v ∈ V independently

with probability θ⋆v . Label (the vertices in) D̃S with 1− ǫ, and label V \ D̃S with 0.

• With probability p
1+p+q , draw a random set ĨS ∼ D. Label ĨS with 1− ǫ, and label V \ ĨS with

0.

• With probability q
1+p+q , draw a random set D̃S ⊆ V that includes each v ∈ V independently

with probability θ⋆v . Label V \ D̃S with α, and label D̃S with 0.
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Properties of D̃S and ĨS. We will use the following properties of D̃S and ĨS:

• E

[
|D̃S|

]
= ‖θ⋆‖1 = OPTIR.

• E

[
Induced(D̃S)

]
≤ (OPTIR)2 + OPTIR.

• E

[
Cut(D̃S, V \ D̃S)

]
≥ n− 2OPTIR.

• E

[
Induced(ĨS)

]
≤ (1 + γ)E

[
|ĨS|

]
.

The first three bounds follow from Lemma 5.2. The last follows from the assumption on D.

Conditions for persuasiveness. By Definition 3.1 and Lemma 3.2, in order for the signaling
scheme above to be persuasive, we need to satisfy:

• For θ ∈ {α, 1 − ǫ},
(1− θ) · Numθ = Contribθ (14)

• For θ = 0, Equation (14) holds with “=” replaced with “≤”.

In the rest of the proof, we carefully pick the parameters of the signaling scheme to satisfy the
conditions above, while ensuring that the resulting cost satisfies the desired upper bound.

Pick α to handle θ = α. We first examine Equation (14) when θ = α. Since we send α to V \ D̃S
with probability q

1+p+q , the left-hand side of Equation (14) is given by

(1− α) · q

1 + p+ q
E

[
|V \ D̃S|

]
= (1− α) · q

1 + p+ q
(n− OPTIR).

The right-hand side, on the other hand, is given by

q

1 + p+ q
·α·E

[
Induced(V \ D̃S)− (n− |D̃S|)

]
=

q

1 + p+ q
·α·

[
E

[
Induced(V \ D̃S)

]
− (n− OPTIR)

]
.

Therefore, for θ = α, Equation (14) reduces to

(1− α)(n − OPTIR) = α · [E [Induced(V \ DS)]− (n− OPTIR)],

which holds if we pick α = n−OPTIR

E

[
Induced(V \D̃S)

] . Note that this choice of α is valid, since we have

E

[
Induced(V \ D̃S)

]
≥ E

[
|V \ D̃S|

]
= n− OPTIR ≥ 0,

which implies α ∈ [0, 1].

Pick ǫ to handle θ = 1− ǫ. When θ = 1− ǫ, the left-hand side of Equation (14) is

ǫ ·
[

1

1 + p+ q
· E

[∣∣∣D̃S
∣∣∣
]
+

p

1 + p+ q
· E

[
|ĨS|

]]
=

1

1 + p+ q
· ǫ ·

(
OPTIR + pE

[
|ĨS|

])
.

The right-hand side is equal to

(1− ǫ) ·
[

1

1 + p+ q
· E

[
Induced(D̃S)− |D̃S|

]
+

p

1 + p+ q
· E

[
Induced(ĨS)− |ĨS|

]]
.
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Then, Equation (14) at θ = 1− ǫ is equivalent to

ǫ ·
(
OPTIR + pE

[
|ĨS|

])
= (1− ǫ) ·

[
E

[
Induced(D̃S)− |D̃S|

]
+ p · E

[
Induced(ĨS)− |ĨS|

]]
,

which is satisfied if we pick

ǫ =
E

[
Induced(D̃S)

]
− OPTIR + p · E

[
Induced(ĨS)− |ĨS|

]

E

[
Induced(D̃S)

]
+ p · E

[
Induced(ĨS)

] ∈ [0, 1].

Pick q to handle θ = 0 case. Finally, at θ = 0, the left-hand side of Equation (14) is equal to

1

1 + p+ q
·
[
E

[
|V \ D̃S|

]
+ p · E

[
|V \ ĨS|

]
+ q · E

[
|D̃S|

]]

=
1

1 + p+ q
·
[
(n− OPTIR) + p

(
n− E

[
|ĨS|

])
+ qOPTIR

]
.

The right-hand side is given by

1

1 + p+ q
·
[
(1− ǫ) · E

[
Cut(D̃S, V \ D̃S)

]
+ p · (1− ǫ) · E

[
Cut(ĨS, V \ ĨS)

]
+ q · α · E

[
Cut(D̃S, V \ D̃S)

]]
.

Recall that we have E
[
Cut(D̃S, V \ D̃S)

]
≥ n−2OPTIR. We also trivially relax the E

[
Cut(ĨS, V \ ĨS)

]

term to 0. Recall that at θ = 0, it suffices for the left-hand side of Equation (14) to be upper bounded
by the right-hand side. This can be guaranteed if we have

(n− OPTIR) + p
(
n− E

[
|ĨS|

])
+ qOPTIR ≤ (1− ǫ) · (n − 2OPTIR) + q · α · (n− 2OPTIR),

which is equivalent to

q · [α(n − 2OPTIR)− OPTIR] ≥ (n− OPTIR) + p
(
n− E

[
|ĨS|

])
− (1− ǫ) · (n− 2OPTIR).

We claim that it is without loss of generality to assume that α(n − 2OPTIR) − OPTIR ≥ αn/2;
otherwise, as we show at the end of the proof, a cost of O(OPTIR) can be trivially achieved. Under
this additional assumption, it is, in turn, sufficient to satisfy

1

2
qαn ≥ ǫn+ (1− 2ǫ)OPTIR + p

(
n− E

[
|ĨS|

])
.

Therefore, we can always pick q to satisfy the condition at θ = 0, such that qαn is at most O(OPTIR+
(ǫ+ p)n).

