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Fair-Over-Time Distributed Energy Resource Coordination

Hannah Moring, Xavier Farrell, and Johanna L. Mathieu

Abstract— There are numerous strategies to coordinate dis-
tributed energy resources (DERs) to provide a variety of
services to the power grid. DER coordination can affect re-
sources and participants unequally, for example, by excessively
degrading or curtailing particular DERs more than others.
However, few DER coordination strategies explicitly take into
account fairness, equity, or justice. In this paper, we explore
fairness metrics and their applicability to the DER coordination
problem. In particular, we investigate metrics from machine
learning to identify metrics that could be incorporated into DER
coordination problems and we summarize fairness metrics that
have been used in the power systems literature. A key challenge
is that most existing fairness metrics are static — ensuring
fairness at a point in time. DER coordination problems are
inherently dynamic and we often care about fairness over time,
not at each time. The machine learning literature offers some
ways to think about fairness over time and, more generally, how
to incorporate fairness into dynamic power systems problems.
We use a specific DER coordination problem — the problem
of computing dynamic operating envelopes — to demonstrate
how incorporation of a fair-over-time metric changes DER
coordination solutions, and highlight the trade-offs that arise.

I. INTRODUCTION

As society has come to more fully recognize the disparate
impact that electric power systems have had on different
populations, the concepts of fairness, equity, and justice have
emerged as key objectives in the energy transition [1]. Incor-
porating fairness, equity, and/or justice metrics within power
system problem formulations is one way to steer towards
more fair, equitable, and/or just solutions. However, defining
fairness, equity, and justice such that they can be included in
quantitative problem formulations is challenging. Moreover,
some of these concepts, like justice, were developed in the
social sciences, and trying to develop quantitative justice
metrics may undermine the spirit of the concept.

Fairness is a concept that has appeared in various engi-
neering and technical literatures such as networking, com-
puting, and machine learning (ML) [2]-[4]. For example,
fairness has been considered in ML contexts ranging from
nondiscriminatory college admissions decisions to recidivism
predictions in correction processes to loan lending decisions
in banking [5]. Fairness concepts from ML can be leveraged
within power systems problem formulations. However, this is
not usually trivial — the ML language has to be mapped to the
power systems problem and often there is not a clear/clean
mapping. One needs to determine what notion of fairness
is appropriate, what attribute should be fair (and whether
the data exists to quantify this), how to measure fairness,
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and how to incorporate fairness metrics into the problem
formulation, e.g., an optimization or control problem.

Take, for example, the problem of coordinating distributed
energy resources (DERs). DERs can provide a variety of
useful services to the power grid. Further, DERs enable
prosumers, consumers who also produce, to engage with
the power market and reap the benefits of doing so [6].
DER coordination strategies can affect resources and par-
ticipants unequally, for example, by excessively degrading
or curtailing some DERs more than others, affecting energy
costs/payments [7], [8]. Despite this, few DER coordination
strategies explicitly account for fairness. Identifying and im-
plementing suitable fairness approaches in these settings can
be especially challenging since the problems are inherently
dynamic. While the ML literature has many examples of
static fairness metrics (i.e, metrics that capture fairness at a
point in time), there are fewer metrics that capture dynamic
fairness, time-varying fairness, or fairness-over-time.

In this paper, we investigate fairness metrics from ML to
identify metrics that could be incorporated into DER coordi-
nation problems and we summarize fairness metrics that have
been used in the DER coordination literature. We find that
the ML literature offers some ways to think about fairness
over time and, more generally, how to incorporate fairness
into dynamic DER coordination problems. We summarize
the steps one should take when incorporating fairness into a
power systems problem formulation. We then provide a case
study that shows how to apply these steps to the dynamic
operating envelope problem, which seeks to determine the
range of feasible power injections from DERs at each node
of the distribution network. We show how a fairness-over-
time metric can be incorporated into the problem to spread
curtailment across the DERs and across time, achieving a
notion of fairness. We also discuss the performance-fairness
trade-offs that arise when applying this metric.

Some prior power systems work has discussed fairness.
For example, the literature review [9] catalogs 80 works
which explore fairness within contexts ranging from demand
response to shared/community energy resources, collectively
referred to as local energy systems. Fairness in the operating
envelope problem has been explored in [10]-[14]; however,
none of these papers considered fairness over time, only fair-
ness at each time, which may be unnecessarily constraining.

