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Abstract

Research in Responsible AI has developed a range of prin-
ciples and practices to ensure that machine learning systems
are used in a manner that is ethical and aligned with human
values. However, a critical yet often neglected aspect of ethi-
cal ML is the ethical implications that appear when designing
evaluations of ML systems. For instance, teams may have to
balance a trade-off between highly informative tests to ensure
downstream product safety, with potential fairness harms in-
herent to the implemented testing procedures. We conceptu-
alize ethics-related concerns in standard ML evaluation tech-
niques. Specifically, we present a utility framework, charac-
terizing the key trade-off in ethical evaluation as balancing
information gain against potential ethical harms. The frame-
work is then a tool for characterizing challenges teams face,
and systematically disentangling competing considerations
that teams seek to balance. Differentiating between different
types of issues encountered in evaluation allows us to high-
light best practices from analogous domains, such as clini-
cal trials and automotive crash testing, which navigate these
issues in ways that can offer inspiration to improve evalua-
tion processes in ML. Our analysis underscores the critical
need for development teams to deliberately assess and man-
age ethical complexities that arise during the evaluation of
ML systems, and for the industry to move towards designing
institutional policies to support ethical evaluations.

Introduction
Machine learning (ML) model evaluation typically focuses
on estimating errors of prediction or estimation via quantifi-
able metrics. Given the increasing size and complexity of
ML systems, comprehensive evaluations should ideally be
multifaceted. For example, evaluations of large ML systems
may include several methods, including A/B testing on live
populations, adversarial testing to produce undesirable out-
puts, and comprehensive audits documenting outputs. Po-
tential ethical harms of ML systems have gained increasing
attention in the broad Responsible AI community. However,
even when evaluation metrics are expanded beyond perfor-
mance to include factors like fairness, privacy loss, or other
harms induced by the machine learning system, this is often
focused on the ethical harms of the released system, over-
looking possible harms incurred during the machine learn-
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ing development lifecycle itself. This is problematic because
evaluation approaches do have the potential to cause ethical
harm during evaluation. In a noteworthy example, Tesla’s
autonomous vehicle live testing systems on real roadways in
California, has been widely criticized for being involved in
various crashes (Nayak, Laing, and Hull 2022).

How should practitioners evaluate large complex systems
with potentially unknown ethical harms across the engineer-
ing lifecycle, including during the evaluation process? We
provide a conceptual framework that casts the primary trade-
off in ethical evaluation decision-making as balancing the
goal of optimizing for information gained in an evaluation,
against the possible ethical harms that are induced.

Based on our sketch of this fundamental problem that
practitioners face, we identify a series of challenges that can
cause practitioners to stumble in selecting ethical evaluation
practices. We illustrate these challenges using real-world
examples of machine learning evaluations that encountered
them. Then, we draw parallels between these challenges and
evaluation practices in domains other than machine learn-
ing, to explore potential mitigation techniques. Together, our
conceptual framework and characterization of challenges
are intended to stimulate discussion among researchers and
evaluation teams on how to balance information gain with
potential ethical harm, and to motivate future exploration of
policies or best practices for machine learning evaluation.

Related Works
Ethical AI
A growing body of literature discusses properties that ethi-
cal machine learning systems should inherently possess, and
provides principles and guidelines for testing (Jobin, Ienca,
and Vayena 2019; Zhang et al. 2020; Martı́nez-Fernández
et al. 2022). Broadly speaking, the ethical values identified
by prior work include: (1) Non-maleficense, which mea-
sures the extent to which the evaluation workflows and out-
comes do not inflict harm or injuries on any individual or
population (Mehrabi et al. 2021). (2) Privacy, which as a
value refers to the principle of protecting personal and sen-
sitive information from unauthorized access, use, or expo-
sure during the entire ML lifecycle (Liu et al. 2021). (3)
Fairness, in which the goal is to achieve equitable treat-
ment and outcomes for all individuals, ensuring that the
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benefits and burdens of AI systems are distributed justly
across diverse populations (Mehrabi et al. 2021), (4) Cul-
tural Sensitivity, which involves designing algorithms and
models that are attuned to and respectful of cultural differ-
ences, ensuring that they do not perpetuate stereotypes, bi-
ases, or insensitivities (Jo and Gebru 2020). (5) Sustainabil-
ity, which ensures that models are developed in a manner
that is environmentally responsible, economically feasible,
and socially equitable (on Artificial Intelligence 2019; La-
coste et al. 2019). (6) Societal Impact, which refers to en-
suring that the models contribute positively to societal well-
being, address social issues, and do not harm individuals or
communities (Birhane et al. 2022). We emphasize that this
is not a comprehensive listing of all ethical values that a ma-
chine learning system may seek to accomplish. We provide
examples of these categories when characterizing challenges
in designing ethical evaluations in later sections.

ML System Evaluation Practices
An evaluation is the process by which practitioners de-
tect differences between desired and actual model behav-
ior (Zhang et al. 2020), through empirical assessment of
model properties (Shevlane et al. 2023). A growing body
of work creates more comprehensive methods with which
to evaluate systems, rather than providing a singular empir-
ical metric or set of metrics. Some evaluation methods can
be conducted pre-deployment, such as A/B testing or live
testing. Other mechanisms are used post-deployment, such
as bug bounty challenges, and provide infrastructure to sup-
port stakeholder feedback. A particular evaluation process
may involve choosing one or many evaluation metrics to
measure. These decisions are critical because they impact
actions that are taken post-evaluation to improve system ca-
pabilities. They also may be associated with the potential
for ethical harm incurred in the evaluation process, or after
product release. We define an ethical evaluation as an eval-
uation that does not sacrifice ethical values in its implemen-
tation, and attempts to forecast downstream ethical harms
across the product lifecycle.

Finally, by considering how to conceive of the value of in-
formation about model performance gained through an eval-
uation, our work is related to data valuation. Prior theoret-
ical work in machine learning and related fields studies the
value of data for purposes like explainability (e.g., the Shap-
ley framework (Ghorbani and Zou 2019)), data markets and
incentivizing collaboration in ML (Castro Fernandez 2023;
Sim et al. 2020), and value of accurate or improved predic-
tion for goals like treatment assignment or welfare maxi-
mization (Liu et al. 2024; Perdomo 2023).