Upper bound the cost by optimizing p. The cost of our signaling scheme is clearly

1

1 + p+ q
·
[
(1− ǫ)E

[
|D̃S|

]
+ p · (1− ǫ)E

[
|ĨS|

]
+ q · αE

[
|V \ D̃S|

]]
≤ OPTIR + pE

[
|ĨS|

]
+ qαn.

By our choice of q, the qαn term is at most O(OPTIR+(ǫ+ p)n), so the cost is also upper bounded
by O(OPTIR + (ǫ+ p)n).
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Now, recall our choice of

ǫ =
E

[
Induced(D̃S)

]
− OPTIR + p · E

[
Induced(ĨS)− |ĨS|

]

E

[
Induced(D̃S)

]
+ p · E

[
Induced(ĨS)

] .

Also recall that E
[
Induced(D̃S)

]
≤ (OPTIR)2+OPTIR and E

[
Induced(ĨS)

]
≤ E

[
|ĨS|

]
· (1+γ). Note

that the denominator above is trivially lower bounded by p ·E
[
Induced(ĨS)

]
≥ pE

[
|ĨS|

]
. This gives

ǫ ≤
(OPTIR)2 + p ·

(
E

[
|ĨS|

]
· (1 + γ)− E

[
|ĨS|

])

pE
[
|ĨS|

] = γ +
(OPTIR)2

pE
[
|ĨS|

] .

It follows that our cost is at most

O(OPTIR + (ǫ+ p)n) � OPTIR + γn+ pn+
n(OPTIR)2

pE
[
|ĨS|

] � OPTIR + γn+
n ·OPTIR

√
E

[
|ĨS|

] ,

where the second step holds if we set p = OPTIR
√

E[|ĨS|]
.

When α(n− 2OPTIR)−OPTIR ≥ αn/2 does not hold. Finally, we show that if the assumption
α(n − 2OPTIR)− OPTIR ≥ αn/2 is violated, we can achieve an O(OPTIR) cost easily.

Note that we must have OPTIR > αn/6 in this case; otherwise, we would have

α(n − 2OPTIR)− OPTIR ≥ α[n − 2 · (αn/6)] − αn/6 ≥ αn− αn/3 − αn/6 = αn/2,

a contradiction. The second step above holds since α ∈ [0, 1]. Also, we may assume that OPTIR ≤
n/2; otherwise, any persuasive signaling scheme would give a cost of at most n = O(OPTIR).

Now, recall that α = n−OPTIR

E

[
Induced(V \D̃S)

] . Then, OPTIR > αn/6 and OPTIR ≤ n/2 together imply

OPTIR >
n(n− OPTIR)

6 · E
[
Induced(V \ D̃S)

] ≥ n2

12 · E
[
Induced(V \ D̃S)

] ≥ n2

12(n + 2m)
,

where m is the total edge weight in the graph. Then, by Corollary 3.5, we can achieve a cost of

n2

n+ 2m
≤ 12OPTIR = O(OPTIR).

F.2 Proof of Theorem 7.2

Proof of Theorem 7.2. Let m be the total edge weight in the graph, and γ > 0 be a parameter to
be chosen later. Define D ∈ ∆(2V ) as the distribution of the random set obtained from including
each v ∈ V independently with probability r := min

{ γn
2m , 1

}
. Clearly, we have ES∼D [|S|] = rn and

E
S∼D

[Induced(S)] = rn+ 2r2m =

(
1 +

2rm

n

)
· E
S∼D

[|S|] ≤ (1 + γ) E
S∼D

[|S|] .
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By Lemma 7.1, there is a persuasive signaling scheme with a cost of, up to a constant factor, at
most

OPTIR + γn+
n · OPTIR

√
min

{
γn2

2m , n
} � OPTIR + γn+ OPTIR ·max

{√
m/γ,

√
n
}
.

Under this choice of γ = (OPTIR)2/3m1/3n−2/3, that above cost reduces to

(OPTIR)2/3m1/3n1/3 +OPTIR ·
√
n.

In addition, recall from Corollary 3.5 that we can easily achieve a cost of O(n2/m). Therefore, we
can always achieve the minimum between these two and obtain an upper bound of

min

{
(OPTIR)2/3m1/3n1/3 + OPTIR ·

√
n,

n2

m

}
≤ min

{
(OPTIR)2/3m1/3n1/3,

n2

m

}
+OPTIR ·

√
n

� n3/4 · (OPTIR)1/2 + OPTIR ·
√
n.

Note that the second term above dominates the first only if OPTIR = Ω(
√
n), at which point

both terms are greater than the trivial cost of n. Therefore, we can further simplify the bound to
O
(
n3/4 · (OPTIR)1/2

)
.

F.3 Proof of Theorem 7.3

Before proving the theorem, we first present a lemma that lower bounds the size of the maximum
independent set in a graph.

Lemma F.1. A graph with n vertices and m edges contains an independent set of size Ω
(
min{n2/m, n}

)
.

Proof. Consider the greedy algorithm that keeps adding the vertex with the smallest degree, and
then removing the vertex along with its neighbors. As long as the number of remaining vertices,
n′, is at least n/2, the smallest degree is at most 2m

n′ ≤ 4m/n, so each iteration removes at most
4m/n + 1 vertices. The maximal independent set obtained from this greedy approach has size at
least n/2

4m/n+1 = Ω(min{n2/m, n}).

Now we are ready to prove Theorem 7.3.

Proof of Theorem 7.3. Let m denote the total edge weight of the graph. Since the edge weights are
lower bounded by δ, there are at most m/δ edges in the graph. By Lemma F.1, the graph contains
an independent set IS of size Ω(min{n2/(m/δ), n}) = Ω(min{δn2/m, n}).
Let D ∈ ∆(2V ) be the degenerate distribution at IS. We have ES∼D [Induced(S)] = ES∼D [|S|] = |IS|.
Then, applying Lemma 7.1 with γ = 0 gives a persuasive signaling scheme with a cost of

O

(
OPTIR +

n · OPTIR

√
min{δn2/m, n}

)
= O

(
OPTIR ·

(√
n+

√
m/δ

))
.

