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Abstract— In human-robot collaboration, legible intent of the
robot is critical to success as it enables the human to more ef-
fectively work with and around the robot. Environments where
humans and robots collaborate are widely varied and in the real
world are most often cluttered. However, prior work in legible
motion utilizes primarily environments which are uncluttered.
Success in these environments does not necessarily guarantee
success in more cluttered environments. Furthermore, the prior
work has been primarily performed based on results from
robot-human studies and the problem has not been studied
from the prospective of what people do to express intent to
each other. Therefore, this work addresses a gap in current
research into legible robot arm motion in the following ways:
first we perform a human-human study in order to establish
the factors which humans use to express their intent through
body language, and second we perform the study in a cluttered
and varied environment. Through the study we showed that the
primary factors which people considered are: timing, kinematic
parameters, hand gestures, object proximity, etc. The results
also showed that legibility is correlated with perceived safety,
perceived social intelligence, the collaborator’s contribution,
and trust which further speaks to the importance of legible
motion. Future work will utilize the pose data extracted from
the study’s video recordings to develop a model for legible
motion.

I. INTRODUCTION

In collaborative human-robot tasks, people and robots
work together to complete a shared objective. They commu-
nicate both explicitly and implicitly to show their intention
and avoid collisions. An effective communication system is
even more imperative when a collaborative space is cluttered
which can produce overlapping path trajectories for collab-
orators. This interaction can elicit repetitive patterns in how
humans find optimal solutions when reaching for cluttered
objects with the goal of avoiding contact with their partners.

In this research, we focus on legible motion, which is a
form of implicit communication. Legible motion is intent-
expressive motion that allows the human collaborator to
infer the correct target object quickly and confidently and
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Fig. 1: Experiment setup example with a two-person team
organizing a cluttered space to collect data for developing
generalizable legible motion. Superimposed is a skeleton-
based person computer vision detector called Openpose [2]
to detect the participants’ arm joints.

increases the understanding of a human collaborator [1].
Collaborative robots (cobots) face challenges since humans
have high expectations for the cobot’s performance.

In cluttered environments, the effectiveness of both explicit
and implicit communication decreases due to the increased
number of objects and their proximity. Collision avoid-
ance between the collaborating human and the robot is
especially challenging in cluttered environments. Previous
research investigating legible motion focused on uncluttered
environments. Although studying legible motion in unclut-
tered environments for initial studies can be useful, they
are not frequently encountered in human-robot collaboration
scenarios.

In our previous work [3], we showed the need to explore
legible motion in cluttered environments further to develop
an adequate solution to generalizable legible motion plan-
ning. Therefore, since it is unknown which factors influence
the legibility of robot motion in cluttered environments, in
this work we focus on identifying those factors. We are
exploring the behavior of humans when collaborating in
cluttered spaces only using nonverbal cues, see Figure 1.
Exploring the patterns of human planning and avoidance
behaviors in naturally occurring arm motion trajectories
when reaching for objects is essential for understanding
how to model legible robot arm motion. The results from
this study provide information that can be used to develop
legible robot arm motion for a robot collaborator in a clut-
tered environment. Further, modeling arm trajectories after
human practices can improve understanding in a human-

979-8-3503-7502-2/24/$31.00 ©2024 IEEE 1250

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on November 04,2024 at 14:22:35 UTC from IEEE Xplore. Restrictions apply.



robot interaction when working in a collaborative cluttered
environment.
The major contributions of this paper are as follows:

« identifying factors that influence the legibility of robot
motion in cluttered environments;

o determining if legible motion, the collaborator’s con-
tribution, perceived level of safety, perceived social
intelligence and trust are correlated; and

« collecting a dataset of human arm motions in a collab-
orative task setting via video recordings.

We present insights into the design and implementation
of legible motion for human-robot collaboration in cluttered
environments.

The remainder of this paper is organized as follows:
Section II covers the related work, Section III describes
the experiment design for the study, Section IV reports on
the results of the study, Section V discusses our thoughts
based on our experience with the participants we found, and
Section VI concludes the paper.