Ethical Evaluation Model
Motivation
The economics discipline has a long history of creating
highly simplified models of complex real-world processes to
assist with predicting the consequences of actions. Abstract-
ing away non-essential features of the complex real-world
permits systematic reasoning.

For example, economic policy-makers concerned with
pricing wheat might use a simplified model that includes the
costs to the farmer while abstracting away other potentially
relevant characteristics, such as soil quality and his educa-
tional background (Friedman 1953). Our conceptual model
of the key trade-off in ML practitioners’ evaluation decision-
making focuses on the value of information gain relative to
ethical harms. However, rather than contributing new theo-
retical results, our goals are epistemological: to prompt re-
flection on what it would mean to select the best evaluation
in a way that accounts for potential ethical harms induced in
evaluation. By conceptualizing the idea of an optimal bal-
ance between competing concerns in designing ML evalua-
tions, our framework is meant to highlight difficult questions
that largely remain un-navigated in the literature and prac-
tice of ML evaluation design, rather than to imply that a nor-
mative evaluation design is easy to identify. Below, we dis-
cuss the implications of components of the model, including
the acceptability of some of the assumptions made for the
sake of this model, issues that arise due to differing aims,
and the subjectivity of variables in further sections.

Model Properties
ML teams select from a space of possible evaluations.
An evaluation is a protocol for assessing and measuring
a model’s performance against a set of defined criteria or
benchmarks, including specification of which information
to collect and how. ML development teams face various
considerations when planning evaluations that involve com-
plex decisions across evaluation scope, context, and ef-
fect (Zhang et al. 2020; Riccio et al. 2020; Song et al. 2022);
prior work has described how practitioners can suffer from a
“paradox of choice” when it comes to deciding how to per-
form evaluation (Goel et al. 2021). We represent the space
of possible evaluations under consideration by a team as
A = {a1, a2, . . .} where a is an evaluation decision (e.g.,
evaluation method, metrics, sample selection, etc.).

choose some a ∈ A

The utility of an evaluation approach depends on the
relative value of information gained, ethical harms, and
resource costs. The fair ML literature has represented de-
cisions about model choice in ML in a utility framework,
where models provide utility as a function of costs and ben-
efits (Corbett-Davies et al. 2017; Corbett-Davies and Goel
2018; Chohlas-Wood et al. 2021). For example, in Corbett-
Davies et al. (2017), the authors conceptualize ‘immediate
utility’ reflecting the costs and benefits of a fair decision by
a policymaker in the setting of pre-trial bail release deci-
sions. A utility framing is also used in Hutchinson et al., to
illustrate the task of evaluating an ML model’s suitability for
use in a specific application ecosystem.

Our conceptualization similarly draws on a utility frame-
work common in statistical decision theory (Savage 1972;
Steele and Stefánsson 2015; Von Neumann and Morgenstern
2007), but expands this to a broader view applied to deci-
sions made by teams evaluating ML models or systems. The
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proposed utility function implies that each evaluation deci-
sion option the team is considering can be compared along
a single dimension (utility) along which they can be ranked.

We conceive of three categories of inputs to the utility
function. The first concerns the value of information gain.
The information learned from a test, regarding differences
between desired and actual model behavior (Zhang et al.
2020), implies a gain from the evaluation process. Infor-
mation gained in conventional ML performance evaluation
includes estimates of how well a trained model general-
izes to new samples from the same distribution the model
was trained on, as well as measures of the robustness of
the model, i.e., the degree to which the model or sys-
tem maintains its correctness and performance under vary-
ing conditions and inputs, including invalid or adversar-
ial inputs (Tjeng, Xiao, and Tedrake 2017; Zhang et al.
2020). When the evaluation produces information about the
model performance along ethical dimensions, the informa-
tion gained may come in the form of the expected magnitude
or frequency of harms upon deployment.

The second component is ethical harms of the evaluation.
Often overlooked, ethical issues incurred during evaluations,
or downstream ethical issues not adequately predicted (and
consequently encountered after deployment), can diminish
the acceptability of the results, and the overall value and util-
ity of the information derived from the evaluation.

The third component measures the material resources re-
quired to conduct an evaluation. Teams often consider op-
tions for reducing the costs of tests via methods such as test
prioritization, in which inputs generated for tests are lim-
ited to inputs that are most indicative of problematic behav-
ior (Zhang et al. 2020). Costs can take several forms. For
instance, monetary constraints may restrict data collection
abilities including the number of labelled data annotations
procured for supervised ML models (Liao, Kar, and Fidler
2021; Goel and Faltings 2019). Cost constraints through la-
bor force availability and time constraints can shift teams
towards using automated software testing (Dustin, Garrett,
and Gauf 2009). These resource constraints can challenge
responsible model development (Hopkins and Booth 2021).

Consequently, we represent the utility of an evaluation de-
cision as having these three inputs, with the information gain
representing gains to utility and potential ethical harm and
material cost representing decreased utility:

u(a) = (information gain − ethical harm − cost)

Information gain, ethical harm, and cost are forecasts.
Before conducting an evaluation, a team cannot precisely
predict the information gained about model performance,
potential ethical harm, or exact material costs involved. Con-
sequently, information gain, ethical harm, and cost as pre-
dicted values, which we represent as expectations over rel-
evant sources of randomness. The fact that these quantities
must be predicted emphasizes the uncertainty under which
evaluation decisions are necessarily made.

These values are represented as expectations over distri-
bution of possible values. Estimating these distributions is a

fundamental part of the challenge in selecting an evaluation.
Any particular evaluation involves a sample of instances for
which evaluation data is gathered. Many evaluations sam-
ple from a population of participants. Complications arise
as models can differ in social impact across groups, notably
underrepresented groups (Hutchinson et al. 2022). Thus, the
estimate of expected “ethical harm” requires averaging harm
across several individuals who experience disparate impact
from the models. Moving forward, we abbreviate informa-
tion gain as IG(a), and ethical harms as EH(a) :

u(a) = E(IG(a))− E(EH(a))− E(cost)

Ethical harm can be decomposed by distinct ethical val-
ues. It is important to differentiate between various ethical
values in our model, because it has been established that
there are situations where some models may benefit a par-
ticular ethical value at the cost of another. For example,
a privacy and fairness trade-off affects some ML models
(Pujol and Machanavajjhala 2021). While interactions be-
tween ethical concerns may exist, for simplicity we think
of E(EH(a)) as representing a weighted sum of various
ethical values, so E(EH(a)) =

∑
j wjE(EHj(a)) where

j paramaterizes the ethical values discussed in Section 2.
These weights can represent differing ethical priorities of
teams or regulatory requirements on particular values.

