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System- and sample-agnostic isotropic
three-dimensional microscopy by weakly
physics-informed, domain-shift-resistant
axial deblurring

Jiashu Han1,2,6, Kunzan Liu 1,2,6, Keith B. Isaacson3, Kristina Monakhova1,
Linda G. Griffith 4,5 & Sixian You 1,2

Three-dimensional subcellular imaging is essential for biomedical research,
but the diffraction limit of optical microscopy compromises axial resolution,
hindering accurate three-dimensional structural analysis. This challenge is
particularly pronounced in label-free imaging of thick, heterogeneous tissues,
where assumptions about data distribution (e.g. sparsity, label-specific dis-
tribution, and lateral-axial similarity) and system priors (e.g. independent and
identically distributed noise and linear shift-invariant point-spread functions
are often invalid. Here, we introduce SSAI-3D, a weakly physics-informed,
domain-shift-resistant framework for robust isotropic three-dimensional
imaging. SSAI-3D enables robust axial deblurring by generating a diverse,
noise-resilient, sample-informed training dataset and sparsely fine-tuning a
large pre-trained blind deblurring network. SSAI-3D is applied to label-free
nonlinear imaging of living organoids, freshly excised human endometrium
tissue, and mouse whisker pads, and further validated in publicly available
ground-truth-paired experimental datasets of three-dimensional hetero-
geneous biological tissues with unknown blurring and noise across different
microscopy systems.

Three-dimensional (3D) sub-cellular imaging is highly desirable in bio-
medical research, as it reveals the intricate spatial organization of
organelles, cells, andbiological networks. Achieving high-resolution sub-
cellular imaging across all three dimensions is crucial for accurately
understanding complex biological processes, such as neural circuits,
disease pathogenesis, and cellular responses to drugs1–6. However, the
fundamental diffraction limit of optical microscopy results in axial
resolution that is 2–5 times worse than lateral resolution. This resolution
disparity severely hinders isotropic 3D imaging, limiting our ability to
faithfully represent the true 3D structure of biological samples and fully
realize the potential of 3D imaging in scientific research7–9.

While recent advances in microscopy theory and instrumentation
enable isotropic 3D imaging with certain specialized systems, their
reliance on specific hardware, contrast mechanisms, and/or sample
preparation limits widespread adoption, particularly for thick, living,
and intact biosystems10–17. To make isotropic imaging more accessible
across different microscopy modalities, algorithmic approaches seek
to address the inverse problem of axial deblurring. In recent years,
deconvolution methods based on deep neural networks (DNN), given
their effective and flexible learning of data priors, have shown unpre-
cedented performance compared to classical deconvolutionmethods,
such as Richardson-Lucy and fast iterative shrinkage thresholding
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algorithm (FISTA), on two-dimensional (2D) deconvolution18–22. How-
ever, axial resolution restoration is significantlymore challenging since
acquiring isotropic 3D imaging data as ground truth is impractical for
most microscopes, especially in living tissues, making supervised
learningmethods unsuitable for general isotropic 3D imaging. Despite
the existenceof a few systemscapable of collecting paired isotropic 3D
imaging data and generously sharing it14,23, the potential for pre-
training a network and generalizing to diverse microscopes and sam-
ples is hampered by the significant domain shifts in biomedical
imaging24,25.

Domain shift, the difference in statistical distributions between
training and inference datasets, can cause a model trained on one
dataset to perform poorly on another26–28. This issue is especially pro-
nounced in scientific imaging compared to general computer vision
due to the high heterogeneity of microscopy modalities, system
properties, sample variation across species and tissues, and the
exploratory nature (unseen anomaly detection) ofmicroscopy data25,29.
To address these challenges and enable general isotropic 3D imaging,
unsupervised generative adversarial network (GAN)-based methods
have been proposed to enable deblurringwithoutmatched axial image
pairs30–32. However, the inherent instability of saddle-point optimiza-
tion in GAN-based methods leaves them vulnerable to network col-
lapse, potentially generating hallucinations and inconsistencies33–35.
Supervisedmethods leverage similarities between lateral and axial data
distributions and employ explicit blurring forward models to achieve
high-fidelity isotropic imaging without paired in-distribution data36,37.
However, the practical applications of single-stack isotropic resolution
recovery using supervised methods are limited for two primary rea-
sons. First, these methods rely on an explicit point-spread function
(PSF) model that is assumed to be precisely matched and consistent
across the entire imaging volume. In reality, factors such as field cur-
vature, misalignment, and tissue scattering contribute to optical
aberrations, resulting in spatially varying PSFs that are sample- and
system-dependent, making real-time calibration difficult. This model-
ing challenge is further exacerbated by noise, especially in low-light
conditions38. Second, self-supervised methods require assumptions of
lateral-axial similarity within single-stack data to learn axial deblurring
from synthetic lateral deblurring. While this assumption holds for
certain cell and tissue structures (e.g., neurons in the cortex and
sinusoids in the liver, as shown in prior axial deblurring works31,32,36), it
breaks down in tissues with high directionality, polarity, or anisotropy,
which are common in biological systems such as developing embryos,
epithelial glands, and collagen fibers in the extracellular matrix29.

These challenges are particularly pronounced in label-free ima-
ging of thick, heterogeneous tissues39, where assumptions about data
distribution (e.g. sparsity, label-specific distribution, and lateral-axial
similarity) and system priors (e.g. independent and identically dis-
tributed (i.i.d.) noise, and linear shift-invariant (LSI) PSFs) are often
invalid. To overcome these challenges, we propose SSAI-3D (System-
and Sample-agnostic Isotropic 3D Microscopy), a weakly physics-
informed, domain-shift-resistant axial deblurring framework for
robust isotropic resolution recovery across diverse systems and sam-
ples. First, we formulate isotropic resolution recovery as a semi-blind
deblurring problem and leverage a pre-trained blind deblurring net-
work developed for natural scene images as the initial network. Then,
we create a synthetic training dataset by blurring denoised lateral
images with various PSFs of different sizes and orientations to adapt
the deblurring network to the current 3D imaging stack. This allows us
to train the network in a self-supervised manner, eliminating the need
for pixel-wise co-registered data pairs. We demonstrate that the
combination of a denoised and PSF-varying training dataset, coupled
with leveraging existing knowledge from the experimentally pre-
trained blind deblurring network, significantly alleviates susceptibility
to spatially varying 3D blurring kernels and noise in incoherent real-
valued PSF imaging.