Again, we use the fact that we can achieve a cost of O(n2/m) (Corollary 3.5). This give an upper
bound of

O

(
min

{
OPTIR ·

(√
n+

√
m/δ

)
,
n2

m

})
= O

((
n · OPTIR

)2/3
δ−1/3 + OPTIR ·

√
n

)
.
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Note that the OPTIR ·√n term dominates the first term only if OPTIR = Ω(
√
n), at which point the

first term is already Ω(n). Therefore, the upper bound can be simplified to O
(
(n ·OPTIR)2/3δ−1/3

)
.

F.4 Proof of Lemma 7.5

Proof of Lemma 7.5. For the sake of contradiction, assume ‖Wθ‖1 < n + ‖θ‖−OPT

OPT
. Therefore, it

must be the case that for all i ∈ [n],

1 ≤ (Wθ)i < 1 +
‖θ‖1 − OPT

OPT
=

‖θ‖1
OPT

.

Recall from the proof of Lemma 5.7 that OPT is characterized by the linear program in eq. (primal LP),
and its dual is given by eq. (dual LP). We construct dual variables φ⋆ as follows, where Rmax is the
largest value among all coordinates of Wθ:

φ⋆ ,
1

Rmax
θ, Rmax , max

i∈[n]
(Wθ)i <

‖θ‖1
OPT

.

Note that φ⋆ is a feasible solution of eq. (dual LP) because

Wφ⋆ =
1

Rmax
(Wθ) ≤ 1.

Connecting to the optimal objective value OPT = minθ 1
⊤θ of eq. (primal LP), we have

OPT =min
θ

1
⊤θ ≥ max

φ
1
⊤φ ≥ 1

⊤φ⋆ (weak duality)

=
1

Rmax

(
1
⊤θ

)
=

1

Rmax
· ‖θ‖1 (definition of φ⋆)

>OPT, (Rmax < ‖θ‖1
OPT

)

a contradiction! Therefore, we must have ‖Wθ‖1 ≥ n+ ‖θ‖1−OPT

OPT
.

F.5 Proof of Theorem 7.4

Proof of Theorem 7.4. Let θ⋆ ∈ [0, 1]V be an optimal IR solution with cost OPTIR, θ ∈ [0, 1]V be
the optimal stable solution with cost OPTstable, and α ∈ [0, 1] be a signal value to be defined later.
By Lemma 5.7, the fact that ‖θ‖1 = OPTstable > OPTIR ≥ OPT implies that θ must be wasteful.

Let DA ∈ ∆({0, α}V ) be the distribution defined by first sampling a random set S ⊆ V by including
each vertex v independently with probability θ⋆v , and then labeling each v ∈ V with sv = α·1 [v ∈ S].
Let Dθ⋆ ∈ ∆(2V ) denote the distribution of such a random set S. In addition, we define DB ∈
∆([0, 1]V ) as the degenerate distribution supported on {θ}. Let

S = {θv : v ∈ V } ∪ {α}

be the signal space including all distinct values in θ and α. Note that we must have 0 ∈ S, because
a stable solution can only be wasteful when there exists v such that θv = 0; otherwise, the stability
condition implies Wθ = 1, i.e., θ is not wasteful. Thus, we have |S| ≤ n+ 1.

We define a parametrized family of distributions Dǫ ∈ ∆(SV ) for ǫ ∈ [0, 1] as

∀s ∈ SV , Dǫ(s) = ǫ · DA(s) + (1− ǫ) · DB(s).
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Recall from Lemma 3.2 that the signaling scheme Dǫ is persuasive if for all θ ∈ S, we have

∆θ = E
s∼Dϕ


∑

v∈V
1 [sv = θ]


 ∑

v′∈N(v)

Wv,v′sv′ − (1− θ)




 ≥ 0, (15)

and the above is tight for all θ ∈ S \ {0}. We now analyze ∆θ for each θ ∈ S.

• Case 1. θ ∈ S \ {0, α}. Since θ is stable, for any v such that θ = θv > 0, the feasibility
condition must be tight, i.e.,

uv(θ) = θ +
∑

v′∈N(v)

Wv,v′θv′ = 1.

This, together with the fact that DB is a degenerate distribution on θ, implies

∆DB

θ =
∑

v∈V
1 [θv = θ]


 ∑

v′∈N(v)

Wv,v′θv′ − (1− θ)


 = 0.

Therefore, we have
∆Dǫ

θ = (1− ǫ)∆DB

θ = 0.

• Case 2. θ = α. If α = θv for some v, the analysis in the previous case gives us ∆DB
α = 0. On

the other hand,

∆DA
α = E

s∼DA


∑

v∈V
1 [sv = α]


 ∑

v′∈N(v)

Wv,v′sv′ − (1− α)






= E
S∼Dθ⋆

[
∑

v∈S

(
α
∑

v′∈S
Wv,v′ − 1

)]
(sv = α · 1 [v ∈ S])

=α · E
S∼Dθ⋆

[Induced(S)]− OPTIR. (ES∼Dθ⋆
[|S|] = OPTIR)

Therefore, to guarantee ∆DA
α = 0, we set

α =
OPTIR

ES∼Dθ⋆
[Induced(S)]

. (16)

Note that α ≤ 1 because ES∼Dθ⋆
[Induced(S)] ≥ ES∼Dθ⋆

[|S|] = OPTIR. In addition, we have

∆Dǫ
α = ǫ∆DA

α + (1− ǫ)∆DB
α = 0.

• Case 3. θ = 0. We first analyze the slack in DA.