E(EH(a)) =
∑
j

wjE(EHj(a))

The best evaluation method has the highest utility. We
represent the optimal choice of evaluation practice for the
team as the decision with the highest utility. An evaluation
approach a equals the optimal decision a∗ if it is the utility-
maximizing decision, indicated as:

a∗ = argmaxa∈AU(a)

The final form of the utility model can be written as:

a∗ = argmaxa∈AE(IG(a))−
∑
j

wjE(EHj(a))− E(cost)

(1)
In Table 1, we reiterate the key properties of practitioners’

decision-making when selecting an ethical evaluation prac-
tice. We accompany these properties with guiding questions
for the ML industry to explore, in order to move towards
prioritizing ethics in evaluations. Combining these proper-
ties into Equation 1, we see that a best evaluation practice
is chosen after considering the information gained from the
practice, potential ethical harms, and is limited by the re-
sources available.

The conceptual framework above provides a high-level
sketch of how ethical harms associated with machine learn-
ing evaluation can affect the overall utility derived from
the evaluation process. We now discuss how common chal-
lenges practitioners face in the process of selecting an eval-
uation practice raise questions about whether the best evalu-
ation has been chosen.
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Utility Framing Explanation Question for ML community
choose a ∈ A Selecting an evaluation

out of a set of options
How can we ensure that practitioners are
carefully weighing a range of options for
evaluation?

u(a) = information gain − ethical harm −
cost

Utility is composed of in-
formation gained, ethical
harms, and costs

How can we ensure ethical harms intro-
duced in evaluation are considered?

u(a) = E(IG(a))− E(EH(a))− E(cost) Information gained, ethi-
cal harm, and costs are in
expectation

How can we ensure practitioners account for
potential ethical harms and issues in esti-
mating harms incurred in evaluation?

E(EH(a)) =
∑

j wjE(EHj(a)) Ethical harm is com-
posed of weighted ethical
values

Which specific ethical values are impacted
by evaluations? How might regulatory re-
quirements for particular ethical values im-
pact the choice of evaluation?

u(a∗) = argmaxa∈Ac
U(a) The best evaluation has

the highest utility
How do practitioners who do consider ethi-
cal harms define the best evaluation frame-
work and then compare between options?

Table 1: Properties for a utility model framing the costs, benefits, and resource constraints for a team’s decision-making.

Discussing the interactions between components of the
framework, the philosophical challenges, and practical chal-
lenges that can arise serves two purposes. First, these chal-
lenges do appear in practice. We illustrate the nature of eth-
ical harms resulting from real-world evaluation practices in
order to make concrete the sorts of consequences that appear
in selecting evaluation practices. We selected the examples
below using a broad search across scholarly publications and
news media related to ethical issues that arise in ML, with
a specific focus on those that can affect evaluation. We fo-
cused on identifying instances that varied in evaluation prac-
tice, ethical values at risk, and context. We also prioritized
examples that provided clear insights into potential incurred
harms, or direct evidence of ethical harms.

Secondly, we discuss real-world evaluations to motivate
exploration of mitigation strategies within the ML evalua-
tion industry. We accompany each common challenge with
an existing mitigation strategy from ethically-motivated
evaluations in domains other than ML. Other fields have
established regulatory and administrative systems that help
them balance the tradeoffs which arise in evaluation prac-
tices, or have informal best practices. These potential miti-
gation strategies can guide future discussion and move the
ML industry towards balancing compliance with ethics.

Our discussion is distilled into the notation from the nota-
tion from the utility model in Table 2.

Issue 1: Aggregating Over Populations Masks
Group and Individual Differences
Taking the expectation of “ethical harm” aggregates over in-
dividuals and groups. Just as a particular value for a model
error metric (like accuracy) or a point estimate (like an es-
timated average treatment effect) can admit numerous solu-
tions that vary at the level of the individual units or groups
(e.g., (Coston, Rambachan, and Chouldechova 2021; Gel-
man, Hullman, and Kennedy 2023; Marx, Calmon, and Us-
tun 2020)), aggregating ethical harms over different individ-
uals can lead evaluators to overlook individual or group-

specific concerns. For example, two evaluation protocols
may be expected to result in the same level of ethical harm
to participants, while differing greatly in how harm is dis-
tributed over the specific participants or groups of partici-
pants.

Example in ML Evaluations: Medical AI Device Testing.
Researchers have raised concerns regarding evaluation prac-
tices of FDA-approved medical devices. In an analysis of
130 devices, 93 did not have multi-site assessment, meaning
many were evaluated at one site, which may have limited
geographic diversity. This includes 54 high-risk devices, and
devices affecting a range of body areas (chest, breast, heart,
head, other) (Wu et al. 2021).

The evaluation of medical AI devices on limited sam-
ples of the population is a form of the general practice of
‘data splitting’, where practitioners partition a population
and monitor the performance of the model within a slice of
data. This requires careful decision making on the choice of
the slice (Chen et al. 2019). In this case, researchers criti-
cize single-site assessment of medical AI device testing be-
cause the relationship between the performance information
that is gained and performance in the broader population is
unclear. Deploying a method evaluated on a narrow slice
of the intended population can yield unintended biases in
performance of the device on underrepresented groups post-
deployment (Wu et al. 2021). The FDA has noted these eth-
ical concerns, calling for greater transparency in testing and
improved monitoring of algorithmic bias (Wu et al. 2021).

Mitigation Example from Analogous Domain: Represen-
tation in Clinical Trials.

The lack of representation in clinical research has been
studied in contexts outside of medical devices. Statistical ad-
justment techniques, like population-weighted sampling and
post-stratification, are common mitigation strategies in the
causal inference literature.

Poor evaluation choices can mask heterogeneity in health
needs, leading to downstream harms. For example, not hav-
ing information on certain subsets of a population may ulti-
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Challenge in balancing
evaluation considerations

Example from ML evaluation
practices

Mitigation strategies in analo-
gous domain

Open question for ML
community

Ethical harm, E(EH(a),
combines expected ethical
harm of many individuals
or groups who may be im-
pacted differently

Medical AI device testing done on
a single geographic site as a form
of ‘data splitting’ can yield low ex-
ternal validity and low utility to di-
verse populations

The medical community offers best
practices to broaden representation
in clinical trials and widen external
utility through information cam-
paign

How can we ensure EH(a)
considers consider individ-
ual and group specific im-
pacts of an evaluation?