II. RELATED WORK
A. Legible robot arm motion

Legible motion is defined as motion that allows the human
collaborator to infer the correct target object quickly and
confidently [1]. It implicitly expresses the robot’s intent to
be easily understood by a human collaborator. Pan et al.
[4] conducted a study on the impact of the initial position
of the robot arm, grasp type, and retraction speed on robot
social attributes of human-to-robot handovers which can also
inform the factors which are important for legible motion.

Prior research investigating legible robot arm motion has
focused on developing motion planners that express the
robot’s intent to be more comprehensible to humans eval-
uated in uncluttered environments. Dragan et al. [1] intro-
duced mathematical models to differentiate predictability and
legibility, assessed in an uncluttered environment with two
objects using recorded videos. They measured the legibility
of a trajectory by showing the participants a video of the
trajectory and asking them to stop the video as soon as they
determined the goal [1]. Bied and Chetouani [5] proposed a
reinforcement learning-based approach to maximize legibil-
ity metrics, evaluated in an abstracted graphical environment
without a user study. Their evaluation focused on a single
object in an uncluttered environment with a variable number
of observers, and the observer tries to infer the goal as fast
as possible [5].

Faria, et al., [6] presented a solution for multiple humans
observing a motion by optimizing for the best collective
value instead of a single person. Similarly, they maximized
the likelihood of reaching the objective with the observed
trajectory. Wallkotter, et al., [7] employed supervised learn-
ing to generate legible motion, leveraging data evaluated and
labeled with established legibility measures. Their evaluation
was conducted through accuracy scoring and obtaining legi-
bility ratings from human feedback rather than user studies,
utilizing an environment with seven unevenly spaced objects.

Bronars, et al., [8] utilized conditional generative models
guided by established legibility measures [1] to generate
legible motion, evaluated against other planners with legibil-
ity measures in an uncluttered environment with two evenly
spaced objects.

A survey of ten legibility frameworks was conducted by
Wallkoétter, et al., [9], revealing that the legibility framework
proposed by Bodden, et al., was most legible [10]. Bodden,
et al., [10] investigated the parameters of point position,
pointing, and velocity in the context of legible motion in
uncluttered environments. An underlying assumption in prior
work is that those proposed solutions are extendable to more
challenging, cluttered environments by studying a simplified,
uncluttered environment. However, the results we obtained in
our previous work [3] show that this assumption is incorrect
due to complexities in cluttered environments, such as the
proximity of objects to each other and the number of choices
of objects.

Since it is unknown which factors influence the legibility
of robot motion in cluttered environments, we therefore focus
on identifying those factors in this work by studying the
factors which people identify that they are focusing on when
collaborating with another person.

B. Human Behavior Modeling

Since it is unknown which factors influence generalizable
legible motion, we collect human-human data to be able to
establish and transfer a robot motion model.

Human-human data is frequently used to derive a model
that is valid for robot movements [11]-[14]. For example,
human-human data has been used to model and evaluate
handover behaviors in human-robot interactions [11], [12].
Human-human data can subsequently be used to derive a
model for the robot through learning-based methods with
supervised learning or reinforcement learning approaches
[15].

To be able to create such a learning-based robot motion
model in future work, it is necessary to collect human-human
data and to identify factors and patterns that need to be
considered when developing generalizable legible motion for
human-robot collaboration.

C. Correlations to Legible Motion

In addition to identifying what parameters need to be
considered when developing generalizable legible motion
for human-robot collaboration, we study the correlation of
legible motion to other aspects in human-robot collaboration.

Dragan et al. [16] showed a significant correlation between
the perception of predictability and legibility. Lichtenthiler
and Kirsch [17] concluded from a literature review that
safety, comfort, surprise, efficiency, and the perceived value
of a robot are correlated with legibility. Further, in a virtual
human-robot path crossing task Lichtenthdler et al. [18]
found that legibility is correlated with the perceived safety
of the robot’s behavior.