Secondly, we sparsely fine-tune the large pre-trained deblurring
network using this synthetic dataset. A surgeonnetwork is employed to
identify which layers are most critical for adapting to microscopic
images, while other layers remain frozen to preserve the original
deblurring capabilities learned from themuch larger dataset of natural
scene image pairs. This approach leverages prior knowledge of blind
deblurring while efficiently adapting to microscopy data and mini-
mizing assumptions about lateral-axial similarity, thus reducing over-
fitting and computational costs commonly associatedwithmicroscopy
deconvolution problems. We demonstrate high-fidelity single-stack
axial deblurring performance of SSAI-3D on open-source experimental
datasets from various microscopy systems: confocal (with near-
isotropic validation through hardware modification23), light-sheet
(with near-isotropic validation through hardware modification14),
wide-field, and nonlinear microscope39,40. The high-fidelity recovery
across diverse microscopy systems (varying in aberrations, noise, and
contrasts) and samples (with different degrees of lateral-axial dissim-
ilarity) indicates that SSAI-3D can be a widely accessible and reliable
tool for isotropic imaging, facilitating precise analysis of complex 3D
biological structures and processes.

Results
Isotropic resolution recovery by self-supervised sparsely fine-
tuned deblurring
The SSAI-3D framework for single-stack isotropic resolution recovery
consists of two steps (Fig. 1c). First, a self-supervised training data is
generated by applying a series of PSFs with varying sizes and orienta-
tions to denoised lateral images (see Methods and Supplementary
Fig. S1 for details). Unlikemethods that rely on an exact PSFmodel and
thus have strong physics-based assumptions about the image gen-
eration forward model, these sets of weakly-physics-based synthetic
pairs emphasize the general blurring action of the optical microscope
rather than the precise forward model, thereby increasing the net-
work’s robustness against unknown optical aberrations and noise.

Secondly, we leverage knowledge learned from natural scene
deblurring tasks via a large pre-trained deblurring network NAFNet41,42

(Fig. 1b, see Methods and Supplementary Fig. S2a for details of NAF-
Net). We then sparsely fine-tune the pre-trained NAFNet using the
created self-supervised dataset, selecting and fine-tuning only ~10% of
the layers while freezing the rest. Layer selection is guided by a sur-
geon network, which evaluates each layer’s contribution to the adap-
tation task using zero-shot metrics, including statistics related to the
activation, gradient, loss function, and pre-trained weights (see
Methods for details and Supplementary Fig. S2b for architecture). This
surgeon network mitigates the stochastic instability of zero-shot
metrics, while sparse fine-tuning avoids performance degradation in
out-of-distribution data and the computational burden of full fine-
tuning43. Our approach preserves the deblurring capability learned
from the larger natural scene dataset, making only necessary adapta-
tions to the microscopy image stack. This results in a computationally
and data-efficient process that is less susceptible to overfitting to the
lateral data distribution or potentialmismatches in the forwardmodel.
Finally,with these twosteps, in the inference stage, the axial images are
sent to the adapted customized deblurring network that predicts
deblurred images with isotropic resolution. Without strong assump-
tions about the imaging system or sample data distribution, SSAI-3D is
anticipated to be a widely accessible and robust tool for isotropic 3D
imaging across diverse microscopy modalities and a broad spectrum
of biological applications (Fig. 1a).

We first compared SSAI-3D to the state-of-the-art unsupervised
(SelfNet32) and supervised (CARE36) methods using two distinct syn-
thetic objects, assuming a known and LSI PSF across the imaging
volume. The first synthetic object comprised randomly seeded sub-
diffraction-limited fluorescent beads within a imaging volume (Fig. 2a,
see Methods for simulation data generation). All three methods
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demonstrated significant improvement in axial resolution (Fig. 2c),
although Self-Net exhibited greater variability in bead shape and
intensity compared to CARE and SSAI-3D, which achieved reliable axial
resolution recovery (201.4 ± 2.7 nm and 200.7 ± 2.9 nm, respectively;
n = 50 beads).

However, many biological structures do not exhibit perfect
lateral-axial similarity like round beads. Therefore, we conducted a
second simulation on a more heterogeneous 3D synthetic structure,
comprising directional strands within an imaging volume (Fig. 2b, see
Methods for simulation data generation). This denser object with
directionality better simulates the complex 3D structures found in real
biological samples, such as dendrites, glands, and fibers (neural, elas-
tin, and collagen). In contrast to the bead simulation, existingmethods
exhibited significant performance degradation, while SSAI-3D main-
tained high-fidelity resolution recovery with accurate shape and
intensity preservation (Fig. 2d and Supplementary Fig. S4). Quantita-
tive analysis further confirmed that, even with a known and LSI PSF,
existing algorithms significantly deteriorate in performance when
applied to directional, 3D asymmetric structures, as a result of their
reliance on the assumption of lateral-axial similarity. In contrast, SSAI-
3D produced high-fidelity restorations with low mean square error
(MSE) (Fig. 2e, f) and high structural similarity (SSIM) (Supplementary
Fig. S5) across both simulations. Ablation studies confirmed the con-
sistent axial deblurring fidelity of SSAI-3D across varying levels of
blurring (Fig. 2g, h) and its robustness to PSF mismatch (Fig. 2i, j; see

Methods for details). We also conducted experiments on simulating
axial deblurring using non-Gaussian theoretical optical PSFs. These
results demonstrate that SSAI-3D is capable of semi-blind deblurring
and can handle non-Gaussian blur in real optical imaging. Additionally,
we conducted experiments on simulated axial deblurring using non-
Gaussian theoretical optical PSFs in a more realistic scenario, where
the actual PSF is unknown during training and may have a very dif-
ferent shape. Results further demonstrated that SSAI-3D is capable of
semi-blind deblurring and can effectively handle non-Gaussian blur in
real optical imaging (Supplementary Fig. S6). Ablation studies further
demonstrated that the dataset with multiple PSFs exhibiting variation
is necessary to effectively address the challenging scenario of
unknown and unmatched PSFs (Supplementary Fig. S7). Benefiting
from sparse fine-tuning with only ~15 million parameters modified,
SSAI-3D exhibited a 2.5–3.5-fold reduction in training time compared
to existing methods, thereby enhancing its accessibility and reducing
computational requirements (Fig. 2k).