Subjective interpretations of
the presence and magnitude
of E(EH)

Facebook NewsFeed randomized
experiment was criticized by some
as causing social harm or unfair-
ness during evaluation

IRBs act as a centralized agency
and 3rd party overseeing the ap-
proval of placebo control trials
prior to deployment with a focus on
ethics of the evaluation process

How can we ensure decision
makers are able to estimate
E(EH) despite conflicting
opinions?

Utility balances tradeoffs
between future E(IG(a))
from the evaluation and
potential ethical harms,
E(EH(a))

Adversarial testing is popular due
to its anticipated information gain.
But, ethical harms have been estab-
lished in adversarial testing. For ex-
ample, guidelines for the data la-
belling step establish cultural in-
sensitivity or social harm, and other
cases of adversarial testing in the
physical domain illustrate privacy
losses.

US NEPA guidelines require docu-
mentation and consideration of en-
vironmental harm when proposing
federal actions, but is criticized be-
cause the documentation is not re-
quired to be a primary decision fac-
tor. A recommendation to improve
environmental impact assessments
includes follow-up monitoring.

How can the ML indus-
try identify and regulate the
consideration of particular
ethical harms?

Difficulties in compre-
hensive risk assessments,
including unknown prob-
ability of ethical harm,
E(EH(a)) at time of deci-
sion

Microsoft Tay was released for live
testing following offline user stud-
ies and stress-testing. However, un-
known vulnerabilities were not re-
vealed in offline testing, and these
led to ethical harm through cultural
insensitivity during live testing.

US NRC conducts probabilistic
risk assessments on nuclear power
plants, focusing on distributions
and likelihoods of risks. They im-
pose safety standards to account for
uncertainties in the distributions

How can we motivate bet-
ter and more careful assess-
ments of potential ethical
harms during the evaluation
process?

u(a) having a negative re-
lationship with E(cost) can
lead to fewer evaluations
than preferred by regulators

Tesla autonomous live testing
has been involved in crashes
in test driving, causing ethical
harm through the value of social
harm. Critics recommend raising
standards for offline testing, which
would require corporations to in-
vest more resources to evaluations

US court decisions in the 1960s
held manufacturers responsible for
crashworthiness of vehicles, moti-
vating manufacturers to use costly
ATDs in testing in offline testing
prior to release.

How can we ensure prac-
titioners devote more re-
sources to evaluations?

u(a) does not capture the
importance of downstream
decisions ex-post evalua-
tions

ML applications in education have
been criticised for only evaluating
model accuracy, rather than the use
of models through impact on stu-
dents in an intervention

Financial regulators impose stress-
testing standards, including scenar-
ios with sequences of decisions

How can we ensure that
evaluation decisions are
downstream actionable, in
the face of considerable
uncertainty?

Table 2: A summary of challenges in selecting ethical evaluations that are implied by the framework provided. The reality of
each of these challenges in the machine learning industry is illustrated by providing an example for each. We also provide an
example of a mitigation strategy in an analogous domain to motivate a discussion of lessons for the ML industry. This is not
meant to be a comprehensive listing of issues in creating ethical evaluations, but allows us to explore key questions that could
motivate avenues to move towards ethical AI through practitioner or regulatory action.

mately result in a lack of access to effective interventions for
some groups, because sufficient information was not avail-
able to obtain treatments. This can potentially compound
effects of health disparities, and increase costs (Bibbins-
Domingo, Helman et al. 2022).

Proposed solutions to widen the inclusivity of clinical tri-
als tend to imply that more resources must be expended in
evaluation to improve the value of the information that is
gained. These include tailoring recruitment materials with
language that emphasizes available support and the value
of participant involvement, and providing transportation for
participating in a trial (Clark et al. 2019).

Open Question for ML community: How can we develop
evaluation selection guidelines that motivate evaluators to
consider individual and group specific impacts of an evalua-
tion design?

Issue 2: Disagreement on Presence or Magnitude of
Ethical Harms

When facing a decision regarding the best possible evalu-
ation practice, estimating and agreeing upon expected eth-
ical harm, E(EH), is a challenge. Some work in the ma-
chine learning and ethics literature argues that a universally
acceptable function ranking ethical outcomes does not ex-
ist, and that impartiality is simply an ideal (Card and Smith
2020). Practitioners’ interpretations of an ethical harm may
differ between team members, or with the general public.
Furthermore, ethical impacts are considered hard or even
impossible to quantify, making it a challenge to prioritize
them in metrics-driven development environments (Ali et al.
2023). This is distinct from the potential issue above, in that
the magnitude may be similar across demographic groups
but still difficult to agree upon.
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Example in ML Evaluations: Facebook NewsFeed Ran-
domized Experiment. For one week in January of 2012,
Facebook ran a large scale randomized experiment on over
600,000 unknowing participants, randomizing the News-
Feed ranking algorithm they saw. The NewsFeed was the
primary mechanism through which individuals saw their
friends’ content (Kramer, Guillory, and Hancock 2014), and
relied on a machine learning algorithm optimized for user
behavior while incorporating many weights (Meyer 2015).

This experiment, as with A/B testing more generally, is
useful in allowing platforms to observe model performance
in complex interactive systems, in order to establish the su-
periority of one approach over the other with a high de-
gree of statistical certainty. The experiment yielded infor-
mation gain that contributed to internal evaluation of the
feed algorithm, as well as broader scientific understanding of
emotional contagion, the impact on an individual’s emotion
based on exposure to friends’ emotions (Kramer, Guillory,
and Hancock 2014). While not necessarily intended to mo-
tivate direct action, this kind of knowledge gain presumably
informs the platform’s future design strategy. Hence, the in-
formation gained carried some utility to Facebook. This util-
ity diminished, however, by a backlash among the public and
some scholars who perceived it as imposing ethical harm on
some users who received the negatively manipulated feed.
Interestingly, the public backlash conflicted with what was
suggested in some prior studies, that users react negatively
to others’ positive, envy-inducing content (e.g., (Krasnova
et al. 2013)). Critics decried the practice of randomly plac-
ing some individuals in a treatment intervention that they
expected (posthoc) to yield less positive emotions, arguing
this produced ethical harm through the values of social harm
and unfairness. Some critics called for federal agency inves-
tigations, and drew parallels to regulations enforced by In-
ternal Review Boards (IRBs) (Meyer 2015). Others however
have pointed out that these critiques, like other critiques of
platform feed manipulations, exhibit a common “A/B illu-
sion” (Meyer 2015) where a randomized experiment com-
paring two policies or treatments (A and B) with an un-
known rank order in terms of some measure of quality, is
deemed less appropriate than simply implementing either A
or B for everyone (Meyer et al. 2019). Hence, the NewsFeed
experiment, as an evaluation, led to highly contrasting views
on whether inappropriate ethical harm was incurred.