In this work, we focus on the correlation of legible motion
to perceived safety, perceived social intelligence, contribution

1251

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on November 04,2024 at 14:22:35 UTC from IEEE Xplore. Restrictions apply.



and trust. Salek Shahrezaie et al. [19] related homophily
to trust. In this work, we are studying human behavioral
strategies in order to learn more about what factors affect
the legibility of a motion.

Perceived safety is defined as the human collaborator’s per-
ception of the level of danger and the level of comfort during
the interaction [20]. Perceived social intelligence refers to the
social intelligence observed by a human bystander. Social
intelligence is defined as the ability to interact effectively in
social settings to accomplish relevant objectives [21], [22]
and refers to the robot’s mental capability [23]. Contribution
refers to the team members relative contribution to the task
[24]. Trust can be defined as a trustor’s belief that the
trustee will act to reduce the trustor’s risk when the trustor’s
outcomes are at risk in a given situation [25]. We aim to
emphasize the crucial role of legible motion in successful
collaboration by quantifying these correlations.

III. METHOD

In this section we describe our human-human user study
design to identify legible motion patterns in cluttered spaces.

A. Research Questions

The purpose of this human-human interaction study is to
evaluate naturally occurring patterns in collision avoidance
when two people are working in a cluttered collaborative
space. Data from this study will be used to develop legible
robot arm motion for human-robot interaction in cluttered
environments. As part of the user study, we are investigating
the following research questions:

o RQI1: What parameters need to be considered when
developing generalizable legible motion for human-
robot collaboration?

We will investigate RQ1 through the open-ended questions
about the collaboration partner’s movement, see Section
1I-B.2.

e RQ2: Are legible motion, the collaborator’s contribu-
tion, perceived level of safety, perceived social intelli-
gence and trust correlated?

We analyzed RQ2 by calculating Spearman’s p, which is
a non-parametric correlation coefficient. A significant cor-
relation would indicate a relationship between a motion’s
legibility and perceived trust, perceived social intelligence,
and trust.

B. Study Design

Participants were asked to work in pairs to organize a
cluttered space legibly. When collaborating with a robot, its
intent should be evident to any human collaborator to prevent
collisions. This study aims to find path trajectories that will
be used to develop legible robot arm motion for human-
robot collaboration. The participants were asked to answer
questions based on the interaction. The survey concluded
with demographic questions.

44 participants were recruited via flyers and in person
advertisements to participate in the IRB-approved' study.

'IRBNet ID: 2133435-1

(b) 3D setup

(a) 2D setup

Fig. 2: In this human-human study we used the following
experiment setups: (a) A 2D setup in a cluttered space with
blocks with 20 objects in total as a baseline for comparison
with our previous study, see [3] (b) A 3D setup in a cluttered
space with cubes and blocks with 40 objects in total. The
participants were asked to organize a cluttered space with
another person.

The study took place in the Robotics Research Lab at the
University of Nevada, Reno (UNR). The user study had a
duration of about 30 minutes.

In this human-human study we used the following exper-
iment setups:

e A 2D setup in a cluttered space with blocks with 20
objects in total as a baseline for comparison with our
previous study [3], see Figure 2a.

o A 3D setup in a cluttered space with cubes and blocks
with 40 objects in total, see Figure 2b.

Each experimental setup was arranged in a table-top en-
vironment with two participants situated opposite to each
other. The 3D setup included two five-tier display stands,
see Figure 2b. We used two RGB-D Intel RealSense cameras
to record the top and the side view of the experiment. For
the organization task, the participants were provided with a
number referring to the next object they were to pick up.
They repeated this process for ten of the color-coded objects
for each experiment setup.

1) Questionnaire: After each experiment setup, we asked
the participant to complete a questionnaire via a tablet
device. The questionnaire included the following items that
measured responses related to RQ2 on a five-point Likert
scale:

o Dragan’s et al. [16] Robot Contribution and Legibility
questions.

o Barchard’s et al. [22] Social Information Processing
Items regarding behavior and cognition from the Per-
ceived Social Intelligence (PSI) Short Form Scale.

o Schaefer’s “Trust Perception Scale-HRI” [26] 14 item
sub-scale.

o Akalin’s et al. [27] Perceived safety questionnaire.