∆DA
0 = E

s∼DA


∑

v∈V
1 [sv = 0]


 ∑

v′∈N(v)

Wv,v′sv′ − 1






= E
S∼Dθ⋆


 ∑

v∈V \S

(
α
∑

v′∈S
Wv,v′ − 1

)
 (sv = α · 1 [v ∈ S])
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=α · E
S∼Dθ⋆

[Cut(S, V \ S)]− (n− OPTIR) (ES∼Dθ⋆
[|V \ S|] = n− OPTIR)

=OPTIR · ES∼Dθ⋆
[Cut(S, V \ S)]

ES∼Dθ⋆
[Induced(S)]

− (n− OPTIR) (choice of α in eq. (16))

≥OPTIR · n− 2OPTIR

(OPTIR)2 + OPTIR
− (n− OPTIR) (last two properties in Lemma 5.2)

=− OPTIR(n− OPTIR + 1)

OPTIR + 1
.

For ∆DB
0 , since (Wθ)v − 1 = 0 for all coordinates where θv > 0, we have

∆DB

0 =
∑

v∈V
1 [θv = 0]


θv +

∑

v′∈N(v)

Wv,v′θv′ − 1




=
∑

v∈V
1 [θv = 0] ((Wθ)v − 1)

=
∑

v∈V
1 [θv = 0] ((Wθ)v − 1) +

∑

v∈V
1 [θv > 0] ((Wθ)v − 1) (θv > 0 =⇒ (Wθ)v = 1)

= ‖Wθ‖1 − n

≥ ‖θ‖1 − OPT

OPT
=

OPTstable − OPT

OPT
,

where the inequality follows from Lemma 7.5. Therefore, for the mixed distribution Dǫ, we
have

∆Dǫ
0 = ǫ∆DA

0 + (1− ǫ)∆DB
0

≥ − ǫ · OPT
IR(n− OPTIR + 1)

OPTIR + 1
+ (1− ǫ)

OPTstable − OPT

OPT
.

Therefore, for the signaling scheme Dǫ to be persuasive, it suffices to choose ǫ ∈ [0, 1] that
such that

− ǫ · OPT
IR(n− OPTIR + 1)

OPTIR + 1
+ (1− ǫ) · OPT

stable − OPT

OPT
≥ 0

⇐⇒ ǫ ≤ OPTstable − OPT

OPTstable − OPT+ OPT·OPTIR(n−OPTIR+1)

OPTIR+1

=
PoS − 1

PoS− 1 + OPTIR(n−OPTIR+1)

OPTIR+1

,

which justifies the choice of ǫ in Equation (10). The cost of this signaling scheme is

Cost(Dǫ) =ǫα E
S∼DA

[|S|] + (1− ǫ)OPTstable ≤ OPTstable − ǫ(OPTstable − OPTIR),

where we have used α ≤ 1 and ES∼DA
[|S|] = OPTIR.

G Omitted Proofs from Section 8

G.1 Proof of Theorem 8.1

Proof of Theorem 8.1. We prove the theorem using the example from Figure 4: Set n = 3k + 2 for
some integer k. Let C1, C2, . . . , Ck be k cliques, each of size 3. Let v1, v2 be two additional vertices.
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Each vi is connected to each other and all the vertices in C1:k. All edges have weight 1/2. The
optimal solution is 2, achieved when both v1 and v2 play 1 while the other vertices play 0.

Fix any binary signaling scheme D ∈ ∆(2[n]). Consider the distribution D′ over ~x = (x3, x2, x1, x0, y) ∈
{0, 1, . . . , k}4 × {0, 1, 2} induced by D through the following procedure:

• Sample S ∼ D.

• For i ∈ {0, 1, 2, 3}, let xi be the number of cliques in C1, . . . , Ck that contain exactly i vertices
in S.

• Let y = |S ∩ {v1, v2}|.
Note that D′ is a sufficient statistics of D in terms of the persuasiveness of the induced binary sig-
naling scheme: When D is the degenerate distribution at S ⊆ [n], the resulting ~x = (x3, x2, x1, x0, y)
satisfies





|S| = 3x3 + 2x2 + x1 + y

Cut(S, V \ S) = 3x3 + 3x2 + 2x1 − y
2 (3x3 + x2 − x1 − 3x0) +

1[y=1]
2

Induced(S) = |S|+ 3x3 + x2 + y(3x3 + 2x2 + x1) + 1 [y = 2]

(17)

By Lemma 3.4, we have

ED [Cut(S, V \ S)]
n− ED [|S|] ≥ ED [Induced(S)]

ED [|S|] =
1

α
,

where α is the value of the non-zero signal.

Substituting Equation (17) into the above condition, subtracting 1 from both sides, and using the
fact that n = 3(x0 + x1 + x2 + x3) + 2, we obtain

ED′

[
3x3 + 2x2 +

x1y
2 + y − 3x0(1− y

2 )−
y
2 (3x3 + x2)−

(
2− 1[y=1]

2

)]

n− ED [|S|]

≥ ED′ [3x3 + x2 + y(3x3 + 2x2 + x1) + 1 [y = 2]]

ED [|S|] . (18)

We compare the numerators of both sides of Equation (18) when (x3, x2, x1, x0, y) is deterministic.
When y ∈ {0, 2}, we have 2 · 1 [y = 2] ≥ y, and it follows that

2 · [3x3 + x2 + y(3x3 + 2x2 + x1) + 1 [y = 2]] ≥ 3x3 + 2x2 +
x1y

2
+ y,

which is, in turn, lower bounded by the numerator on the left-hand side of Equation (18). When
y = 1 and x1 + x2 + x3 ≥ 1, we have

2 · [3x3 + x2 + y(3x3 + 2x2 + x1) + 1 [y = 2]] = 12x3 + 6x2 + 2x1

= (11x3 + 5x2) + x1 + (x1 + x2 + x3)

≥ 3x3 + 2x2 +
x1y

2
+ y,

which is again lower bounded by the numerator on the left-hand side of Equation (18). Finally, in
the remaining case that x1 = x2 = x3 = 0, x0 = k, and y = 1, the numerator on the right-hand side
of Equation (18) is 0, while the numerator on the left is given by

y − 3x0(1− y/2)− (2− 1 [y = 1] /2) = −3

2
k − 1

2
< 0.
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Let LHS and RHS denote the left- and right-hand sides of Equation (18), respectively. Then, the
above case analysis shows that

2 · ED [|S|]
n− ED [|S|] ·RHS ≥ LHS ≥ RHS,

which implies ED [|S|] ≥ n/3 = Ω(n).