Sparse fine-tuning on large pre-trained model relaxes assump-
tions on lateral-axial similarity of 3D data
To understand the performance differences between the two data
types (beads vs. strands), we further investigated how lateral-axial data
similarity influences algorithm performance. We quantified this rela-
tionship by plotting the accuracy on the reference lateral distribution
against the accuracy on the potentially shifted axial distribution (n = 9

∗

Fig. 1 | Principles of SSAI-3D. a SSAI-3D enables robust isotropic resolution
recovery across diverse 3D imaging systems (confocal, light-sheet, wide-field, and
nonlinear) anddiverse 3Dbiological samples (organelles, cells, tissues, andorgans).
Created in BioRender. Liu, K. (2024) BioRender.com/f26y695. b The deblurring
network is initialized with a large pre-trained network for blind deconvolution on a
large dataset of natural image pairs. Example images were sourced from the REDS
dataset52, released under a CC BY 4.0 license, which permits commercial use with
proper attribution. c Starting with a single microscopy-specific image stack where

the axial resolution is worse than the lateral resolution, lateral images are blurred
with a series of PSFs of different sizes andorientations to generate a self-supervised
dataset. Then, generating zero-shot metrics using ~1% of this dataset, a surgeon
network is employed to select the critical layers tofine-tune in the large pre-trained
deblurring network. Only ~10% layers are selected and sparsely fine-tuned accord-
ing to the generated self-supervised dataset. Given unseen axial images, the fine-
tuned deblurring network predicts deblurred images with isotropic resolution.
Insets in the images represent the corresponding Fourier spectrums.
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independent training and inference)44. In cases of high lateral-axial
similarity, existing methods and SSAI-3D aligned with the identity line
(y = x, Fig. 3b), indicating successful deblurring when the distribution
shift in the test axial datasets is negligible. However, when lateral-axial

similarity is low within the sample, CARE and SSAI-3D with full fine-
tuning exhibited a significant gap between training MSE on lateral
images and inference MSE on axial images. In contrast, SSAI-3D with
sparse fine-tuning demonstrated robustness to distribution shifts,

Fig. 2 | Performance of SSAI-3D on synthetic samples. Simulation of bead (a) and
strand structures (b) reveals the performance of SSAI-3D and existing methods
(c,d). The simulation objects are visualized using depth-codedprojections with the
colorbar representing the actual depth. Reconstructed axial resolution (mean ±
standard deviation, n = 50 beads) is labeled in c. e, f Characterization of recon-
struction fidelity for beads (a) and strands (b). Box bounds represent the upper and
lower quartiles, lines within boxes indicate medians, and whiskers extend to data

points within 1.5 times the interquartile range (IQR), with outliers plotted indivi-
dually beyond this range (n = 100 slices).g, hAblation study on the performance of
different levels of blurring for beads (a) and strands (b). i, j Robustness of recon-
struction against PSF mismatch for beads (a) and strands (b). A blurring with a
standard deviation of 5 is assumed to be known for CARE. k Comparison of the
training time. Scale bars: 6 µm (a, c); 60 µm (b, d). Source data are provided as a
Source Data file.
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resulting in high-fidelity axial deblurring even in 3D heterogeneous
samples45–47 (Fig. 3e; see Methods and Supplementary Figs. S8 and S9
for details and performance of pre-trained and fully fine-tuned
network).

In this experiment, we considered a simulation of imaging spheres
and cylinders in 3D, representing cases of high (circles in both lateral
and axial planes, Fig. 3a) and low (circles in lateral, rectangles in axial
planes, Fig. 3d) lateral-axial similarity, respectively. Consistent with the
results in Fig. 2, Self-Net, CARE, and SSAI-3D achieved comparable
reconstructions under high lateral-axial similarity (Fig. 3c). However, in
the low similarity case, performance diverged significantly, with SSAI-
3D outperforming existing methods (Fig. 3f). This divergence
arises because existing methods heavily rely on lateral-axial
similarity, making them susceptible to significant performance
decreases when distribution shifts occur in real axial test data. In
contrast, the sparse finetuning in SSAI-3D preserves deblurring
capabilities learned from the natural scene dataset while adapting
minimally to the microscopy image stack, resulting in superior

axial deblurring performance for 3D heterogeneous samples
under lateral-axial distribution shifts.

In real-world biological imaging, lateral-axial similarity can vary
significantly depending on the sample’s structure and imaging scale.
For instance, neurons within a small volume may exhibit high lateral-
axial similarity, whereas glands, dendrites, and fibers (neural, elastin,
collagen) with high directionality, polarity, or anisotropy typically
exhibit low lateral-axial similarity. We demonstrated this sample-
dependent 3D heterogeneity using two thick and living samples
imaged with label-free nonlinear imaging39. First, we imaged a living
human blood-brain barrier microfluidic model where vascularized
endothelial cells formed lumen structures with pericytes and
astrocytes48. This 3D self-assembled multicellular model displayed
high lateral-axial similarity (Fig. 3g). Secondly, we imaged a freshly
excised human endometrial tissue, where directional collagen growth
and the inherent polarity of the epithelial glands resulted in low lateral-
axial similarity (Fig. 3i). SSAI-3D successfully restored fine structures
such as endothelial cells (Fig. 3h; see Supplementary Movie 1 for the

