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Abstract

With the rapid development of the consumer electronics industry,
how to efficiently recycle electronic waste such as display screens
has become an important issue. Traditional display screen recy-
cling methods are time-consuming and labor-intensive with a low
recycling rate. Therefore, we propose an open-source and low-cost
display screen recycling method, which enables everyone to assem-
ble old displays into a larger display screen (i.e., video walls) and
ensure premium quality even with distinct specifications among the
multiple displays. In this paper, we focus on addressing the unique
challenge of video walls that the video may be out of sync among
multiple displays. Our proposed algorithm attaches a carefully de-
signed timestamp to each frame on the server side and manages
the frames based on the timestamps on the client side to achieve
video synchronization. We deploy the synchronization algorithm
in an end-to-end video wall system including a streaming server
and a client (i.e., a video wall) consisting of multiple displays and
their respective controlling Raspberry Pis. The evaluation results
show that our algorithm effectively ensures video synchronization
among different displays and can immediately resume synchroniza-
tion after being affected by network fluctuations. Meanwhile, our
algorithm does not introduce additional latency to the system or
reduce video quality.
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1 Introduction

Electronic devices are increasingly short-lived with millions of
screen displays dumped into the wasteland, causing significant
harm to the environment. According to the Global E-waste Mon-
itor report by the United Nations [8], approximately 5.9 billion
kilograms of discarded screens and monitors from televisions, com-
puters, and mobile devices were produced by the world in 2022.
While only 22.3% of e-waste was reported as recycled, the recycling
process itself presents significant challenges [25]. For instance, the
recycling procedure of the displays is often resource-intensive, with
the requirement of massive amounts of labor and energy. Moreover,
the displays often contain various hazardous chemicals like arsenic,
mercury, and cadmium [22], which are difficult to neutralize. These
toxic matters pose significant risks to the environment and human
beings if not handled properly. Therefore, we believe a better sus-
tainable strategy is to find a novel solution to reuse those eliminated
yet functional displays in a meaningful way.

One widely used application of displays is video walls [21], which
can be deployed for retail [19], museums [15], entertainment [13],
and public spaces [7]. For example, Times Square in New York
City [7] is famous for its large video walls displaying advertisements
and creative videos. Video walls provide a better user experience
by combining multiple screens to construct a single large display.
It would be great if we can build video walls using recycled and
heterogeneous displays because it helps reduce e-waste in a less
labor- and energy-intensive way.

Figure 1 shows the architecture of a representative existing video
wall system with several components involved. The Video Source
can be single or multiple image files, video files or live cameras
connecting to the Video Wall Controller and providing the con-
tent to be displayed on the video wall. The Remote can change
the layouts or switch video sources by sending infrared signals to
the Video Wall Controller. The Video Wall Controller processes
the video signals as desired and sends them to the corresponding
displays on the Video Wall. A major issue with existing video walls
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is that they are typically built with homogeneous displays with
proprietary software systems, which are often costly and constrain
customers in the choice of displays. The existing systems suffer
from a lack of technical documentation and clearly defined uni-
versal metrics, making comparison and evaluation challenging for
research and development. Additionally, the high cost of these sys-
tems further impedes their accessibility and development. Thus,
we propose OpenVideoWalls, an open-source system with a set
of system-independent metrics to help anyone to build their own
video walls by reusing any used displays they may have, including
different sizes, resolutions, and other parameters (e.g., supported
refresh rates), and compare such similar systems under the same
standard.

Infrared (IR) Video Cable (e.g., HDMI)

1

Remote ——

Video Wall Controller Video Wall

Video Source
Figure 1: Architecture of a representative video wall system.

While developing OpenVideoWalls, we identify that maintaining
video synchronization among different displays is a key challenge.
The network fluctuations or system lags may lead to poor synchro-
nization, which significantly degrades the Quality of Experience
(QoE) of the video wall system, no matter how good the other spec-
ifications (e.g., resolution and refresh rate) are. Therefore, in this
paper, we focus on video synchronization algorithms for heteroge-
neous displays in the video wall system. To be more specific, we
tackle the video synchronization problem from both the server side
and the client side. On the server side, we make it a local Network
Time Protocol (NTP) [18] server to service the clients so that all
the machines can share the same system clock. The client uses the
local NTP server to align its time and processes the frames based
on their arrival time to achieve intra-frame synchronization among
different displays. Furthermore, we conduct comprehensive experi-
ments to evaluate the effectiveness and robustness of our proposed
synchronization algorithm using an end-to-end video wall system.
To summarize, we make the following contributions in this paper:
(1) We for the first time build an open-source and low-cost so-

lution to enable anyone to build video walls, which supports
heterogeneous displays with any layouts.