Recall that by Lemma 3.4, the cost of the binary scheme is given by α ·ED [|S|]. Therefore, it is left
to show α = Ω(1). To prove α = Ω(1), it suffices to upper bound ED [Induced(S)]

ED [|S|] by a constant. We
have

ED [Induced(S)]

ED [|S|] − 1 =
ED′ [3x3 + x2 + y(3x3 + 2x2 + x1) + 1 [y = 2]]

ED [|S|]

≤ ED′ [9x3 + 5x2 + 2x1 + 1 [y = 2]]

ED′ [3x3 + 2x2 + x1 + y]
≤ 3.

Therefore, α = ED [|S|]
ED[Induced(S)] ≥ 1

4 = Ω(1). This lower bounds the cost of the binary scheme by
α · ED [|S|] = Ω(n).

G.2 Projection to a low-dimensional space

Consider an identity-independent persuasive signaling scheme specified by Dϕ ∈ ∆(SV ) with signal
space S. The scheme naturally induces a distribution D′ over (x, y, α1, α2, . . . , αk) ∈ Sk+2 in the
following way:

• First, we sample a set of signals from Dϕ.

• Let x and y be the signals sent to the two center vertices.

• Choose one of the k2 cliques uniformly at random, and set α1, . . . , αk to the signals sent to
the k vertices in that clique.

Define random variable sum :=
∑k

i=1 αi. It is easy to verify that the cost of the signaling scheme is
given by

E
(x,y,α)∼D′

[
x+ y + k2 · sum

]
,

so our goal is to prove that ED′ [sum] = Ω(1).

Recall from Definition 3.1 that ∆θ is the following quantity:

∆θ = Contribθ − (1− θ) · Numθ,

which is the total amount of slack at signal value θ. Lemma 3.2 states that a valid scheme must
satisfy ∆0 ≥ 0 and ∆θ = 0 for every θ > 0.

Our first step is to re-write each ∆θ as an expectation over the distribution of (x, y, α1, . . . , αk).
This reduces the dimensionality of the signaling scheme from n = k3 + 2 to k + 2, and slightly
simplifies the notations in the remainder of the proof.

Lemma G.1 (informal). The slacks (∆θ)θ∈S can be equivalently defined as the expected outcome of
the following procedure:

• Draw (x, y, α1, . . . , αk) ∼ D′.
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• ∆x ← ∆x +
y+k2sum

2 − (1− x).

• ∆y ← ∆y +
x+k2sum

2 − (1− y).

• For every i ∈ [k], ∆αi
← ∆αi

+ k2 ·
[
sum+x+y+αi

2 − 1
]
.

Informally, the k2 factors in the above account for the fact that every clique is only sampled with
probability 1/k2.

Below is a more formal statement of the lemma above.

Lemma G.2 (Formal version of Lemma G.1). Let Dϕ ∈ ∆(SV ) be the distribution that specifies a
signaling scheme for the graph. Formally, the scheme draws

s = (sc,1, sc,2, s1,1, . . . , s1,k, s2,1, . . . , s2,k, . . . , sk2,1, . . . , sk2,k) ∼ Dϕ,

labels the two centers with sc,1 and sc,2, and labels the j-th vertex in the i-th clique with si,j.

Let D′ ∈ ∆(Sk+2) be the projection of Dϕ, i.e., D′ is the distribution of

(sc,1, sc,2, si,1, si,2, . . . , si,k)

when s ∼ Dϕ and i is drawn uniformly at random from [k2].

Then, for any θ ∈ S, we have

E
s∼Dϕ


∑

v∈V
1 [sv = θ] · 1

2

∑

u∈N(v)

su


− (1− θ) · E

s∼Dϕ

[
∑

v∈V
1 [sv = θ]

]

= E
(x,y,α)∼D′

[
1 [x = θ] ·

(
y + k2sum

2
− (1− x)

)]
+ E

(x,y,α)∼D′

[
1 [y = θ] ·

(
x+ k2sum

2
− (1− y)

)]

+

k∑

i=1

E
(x,y,α)∼D′

[
1 [αi = θ] · k2 ·

(
sum+ x+ y + αi

2
− 1

)]
.

Proof. It suffices to prove the identity for deterministic values of sc,1, sc,2, and (si,j)(i,j)∈[k2]×[k], i.e.,
when Dϕ is degenerate. The general case then follows from taking an expectation. To this end, we
show that each sc,1, sc,2, and si,j contributes the same amount to both sides of the equation. For
simplicity, we will assume that the k3 +2 entries of s are distinct; the general case follows from the
same argument.

Contribution from sc,1 and sc,2. When θ = sc,1, the left-hand side is given by

1

2

∑

u∈N((c,1))

su − (1− sc,1) =
sc,2
2

+
1

2

k2∑

i=1

k∑

j=1

si,j − (1− sc,1).

The right-hand side is

E
(x,y,α)∼D′

[
y + k2sum

2
− (1− x)

]
=

sc,2
2

− (1− sc,1) +
k2

2
E

(x,y,α)∼D′
[sum]

=
sc,2
2

− (1− sc,1) +
k2

2
· 1

k2

k2∑

i=1

k∑

j=1

si,j,
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which is equal to the left-hand side.

By symmetry, the contributions from sc,2 to both sides are also equal.