We added randomization to the question order to reduce bias.

2) Interview: At the end of the study, we asked the

participant open-ended questions to answer RQI. These
questions included:

e What would make your partner’s movement easier to
understand?
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o What factors influence the legibility of their motion?

o What did the collaboration partner (or you) do that
worked well to correctly infer the collaboration partner’s
(or your) target object quickly and confidently?

o How legible was the movement of (or for) your collab-
oration partner? Please explain.

o How did you know what the collaboration partner was
about to do, and which object the collaboration partner
was reaching for?

e Could you correctly infer the collaboration partner’s
target object quickly and confidently?

IV. RESULTS
A. Legible Motion Patterns

In this section, we present the results for RQ1 regarding
how humans create legible motion and identify the pa-
rameters to consider when developing generalizable legible
motion for human-robot collaboration. Table I provides a
summary of these parameters, as well as the percentage of
participants who mentioned them and the most representative
quotes for each parameter.

Timing: Timing was a crucial factor that affected partici-
pants’ collaboration while moving towards their goal object.
They reported that they hesitated, waited, and divided their
roles into an active and a passive part. The active part went
first, while the passive part moved when it was clear that
there would be no collision with the other person. Further-
more, the participants identified hesitation and confidence
as two distinct roles in their collaboration. Participants who
exhibited hesitation were more cautious and were more likely
to wait for the active partner to move before taking any
action. In contrast, participants with greater confidence were
more likely to take the initiative.

Direction: Participants also indicated the arm and hand
movement direction as a crucial factor for legible arm mo-
tion. They maneuvered from different directions to prevent
collision.

Avoidance Behavior: One participant reported that their
collaboration partner moved around the target object instead
of directly moving above it. Similarly, another participant
mentioned a curving path.

Consistency: Participants emphasized the importance of
movement smoothness and consistency, indicating that sud-
den direction or velocity changes should be avoided. Addi-
tionally, the participants reported taking a direct path and
following a straight line. One participant mentioned that the
movement should be smooth, similar to avoiding collision
with skateboarders by following a curved path. Participants
reported that both straight lines and curves are compatible
with legible motion. This finding can be understood as an
indication of a tendency to move in the most direct manner
possible while also avoiding obstacles and maintaining a
consistent level of smoothness and consistency.

Angles: One participant mentioned body inclination,
which shows when the arm movement is initiated. Another
participant suggested that having more information about the
collaborative partner’s behavioral pattern, such as the angle

and side from which they initiate their movement, would
make it easier to understand their movements.

Position: Participants also reported that the collaboration
partner positioned the body in front of the target object to
grasp the the target object easier. They also reported that
moving the whole upper body half sideways to reach in and
grasp objects facilitated collaborating in a legible manner.
Participants also reported that the hand position influenced
the legibility of the motion.

Another factor that was mentioned was the height of the
hand and the arm. In the 3D setup it was easier to predict the
collaborator’s movement if the arm was at a similar height
as the target object. Further, the collaborator would go for
their own part of the board when having a low elevation and
go to the other participants part of the board when having a
high elevation.

Speed: An additional aspect are the position derivatives,
namely speed, velocity and acceleration. One participant
suggested that slower movements could improve legibility,
while another participant preferred medium-fast movements.
That means the movements should be fast enough to no-
tice the arm’s direction but slow enough to process the
information without making the trajectory too vague. This
would enable the participants to react accordingly. Moreover,
the participants mentioned that they varied their reaching
speed based on the collaboration partner’s movement and
the target object. In this regard, participants also mentioned
acceleration.

Upper Body Movement: Further, participants reported
that upper body movement would make the collaboration
partner’s movement easier to understand.

Hand Gestures: Several participants suggested hand ges-
tures, such as pointing at the target object before reaching
for it or if they moved in the same direction.