d
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Fig. 3 | Effect of lateral-axial similarity of 3Ddata using simulations and tissues.
Simulation of sphere (high lateral-axial similarity, a) and cylinder (low lateral-axial
similarity, d) reveals the performance of SSAI-3D and existing methods (c, f).
b, e Relationship between training MSE on lateral images and inference MSE on
axial images indicates robustness of different methods against distribution shifts.
In label-free nonlinear imaging, biological tissues exhibit different levels of lateral-

axial similarity (high in living and intact human blood-brain barrier microfluidic
model (g) and low in freshly excised human endometrial tissue (i)). h, j Raw lateral
and axial images of g and i, as well as restored axial images using SSAI-3D. Arrows:
symmetric endothelial cells (h) andpolarized epithelial glands (j). Scale bars: 50 µm.
Source data are provided as a Source Data file.
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entire volume) and epithelial glands (Fig. 3j) in axial views, even in
cases of low lateral-axial similarity. This robustness across samples
with varying structural properties highlights the potential of SSAI-3D
as a widely applicable tool for 3D biological imaging.

Generalizability to varying system imperfections and sample
heterogeneity in simulation and experiments
Next, we investigate the robustness of SSAI-3D against various system
imperfections compared to existing methods. In practical 3D biome-
dical imaging, imaging systems exhibit diverse PSFs in shape and size

due to varying signal generation mechanisms and customized instru-
mentation and acquisition parameters. Furthermore, PSFs can be
spatially varying across the imaging volume due to factors such as
aberration, misalignment, and tissue scattering (Fig. 4a). Quantifying
the precise PSFs for an arbitrary image stack is infeasible since they are
system- and sample-dependent. Additionally, many imaging systems
operate under photon-limited conditions due to biophysical and bio-
chemical constraints, such as the need for high imaging speed or to
minimize photobleaching, phototoxicity, and tissue heating49. The
resulting low signal-to-noise ratio (SNR) images can significantly affect

Fig. 4 | Effect of optical aberrations andnoise on deblurringperformance using
simulations. a Example of optical aberrations in real microscopy system (spatially-
varying PSF in mesoSPIM23). b Example of noise in real microscopy system (low-
light condition indSLAM53). cGround truth image for simulation on effect of optical
aberrations andnoise. Fourdifferent levelsof optical aberrations andnoisewith the
corresponding raw images (d Shift-invariant PSF (ideal case); e Shift-variant PSF;

fShift-variant PSFwith rotations along z-direction;gShift-variant PSFwith rotations
along z-direction and noise across the entire imaging volume). h–k Comparison of
Self-Net, CARE, and SSAI-3D on deblurring performance using SSIM in scenarios
d–g. Bottom: Blow-upsof the co-registered imageswithin thewhite box. Scale bars:
2mm (a); 25 µm (b–k).
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the accuracy of deconvolution methods38 (Fig. 4b). Given these chal-
lenges, wedemonstrated the robustnessof SSAI-3Dagainst a spectrum
of system imperfections, including spatially varying PSFs and noise, by
leveraging a self-supervised dataset generated from PSFs with diverse
sizes and orientations.

We simulated randomly oriented tubular objects (high lateral-
axial similarity) within an imaging volume (Fig. 4c, see Methods for
simulation data generation). To evaluate axial deblurring perfor-
mance, we initially applied a shift-invariant axial blur, assumed to be
known for CARE (Fig. 4d). In this ideal scenario, Self-Net, CARE, and
SSAI-3D all achieved high-quality resolution recovery with low MSE
(Fig. 4h).However, inpractice, obtaining an accurate PSFprofile for the
system is often challenging, and PSF mismatch can degrade the per-
formanceof CARE (Fig. 2i, j). Next, weprogressively introduced system
imperfections. Figure 4e, f incorporated variations in the extent and
orientation of the axial blur. The non-uniform PSF profiles, combined
with asymmetrybetween lateral and axial aberrations, led todecreased
accuracy for Self-Net and CARE, particularly in regions with pro-
nounced aberrations (Fig. 4i, j). To incorporate the effect of noise, we
introduced both Gaussian and Poisson noise to the images after arti-
ficial axial blurring (Fig. 4g). To mitigate noise corruption and ampli-
fication during the forward blurring and inverse deblurring processes,
SSAI-3D incorporates a denoising step prior to self-supervised dataset
generation and the deblurringmodel, enhancing its robustness against
noise in low-light conditions (Fig. 4k and Supplementary Fig. S10).
Simulation across a gradient of noise levels consistently demonstrated
superior performance for SSAI-3D, further confirming the applicability
of SSAI-3D when handling noisy data (Supplementary Fig. S11).

Next, we investigate the performance of SSAI-3D on real-life bio-
logical data across various microscopy modalities, system properties,
and sample types. As demonstrated in Fig. 5, SSAI-3D achieved con-
sistent isotropic resolution recovery across a broad range of samples
(living/fixed, human/animal, varying degrees of lateral-axial similarity)
and imaging systems (diverse contrast mechanisms, commercial/cus-
tom-built, low/high resolution, low/high SNR). 3D images with varying
degrees of anisotropy, acquired using light-sheet, confocal, wide-field,
and nonlinear microscopy, all exhibited substantial axial resolution
enhancement after restoration with SSAI-3D within 0.5 GPU hours of
training (see Supplementary Table S1 andMethods for details). Fourier
spectrum analysis quantified this improvement, revealing previously
indistinguishable fine structures in low-resolution raw images, such as
dendrites in mouse brain neurons (Fig. 5c) and nucleoli in human
endometrial epithelial cells (Fig. 5f). Notably, the surgeon network
selected different layers for fine-tuning in each imaging stack (Sup-
plementary Fig. S12). These results highlight the potential of SSAI-3D as
a generalizable and accessible tool for 3D imaging, enhancing axial
resolution to facilitate the study of 3D tissue architecture and sub-
cellular features.