Contribution from si,j. When θ = si,j , the left-hand side reduces to

1

2

∑

u∈N((i,j))

su − (1− si,j) =
sc,1 + sc,2

2
+

∑

j′∈[k]\{j}

si,j′

2
− 1 + si,j =

sc,1 + sc,2 + si,j
2

+
∑

j′∈[k]

si,j′

2
− 1,

while the right-hand side is given by

E
(x,y,α)∼D′

[
1 [αj = si,j] · k2 ·

(
sum+ x+ y + αj

2
− 1

)]
.

Note that αj = si,j holds only when α1, . . . , αk are equal to si,1, . . . , si,k, which happens with
probability 1/k2 by definition of D′. Thus, the expression above can be simplified to

1

k2
· k2 ·

(∑k
j′=1 si,j′ + sc,1 + sc,2 + si,j

2
− 1

)
=

sc,1 + sc,2 + si,j
2

+
∑

j′∈[k]

si,j′

2
− 1,

which is exactly the left-hand side. This completes the proof.

G.3 Choice of the test function

Recall that our goal is to show that any distribution D′ over (x, y, α1, . . . , αk) induced by a valid
signaling scheme Dϕ must satisfy ED′ [sum] = Ω(1). In order for D′ to be induced by a valid scheme,
it must satisfy ∆0 ≥ 0 and ∆θ = 0 for every θ ∈ S \ {0}, where (∆θ)θ∈S are obtained from D′

via Lemma G.1. While the number of constraints might be large, we will carefully take only a few
linear combinations of them, such that they are sufficient for lower bounding ED′ [sum].

In particular, we note that for every function f : S → R with f(0) ≥ 0, we must have
∑

θ∈S
f(θ) ·∆θ ≥ 0.

The hope is that we can choose a few simple functions f such that, after plugging x, y, and αi into
the inequality above, we obtain a good lower bound on ED′ [sum].

The constant function. We start with the most simple choice of f(θ) ≡ 1. By Lemma G.1, the
contribution of the combination (x, y, α1, . . . , αk) to

∑
θ∈S f(θ) ·∆θ =

∑
θ∈S ∆θ is given by:

[
y + k2sum

2
− (1− x)

]
+

[
x+ k2sum

2
− (1− y)

]
+ k2 ·

k∑

i=1

[
sum+ x+ y + αi

2
− 1

]

=
3

2
(x+ y) + k2sum− 2 + k3 ·

[
sum+ x+ y

2
− 1

]
+

k2

2
sum

=

(
1

2
k3 +

3

2
k2
)
sum+

(
1

2
k3 +

3

2

)
(x+ y)− (k3 + 2).

By linearity, the condition
∑

θ∈S ∆θ ≥ 0 can be written as
(
1

2
k3 +

3

2
k2
)

E
D′

[sum] +

(
1

2
k3 +

3

2

)
E
D′

[x+ y] ≥ (k3 + 2).

Note that this condition alone is not enough for lower bounding ED′ [sum], since the above can be
easily satisfied by setting sum ≡ 0 and x, y ≡ 1.
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Getting rid of signal 1. Later, we will consider another choice of f(θ) = θ
1−θ , which is ill-defined

at θ = 1. To avoid this issue, we now take a detour and show that sending signal 1 is essentially
useless, so it is without loss of generality that 1 /∈ S.

Note that whenever signal 1 is sent to a vertex, all the neighbouring vertices must receive signal
0. This is because, according to Lemma G.1, whenever ∆1 is changed, the change is always non-
negative. Therefore, to ensure ∆1 = 0, there cannot be any non-zero contribution to vertices that
receive signal 1. In other words, all neighbours of such vertices must receive signal 0.

Therefore, the support of D′ must be contained in (S \ {1})k+2 ∪ {e1, e2, . . . , ek+2}, where ei is the
vector with 1 at the i-th coordinate and zeros elsewhere. Using Lemma G.1, we can verify that the
contribution of each ei to ∆0 is non-positive, while ∆θ is unaffected for θ > 0. In particular, when
either x = 1 or y = 1, ∆0 increases by

(
1

2
− 1

)
+ k · k2 ·

(
1

2
− 1

)
= −k3 + 1

2
< 0.

When one of the αi’s is equal to 1, ∆0 gets increased by

2 ·
(
k2

2
− 1

)
+ (k − 1) · k2 ·

(
1

2
− 1

)
= −1

2
k3 +

3

2
k2 − 2 ≤ 0.

Therefore, we may let D′′ be the restriction of D′ to (S \ {1})k+2. As argued above, D′′ is still valid
in the sense that (∆θ)θ∈S\{1} induced by D′′ (according to Lemma G.1) still satisfies ∆0 ≥ 0 and
∆θ = 0 for all θ > 0.

We still need to show that the restriction to (S \ {1})k+2 does not significantly increase the cost,
i.e., ED′′ [sum] should be O(1) · ED′ [sum]. To this end, it suffices to prove that D′((S \ {1})k+2) is
lower bounded by Ω(1), so that the normalization does not blow up the cost. We start by claiming
that

D′({e3, e4, . . . , ek+2}) = Pr
(x,y,α)∼D′

[α1 = 1 ∨ α2 = 1 ∨ · · · ∨ αk = 1] ≤ 1

10
.

This holds because, otherwise, we have E(x,y,α)∼D′ [sum] ≥ 1
10 · 1 = Ω(1), and we are done. Further-

more, we claim that

D′({e1, e2}) = Pr
(x,y,α)∼D′

[x = 1 ∨ y = 1] ≤ 1

10
.

Earlier, we showed that when either x = 1 or y = 1,
∑

θ∈S ∆θ is decreased by k3+1
2 . Furthermore,

in general, each fixed value of (x, y, α1, . . . , αk) increases
∑

θ∈S ∆θ by
(
1

2
k3 +

3

2
k2
)
sum+

(
1

2
k3 +

3

2

)
(x+ y)− (k3 + 2) ≤

(
1

2
k3 +

3

2
k2
)
sum+ 1.