Ultimately, the response to the perceived ethical harms
can be thought of as a loss of utility, one that may have been
prevented by a different evaluation design. For example, an
alternative design might ask users if they want to opt into
experimentation. However, this introduces the potential for
less information gain, since selection biases come into play,
illustrating the difficulty of balancing these concerns when
what constitutes a harm can be contested.

Mitigation Example from Analogous Domain: Placebo-
Controlled Trials and IRB regulations. Clinical research,
including placebo-controlled trials, are regulated by IRBs
(Polonioli et al. 2023; Food and Administration 1998). A/B
tests using placebo-controlled trials may be ethically ques-
tionable as they deny some participants access to treatment.
However, due to the advantages, such as a rigorous test of

efficacy, medical practitioners have established guidelines
for when placebo trials are appropriate (Millum and Grady
2013). Some of these principles include granting permis-
sion when no proven treatment exists for the disorder being
studied, and when patients are exposed to at most “tempo-
rary discomfort or delay in relief of symptoms.” (Miller and
Brody 2002; Millum and Grady 2013).

The role of the IRB is to evaluate the ethics of a proposed
evaluation (Polonioli et al. 2023). In our conceptualization,
this is analogous to an external evaluation approving that
E(EH ) meets standards prior to the experiment proceeding.
It has been proposed that corporations running online ex-
periments launch internal IRBs or consider external IRBs
(Polonioli et al. 2023). There have also been calls to in-
crease the transparency of A/B testing or for platforms of-
fering A/B testing to provide ethics training to practitioners
to assist their evaluation design (Jiang, Martin, and Wilson
2019). Both of these aim to improve ethical impact estimates
prior to deploying live experiments.

Open Question for ML Community: How can evaluators
estimate ethical harms in ways that allow for potentially con-
flicting opinions on the presence or magnitude of harms?

Issue 3: Difficulty of Balancing Future Gains in
Utility Against Immediate Ethical Harms
The conceptualization we propose requires balancing ex-
pected ethical harm with expected information gain. Even
if ethical harm is established (as previously discussed in is-
sues 1 and 2), situations may exist where teams believe it is
permissible to ignore potential ethical harms that could oc-
cur in evaluation because the information gained through the
process could lead to a more socially beneficial downstream
ML system. In the absence of attempts to more carefully
weigh concerns against each other, it is easy for model de-
velopers to engage in wishful thinking that minimizes more
direct and immediate ethical harms incurred in evaluation
under the guise of more abstract expected long-term bene-
fits. In such cases, a regulatory requirement on ethical val-
ues in evaluation outside of ML could potentially mitigate
issues.

Example in ML Evaluations: Adversarial Testing. Adver-
sarial testing in evaluation has become increasingly popular
in machine learning. Adversarial testing can be done either
prior to the release of models or on released models as part
of an iterated deployment process (Google 2023; Shevlane
et al. 2023). In this process (also called ‘red-teaming’), prac-
titioners intentionally seek out cases where models can be-
have in ways that would be undesirable. A common man-
ual approach involves individually devising malicious inputs
to provide to models, and inspecting the corresponding out-
puts. This direct intervention approach aims to allow engi-
neers to uncover model failures or vulnerabilities, and iden-
tify corrective steps (Google 2023; Shevlane et al. 2023).

However, adversarial testing can introduce ethically
harmful impact to practitioners, through the value of harm-
fulness or cultural insensitivity. This can occur during the
model output labeling step, which, according to the Google
documentation, “necessarily involves looking at troubling
and potentially harmful text or images, similar to manual
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content moderation” (Google 2023). Potential ethical issues
in content labeling have been established in other literature
(Barbosa and Chen 2019). A risk is that the ethical value of
harmfulness is underweighted as a concern when perform-
ing adversarial testing, relative to the more nebulous value
of the anticipated information gain and subsequent antici-
pated safety gains of a system.

Another example of potential ethical harm in adversarial
testing occurs in computer vision, where researchers test ad-
versarial physical characteristics. Examples include t-shirts
that evade computer vision systems that count individuals,
or eyewear that evades facial identification systems. These
studies have been critiqued for having limited samples when
physical testing relative to digital testing. A further critique
is the ethical harm of potential privacy losses, such as not
blurring faces for the adversarial testers (Albert et al. 2020).

The unclear value of the information gain and potential
ethical harms of adversarial testing are in tension with the
rise in enthusiasm around adversarial testing. This enthusi-
asm is even backed by policy; there was recently an exec-
utive mandate to establish guidelines and require corporate
reporting of performance (Biden 2023) for companies devel-
oping foundation models. Mandates for adversarial testing
should be balanced with consideration towards their poten-
tial ethical harms. Future work should explore data valuation
frameworks for identifying adversarial examples.

Mitigation Example in Analogous Domain: US govern-
ment Environmental Impact Standards and values. The 1970
National Environmental Policy (NEPA), is a government
regulation that was created to ensure ethical values are con-
sidered in evaluations. This requires possible environmental
effects of actions to be considered and documented by fed-
eral agencies. Federal agencies must begin an environmen-
tal review process before their final decisions are made, in
which they aim to determine if their proposed actions have
causal relations to significant environmental effects. NEPA
does not mandate the most environmentally sound alterna-
tive be chosen in any decision, but requires organizations
have knowledge of the impact of decisions. Among other
organizations, the Environmental Protection Agency works
on overseeing NEPA (on Environmental Quality Executive
Office of the President 2021).