In summary, the contributions of our paper are fourfold.
First, we compare time-varying fairness approaches from the
ML literature, and then compare fairness approaches in the
DER coordination literature. Second, we provide a principled
method to incorporate fairness into power systems problems.
Third, we apply this method to the dynamic operating enve-
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lope problem, formulate a fair-over-time dynamic operating
envelop problem, and discuss the performance-fairness trade-
offs that result from its use.

The rest of this paper is organized as follows. Section II
describes fairness concepts and metrics in the ML and DER
coordination literatures. Section III provides an approach for
how to incorporate fairness into power systems problems.
Section IV provides a case study on fair-over-time dynamic
operating envelopes, and Section V concludes.

II. FAIRNESS CONCEPTS & METRICS

A vast body of work has come out of the ML community
to address fairness. Structured approaches to fairness have
arisen in the theory, vocabulary, and problem formulations
of fair algorithmic decision making [4], [5], [15], [16].
For power systems problems, there is growing interest and
research directed toward the incorporation of fairness. We
see value in comparing the landscapes of fairness in both
areas and exploring what can be gleaned from the fair-ML
community. In this section, we first describe common static
and time-varying fairness metrics in ML, we then describe
existing approaches to fairness in DER coordination, and
finally we compare these landscapes of fairness.

A. Fairness in machine learning

1) Static metrics: Many formulations of fairness in ML
have emerged to quantify and account for (un)fairness inher-
ent to a problem setting or introduced in the algorithmic
decision making process. One example is Demographic
Parity (also known as Statistical Parity), which is “the
property that the demographics of those receiving positive (or
negative) classifications are identical to the demographics of
the population as a whole” [17]. In other words, the outcome
probability distribution for persons belonging to different
groups are the same [18]. For example, this metric can be
used to ensure that the proportion of applicants approved
for loans from a bank is the same for white and black
communities relative to applicant pool demographics [19].

A second example is Disparate Impact [20], which formal-
izes the notion that, ideally, benefits should not dispropor-
tionately accrue among unprotected groups relative to their
accrual among protected groups. Ref. [20] conceptualizes
Disparate Impact as the condition in which the benefits
accrued among the protected group is less that x% of the
benefits accrued among the unprotected group.

A third example is Equalized Odds/Opportunity, which
formalizes the notion that the performance of a predic-
tion model should be identical for protected groups and
unprotected groups, i.e., true positive, true negative, false
positive, and false negative outcome prediction rates of the
model should be the same for protected and unprotected per-
sons [21]. For more information on common static fairness
metrics in ML, including these and others, see [5].

2) Time-varying fairness metrics: The previously men-
tioned fairness metrics do not explicitly account for the
passage of time, which is suitable for many ML contexts

characterized by batch or one-shot decision processes. How-
ever, there are settings in which decisions are coupled over
time, requiring adaptions to these metrics or inviting new
approaches that can measure fairness across time or update
decision mechanisms in a time varying manner. For example,
future decisions can be coupled to past decisions through
their effects on group or population characteristics [4]. For
example, college admission decisions can have long-term
effects on admissions for members of a group, i.e., children
of admitted (and now college-educated) parents may be better
equipped to apply for college. These kinds of fairness dy-
namics are often referred to as long-term fairness [22]. Future
decisions can also be coupled to past decisions through their
effect on the trajectory of a dynamical system. Furthermore,
the metric for fairness can be measured, optimized, or
constrained over time, coupling past and future decisions.
The latter setting is the one we consider in our case study.

The top of Table I compares examples of works that pursue
time-varying algorithmic fairness and analyzes them with
respect to a set of common elements including the notion
of fairness, the metric used to enforce or measure fairness,
and the fair decision mechanism.

B. Fairness in DER coordination

The investigation and incorporation of fairness, equity, and
justice in power systems problems is an emerging area of
interest [1]. One way of coordinating DERs is via electricity
rates design, i.e., DER actions can be shaped through their
responses to time- (and spatially-) varying electricity prices.
Some papers leverage electricity rate design to achieve
more equitable or just outcomes, e.g., [29]. However, DER
coordination can also be achieved through control- and
optimization-based approaches.