(2) We for the first time develop an effective video synchroniza-
tion algorithm to achieve intra-frame synchronization among
different displays.

(3) We propose a methodology to evaluate and compare the quality
of different video wall systems.

(4) We prototype an experimental system and demonstrate the
feasibility of the proposed solution with high quality.

2 Background and Related Work

A video wall is a large display system that consists of multiple
displays placed as a grid or custom layout, working together to play
a single or multiple videos simultaneously. Video wall technology
is becoming more and more popular. Grand-scale immersive and
captivating visual experiences are made possible by this technology.
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However, precise video synchronization is essential to guarantee a
smooth and consistent display on every screen. The content pre-
sented on several displays may be misaligned, and there may be
obvious delays or discrepancies among the screens if synchroniza-
tion is not handled correctly. To achieve synchronization, the com-
munity has proposed several methods. For example, DisplayPort
(DP) Daisy Chain [17] has been used to connect the server and
several client displays, where all the devices are connected using
only one single connection between each pair of devices. In this
case, the time differences of the video contents among the displays
are extremely small, as they are connected by high-bandwidth DP
cables. However, the limitation of this solution is that it only works
for small-size video walls like 2x2 or 3x3, due to the limitation of
the GPU. Our proposed method has no such limitation as our setup
supports multiple servers and multiple streams, which enables a
scalable system. Other widely-used methods to synchronize video
signals, such as Frame Lock [14] and Reversed Genlock [20], often
require expensive and dedicated hardware and thus do not fit our
goal of low-cost and open-source. Kato et al. [16] developed Songle
Sync for synchronizing events during music playback in a web app,
but it only syncs at the application level and is limited to music
instead of video, which does not address our need for video signal
synchronization. In addition, while protocols like NTP [1], PTP [4],
and IRIG [3] are used for time synchronization, they primarily sync
the device time instead of the video streams directly.

3 Proposed Approach
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(b) Our proposed streaming system.

Figure 2: System overviews of the existing streaming system
and our proposed streaming system.

The primary challenge in designing a video wall system is to
make every screen display the same frame at the same time. Existing
protocols primarily focus on video quality, user experience, etc. on
a single display, such as buffering and adaptive bitrate [2], but they
lack emphasis on inter-display synchronization. Figure 2(a) shows
an overview of the existing streaming system in the multi-display
scenario. The Server sends out the Video Stream for both Clients at
the same time, marked as Send frames in the figure. Due to various
impacts such as network latency, Video Stream is not guaranteed
to be received by the two Clients at the same time, as marked by
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Receive frames in the figure. Within Client, the processing time
from receiving Video Stream to displaying it is varied due to differ-
ent factors such as different internal buffer lengths. The different
received times and the different processing times lead to asynchro-
nization between different Clients. We develop our OpenVideoWalls
system to solve this problem by correctly managing the frames
on the client side and embedding timestamps on the server side.
Figure 2(b) shows an overview of our proposed OpenVideoWalls
system. The Video Stream is first handed over to OpenVideoWalls to
embed the timestamp based on the real-world clock on the Server,
as marked with the light gray background. The Video Stream is
then sent from the Server for the two Clients at the same time (i.e.,
Send frames) with the embedded timestamp. Two Clients receive
the Video Stream at a different time (i.e., Receive frames) as expected.
Unlike the existing system that displays the received Video Stream,
OpenVideoWalls on Client intervenes to ensure that the frame in
the Video Stream is displayed at the embedded time. Thus, synchro-
nization among different clients is ensured by OpenVideoWalls.

3.1 Server-Side Synchronization

We employ a timestamp to indicate when each frame should be
shown to the client in order to achieve synchronized displays. Sim-
ilar functions are included in current video codecs and protocols,
such as the presentation timestamp (PTS) [24], which indicates
when to display each frame. PTS is designed for scheduling intra-
stream frames (e.g., preserving correct frame rate and time intervals
between frames); however, it is not intended to address the inter-
display synchronization issue.