Object Proximity: Participants also mentioned that the
positions of objects and the proximity to other objects
influences the legibility.

Training Effect: Participants reported a training effect.
Once they understood how their collaboration partner would
move, avoiding collisions became easier. One participant
reported that non-verbal communication was easier when one
knows how their partner will move in a collaborative setting.
Another participant reported that it was easy to understand
how the collaboration partner was reaching for the object,
especially after repeating it a few times.

This participant feedback provided valuable insights on
how to develop generalizable legible robot motion. In our
previous study [3], we had focused on avoiding moving
towards other objects in the shared workspace to increase the
trajectories’ legibility. However, participants recommended
smoother motions and found the sharp turns of the motion
planner to be confusing. Previous work on legible motion in
uncluttered environments used only some of the mentioned
parameters, see Section II-A, but often implicitly. Bodden
et al. [10] investigated the parameters of point position,
pointing, and velocity in the context of legible motion in
uncluttered environments. We did not find related work in
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Parameter Percentage = Most Representative Quotes

Timing 2% “the collaboration partner would sometimes reach for their object quickly
which while initially worrying meant that since I was slightly slower I could
reach with confidence since they usually be out of my way by that time”
“Hovering over an object before picking it up”

“Partner would pause or wait for me to make direction clear prior to movement”
“I intentionally hesitated to avoid collision”

Direction 54% “When I saw the direction my partners arm was going to it was pretty easy to
know which block or area he was reaching for”
Avoidance Behavior 22% “If you’re kind of clearly going around a thing that kind of helps with that I

guess that happened a few times. Because instead of going over the top, she
kind of went like like she’s heading towards the thing clearly going around so
okay, it’s not the one closest or whatever”

Consistency 18% “the smoothness of motion thing, because this kind of this kind of remind
me a little bit of avoiding getting hit by skateboarders. Because in general, if
someone’s going downhill, they’re following like a curving path. But I can still
tell what they’re doing and where they’re going to go. And but if they change
their direction, a lot, so I just stay put, because I can’t tell what they’re going
to do. And I’m confident in their ability to not hit me”

Angles 16% “Having more information about their behavioral pattern like how they make
their moves, from which side or what angle”

“the angling of the partners body and arm prior to reach helped with
predictions. Wrist angle and article direction/angle of hand also assisted”

Position 18% “I positioned my body so I can go directly for it.”

“In general height, especially if she started moving before I started moving,
because if she would go low, I can kind of assume she is going for her half
of the board. If she is going with high height soon, she is going for my half
of the board”

“For height differences, I would try to flatten my arm so more of my arm is
close in height to my object”

Speed 45% “How fast she was going because super fast, she was already there before I
went. She didn’t go super fast, but if she did, I wouldn’t have been able to tell
where she was going until she got there. Slower. It was kind of more, it was
very vague. ... I think I mentioned this earlier also, but medium range speed
because too slow it’s a little bit like yeah, you could be going anywhere”

Upper Body Movement — 22% “If they moved their upper body more it would have been easier”

“moving their whole shoulder or body to indicate height”

“It was easy to understand where my parts was reaching, because they
exaggerated their movement toward the object with their shoulders and turning
their torso”

Hand Gestures 20% “Or perhaps if we coordinated and pointed at our objects first”
“Having a consistent gesture for types of movement”
Object Proximity 20% “the location of our objects. If their object was not in close proximity to mine

or behind mine as in closer to my side of the table it was harder to go for my

object and look at where they were going”

“It was difficult I found when objects were in closer range of each other”
Training Effect 43% “I thought it was easy to understand, especially after doing it a few times, I

understood how she was reaching for it, and that she was kind of waiting for

me to go first. So especially after a few times easy”

“Telegraphed his movements”