For example, aggregations of DERs, such as thermostati-
cally controlled loads (TCLs) or batteries, can be controlled
to provide grid balancing services. Control commands are
allocated to DERs in real-time based on system needs. This
type of control can lead to unequal cycling and degrada-
tion of batteries and TCLs, which reduces their lifespan,
and unequal temperature excursions (comfort impacts) for
TCLs. Ensuring fair impacts is important, and fairness here
is usually defined as equality of impact, i.e., the burden
of participation should be equally distributed, e.g., [30].
However, mechanisms for achieving this are rarely connected
to fairness. For example, in the TCL control literature it is
common to assess or penalize TCL switching as a proxy for
degradation, but it is uncommon to consider the disparity in
the number of additional switching actions per TCL across
a population of TCLs in an aggregation.

An example of an optimization-based approach to achieve
DER coordination, which has seen a significant focus on
fairness recently, is the dynamic operating envelopes prob-
lem. DERSs have the potential to improve reliability, decrease
operating costs, and lower the environmental impacts of
power system operations [6], [30]. However, if not properly
managed, DERs can cause over- and under-voltages, over-
current violations, and transformer overheating [8], [31].
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TABLE I
COMPARISON OF TIME-VARYING FAIRNESS APPROACHES FROM THE ML LITERATURE (TOP) AND FAIR OPERATING ENVELOPES APPROACHES FROM

THE POWER SYSTEMS LITERATURE (BOTTOM)

Ref.  Problem Notion of Fairness Metric Decision-making
Mechanism
[23]  dynamic learn-to-rank disproportionate allocation of benefits exact-k fairness constrained Markov decision
between groups must be limited process
[24]  dynamic learn-to-rank cumulative benefits over time should be overall disparity feedback control
proportional to cumulative merit over
time
[25]  ranked list recommender cumulative benefits over time should be amortized fairness integer linear programming
systems proportional to cumulative merit over
time
[26]  reinforcement learning in very frequent or severely low quality approximate-choice fairness  Fair-E3 algorithm
Markov decision process decisions should be avoided and approximate-action
framing fairness
[27]  online stochastic bandits current decisions must be as or more fairness-in-hindsight Cautious Fair Exploration
conducive than decisions made for (CaFE) algorithm
similar individuals in the past
[28]  loan application approval equal true outcome prediction rates equality of discovery constrained Markov decision
with bank income and across groups probability, equal process
applicant credit score opportunity
dynamics
[8] over-voltage mitigation via burdens should be distributed curtailment proportional to Optimization
DER coordination proportionally potential
[10]  dynamic operating maximize weighted individual benefit weighted proportional Optimization
envelopes proportionally fairness
[11]  dynamic operating benefits should be distributed equally soft-equitable perspective, Optimization
envelopes constraint: equitable
perspective
[13]  dynamic operating efforts to minimize burdens should squared curtailment Optimization
envelopes prioritize the most burdened
[14]  dynamic operating maximize individual benefit proportional fairness Optimization
envelopes proportionally

[12]  over-voltage mitigation via

real power caps

burden should be distributed equally

proportionally equal Consensus Control

curtailment

The operating envelope problem determines the net power
injection limits for each node in the network and updates
them as system conditions change. These limits are known
colloquially as dynamic operating envelopes, simply operat-
ing envelopes, or dynamic hosting capacity [31], [32]. Such
limits can be obtained by solving modified optimal power
flow (OPF) problems which maximize a function of power
injections/consumption at every node subject to network
constraints [33], [34].

Existing literature shows that an objective function which
fails to consider fairness can lead to significant discrepancies
in limit sizes across the network [13], [35], [36]. This
is because power consumption/injections farther from the
substation will generally have a larger impact on voltages
due to the radial structure of distribution networks and the
nonlinearities of power flow [11]. The bottom of Table I
compares examples of papers that have formulated fair
operating envelope problems. We note that all of these papers
formulate single-period optimization problems and impose
fairness objectives or constraints at each time, so fairness
may change in each time, but is not optimized over time.