Enforcing documentation and consideration of ethical
harms is not universally accepted as a useful practice. Crit-
ics say NEPA is weak due to the lack of accurate ex-ante
predictions on environmental impact and lack of follow-up
monitoring (Karkkainen 2002), surfacing concerns about the
difficulty of estimating ethical harms. Furthermore, many
categorical exclusions exist, initially introduced to acknowl-
edge that not all governmental actions pose environmental
risk. Now, critics say this is abused as a loophole to bypass
review (Fox 2023). A final criticism is that environmental
reviews have become time and cost-consuming, and can de-
lay critical clean energy projects, indicating clear dysfunc-
tion (Meyersohn 2023). This implies that such evaluations
have a higher resource cost that is not well balanced by the
value of the information gained. Reform efforts balance the
need for action and ethical value evaluations, and recom-
mend fewer exclusions, and adaptive mitigation strategies

(Meyersohn 2023; Karkkainen 2002; Fox 2023)
Overall, the field of sustainability has established man-

dates that environmental analysis be considered in a
decision-making process. This is analogous to mandating
that the set of ethical values, j, include sustainability. The
specific mechanics of the policy are critical to ensuring ethi-
cal development is successfully accomplished, as illustrated
by critics of NEPA.

Open Question for ML Community: How can ML appli-
cation industries identify and regulate the consideration of
particular ethical harms?

Issue 4: Difficulties in Comprehensive Risk
Assessment in Real-World Environments
A relevant challenge posed by the consequentialism frame-
work of ethical decision-making processes is that forecast-
ing future ethical well-being and harms across many hy-
pothetical worlds is difficult (Card and Smith 2020). The
expectation of EH(a) has to aggregate ethical harm over
expected sources of randomness (e.g., stemming from un-
known baseline risks of offensive content in content mod-
eration, or unknown, potentially adversarial user behavior
after model deployment). This is intensive for practitioners
to think about when making decisions, as they may do what
they can to prevent harm and vulnerabilities but still experi-
ence unanticipated results.

Example in ML Evaluations: Microsoft Tay Chatbot Test-
ing. In 2016, Microsoft launched a chatbot, Tay, live online.
This online live testing and release came after an offline
development lifecycle, during which they conducted user
studies, and stress-tested the bot under various conditions,
to ensure the bot had positive interactions. They hoped re-
leasing Tay online on Twitter would allow them to reach a
larger userbase to learn and improve it (Lee 2016). However,
within 24 hours, it was removed from Twitter, because a vul-
nerability in the model led to inappropriate words and im-
ages from the chatbot (Wolf, Miller, and Grodzinsky 2017).

When the team performed offline testing on Tay, the in-
formation they gained led them to believe that it was ready
for online interactions through live testing and release with
the public on Twitter. At the time of release, the team did not
have awareness of the vulnerability that was later exploited
to cause harm (Lee 2016), through the ethical values of cul-
tural sensitivity, unfairness, and harmfulness. This illustrates
the way in which offline user studies were unable to provide
sufficient information gain, and in which the anticipated eth-
ical harms were miscalculated. This could be mitigated by
better anticipating future risks.

Mitigation Example in Analogous Domain: Risk Assess-
ment in Nuclear Power Plant Safety.

The US Nuclear Regulatory Commission (NRC) oversees
US nuclear power plants, ensuring they “operate with mini-
mal risk to public health and safety”. They use probabilistic
risk assessment techniques that explore likelihood of risks,
offering a comprehensive approach including potential initi-
ating events, their respective frequencies, and uncertainties.
When the distributions of potential outcomes they see have
inadequate uncertainties, they impose defenses and safety
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margins that account for that uncertainty (U.S. Nuclear Reg-
ulatory Commission 2024).

The NRC notes that there are difficulties in estimating eth-
ical harms. Rather than focusing on the expected values, they
focus on estimating the entire distribution of ethically harm-
ful outcomes in their evaluations. This way, they are able
to ensure that safeguards exist against a range of potentially
harmful outcomes. The approach of the NRC to ensuring
that difficulties in estimating outcomes are accounted for is
beyond simply improving their risk assessment models; In
the face of uncertainty, they impose sufficiently strict safety
margins and defenses to account for the uncertainties (U.S.
Nuclear Regulatory Commission 2024).

Open Question for ML Community: How can we motivate
firms to better assess potential ethical harms arising from
real-world interactions between AI systems and users or en-
vironments, during the evaluation process?

Issue 5: Insufficient Resources for Evaluations
As discussed above, cost constraints can challenge responsi-
ble model development. For example, many generative ma-
chine learning models are trained on large, widely avail-
able datasets that are believed to be domain-general, then
fine-tuned on many small datasets due to the cost of obtain-
ing high-quality, domain-specific data. If sufficient resources
aren’t devoted to domain-specific testing, the performance
observed in an evaluation might appear to be sufficient, but
the model might fail dramatically once deployed. Hence,
cost constraints can lead to overestimation of the value of
information gained. With regulatory or social norms that pe-
nalize ethical harms, practitioners can be motivated to de-
vote more resources to investing in ethical evaluation pro-
cesses to improve systems.

Example in ML Evaluation: Tesla Autonomous System
Live Testing. California permits autonomous vehicle man-
ufacturers to evaluate autonomous driving systems on pub-
lic roads (DMV 2022). One of the autonomous vehicle sys-
tems utilizing this program is the Tesla Autopilot system,
which, during training and testing on public roads with other
drivers, was involved in several tragic fatal crashes (Sid-
diqui, Lerman, and Merrill 2022).

The value of information gained in live testing au-
tonomous vehicles has been established in prior literature.
In general settings, live testing provides information about
performance given real-time rare events. Driving involves
many rare events, which could confuse an autonomous nav-
igation system (Ackerman 2017). Real-world roads con-
tain phenomena that is difficult to simulate in synthetic en-
vironments, such as inclement weather, variable road con-
ditions, aggressive or erratic behavior from other cars, and
foreign objects (Nidhi Kalra 2016). Therefore, testing on
live roads allows engineers to study instances of systems re-
turning manual control to the human driver (Banerjee et al.
2018). Studying these interventions allows teams to identify
failures in perception or control systems (Wang et al. 2020).
Additionally, teams can receive feedback from passengers of
autonomous vehicles, to learn more about the smoothness of
the ride and identify issues with service (D’Onfro 2018).