TABLE I: Summary of the key parameters identified in the human study as important for creating legible motion. The study
found that timing, direction, avoidance behavior, consistency, angles, position, speed, upper body movement, hand gestures,
object proximity, and training effect are all crucial parameters to consider. The table includes the parameters listed with the
percentage of participants who mentioned them and the most representative quotes for each parameter.
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Fig. 3: The correlation matrix for legibility, contribution, safety, trust and PSI obtained from the questionnaire data. The
lower triangle of the plot displays scatterplots with fitted regression lines. The diagonal plots show the marginal distribution
of each variable. The upper triangle displays the Spearman’s correlation coefficients and p-values. Therefore, legibility is

correlated with contribution, safety, trust and PSI.

legible motion that studied upper body movement. While out
of scope when creating legible motion for a robot arm, we be-
lieve that this is an interesting finding for future exploration.
In summary, we have found that timing, direction, avoidance
behavior, consistency, angles, position, speed, upper body
movement, hand gestures, object proximity, and training ef-
fect are crucial parameters to consider when creating legible
motion.

B. Correlations

In order to answer RQ2, we calculated the Spearman’s cor-
relation coefficients between legibility, contribution, safety,
trust and PSI obtained from the questionnaire responses, see
the correlation matrix in Figure 3.

The results of the Spearman correlation between legibil-
ity and the collaboration partner’s contribution indicate a
positive weak correlation (Spearman’s p = 0.39, p-value <

0.001). This suggests that when arm motions are legible,
they tend to facilitate higher levels of contribution from the
collaboration partner. That means, the more legible the arm
motions are, the more likely they are to result in improved
collaboration.

There is a positive moderate correlation between legible
arm motion and perceived safety (Spearman’s p = 0.47, p-
value < 0.001). This implies that when arm motions are
legible, they are perceived as being safer by the observers.
This is an important finding as it suggests that legibility can
play a significant role in improving the overall safety of a
collaboration task.

The results reveal a positive moderate correlation between
legible arm motion and trust (Spearman’s p = 0.58, p-
value < 0.001). This suggests that when arm motions are
legible in a collaboration task, they tend to increase the
trust between the collaborators. This is a crucial element in
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any collaborative effort since trust enables people to work
together effectively.

The results also show a positive moderate correlation
between legible arm motion and perceived social intelligence
(Spearman’s p = 0.63, p-value < 0.001). This implies that
when arm motions are legible, they are perceived as being
more socially intelligent by the observers. This means that
legibility can contribute to the overall impression of the
collaborators as being socially intelligent, which is a valuable
quality in any collaborative effort.

These data suggest that legibility is an important factor that
can significantly impact the success of a collaborative effort.
The positive correlations between legibility and contribution,
safety, trust, and PSI indicate that legibility plays a crucial
role in improving these aspects of collaboration.

V. DISCUSSION

The results presented in this paper show multiple factors
to be considered when creating models for legible motion as
well as significant evidence to show the importance of legible
motion with regard to trust, perceived social intelligence,
etc. The most interesting things we learned from people
that participated in the study were the emergent behaviors
and strategies that people were able to agree upon without
the need for explicit communication. The most prominent
example of this was mentioned by many participants and
has been grouped under the umbrella term timing. This factor
aligns with Moon et al.’s [28] findings on hesitation behavior
for nonverbal negotiation of conflicts between humans and
robots. Many participants, rather than trying to avoid the
collaborator’s hand while grasping, simply chose to either
wait for the other person to finish or to quickly grasp the
object before the other person had a chance to reach it.
Quite often the participants would be unofficially assigned
as either the passive or active participant and then the order
would be decided for the rest of the experiment. It seemed
to us that the role which was chosen for each person was
done based on a willingness to reach first, which we think
could be related to both personality type and temperament.
Furthermore, the fact that these roles did not change after
they were decided implied that the participants were more
willing to find some simple strategy to complete the study
effectively without needing to perform the harder task, which
would involve reaching at the same time as the collaborator.
Reaching and causing potential collisions may have caused
mild discomfort with participants and may have been the
reason that this strategy was mentioned most often, along
with its simplicity.