C. Comparing fairness landscapes

Table I shows that in both landscapes, notions of fairness
are often characterized by the distribution of benefits/burdens
and that considering the dimension of time can present
new conceptualizations of fairness. The ML time-varying
fairness concepts can provide insight on how to extend

notions of fairness in DER coordination problems to address
their dynamic nature. For example, some notions of fairness
include a cumulative component that can address the effects
of decisions over time [24], [25] and others introduce a
notional of fairness that current decisions should be fair
relative to past decisions [27].

III. INCORPORATING FAIRNESS

We aim to assist researchers in integrating fairness into
power systems research by offering a straight-forward way
to approach fairness and communicate how fairness is con-
sidered in one’s work. In Section IV, we show the usefulness
of this approach through a case study. We note that [9] has
also contributed to the structuring of this emerging space
by introducing four dimensions — context, scope, interpreta-
tion of fairness and approach — for characterizing existing
approaches to fairness used in the local energy systems
literature. In contrast, our work aims to provide a prescriptive
approach to the incorporation of fairness into future problem
formulations.

Assuming a strong understanding of the problem setting
is established, we first recommend a researcher start by
identifying qualitative concepts of fairness relevant to one’s
problem setting. For example, [17] introduces the notion of
individual fairness which requires “mapping similar individ-
vals similarly.” In the column titled “Notion of Fairness” of
Table I, we present notions that describe the approaches to
fairness employed in each work, as we understand them.
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Secondly, the notion must be formalized mathematically.
A good starting point is to identify a measurable quantity
relevant the chosen notion of fairness and then define a
condition (i.e., a metric) under which the state is (un)fair
with respect to that quantity. The broader energy justice
community has directed much effort toward generating, iden-
tifying, cataloging, and evaluating quantities that capture the
role of energy in inequity or injustice [37]-[40]. The power
systems community has adopted some of these concepts,
for example, [41] uses the distribution of cumulative load
shed during public safety power shutoffs used to prevent
wildfires and [42] considers its geographic overlap with
vulnerable populations, as defined by the social vulnerability
index. Other quantities include energy burden (energy expen-
ditures divided by household income) and the energy equity
gap [43].

Thirdly, approaches to fairness must identify a fair-
decision-making mechanism suitable for the problem. Com-
monly used mechanisms are an algorithm, control design,
or an optimization problem. Communicating each of these
steps and the reason for one’s choices enables readers to
understand and compare approaches across different works.

IV. CASE STUDY
A. Incorporating fairness: the operating envelope problem

We next describe how to leverage the approach in Sec-
tion III to incorporate fairness into the operating envelope
problem described in Section II-B.

1) Notions of fairness: As described earlier, the first step
in addressing fairness is to identify what could be considered
fair. We will now do this for the operating envelope problem.
One notion of fairness is that decisions should aim “to be
fair in terms of the intended operation” of each DER [13].
In other words, each DER should be free to exploit their full
realizable injection capability, if desired. However, binding
network constraints necessitate curtailment of injections to
ensure safe operation of the network. Another commonly
used notion of fairness is maximizing the minimum benefit
received by any user [44]-[46], also known as a-fairness [2]
with @ = oo. In the context of operating envelopes, this
means maximizing the minimum operating envelope that any
node receives. There are certainly other notions of fairness
that can be applied to the operating envelope problem, but
these are the notions we will consider in this paper.

2) Mathematically formalizing fairness: Both of the
above notions of fairness have drawbacks in the context of
operating envelopes. The first notion, fairness in terms of
intended operation, will maximize the total network flexi-
bility and minimize individual curtailment. This motivates
minimizing the sum of the squared curtailment at each
node in the network. Squaring the curtailment will prioritize
allocation of injection limits such that the distance from the
limit to the full potential of the DER(s) at each node is
similar across the nodes. However, minimizing the sum of
the squared curtailment will bias the allocation to nodes with
larger capacities. The second notion of fairness, maximizing
the minimum, ensures that the base injection limit that every

node is allocated is as large as it can be. However, it does not
maximize the limits at less constrained nodes, resulting in a
missed opportunity for a greater total network flexibility. For
these reasons, we will use a linear combination to minimize
the squared curtailment at each node and maximize the
smallest operating envelope in the network.