However, ethical harms have occurred with live au-
tonomous vehicle testing, leading critics to note the under-
regulation of autonomous vehicle testing, such that corpo-
rations might rely on live testing before conducting suffi-
ciently safer offline tests. Some critics advocate for raising
standards such that corporations are required to devote more
resources to offline testing. For example, proposals include
vision tests regarding abilities to recognize surroundings,
including cars and pedestrians, prior to live testing (Clay-
brook and Kildare 2018), similar to testing norms for allow-
ing people to operate vehicles. Taken together, the need for
real world testing, while additionally adhering to the pro-
posed raised standards for offline tests, would substantially
increase the resources needed for evaluations.

Mitigation Example in Analogous Domain: Crash Test
Reconstruction. Regulators and automotive engineers ad-
minister tests to evaluate the “crashworthiness” of different
vehicles. This is motivated by decisions made by American
courts in the the late 1960s, when they began to find au-
tomotive manufacturers liable for passenger injuries when
elements of the car exacerbated the harms experienced by
passengers. Regardless of whether accidents were caused by
human error, courts argued that the statistically inevitable
nature of car accidents meant that manufacturers carried a
duty to minimize the consequences of such accidents (Choi
2019).

Crashworthiness is evaluated through crash tests. In a
crash test, researchers place a crash dummy in a vehicle, and
remotely drive the vehicle into a barrier in order to simulate
a crash (Engber 2006). Sensor readings from the vehicle and
the crash dummies –along with camera footage of the crash
– are then studied to determine the crashworthiness of the
vehicle. These tests can be expensive: estimates of the cost
of crash dummies range between roughtly $100,000 and $1
million USD (Automology 2021; Hall 2015; Ferris 2022).

Thus, evaluating vehicle crashworthiness requires engi-
neers to navigate a tradeoff between the cost of a crash test
and the information it provides. Automotive companies have
historically been incentivized to invest resources in crash
testing based on standards, such as legal penalties for fail-
ure to do so, and consumer preferences for safe vehicles.

Open Question for ML Community: How can we motivate
practitioners to devote sufficient resources to evaluations de-
spite the need for resource costs to offset the value of the
information gain?

Issue 6: Impact of Evaluations Depends on
Downstream Actions
Conceiving the value of information gained in an evalua-
tion can be as challenging as forecasting expected ethical
harm. This difficulty arises because the information obtained
is often instrumental to subsequent decision processes rather
than being valuable in isolation. The value of information
gained from an evaluation can be conceptualized in sev-
eral ways. Evaluators may simply be interested in determin-
ing whether the estimated performance falls within an ac-
ceptable range. If it does not, the information becomes an
input into a subsequent decision problem where the team
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must consider what actions should be taken to improve the
model’s performance or adjust its deployment context.

To expand upon our notation introduced earlier, at the
time of designing an evaluation the team can only estimate
the information gain given a choice of evaluation a, which
we denote ÎG(a). We denote the realized information gain
from a as IG(a). We use T to denote the set of possible ac-
tions that can be taken on the model to improve the ML sys-
tem after the evaluation is completed. On completing evalu-
ation a, the team chooses the best post-evaluation action that
yields the highest utility:

t∗ = argmaxt∈T U(t(IG(a))

The evaluation gain can be thought of as the gain in utility
from taking post-evaluation t∗ compared to taking no action,
denoted as t0:

EG(a) = E(U(t∗(IG(a))− U(t0))

Ideally, EG(a) could be used in the computation of a∗ in
Equation 1 in lieu of IG(a), as follows:

a∗ = argmaxa∈Ac
E(EG(a))−

∑
j

wjE(EHj(a))−E(cost)

(2)
but as illustrated here, computing EG contains a number
of additional challenges (choosing the utility-maximizing
t∗(·), which is dependent on the observed IG(a)), and this
introduces considerable uncertainty.

Example in ML Evaluations: Education Algorithms. ML
algorithms experience a rapid growth in education domains,
with applications such as predicting student performance
and dropout risk (Lakkaraju et al. 2015), or evaluating post-
secondary admissions. The recent rapid growth of machine
learning techniques in education suffers from questions re-
garding whether these techniques support education prin-
ciples and goals. Critics highlight ethical concerns with
these algorithms, noting negative impacts on historically
marginalized students (Liu et al. 2023).

Critics argue that evaluations of these models often pri-
oritize predictive accuracy over their ability to inform effec-
tive educational interventions. To better translate predictions
into interventions, one recommendation is to frame products
as causal inference problems testable through methods like
A/B testing (Liu et al. 2023). Incorporating knowledge of
potential post-development actions into model creation can
lead to more targeted interventions (Liu et al. 2024).

Mitigation Example in Analogous Domain: Stress Testing
in Financial Regulation.

To ensure the stability of financial institutions, financial
regulators, such as the International Monetary Fund and the
US Federal Reserve Bank, enforce various “stress testing”
frameworks, in order to assess vulnerability and ensure the
stability of macroeconomic conditions in the face of plausi-
ble, abnormal shocks, such as major changes to exchange
rates, or large credit defaults that reduce anticipated cash
flows (Blaschke et al. 2001; Federal Reserve Board 2024).

The IMF enforces specific types of evaluations that in-
clude scenarios with sequences of decisions. However, reg-
ulators note some limitations, including that these require-
ments impose significant resource costs and expertise by in-
volved parties and suffer computational complexities or data
availability (Blaschke et al. 2001). In our framing, this illus-
trates an example of an evaluation that is performed while
investigating downstream options, but notes significant costs
to doing so.

Open Question for ML Community: How can teams en-
sure that their evaluation decisions are downstream action-
able in the face of considerable uncertainty and additional
downstream decision-making?

Discussion
The concept of choosing an evaluation to maximize utility,
defined as a sum over expected information gain, ethical
harm, and resource costs, encapsulates how we might ide-
alize ethical evaluation. However, the challenges we discuss
to this framing illustrate selecting a good evaluation design
in practice happens under significant uncertainty, and dis-
agreement, around how to anticipate information gain, ethi-
cal harm, costs, beyond what constitutes these quantities in
the first place.