For participants who did not establish a timing with which
they could avoid collisions, there were multiple methods they
used to avoid collisions, which also utilize the other terms
that we mentioned in the results sections. Many participants
would, for example, reach towards an object at the same
time, stop when they came close and then take turns. More
rarely, participants were able to reach around the hand of the
collaborator and would even grasp objects that were directly
beneath their arm. This implies a higher level of comfort

between the collaborators or a smaller perceived personal
space, at least with respect to the collaborator. This could be
due to a higher level of familiarity between the collaborators,
which was not measured through the questionnaire. However,
this could give us further insight into the strategy that was
chosen as it relates to their relationship with the other person.
Then, further work could be done by applying a familiarity
level of the robot and the collaborator and how it applies to
the required legibility of the robot from the person.

Prior work in the area of legible motion has shown
the effect of factors like velocity, pointing, and position
[10] on legible motion as perceived by an observer. That
model considered only a few of our discovered factors, and
therefore an optimization-based model that considers all of
our factors is expected to be more legible. It is vague what
the desired capability of the robot is when it comes to
legible motion. People still struggle with this problem, as
we observed through the study, and in general, the solutions
that people use are reactive in nature and rely on being
able to observe the partner, implicitly communicate personal
boundaries, and the speed at which they will reach for the
object. Therefore, if we want robots to work as well as
people do in this area, then it is important to create legible
models that are also reactive in the sense that they are also
measuring the position of the person’s hand as well. In other
words, it will not be enough to generate a legible motion;
the robot will also have to react to the movements of the
person which can of course be unexpected. Furthermore,
people adapt to the preference of their collaborator in order to
establish these strategies, so it is important that the robot can
do the same. This also relates to Theory of Mind [23], social
intelligence and trust. This capability would require the robot
to be able adapt to the movements of the person which would
also require a way to classify the preferred strategy of the
person as well as update it over time as familiarity increases,
confidence increases, and the strategy changes.

Additionally, multiple participants stated that although
they could not consistently identify the target object’s exact
number, they could quickly and accurately identify a cluster
of objects and the intended direction toward the target. They
also stated that they utilized this information to help avoid
collisions along their path to their target object. The three pri-
mary factors mentioned by participants in identifying these
clusters were direction, speed, and position. Participants were
able to quickly rule out non-target objects based on the initial
direction of the grasp. Participants could infer the intended
distance from the collaborator’s speed. Further, participants
stated that in the 3D environments, the initial height of the
grasp (position) allowed them to quickly identify the level
at which the intended object was located. While prior work
in uncluttered environments focused on the ability of the
participant to identify the specific target object, this may not
extend to cluttered environments. The responses from these
participants imply that a more accurate metric for cluttered
environments would be the identification of a target cluster,
referring to a group of objects containing the target.

Legible motion is a task that people do not utilize one
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single strategy for and from what we saw in this study
people instead agree upon some chosen general strategy by
communicating with their body language. Therefore, there
is no obvious way to create a motion that will always be
legible to any given observer. However, if we have models
that can utilize these different strategies for legible motion,
then we can adapt to the collaborator. For the acceptance of
robots in collaborative task robotics, this flexibility will help
to increase perceived social intelligence, trust, etc.

VI. CONCLUSION AND FUTURE WORK

In this paper, we focused on identifying parameters that
influence legible robot motion in cluttered environments
based on the behavior of humans in a collaboration task.
Previous work showed that avoiding ambiguity with other
objects is important for legible motion generation [3]. As
part of the user study, we aimed to identify additional key
parameters that need to be considered when developing
generalizable legible motion.

The study found that timing, direction, avoidance behavior,
consistency, angles, position, speed, upper body movement,
hand gestures, object proximity, and training effect are
important for legibility. Furthermore, the user study results
show that legibility is correlated with perceived safety, per-
ceived social intelligence, contribution and trust. Hence, we
provide further evidence on the importance of legible motion.

The video data collected in this study will be used to
develop a model based on human behavior, which will
help develop generalizable legible robot motion that can be
applied in real-world environments.
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