3) Identifying the fair decision-making mechanism: Nei-
ther of the two notions of fairness considered here are new
in the context of operating envelopes. The contribution of
this paper is to bring the notion of fairness over time into
the context of the operating envelope problem, and the DER
coordination problem more generally.

The fair decision-making mechanism best suited for op-
erating envelopes is optimization, where fairness is softly
enforced in the objective function. In the literature, operating
envelopes are calculated by solving an optimization problem
for each time period. In this manner, operating envelope
allocations from previous time periods have no impact on
the current allocation decisions and fairness is enforced at
each time period. Inspired by methods in ML literature, we
propose two methods for enforcing fairness over time. The
first method is to calculate all operating envelope allocations
across a time horizon by solving a single, multi-period
optimization problem where allocation decisions in one time
period are coupled to decisions of the other time periods
through fairness. The second method, inspired by amortized
fairness, is to keep track of unfairness incurred from previous
allocations and use this history of unfairness to influence
current decisions. In the next section, we will detail the
mathematical models for these methods in the operating
envelope context.

B. Problem formulation

In this section, we detail the formulations of the operating
envelope problem used in our case study. We use a nonlinear
OPF formulation for calculating operating envelopes, which
represent upper limits on the net export at every node.
For brevity, we do not consider lower limits. The decision
variables are p?E, the operating envelope at each node 7; p;;,
the active power flowing on the line from node ¢ to node j;
gij, the reactive power flowing on the line from node ¢ to
node j; v; = |V;|?, the squared voltage magnitude at each
node ¢; and [;; = |Iij|2, the squared current magnitude on
the line connecting nodes i and j. Operating envelopes p°F
can be found without considering fairness by solving

max ZpiOE (la)
ieN
st 0<pPE<pl VieN (1b)

> (i —rigli) + 077 = Y pik, Vi €N (I0)

11— ] k:j—k
Z (gij — wijliy) — qf = Z 4k, Vi €N (1d)
11— ] k:j—k
vi = vj + 2(ripij + Tijqiz) — (75 + 7)),
} (Te)
VjeN
Py +a = lijvi, VijeL (1)
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p?j + q'izj < g?ja VijeL
Vie N

(1g)

v<v; <7, (1h)

where p! is the forecasted power injection at node i. Con-
straints (Ic) and (1d) enforce active and reactive power
balance [47], where notation ¢ : ¢ — j specifies the sum
over all lines ij injecting power into j, and k : 7 — k
specifies the sum over all lines jk consuming power from j.
Constraint (le) defines the voltage drop between bus ¢ and
the downstream bus j. Constraint (1f) defines the squared
apparent power flowing from bus ¢ to 7 and (1g) limits it.
Finally, constraint (1h) enforces the voltage limits at each
bus. This formulation assumes monotonicity, i.e., if pOE
defines a valid operating envelope, then any injection less
than p©F is feasible. We note that this may not always
be true in practice since (1f) is nonconvex.! To calculate
the operating envelopes across a time horizon, one could
solve (1) for each time period. The formulation given in (1)
will be henceforth referred to as the Unfair formulation.

To incorporate fairness as it has been previously done, the
objective function is changed to align with the notions of
fairness introduced in the previous subsection, giving

min Y (1 X) (p! — pP®)” — Ay (2a)
ieN

s.t.(1b) — (1h)
v <pPB Vi e N (2b)

where A is a weighting parameter. In this formulation, the
second term in the objective function, along with (2b), max-
imizes the minimum operating envelope across the nodes.
Like the Unfair formulation, this formulation is a single-
period problem that can be solved for each time period in a
time horizon. The formulation given in (2) will be henceforth
referred to as the Fair at Each Time (FET) formulation.

The first method we propose to incorporate fairness over
time is to calculate all operating envelopes across a time
horizon using a single, multi-period optimization problem,
such as

. 2
in (1 [0
1EN teT
4. 0<pPE <pl, VieNVteT (3b)
Z (Pija — Tijlije) + D51 = Z Dikts
g kij—k o)
VieN,Vte T
Z (qijt — wijlije) — @5 = Z Uikt
g kij—k (3d)
VieN,VteT
Vig = V5t + 2(TiiDije + TijQijt) 3e)

- (7"1'2]' + x?j)lij,h VieN,Vte T

1Often a linear approximation of the power flow equations is used for
scalability or a convex restriction is used to ensure there are no gaps in the
feasible region of the operating envelopes [34]; however, linearizations are
inaccurate and convex restrictions can be conservative and/or hard to find.