According to our economic analogy, there is no politi-
cally agreed upon optimal social welfare function for aggre-
gating utility across different individuals’ preferences. The
existence of subjectivity and ethical value judgements are
broadly agreed in the economic literature to be inevitable in
scientific analysis. Facing this difficulty, analysts typically
proceed in the exercise of examining the consequences of
various valuation judgments (Samuelson et al. 1983). The
decision-makers in a machine learning evaluation practice
must also reflect on a range of consequences prior to making
final decisions, with the goal of reconciling as much as pos-
sible the impacts across a combination of concerns. By dis-
cussing the consequences of real-life scenarios where value
judgements were problematic and mitigations from analo-
gous domains, accompanied by questions for the evaluation
industry to use while reflecting on their options, our con-
ceptualization aims to prompt recognition of complex and
nuanced values that arise in evaluation decisions.

The status quo approach to evaluation in research priori-
tizes sharing the results of evaluations. The pervasive shar-
ing of code, data, and results has been called “frictionless re-
producibility” (Donoho 2024) and used to explain the recent
success of machine learning in the world, but a downside is
prioritizing the results of evaluations—specifically, the pro-
duction of point estimates of performance—over richer de-
tail about the evaluation process and how it was selected.
Our work highlights how evaluation choices implicate trade-
offs between information gains and potential ethical harms
under uncertainty, an under-recognized issue in machine
learning development.

Recommendations From the Model
Our discussion suggests two broad directions that the soft-
ware industry could take toward improving decision-making
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around evaluation trade-offs. First, issues 1 through 3 are
likely to benefit from developing external review systems,
similar to recommendations made for machine learning au-
diting. Best practices for external audits recommended by
Raji et al. (2020) and Raji et al. (2022) include external
oversight boards with data access, accreditation for auditors,
and registries of ongoing audits. We echo these recommen-
dations and encourage the evaluation industry to similarly
move towards exploring effective external review boards.
This would be most useful when considering an evalua-
tion that impacts individuals outside of controlled lab ex-
periments, when participants have not consented to partici-
pate in the evaluation. In ML evaluation, concerns regarding
impact on non-consenting study participants are typically
recorded internally or audited externally ex-post the eval-
uation practice. Instead, we support the community taking a
more proactive stance and moving toward designing third-
party review boards to plan evaluation practices.

An independent regulatory body that develops com-
prehensive risk-assessment frameworks for AI technology
could also be beneficial, if these frameworks are able to en-
force and capture the potential consequences of AI systems
in diverse, unpredictable environments. For instance, the Eu-
ropean Union’s AI Act introduces a risk-based approach to
AI regulation, which could inform the development of ethi-
cal risk assessment frameworks for AI evaluation (Veale and
Zuiderveen Borgesius 2021; Novelli et al. 2024).

Secondly, we believe that internal decision-making can
benefit from further reflection and resources in order to al-
leviate potential issues 4 through 6. Teams may need to be
incentivized to focus more deeply on potential downstream
harms (issue 4), adjust their resource allocations toward eth-
ical practices (issue 5), and focus on selecting evaluations
that are actionable, linking evaluation outcomes to specific
improvement strategies (issue 6).

Resource constraints are relevant because they can impact
the ability to refine evaluation techniques to ensure minimal
likelihood of ethical harm. Incentives for private companies
need to align toward greater investment in ethical internal
evaluations. Reviews of internal AI system audits reveal that
when recording concerns, internal stakeholders often priori-
tize regulators’ or customers’ issues over those of impacted
communities, especially if these populations are systemati-
cally neglected or underrepresented. This is potentially due
to conflicts of interest or efforts to reduce liability risks (Raji
et al. 2022). It could be analogously possible that evaluations
are also prioritizing regulators or customers. Our recommen-
dation is to promote legal or social incentives that encourage
corporations to invest in ethical evaluation practices.

Developing a system of governance that dictates approval
for evaluations would require working with a wide range of
stakeholders beyond practitioners, including legal experts,
regulators, and various institutes that currently engage in AI
policy. Future work could use case studies to carefully de-
tail evidence of how specific evaluation missteps could have
been prevented, and explore options for investigation prior to
undergoing the evaluation processes. Practitioners and reg-
ulators could be interviewed or surveyed to understand spe-
cific weaknesses in their valuation of ethical values. Taken

together, further research can allow the ML ethics commu-
nity to move towards better-planned evaluations.

Alternative Conceptualizations

Our conceptualization of ethical evaluation selection is just
one possible framing among many. While we chose it as the
most versatile in that it takes as input predicted values of
the terms rather than binary information about whether cer-
tain thresholds are passed, evaluations in practice may some-
times be better described by alternatives.

For example, an alternative conceptualization is to weigh
cost explicitly against the other terms. Then, the choice of
evaluation is limited to selection within a set of options
that are not expected to exceed some maximum allowable
cost; i.e., choose a ∈ Ac where Ac ⊂ A and for all a ∈
Ac, cost(a) ≤ max(budget). Another framing is concerned
with ensuring that expected harm is below some threshold,
te, denoted E(EH(a)) ≤ te. This approach, which corre-
sponds to a “checklist” of potential ethical implications, cor-
responds to the approach some AI ethicists observe in indus-
try, albeit with mixed feelings on the formalization of ethics
in this way (Ali et al. 2023).

Our conceptualization emphasizes that evaluation designs
are selected under significant uncertainty about the potential
value of the information gained and ethical harms and other
costs incurred. One issue that arises in practice is a “cold
start” problem, where prior to running any evaluation, a team
may feel unprepared to estimate the relevant terms. Address-
ing the dynamic aspect of evaluation decisions, where some
initial evaluation is designed under low information, then
subsequent evaluations designed as follow-up conditional on
the results, is likely to be important in practice. When no
model evaluation has yet been run, teams may benefit from
considering similar models, if available, from other applica-
tions or described in the research literature. When choosing
subsequent evaluations, teams should weigh the expected in-
formation gain against the current knowledge state.

Conclusion

We have discussed potential ethical harms due to AI systems
that occur due to decisions made in the evaluation process.
To separate and categorize various issues in evaluations, we
conceptualize the decision problem faced by practitioners
when selecting an evaluation. Our conceptualization frames
a primary trade-off between the value of information gained
in evaluation and the ethical harms and costs of evaluation
incurred. We reference best practices for effective evalua-
tions in analogous domains, as well as recommendations
made by the machine learning audit research community,
to discuss interventions that could improve ethics of eval-
uations, such as external reviews or devoting additional re-
sources. Our work contributes to the conversation about the
need for the machine learning ethics community to focus on
deliberately designing evaluations in the development life-
cycle to prevent harm from machine learning systems.
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