Validation of SSAI-3D with hardware-corrected isotropic
imaging
To experimentally validate the high-fidelity axial deblurring of SSAI-3D
and demonstrate its robustness to high sample heterogeneity and
unknown system imperfections for downstreambiological analysis, we
presented two comparative studies against near-isotropic imaging
references obtained via hardware advancements. First, we assessed
SSAI-3D’s isotropic resolution recovery in light-sheetmicroscopyusing
co-registered raw images and a near-isotropic reference acquired by
mesoscale selective plane-illumination microscopy (mesoSPIM)23

(Fig. 6a), which is a light-sheetmicroscope that achieves near-isotropic
imaging by incorporating an axially scanned light-sheet (ASLM)
module50. A whole mouse brain expressing tdTomato in vasoactive
intestinal peptide (VIP) neurons was cleared and imaged with
mesoSPIM51. At the mesoscale, the mouse brain exhibited high lateral-
axial dissimilarity, and system aberrations varied significantly across

the large field of view (FOV) (Fig. 4a). By comparing against the near-
isotropic hardware-corrected images, SSAI-3D demonstrated high-
fidelity 3D isotropic resolution recovery despite the high lateral-axial
dissimilarity and the spatially varying PSFs, which degraded the per-
formance of existing methods (please refer to Supplementary Fig. S13
for method comparison). To evaluate the effect of SSAI-3D on down-
stream biological analysis, we quantified the accuracy of neuron
extraction and observed the segmentation accuracy of SSAI-3D closely
matched that of the near-isotropic hardware-corrected mesoSPIM
dataset (Fig. 6b; see Methods for detection algorithms).

To further evaluate generalizability across diverse system imper-
fections and sample geometries, we assessed SSAI-3D on a multi-modal
confocal microscopy dataset, in addition to the light-sheet microscopy
data. This dataset comprised co-registered raw images and a near-
isotropic reference acquired by multiview confocal super-resolution
microscopy14 (Fig. 6c). An expandedmitochondrionwas imaged,with its
outermembraneandDNA immunolabeledby twodistinctdyes.Notably,
axial and lateral data distributions, as well as those between channels,
exhibited significant dissimilarity. Applying SSAI-3D to each channel
individuallywith customized sparsefine-tuning,we found thatonlySSAI-
3D achieved high-fidelity restoration compared to existing methods
(please refer to Supplementary Fig. S14 for method comparison). Ana-
lysis of the detected DNA volume within the image stack revealed that
volume statistics from the SSAI-3D reconstruction were highly con-
sistent with those derived from the near-isotropic reference (Fig. 6d).

Discussion
SSAI-3D demonstrated robust isotropic resolution recovery across
diverse real-world microscopy systems and samples (Fig. 5). In parti-
cular, this approach was applied to label-free nonlinear microscopy of
intact, thick, and heterogeneous tissues, where assumptions about
data distribution (e.g., sparsity, label-specific distribution, axial-lateral
similarity) and system priors (e.g., i.i.d. noise, LSI PSFs) often fail. The
axial deblurring pipeline was further validated using publicly available,
ground-truth-paired experimental datasets featuring potentially high
lateral-axial dissimilarity in biological tissues, as well as unknown
blurring and noise characteristics across differentmicroscopy systems
(Fig. 6). SSAI-3D achieved this robust axial deblurring by generating a
PSF-varying, noise-resilient, sample-informed training dataset and
sparsely fine-tuning a large pre-trained blind deblurring network.
Compared to existing computational methods, SSAI-3D does not
require strong assumptions about the imaging system or sample data
distribution, while maintaining low computational cost. Com-
plementary to hardware-corrected isotropic imaging, SSAI-3D avoids
the need for additional complex instrumentation and sample pre-
processing, thus enabling broader applicability across biomedical
applications, particularly for thick, intact, and living biosystems.

Compared to CARE36, the most widely used approach for isotropic
resolution recovery, which relies on an ideal, LSI PSF across the imaging
volume, SSAI-3D incorporates PSFs of varying sizes and orientations.
This enhances reconstruction fidelity (Fig. 2e–h), robustness to PSF
mismatch (Fig. 2i, j, Supplementary Fig. S6), andapplicability topractical
optical aberrations (Fig. 4h–j). Additionally, SSAI-3D pre-processes lat-
eral data with a denoising step before self-supervised dataset genera-
tion, further improving robustness against noise (Fig. 4k), a step not
included in CARE. Furthermore, while previous self-supervised axial
deblurring methods like CARE assume lateral-axial similarity, SSAI-3D
significantly reduces reliance on this assumption by employing a large
pre-trainednetwork (~150millionparameters41) leveraged fromanatural
scene dataset (~50,000 images52) with sparse finetuning. This approach
demonstrates improved robustness against distribution shifts (low
lateral-axial similarity, Fig. 3), effectively overcoming the limitations of
traininga smallmodel (~1.5millionparameters) fromscratch, as inCARE.

Imaging restoration has achieved remarkable progress in nature
scene images by growing training datasets and larger neural networks.
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This work intends to build on these pre-trained models, such as
NAFNet41,42, as powerful foundations for data-driven 3D microscopy
restoration, which has been plagued by the challenge of curating large
annotated datasets. However, the direct application of large pre-
trained models to microscopy imaging using conventional fine-tuning
is challenging due to the distribution shift from photography to
microscopy, as well as the small or non-existing annotatedmicroscopy
data library. SSAI-3D, provides a framework for gentle customization of
a blind photography deblurring network to a 3D microscopy restora-
tion task with diverse data distributions and zero paired training data.
Moreover, as a stand-alone module, sparse fine-tuning can be applied
to other tasks where a large pre-trained model can be leveraged,
including denoising, segmentation, and super-resolution, offering
potential for broader applications within the microscopy community.

By utilizing a single image stack and without requiring precise
knowledge of the systemor sample, SSAI-3Dprovides computationally
efficient access to high-fidelity isotropic resolution recovery for a wide

range of microscopy applications. To facilitate broader adoption
within the microscopy community, we offer a streamlined workflow
(Supplementary Fig. S3) and have made our code and pre-trained
surgeon network publicly available, along with detailed instructions
and examples. We anticipate SSAI-3D will find widespread use in bio-
medical research, enabling new discoveries in fields such as neu-
roscience, developmental biology, and cancer research, where high-
resolution 3D imaging is crucial.