Using the idea of adding timestamps to frames as in the design
of PTS, we have the server attach a Unix timestamp that indicates
when each frame should be shown at millisecond precision in lieu
of the PTS. This timestamp should ideally be synchronized by the
infrastructure among all clients. Client-side frames would be de-
layed by the network transmission time if the server added the
current timestamp while processing the frame. For this reason, as
timestamp = timecurrent + timefier, the timestamp should be set to
a future time relative to the current time when the frame is pro-
cessed. The server now implicitly controls the buffering rather than
the client by setting various offsets ahead of the current time, as in
timepyfrer = timeogser — tiMenesawork- Design-wise, the offset should
be one to three times the longest possible round-trip time (RTT)
with clients, contingent upon how timely the content is. Because
the server and the clients synchronize using the Unix timestamp
as their foundation, their system clock must be synchronized. To
synchronize the clocks, the Network Time Protocol (NTP) [18] is
used, and the server serves as an NTP server, giving all clients on
the local network the same time to improve the performance.

3.2 Client-Side Synchronization

To achieve synchronization with other clients, the client processes
timestamped frames received from the server to display at a prede-
termined time. The timestamp inserted in the received frame and
the client’s current time allow the client to classify the frames into
three groups:

e Early: The timestamp indicates a future time relative to the
client’s current time.
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Figure 3: A schematic representation of the four metrics in a
two-display system with the virtual reference stream.

e On-Time: The timestamp matches the current time or is slightly
behind within a tolerable period

o Late: The timestamp is beyond the tolerable period behind the
current time.

Early frames are expected when the client starts receiving frames
from the server. The timep,,  f, for which these frames are retained
is specified in Section 3.1. As the first frame in the buffer becomes
On-Time, the client blocks the buffer to align all of the frames in
the buffer to be On-Time. On-Time frames are immediately shown
without any waiting. Late frames are dropped to let the client keep
up with the server and other clients when they are caused by system
slowdowns or unforeseen video decoding delays. In reality, system
lag or inaccurate sleep functions would cause some frames classified
as Late to just slightly deviate from On-Time. We further define a
tolerance period for On-Time frames, based on which any timestamp
between the client’s current time and the client’s current time plus
the tolerance is On-Time.

3.3 Metrics

As previously mentioned, video wall systems are widely deployed
without a proper methodology for evaluation and comparison. Ex-
isting video evaluation methods and metrics focus primarily on the
performance of a single stream from a content perspective, such as
PSNR. Therefore, we propose the following metrics to specifically
evaluate video wall systems, as illustrated in Figure 3.

e Dropped Frames Drop™: The quantity of frames omitted during
the playback of stream n. To signify the number of frames omitted
within a temporal interval from t? to tJ'.’, the notation Drop? f is

employed.
e Frame Duration Duration;’ = tir:Ll - tl.”: The time a frame i is
displayed.

e Stream Difference Diﬂerence;n’" = t/"~t": The temporal disparity
between two streams, m and n, during the presentation of the
identical frame i.

e Frame Offset Offset] = tiref — tI*: The temporal discrepancy be-
tween the scheduled display time of a frame and its actual pre-
sentation time.

In the aforementioned metrics, let ¢ represent the it" frame
displayed on stream n, where stream n corresponds to video stream
n displayed on screen n. For clarity and simplicity during the com-
parison, we define a virtual reference stream, denoted as ref, to
which all displays should ideally be synchronized. The ref stream
functions as a virtual reference stream, allowing all streams and
displays to align with it, thereby providing a unified basis for com-
parison. Based on this virtual reference stream, we further define
the metric Offset.
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Considering that frames may be dropped during playback for
various reasons, such as network impact, video processing capacity
limitations, or synchronization requirements, we first propose the
metric Dropped Frames: Drop™, which counts the number of frames
not displayed in the stream. We further define the metric Drop™
as the sum of the dropped frames during the playback of stream
n. Ideally, this metric should be zero; practically, the fewer frames
dropped, the better. This metric is monotonic and accumulating
during playback. To evaluate the system, we define the average
of the sum of dropped frames in each stream as the overall Drop
metric.

To further evaluate frames shown during playback, we first focus
on whether frames are evenly distributed and define the metric
Frame Duration, Duration, to identify uneven display patterns. For
instance, in a 30 frames-per-second video, if 29 frames are displayed
in the first 1/30 of a second and the last frame in the final 1/30 of
a second, the frames are unevenly distributed. As defined above,
we set Duration}! = 0 if frame i is dropped. Since this metric is
a per-frame measure, it should ideally reflect a consistent frame
interval (e.g., Duration} = 33.33ms in our experimental setup), with
greater stability being preferable. Thus, we define the average of the
standard deviation of Duration as the overall Duration metric of
the system to represent the stability, where a lower value indicates
higher stability.