P+ ae = lijevie, Vij € LVEET (31)
Pl ah <55, VijeELVteT (3g)
v<wv <T, VYieN,VteT (3h)
v PEVieEN 3i)

teT

where the second term in the objective function, along
with (3i), maximizes the minimum across all nodes of the
sum of OE allocations over the time horizon and the variable
~ couples the allocation decisions across time periods. The
formulation given in (3) will be henceforth referred to as the
Fair Over Time (FOT) formulation. In a stochastic setting,
this could be implemented with model predictive control
(MPC) and/or stochastic optimization.

The second method we propose for enforcing fairness over
time is to incorporate the history of unfairness. This method
of incorporating fairness can be formulated as either a single-
period problem to be solved once for each time period in
the time horizon, as with the Unfair and FET formulations.
Alternatively, it could be formulated as an MPC problem
where a time horizon 1,...,7T is divided into smaller time
periods T7q,...,72, and a series of multi-period problems
could be solved sequentially to obtain allocations for the
entire horizon. In this paper, we use the former approach for
simplicity. Given a function that captures past unfairness for
node i, HOF | the Fair using History (FUH) formulation is

1,71

T2

. 2

min Z(l - ) Z HiC’)TF; (pg’t - p?;E) — Ay (4a)
€N t=T1

s.t.(3b) — (3h) with T replacedwith [ry, 7o)
y< Y pEvieN (4b)

te(ry,m2]

Here, we define HZOE as the weighted moving average of
the squared power injection curtailment at node ¢ at time T,
ie.,

I 2 I 2
HOE _ k (p?f;_l —Dir_1) et (pz?fi—k _pz‘,n—k)
LT E+(k—1)+..+2+1

o)
where pj ;. is the realizable power injection at node ¢ at time
7. In this paper, we assume perfect forecasting such that
Pir = pg’T, but the formulation is written in a general form.

C. Results

The network used in the case study is the 56-bus balanced
distribution network introduced in [48], with no capacitor
banks and only a single voltage regulator at the substation.
The voltage at the substation is set to 1.02 pu and the
bounds on the voltages are v = 0.95 pu and v = 1.05 pu.
The load in the network varies over time, but every node
has the same load at each time. Every node has exactly
one DER but the power injection capacity varies randomly
across both nodes and time. Table II shows our quantitative
results across the four formulations in terms of total network
flexibility (performance) and fairness in terms of the smallest
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operating envelope, and the variances of both the operating TABLE II
envelope allocations and total curtailment across the nodes. PERFORMANCE VS. FAIRNESS
For the three fair formulations, the results are given for

. . A Formulation ~ Smallest OE Curtailment  Network
three values. of \. Table II shows that the un.fa'lr' formul'atlon, ‘Allocation  Variance Variance Flexibility
(D), resqlts in the' largest total 'network flexibility but 1n'the Onfair 0 776 701 3760
least fair allocation of operating envelopes over the time FOT 223 3.63 2770 253.9
horizon based on both notions of fairness. FET results in 0.25 FET 1.44 3.73 2.71 2543
slightly larger total flexibility than FOT, with the gap between FUH 1.99 235 093 2364

/ . R N K ’ FOT 2.53 3.50 2.68 253.3

them increasing with increasing A. However, FOT results 0.5 FET 1.44 372 271 2542

in the largest smallest operating envelope and the smallest FUH 2.03 174 0.94 235.7

variance in operating envelopes for each value of . The two FoT 2.93 3.23 2.72 219

. .. R . ' 0.75 FET 1.44 3.73 2.71 254.2

formulations result in similar curtailment variances. For each FUH 1.95 1.99 0.94 236.8
value of A, FUH results in the smallest network flexibility OE stands for Operating Envelope

but also the smallest variance for both operating envelopes
and curtailment.