Despite the variation in PSFs across different microscopy techni-
ques, SSAI-3D has demonstrated robustness across a wide array of
imaging modalities, effectively treating all microscopes as low-pass
filters, regardlessof the exact PSF shape (Supplementary Fig. S6, Figs. 5
and 6). This robustness is attributed to the deblurring features learned
from the large pre-trained model and refined with a customized self-
supervised dataset. Despite the robustness, the performance of SSAI-
3D will likely degrade in these scenarios. First, if the original axial
resolution is more than 7 times worse than the lateral resolution

Fig. 5 | SSAI-3D allows isotropic resolution recovery across different imaging
systems and samples. Each example includes the raw and restored images (left),
along with their respective blow-ups (highlighted in the white boxes, middle) and
Fourier spectrums (right, labelednumbers represent the lateral andaxial resolutions).
aClearedand stainedmousebrain vasculature from light-sheetmicroscopy.bFreshly

excised human endometrial tissue from multiphoton autofluorescence microscopy.
c Cleared Thy1-GFP mouse brain neurons from confocal microscopy. d Fixed mouse
whisker follicles from second harmonic generation (SHG) microscopy. e Cleared
mouse liver from wide-field microscopy. f Freshly excised human endometrial tissue
from third harmonic generation (THG) microscopy. Scale bars: 20 µm.
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Fig. 6 | Validated isotropic resolution recovery of SSAI-3D facilitates down-
stream biological analysis. a Comparison of software-corrected (SSAI-3D) and
hardware-corrected (mesoSPIM) axial image of mouse brain from light-sheet
microscopy. b Neuron detection accuracy using raw, software-corrected, and
hardware-corrected images. Arrows in a and b are pointing to a same neuron.

c Comparison of software-corrected (SSAI-3D) and hardware-corrected (multiview
confocal) axial imageofmitochondria fromconfocalmicroscopy.d Statistics of the
volume of DNA puncta inmitochondria. Inset: overall statistics of raw data. Arrows
in c represent the same DNA puncta with the volumemarked in d. Scale bars: 1mm
(a, b); 1 µm (c, d). Source data are provided as a Source Data file.
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(roughly 2.5 µm lateral resolution assuming a Gaussian beam), the
recovery fidelity deteriorates gradually, as the ablation experiment
shown in Fig. 2i, j. Secondly, the denoising step has been critical for
high-fidelity axial deblurring, likely similar to the noise amplification in
the classical deconvolution problem. The use of SSAI-3D should be
cautionary when it comes to highly noisy datasets, where either more
acquisition time or a more effective denoising algorithm could help.
Thirdly, with complex-valued coherent PSFs likeOCT imaging, SSAI-3D
may not achieve optimal axial deblurring without incorporating phase
modeling into the self-supervised dataset generation. This could
potentially be addressed by including more PSFs with varying phases
to better model the forward image formation process.

Methods
Self-supervised dataset generation
SSAI-3D employed a self-supervision strategy for learning isotropic
restoration using the raw 3D anisotropic data itself. High-resolution
lateral images are first denoised using our previous denoising
framework53. These denoised images are then artificially blurred by
convolving with a set of 25 PSFs, combining five different sizes and five
different orientations. To increase robustness to varying PSF sizes,
Gaussian blur is applied to lateral images with kernel standard devia-
tions ranging from 3 to 7 pixels. To increase robustness to varying
orientations, the kernels are rotated within the range of -45° to 45°.
This synthetic dataset, comprising the paired blurred images and their
corresponding sharp originals, serves as the training data for the
subsequent deep learning-based axial deblurring process. This self-
supervised dataset generation process is visualized in Supplemen-
tary Fig. S1.

Contribution of different layers in fine-tuning
To determine which layers to fine-tune for adapting to the data dis-
tribution of a customized dataset, we assessed each layer’s contribu-
tion to the performance of the network using zero-shotmetrics. In this
paper, we employed the following 14 such metrics, obtainable via a
single forward and backward pass of the pre-trained network, to pre-
dict the performance of fine-tuning each specific layer.

We denote the weights of the pre-trained network as Θ and the
loss function as L. For layer l, we denote the single pass forward
activation and the single passbackwardgradient at this layer asAðlÞ and
GðlÞ, respectively. Then, the 14 zero-shot metrics UðlÞ = ½uðlÞ

1 , . . . ,uðlÞ
14� of

layer l can be represented as follows.
• Metrics evaluating forward activation. These metrics aim to
capture the compatibility of pre-trained parameters with the
customized dataset. Themetrics relate to activation values during
the forward pass and include the average, standard deviation,
average of absolute values, and standard deviation of absolute
activation values:

uðlÞ
1 =E AðlÞ

n o
,uðlÞ

2 = std AðlÞ
n o

,uðlÞ
3 =E A lð Þ

���
���
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4 = std A lð Þ
���

���
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• Metrics evaluating backward gradient. These metrics aim to
determine which pre-trained model parameters are most in need
of adjustment. Themetrics relate to the gradient of themodel and
include the average, standard deviation, average of absolute
values, and standard deviation of absolute gradient values:

uðlÞ
5 =E GðlÞ
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,uðlÞ

6 = std GðlÞ
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���
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To evaluate the importance of each layer based on channel sal-
iency, we also employed the fisher metric54. This metric assesses

the impact of removing activation channels (and their corre-
sponding parameters) that are estimated to have the least effect
on the loss:

uðlÞ
9 = A lð Þ � G lð Þ

� �2 ð3Þ

• Metrics related to the loss function. To evaluate the importance
of each layer based on their sensitivity to the loss with respect to
the network inputs, we employed the metric snip55 as

uðlÞ
10 =

∂L
∂ΘðlÞ �ΘðlÞ
����

���� ð4Þ

To evaluate the importance of each layer based on their sensi-
tivity to the gradient (as opposed to loss in snip) with respect to
the network inputs, we employed the metric grasp56 as