To evaluate the synchronization between displays in multi-display
scenarios, we propose the metric Stream Difference, Diﬁferencegn’",
to quantify the time differences for identical frames on two displays.
We exclude dropped frames from this metric, as they cannot be
compared. Ideally, an identical frame should be displayed simulta-
neously on all displays. This metric is better when it is smaller, with
zero representing perfect synchronization across different streams.
To evaluate the system, we define the overall Dif ference metric
as the maximum average frame-level Dif ference observed among
all possible stream-pair combinations.

To enhance our understanding and analysis of synchronization
from a per-stream perspective, we introduced the concept of the
virtual reference stream ref . This ref stream exhibits the ideal frame
duration for each frame and theoretically begins simultaneously
with all other streams. Given that ref is a virtual stream that can
be initiated at any arbitrary time, it is acceptable for the offset
between a stream and ref to be constant, provided that all streams
demonstrate the same or similar offset values. This indicates that
they are either ahead of or behind the ref stream by the same
duration. To quantify the overall offset in the system, we define
the metric Of fset as the difference between the maximum and
minimum average offsets across all streams. A smaller value for
this metric indicates better synchronization.

4 System Implementation

OpenVideoWalls consists of three key components in the system
implementation as illustrated in Figure 4: Server, Relay, and Client,
which are discussed in detail as follows.

4.1 Server

The Server is in charge of creating the content to be shown on
multiple displays and sending the relevant portions to the stream
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Figure 4: Schematic diagram of the system implementation,
which includes a Server, a Relay, and two Clients.

for the client to receive and display. Video processing tasks are
handled by the Server using the FFmpeg [23] library. For content
coming from local files, network streams, and outputs from other
programs like OBS [10] and vMix [9], FFmpeg creates a canvas that
matches the total size of all displays (e.g. 3840x1080 for two side-
by-side 1920x1080 displays). The arrangement of the displays then
divides this canvas into sections for output into different streams.
The streams are sent over the SRT [5] protocol to Relay, encoded
in H.264 [24], with resolution and bitrate adjusted to the profile of
the intended display.

Every frame has a timestamp attached by FFmpeg to achieve
synchronization, as discussed in Section 3.1. The timestamp can be
carried in Supplemental Enhancement Information (SEI), a feature
of the H.264 encoding used for client streams. The bitstream filter
h264_metadata in FFmpeg is modified to recognize a particular
UUID input and, when the filter processes the frame, replace the
corresponding SEI content with the timestamp. The server uses
only I-frames to make decoding easier and avoid problems with
out-of-order frames and frame dependency, enabling the client to
decode each frame as soon as it is received and drop some of them
safely if needed.

4.2 Relay

We adopt an open-source streaming server Simple Realtime Server [12]
(SRS) to relay the SRT stream from the Server to the Client in order
to manage all SRT connections and avoid unintentional disconnec-
tions due to problems like timeout. The Client can start with SRS
even before the Server is up. Moreover, it enables several Servers to
stream to Clients since the Clients just need to connect to the Relay
address rather than several Server addresses.

4.3 Client

The role of the Client is to receive streams from the Server and
ensure that the frames are shown at the right time according to
the embedded timestamps. For display tasks, the Client uses the
SDL [11] and FFmpeg libraries. The SDL library outputs the decoded
frame to the display while the FFmpeg library receives and decodes
the stream from the Server in two concurrent processes on the
Client. No B-frame is used in the stream, thus a queue between the
two processes stores the decoded raw frames in display order.
The Client manages frames in the queue depending on the cur-
rent time and the timestamp embedded in the frame’s SEI in order
to achieve synchronization, as discussed in Section 3.2. The Client
categorizes the frames into three groups: 1) Early, On-Time, and
Late as discussed in Section 3.2 When an Early frame is encoun-
tered, the Client sleeps until the timestamp and current time match,
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at which point it shows as an On-Time frame. On-Time frames are
shown immediately after being received. Late frames are discarded
to keep in synchronization with Server.

4.4 Time Synchronization

We adopt an open-source NTP implementation chrony [6] for time
synchronization. chrony offers accurate time synchronization un-
der various conditions and includes tools for easy operation and
monitoring, which helps achieve clock synchronization between
all users and clients. Before starting the experiments, we set up
the client systems to use the server as the clock source and pro-
vide sufficient time for the systems to synchronize. chrony is run
continuously to keep the clocks synchronized.