This gives

0 ≤
∑

θ∈S
∆θ ≤ − Pr

(x,y,α)∼D′
[x = 1 ∨ y = 1] · k

3 + 1

2

+ E
(x,y,α)∼D′

[
1 [x 6= 1 ∧ y 6= 1] ·

[(
1

2
k3 +

3

2
k2
)
sum+ 1

]]

≤ − Pr
(x,y,α)∼D′

[x = 1 ∨ y = 1] · k
3 + 1

2
+

(
1

2
k3 +

3

2
k2
)

E
(x,y,α)∼D′

[sum] + 1,
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which, together with Pr [x = 1 ∨ y = 1] ≥ 1/10, would imply E [sum] = Ω(1). Therefore, without
loss of generality, we may assume that D′((S \ {1})k+2) ≥ 1− 1

10 − 1
10 = 4

5 . Therefore,

E
(x,y,α)∼D′′

[sum] ≤ 5

4
E

(x,y,α)∼D′
[sum] .

In particular, proving ED′′ [sum] = Ω(1) would imply ED′ [sum] = Ω(1).

Another choice of f . Now, we assume that 1 /∈ S, and examine
∑

θ∈S f(θ) · ∆θ when f(θ) =
θ

1−θ . Again, Lemma G.1 implies that the contribution of a fixed set of values (x, y, α1, . . . , αk) to∑
θ∈S

θ
1−θ ·∆θ is given by

x

1− x
·
[
y + k2sum

2
− (1− x)

]
+

y

1− y
·
[
x+ k2sum

2
− (1− y)

]
+

k∑

i=1

αi

1− αi
·k2

[
sum+ x+ y + αi

2
− 1

]
.

The sum of the first two terms above can be simplified into

xy

2
·
(

1

1− x
+

1

1− y

)
+

k2sum

2
·
(

x

1− x
+

y

1− y

)
− (x+ y),

while the last summation can be re-written as

k2
k∑

i=1

αi

1− αi
·
[
sum+ x+ y − 1

2
− 1− αi

2

]
=

k2

2
(sum+ x+ y − 1)

k∑

i=1

αi

1− αi
− k2

2
sum.

G.4 Verify the dual feasibility

We will show that, for any finite signal space S ⊂ [0, 1) and every fixed choice of (x, y, α1, . . . , αk) ∈
Sk+2, it holds that

sum+ β2 ·
∑

θ∈S

θ

1− θ
·∆θ ≥ Ω(1) + β1 ·

∑

θ∈S
∆θ, (19)

where β2 = 1
4k , β1 = 1

2k2
, and the Ω(1) notation hides a positive universal constant that does not

depend on (x, y, α1, . . . , αk), as long as k is sufficiently large.

Assuming that eq. (19) holds, taking an expectation and rearranging shows that

E
D′

[sum] ≥ Ω(1) + β1 · E
[
∑

θ∈S
∆θ

]
− β2 · E

[
∑

θ∈S

θ

1− θ
·∆θ

]
≥ Ω(1),

which implies the Ω(k2) = Ω(n2/3) lower bound on the cost and proves Theorem 8.2.

Now we plug β1 = 1
4k , β2 = 1

2k2
, as well as the expressions for

∑
θ∈S ∆θ and

∑
θ∈S

θ
1−θ · ∆θ into

eq. (19). It is sufficient to prove that

sum+
xy

8k

(
1

1− x
+

1

1− y

)
+

k

8
sum ·

(
x

1− x
+

y

1− y

)
− x+ y

4k
+

k(sum+ x+ y − 1)

8

k∑

i=1

αi

1− αi
− k

8
sum

≥ Ω(1) +

(
k

4
+

3

4

)
sum+

(
k

4
+

3

4k2

)
(x+ y)−

(
k

2
+

1

k2

)
.
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Since x+ y ≤ 2 = O(1), every additive term of form (x+ y)/poly(k) or 1/poly(k) can be absorbed
into the Ω(1) gap (for all sufficiently large k). Thus, it suffices to show

k

2
+

xy

8k

(
1

1− x
+

1

1− y

)
+

k

8
sum ·

(
x

1− x
+

y

1− y

)
+

k(sum+ x+ y − 1)

8

k∑

i=1

αi

1− αi

≥ Ω(1) +

(
3

8
k − 1

4

)
sum+

k

4
(x+ y).

(20)

We will consider the following three different cases:

• Case 1: x+ y < 1 and sum+ x+ y − 1 ≥ 0. Since x, y, α1, . . . , αk ∈ [0, 1), we have

x

1− x
+

y

1− y
≥ x+ y and

k∑

i=1

αi

1− αi
≥

k∑

i=1

αi = sum.

Furthermore, we relax the xy
8k

(
1

1−x + 1
1−y

)
term in eq. (20) to 0. Then, it suffices to prove

the following:

k

2
+

k

8
sum · (x+ y) +

k(sum+ x+ y − 1)

8
· sum ≥ Ω(1) +

(
3

8
k − 1

4

)
sum+

k

4
(x+ y). (21)

For fixed sum, both sides of eq. (21) are affine in x+ y, so it suffices to verify it at x+ y = 1
and x+ y = max{1− sum, 0}. At x+ y = 1, eq. (21) gets reduced to

k

8
sum2 −

(
k

4
− 1

4

)
sum+

k

4
≥ Ω(1),

which is true since the left-hand side is equal to k
8 (sum− 1)2 + sum

4 + k
8 ≥ k

8 ≥ 1
8 .