uðlÞ
11 = �H

∂L
∂ΘðlÞ

� �
�ΘðlÞ ð5Þ

where H �f g denotes the Hessian matrix. To evaluate the impor-
tance of each layer based on a loss function derived straight-
forwardly from the product of all the layer parameters (no need
for input data to compute), we employed synflow57 as

uðlÞ
12 =

∂L
∂ΘðlÞ �ΘðlÞ ð6Þ

• Metrics related to the pre-trained network. We also included
the metrics aim to capture the inherent knowledge from the
parameters of the pre-trained network, including the average and
the standard deviation:

uðlÞ
13 =E ΘðlÞ

n o
,uðlÞ

14 = std ΘðlÞ
n o

ð7Þ

Sparse fine-tuning with a surgeon network
Sparsefine-tuning was achieved by selecting specific layers in the large
pretrained network for modification while freezing the remaining
layers. To efficiently select these layers based on the aforementioned
zero-shotmetrics,we employed a small surgeon network. The surgeon
network was a 6-layer multilayer perceptron (MLP) with 200k para-
meters (Supplementary Fig. S2). This network took the zero-shot
metrics UðlÞ, along with the positional embedding l, as inputs and
outputs a score sðlÞ, representing the contribution of layer l in the pre-
trained deblurring network. The layers with the highest 10% scores
were then selected for sparse fine-tuning. To pre-train the surgeon
network using ground truth labels, we created a meta-dataset (~1GB)
comprising 5 different stacks from a custom-built nonlinear
microscope39. Using this meta-dataset, 300 input-output data pairs
were generated, following the format f½UðlÞ, l�, sðlÞg as defined above. In
training the surgeon network, we employed the Adamoptimizerwith a
learning rate of 10−4, a weight decay of 10−6, and the pairwise ranking
loss, as we were only interested in the relative performance of the
layers. The pre-trained surgeon network is released along with
the codes.

Architecture, training, and inference of deblurring network
The deblurring network employed a NAFNet (Nonlinear Activation Free
Network) topologywith an encoder-decoder architecture for end-to-end
deconvolution, which is a state-of-the-art deep learning architecture for
image restoration tasks41,42. Designed to be simple yet effective, it
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replaces traditional nonlinear activation functions with element-wise
multiplication and channel attention mechanisms, facilitating efficient
learningof imagecharacteristics. In thiswork,weemploy thepre-trained
NAFNet (~150 million parameters), which has been trained on large
natural scene datasets (~50,000 images from REDS52), to leverage its
strong understanding of image deblurring features.

Due to the inherent nature of the method, the network was
implemented in 2D, with input patches of 256 × 256 and a batch size of
8. For all presented experiments, network parameters were optimized
using the Adam optimizer with a learning rate of 10−3 and weight decay
of 10−4. Training SSAI-3D took approximately 30min on a single Nvidia
GeForce RTX 3080 card, while inference for a 300× 300× 300 tensor
took roughly 50 s. To minimize memory consumption, the model was
quantized to float16 precision. The employed deblurring network
contained approximately 100 million parameters. Only the deblurring
network was modified, with ~10% of the layers fine-tuned and the
remaining ~90% frozen. During inference, to reconstruct the entire 3D
volume, axial images in both XZ and YZ directions were first denoised
using the same denoising network. They were then deblurred with the
fine-tuned deblurring network, and finally averaged into a single stack
with isotropic resolution. To adapt the grayscale input images (with
size L ×W) to the pretrained network requiring RGB input (with size
L ×W × 3), in the training stage, grayscale imageswere replicated across
the third dimension to create tensors (with size L ×W × 3), while in the
inference stage, the output tensors were averaged along the third
dimension to obtain the final grayscale predictions (with size L ×W).

Simulation data generation
For the simulation of beads in Fig. 2a, the ground truth image volumes
were generated with randomly located beads of random radius and
intensity. The isotropic beads were generated according to a 3D
Gaussian distribution with fixed standard deviations of 2.0 in all three
dimensions.The volume for training themodel contained 50beads in a
30 µm×30 µm×30 µm volume, with 100nm pixel size, assuming a
lateral resolution of 200nm and axial resolution of 700nm. For the
simulation of symmetric tubular strands in Fig. 4c, the ground truth
image volumes contained strands facing randomdirections at random
locations, with a mean thickness of 4 pixels and intensity values ran-
ging from 15000 to 65535. The volume for training the model con-
tained 5000 tubes in a 300 µm×300 µm×300 µmvolume. A 3D elastic
grid-based deformation field was then applied to deform the volume,
creating the ground truth.

Different blur levels were generated using a 51 × 51 × 51 3D Gaus-
sian kernel, elongated axially to serve as raw input, with a standard
deviation of 0.5 in lateral directions and 4.0 in the axial direction. For
the simulation of asymmetric tubular strands in Fig. 2b, the ground
truth volume was generated via 3D Bezier curves, shaped as curves in
the lateral direction and straight horizontal lines axially. This created
semi-synthetic data with vastly different distributions across views. A
total of 5000 strands were generated in a 300 µm×300 µm×300 µm
volume, with a thickness of 1–4 pixels, a total length of around 1200
pixels, andbinary brightness values. Similar to theprevious simulation,
blur was introduced using a 51 × 51 × 51 3D Gaussian kernel with ani-
sotropic standard deviations in lateral and axial directions.

Sample preparation and imaging acquisition
All animal procedures were conducted in accordance with a protocol
approved by the Institutional Animal Care and Use Committee at the
Massachusetts Institute of Technology (2309000575).