Figures 1, 2, and 3 show the results for A = 0.5. 12
The total accumulated operating envelope allocation at each
node is shown for each formulation in Fig. 1. Figure 1(a)
shows that the Unfair formulation allocates large upper limits
consistently to some nodes, and very small or even zero
allocations to nodes at the feeder’s ends. Figure 1(b) shows
that FOT gives similar allocations to FET, but is able to
increase the allocation of more constrained nodes without
sacrificing much allocation from the other nodes. Figure 2
shows similar trends to the accumulated allocations, but
shows the percentage of capacity curtailed at each node 10 20 30 40 50
over the time horizon. This illustrates how the formulations Bus
compare with respect to the notion of fairness in intended (a) Unfair formulation
operation. Under this notion, all the bars in Fig. 2 would be
the same height for the fairest outcome.

The amount of injection capacity in the network also
impacts the results. In Table III, results for each formulation
are shown as the DER capacities are uniformly increased.
The first column in the table represents the multiplier, w,
on the nominal capacity value, where a multiplier of 1
implies capacities are at their nominal values. For these
test cases, the second term in the objective function for
all three fair formulations was multiplied by w to maintain
a similar weight distribution in the objectives. In the case 10 20 30 40 50
where w = 0.1, all of the nodes can inject at their full Bus
capacities without violating network constraints, resulting in (b) Fair Over Time and Fair at Each Time formulations
no or negligible curtailment except for under FUH. As the
need for curtailment increases with increasing capacity, FOT
is able to outperform FET in terms of network flexibility
while maintaining better max-min fairness and comparable
fairness of intended operation.

Figure 3 illustrates the impact of biasing the current
decisions using the historical unfairness. The light blue bars
represent the operating envelope allocation in the first time
step and the orange bars represent the weighted moving
average of historical unfairness at the end of the time horizon.
The level of fairness at the end of the time horizon is
significantly higher than the level of fairness at the beginning.

10

Total OE Allocation (MW)

12 [ Fair over Time
[JFair at each Time

Accumulated OE (MW)

12

10

Total OE Allocation (MW)

10 20 30 40 50
Bus

V. CONCLUSIONS (c) Fair Using History Formulation

Fig. 1. Accumulated operating envelope allocation at each node in the

In this paper, we discussed time-varying fairness ap- network

proaches from ML literature and compared them with fair-
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ness approaches that have been previously implemented in
DER coordination literature. From this analysis, we outlined
a principled method for incorporating fairness into power
systems problems: 1) Identify relevant notion(s) of fairness,
2) mathematically formalize the notion(s) of fairness, and 3)
identify the fair-decision-making mechanism. By following
these steps, authors can help other researchers efficiently
assess relevance, compare approaches, and integrate key
fairness methods into their own work.

Inspired by time-varying fairness approaches from the ML
literature, we proposed incorporating fairness over time and
illustrated the concept using the operating envelope problem.

TABLE III
PERFORMANCE VS. FAIRNESS AS DER CAPACITIES INCREASE

w Formulation Smalles.t Variance ) NethO.rIF
Allocation OE Curtailment  Flexibility
Unfair 0.789 0.011 0 54.44
0.1 FOT 0.789 0.011 0 54.37
" FET 0.787 0.011 0 54.38
FUH 0.668 0.010 0 47.00
Unfair 0 17.76 14.91 276.0
1 FOT 2.53 3.50 2.68 253.4
FET 1.44 3.72 2.71 254.3
FUH 2.03 1.99 0.94 235.7
Unfair 0 108.11  93.96 331.14
3 FOT 1.74 20.48 19.38 287.68
FET 0.74 20.76 19.36 287.03
FUH 0.72 9.13 7.10 264.26

w 1s the DER capacity multiplier, OE stands for Operating Envelope

0.3}

HOF
=
i, 25

10 20 30 40 50
Bus

Fig. 3. Comparison between the operating envelope allocation in the first
time step, HzolE and the weighted average of historical unfairness at the

end of the time horizon, H 102%

Results from the case study suggest that enforcing fairness
over time rather than at every time step can lead to fairer
outcomes without sacrificing total network flexibility, as
compared to existing fair operating envelope implementa-
tions.

In future work, we aim to extend the notion of fairness
over time to other DER coordination problems, and to explic-
itly consider fairness with respect to monetary costs/benefits.
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