5 Evaluation

5.1 Experimental Setup

To demonstrate the feasibility and the high quality of OpenVide-
oWalls, we run the system in an empirical setup. We use an Ubuntu
server with 32GB of memory and 20 vCPUs for the server and to
host the SRT Relay. In addition, we use two Raspberry Pi 4 I0 boards
with 2GB of memory and 4 cores and a Raspberry Pi 5 with 8GB of
memory and 4 cores to act as the clients. The clients communicate
with the server via the wireless network.

The three clients are connected to three separate display mon-
itors of 1920x1080 resolution, which we refer to as Monitor #1,
Monitor #2 and Monitor #3. Given that the monitors are positioned
horizontally next to each other, we use a video of 5760x1080 res-
olution and 30 frames per second (FPS) in frame rate to be split
over the three monitors as demonstrated in Figure 5(b) for a period
of 120 seconds with 1 second tolerance setting on the client. Note
that the resolution and display count used for evaluation do not
fully represent our system’s capacity. Our system can handle inputs
of any resolution and adapt them using FFmpeg. Also, with the
broadcast-level SRT protocol that does not increase the server load
with more clients, our system can scale to a larger number of clients.
We report the results for one configuration for clarity.

We also deploy a baseline system for comparison, which uses the
same configuration but without the synchronization mechanism, as
demonstrated in Figure 5(a). The baseline system differs from our
proposed system mostly in that the Server lets the Client manage
the buffering by not attaching timestamps to frames. The FFmpeg
toolkit’s ffplay program is used by the baseline system’s Client. We
modified the original ffplay to output the PTS and the actual display
time for every frame in order to collect results from the baseline
system.

As illustrated in Figure 5, the baseline system display in Fig-
ure 5(a) clearly exhibits asynchronization. For instance, the middle
display shows two complete openings of the belfry, while the right
display only shows the very right part of the right-hand-side open-
ing, causing visual tearing. Additionally, there is a noticeable tear
at the bottom where the mountain shape meets between the middle
and left displays. The tearing caused by screen asynchronization is
evident in static video screenshots and significantly impacts user
experience in dynamic videos. In contrast, our OpenVideoWalls sys-
tem, shown in Figure 5(b), displays minimal screen tearing due to
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the synchronization method that will be evaluated in the follow-
ing sections, reducing frame difference to less than one frame on
average across different displays.

(a) Baseline system using FFmpeg. Observable tearing on the build-
ing’s opening and the mountain shape where cross two displays.

(b) Our proposed OpenVideoWalls system. No obvious tearing across
the displays.

Figure 5: The demonstration of multi-display video wall sys-
tems deployment using baseline method and our proposed
method and the tearing issue when the content across differ-
ent displays in the baseline system.

5.2 Stream Difference

To better evaluate the synchronization across displays, we mea-
sure the Stream Difference metrics for both systems, as illustrated
in Figure 6. Each point in this figure represents the time differ-
ence (in milliseconds) for an identical frame displayed across two
streams. The baseline system reports the average time differences
between each pair of streams as 862.10, 511.16, and 350.98 millisec-
onds. In contrast, the OpenVideoWalls reported differences of 8.36,
28.33, and 20.70 milliseconds for the same stream pairs. Conse-
quently, the overall Stream Difference metrics for the two systems
are: Differencepq,j;,, = 862.10 ms and Differencegpenyideowalls =
28.33 ms.

(a) Baseline

@ Monitor #1 vs. Monitor #2
@ Monitor #1 vs. Monitor #3 .
@ Monitor #2 vs. Monitor #3

wu
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o

(b) OpenVideoWalls
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Figure 6: Stream Difference for the baseline system (a) and
the OpenVideoWalls system (b), where each point represents
the time difference of displayed time for an identical frame
in two streams.

The results demonstrate that our proposed OpenVideoWalls ex-
hibits a maximum average difference of 28.33 ms, whereas the
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baseline system maintains a nearly constant difference of 862.10 ms,
as illustrated in Figure 6. Our OpenVideoWalls effectively controls
out-of-sync frames to within a one-frame margin in most of the
time and actively aligns these frames to minimize differences. In
contrast, the baseline system lacks this ability, resulting in a persis-
tent difference that remains unmitigated throughout playback.