At x+ y = max{1− sum, 0}, if sum ≤ 1 (so that x+ y = 1− sum), eq. (21) is equivalent to

sum

4
+

k

4

(
1− sum2

2

)
≥ Ω(1),

which is true since sum ≤ 1 implies 1− sum2

2 ≥ 1/2. In the other case that sum > 1, we have
x+ y = 0, and this reduces eq. (21) to

k

2
+

k

8
sum(sum− 1)−

(
3

8
k − 1

4

)
sum ≥ Ω(1),

which always holds since the left-hand side is equal to k
8 (sum− 2)2 + sum

4 ≥ sum
4 > 1

4 .

• Case 2: x+ y < 1 and sum+ x+ y − 1 < 0. Again, we may apply the relaxation

xy

8k

(
1

1− x
+

1

1− y

)
+

k

8
sum ·

(
x

1− x
+

y

1− y

)
≥ k

8
sum · (x+ y).

However, since the factor sum + x + y − 1 is now negative, the last term on the left-hand
side of eq. (20) (namely, k(sum+x+y−1)

8

∑k
i=1

αi

1−αi
) is minimized when α is a permutation of

(sum, 0, 0, . . . , 0). Thus, we need to prove the following inequality:

k

2
+

k

8
sum(x+ y) +

k(sum+ x+ y − 1)

8
· sum

1− sum
≥ Ω(1) +

(
3

8
k − 1

4

)
sum+

k

4
(x+ y). (22)
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Again, it suffices to verify the above at x + y = 0 and x + y = 1 − sum, respectively. At
x+ y = 0, eq. (22) reduces to

k

2
· (1− sum) +

1

4
sum ≥ Ω(1),

which is true since k
2 · (1− sum) + 1

4 sum ≥ 1
4 · (1− sum) + 1

4sum = 1
4 .

At x+ y = 1− sum, we get exactly the same inequality as the “x+ y = max{1− sum, 0} and
sum ≤ 1” part of Case 1, which has already been verified.

• Case 3: x+ y ≥ 1 (and thus, sum+ x+ y− 1 ≥ 0). In this case, we claim that the minimum

of both xy
8k

(
1

1−x + 1
1−y

)
and x

1−x + y
1−y are achieved at x = y ≥ 1/2. Write x = µ + δ and

y = µ− δ for µ = x+y
2 ∈ [1/2, 1). We have

xy ·
(

1

1− x
+

1

1− y

)
= (µ2 − δ2) · 2− (µ+ δ)− (µ− δ)

(1− µ− δ)(1 − µ+ δ)
= (2− 2µ) ·

[
1 +

µ2 − (1− µ)2

(1 − µ)2 − δ2

]
,

which is minimized at δ = 0, since µ ∈ [1/2, 1) guarantees that 2−2µ > 0 and µ2−(1−µ)2 ≥ 0.

Similarly, x
1−x + y

1−y can be written as

1

1− x
+

1

1− y
− 2 =

2− 2µ

(1− µ)2 − δ2
− 2,

which is also minimized at δ = 0.

Thus, it suffices to prove eq. (20) for the x = y case, i.e., for all x ∈ [1/2, 1),

k

2
+

1

4k
· x2

1− x
+

k

4
sum · x

1− x
+

k(sum+ 2x− 1)

8
· sum ≥ Ω(1) +

(
3

8
k − 1

4

)
sum+

k

2
x.

Consider the function

g(x, s) :=
k

2
+

1

4k
· x2

1− x
+

k

4
s · x

1− x
+

k(s+ 2x− 1)

8
· s−

(
3

8
k − 1

4

)
s− k

2
x

=
k

8
s2 −

(
1

2
k − 1

4
− k

4
x− k

4
· x

1− x

)
s+

k

2
(1− x) +

1

4k
· x2

1− x
.

We need to prove that g(x, s) ≥ Ω(1) holds for all x ∈ [1/2, 1) and s ≥ 0. For any fixed x,
g(x, s) is quadratic in s, and we have

inf
s≥0

g(x, s) =

{
g(x, 0), s∗(x) < 0,

g(x, s∗(x)), s∗(x) ≥ 0,

where

s∗(x) :=
1

k/4

(
1

2
k − 1

4
− k

4
x− k

4
· x

1− x

)
= 2− x− x

1− x
− 1

k
.

The case that s∗(x) < 0 is easy, since for any x ≥ 1/2,

g(x, 0) =
k

2
(1− x) +

1

4k
· x2

1− x
≥ 2

√
k

2
(1− x) · 1

4k
· x2

1− x
=

2x√
8
≥ 1

2
√
2
= Ω(1).
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To handle the s∗(x) ≥ 0 case, we note that

inf
s≥0

g(x, s) = g(x, s∗(x)) = g(x, 0) − k

8
[s∗(x)]2,

since the minimum of the quadratic function f(x) = ax2 − bx + c where a > 0 is given by
c− b2

4a = f(0)− a(x∗)2, achieved at x∗ = b
2a . We will prove that whenever s∗(x) ≥ 0,

g(x, 0) ≥ k

4
[s∗(x)]2. (23)

This then implies

inf
s≥0

g(x, s) = g(x, 0) − k

8
[s∗(x)]2 ≥ g(x, 0) − g(x, 0)/2 = Ω(1),

where the last step follows from our previous argument for g(x, 0) = Ω(1).

Since 2− 1/k − x− x/(1 − x) = s∗(x) ≥ 0, we have x+ x/(1− x) ≤ 2, which further implies
x ≤ 2−

√
2 ≤ 3/5. Then, g(x, 0) can be lower bounded as follows:

g(x, 0) =
k

2
(1− x) +

1

4k
· x2

1− x
≥ k

2
(1− x) ≥ k

5
.

Furthermore, x ∈ [1/2, 1) implies that

s∗(x) = 2− 1

k
− x− x

1− x
≤ 2− 0− 1

2
− 1 =

1

2
.

Therefore, eq. (23) follows from

g(x, 0) ≥ k

5
>

k

4
· (1/2)2 ≥ k

4
[s∗(x)]2.

This finishes the proof for Case 3.
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