5.3 Frame Offset

As illustrated in Figure 7, we further evaluate each stream against
the ref stream introduced in Section 3.3. In the baseline system, the
average offsets for Monitors #1, #2, and #3 were 863.23, 1.13, and
352.05 milliseconds, respectively. The OpenVideoWalls reported the
corresponding offsets of 7.48, 0.14, and 20.02 milliseconds. Conse-
quently, the overall Frame Offset metrics are Offsetg,cojine = 862.10
ms and OﬁEtOpenVideDWalls = 19.88 ms.

(a) Baseline

® Monitor #1
Monitor #2

® Monitor #3

(b) OpenVideoWalls

Offset (ms)

e Monitor #1 I
Monitor #2
@ Monitor #3

0 20000 40000 60000 80000 100000 120000
Time (ms)

Figure 7: Frame Offset for the baseline system (a) and the
OpenVideoWalls system (b), where each point represents the
time difference of displayed time for an identical frame with
the ref stream.

The Frame Offset metric demonstrates that OpenVideoWalls out-
performs the baseline system in synchronization. Furthermore, as
illustrated in Figure 7, this metric indicates that OpenVideoWalls
does not introduce accumulative delay during playback. It also sug-
gests that the frame-dropping mechanism discussed in Section 5.4
functions effectively for frames that arrive late.

5.4 Dropped Frames

As described in Section 3.3, we quantify frame drops in both the
baseline and the OpenVideoWalls systems by identifying frames
with zero duration in the log files. In the baseline system, Monitors
#1,#2, and #3 report 3, 8, and 7 dropped frames, respectively. The
OpenVideoWalls system causes 3, 46, and 38 dropped frames for the
same monitors. Consequently, the overall Dropped Frames metric for
the two systems are: Droppeejine = 6 and Dropo,envigeowails = 29-
The overall metric identifies that our proposed approach in-
troduces additional frame dropping that could degrade the user
experience compared to the baseline system as an overhead. Based
on data collected from the 120-second video at 30 FPS, the average
frame drop ratio is 0.17% for the baseline system and 0.81% for the
OpenVideoWalls system. Both ratios are considered acceptable in
common scenarios, considering the case the actual frame rate of
our proposed system (29.76 FPS) displayed on a 30 FPS screen vs. a
NTSC format video (29.97 FPS) displayed on a 30 FPS screen.
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5.5 Frame Duration

We measure the Frame Duration metric for displayed frames to fur-
ther evaluate the impact of frame dropping, as illustrated in Figure 8.
Each point represents a frame’s duration (y-axis, in milliseconds) at
a specific time (x-axis, in milliseconds). The baseline system reports
standard deviations of frame duration across all frames as 0.72, 2.16,
and 1.90 milliseconds for Monitors #1,#2, and #3, respectively. The
OpenVideoWalls reports corresponding standard deviations of 20.06,
17.62, and 17.06 milliseconds. Consequently, the overall Frame Du-
ration metrics for the two systems are Durationggejin, = 1.59 ms
and Durationgpenvideowalls = 18.25 ms.

(a) Baseline
400 4 ® Monitor #1
Monitor #2

200+ ® Monitor #3
) -
E 04 . . . ‘ ‘ !
< (b) OpenVideoWalls
= -
O 400 ® Mon!tur #1 ®
S Monitor #2

200 @ Monitor #3 ° ™

0
0 20000 40000 60000 80000 100000 120000
Time (ms)

Figure 8: Frame Duration for the baseline system (a) and the
OpenVideoWalls system (b), where each point represents a
frame’s duration.

Although both systems achieve Frame Duration less than one
frame interval (33.33 milliseconds), the OpenVideoWalls introduces
a larger standard deviation as an overhead, indicating a broader
distribution of frame duration. This drawback primarily results from
our attempt to synchronize all streams during playback. Unlike the
baseline system, which displays frames with relatively consistent
duration, OpenVideoWalls allocates frames within a range where
all streams can display simultaneously, as discussed in Section 3.2.
This approach leads to a broader duration distribution as a trade-off
for improved synchronization.

6 Conclusion and Future Work

In this paper, we developed an open-source and low-cost video wall
system, namely OpenVideoWalls, which allows anyone to build a
low latency and high QoE video wall with multiple displays. This is
our first attempt to build a video wall system contributing to display
recycling, and we believe more improvements to the system can be
conducted in the future work, such as further reducing the Frame
Duration, a fully automatic configuration of monitors and clients,
and a more user-friendly interface. To motivate further research
and development in the community, we have released the source
code of OpenVideoWalls at https://github.com/hwsel/multi-screen.
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