In Figs. 3g, i and 5b, d, f, 3D imaging in living tissues was achieved
using a custom-built nonlinear microscope39,58. A custom-built multi-
mode fiber source at 1100 nm was employed for simultaneous label-
free imaging of THG, NAD(P)H, SHG, and FAD39,40. To achieve deep
imaging with uniform SNR across different depths, pulse energy was
varied according to imaging depth, maintaining approximately the

same pulse energy at the excitation focus39. In Fig. 3g, the blood-brain
barrier microfluidic model was engineered using a tri-culture of pri-
mary human astrocytes (ScienCell, 1800), primary human brain peri-
cytes (ScienCell, 1200), and induced pluripotent stem cell (iPSC)-
derived vascular endothelial cells (Alstem, iPS11). Cells were expanded
in the following media: Astrocyte Medium (ScienCell, 1801), Pericyte
Medium (ScienCell, 1201), or VascuLife VEGF Endothelial Medium
(Lifeline Cell Technology, LL-0003) supplemented with 10% fetal
bovine serum (Thermo Fisher Scientific, 26140-079) and SB 431542
(Selleckchem, S1067)39. In Fig. 5d, mouse whisker pad tissues were
obtained from 12-week-old adult C57BL/6 mice (n = 1 with 1 male) after
heparinization and transcardial perfusion with sucrose solution. The
tissue was dissected, shaved to remove the top skin layer, and fixed in
4% paraformaldehyde (PFA) solution at 4 °C. Animals were housed in
the vivariumwith a 12-h light/dark cycle andwere given food andwater
ad libitum under room temperature and humidity. Findings were not
sex-dependent in this study. In Figs. 3i and 5b, f, freshly excised human
endometrial tissue was obtained from patient undergoing hyster-
ectomy surgery (n = 1, with age 48). All participants provided informed
consent, in accordance with protocols approved by the Partners
Human Research Committee and the Massachusetts Institute of
Technology Committee on the Use of Humans as Experimental
Subjects53. Findings were not sex-dependent in this study.

In Figs. 5a, c, e, open-source datasets with raw images acquired
fromcommercial 3Dmicroscopes usingmouse tissueswere employed.
In Fig. 5a, 3DISCO-cleared mouse brains were imaged with LaVision
light-sheet microscopes at a voxel size of 1.63 µm× 1.63 µm×3 µm.
Brain structures were visualized using Alexa Fluor 59459. In Fig. 5c, a
Thy1-GFP mouse was used, and the mouse brain was sectioned into
300-µm-thick tissue slices. The sections were optically cleared by
CUBIC and then imagedusing theNikonNi-EA1microscope in confocal
mode at a 0.21 µm×0.21 µm× 1 µm voxel size32. In Fig. 5e, the mouse
liver was sectioned into 200-µm-thick tissue slices. The sections were
optically cleared by CUBIC-50 and imaged using a wide-field micro-
scope. A water-immersion objective (Olympus, XLUMPLFLN) was used
for acquisition, and the voxel size was 0.32 µm×0.32 µm× 1 µm32.

In Fig. 6a, an open-source dataset of a whole mouse brain
expressing tdTomato in VIP neurons was utilized, with raw images
acquired and co-registeredwith near-isotropic resolution images from
mesoSPIM for comparison. mesoSPIM is a light-sheet microscope that
achieves near-isotropic imaging by incorporating the axially scanned
light-sheet (ASLM) module, which scans the excitation beam and
selectively illuminates the focal plane to improve axial resolution50.
Detailed sample preparation and imaging acquisition procedures were
presented in ref. 23. Briefly, a wholemouse brain expressing tdTomato
in VIP neurons was transcardially perfused with PBS, followed by an
ice-coldhydrogel solution for clearing. Thebrainwas then equilibrated
in refractive indexmatching solution for at least 4 days before imaging.
During imaging, the brain was loaded into and immersed within a
quartz cuvette filled with index-matching oil, allowing for sample
movement and rotation along all directions23. The raw images and co-
registered near-isotropic resolution images were acquired with the
ASLM module turned on and off, respectively16.

In Fig. 6c, an open-source dataset of an expanded mitochondrion
was utilized, with raw images acquired and co-registered with near-
isotropic resolution images from multiview confocal microscopy for
comparison. Detailed sample preparation and imaging acquisition pro-
cedures were presented in ref. 14. Briefly, U2OS cells were fixed with 4%
PFA and 0.25% glutaraldehyde (Sigma) for 15minutes and washed three
times in PBS. Mitochondria were labeled using rabbit-ε-Tomm20
(Abcam), ε-rabbit-biotin (Jackson ImmunoResearch), andAlexa Fluor 488.
DNA was labeled using 5 µg/mL of mouse-ε-DNA (Progen) and 1 µg/mL of
ε-mouse-JF549 (Novus Biologicals), each for 1 h in PBS. The raw images
andco-registerednear-isotropic resolution imageswere acquiredwithout
and with the use of triple-view confocal imaging, respectively14.
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Method comparison
We compared the performance of SSAI-3D with four baseline methods:
Richardson-Lucy, OT-CycleGAN31, Self-Net32, and CARE36. Thesemethods
were all implemented by open-source codes released by the cited
papers. For CARE, a 2D semi-synthetic dataset was created by applying
an explicit PSF to blur the lateral images, and a 2D deblurring network
was trained from scratch to deblur the axial images36. In Fig. 2i, j, a
Gaussian blur with a standard deviation of 5 was assumed to be known
for CARE. To assess robustness against PSFmismatch, themodel trained
with this known blur was applied to different levels of blurring for CARE,
while a single model trained on varying blurs was used for SSAI-3D. For
Self-Net, ablation of PSFmismatch in the training and inference stages is
not applicable because, as an unsupervised method, it does not rely on
PSF assumptions. In Fig. 6a, c, where the blurring was spatially varying, a
single blur within the range of the axial degradation was selected. In
Fig. 3b, e, and Supplementary Fig. S8, SSAI-3D with full fine-tuning was
implemented by fine-tuning the entire pretrained deblurring network
without freezing any layers. For all the experiments presented, the
hyper-parameters and training settings were universal.

Evaluation metrics
The MSE used in the paper is defined as

MSE=
1
N
jjX� X0jj2 ð8Þ

where X denotes the restored image, X0 denotes the corresponding
ground truth, and N denotes the number of pixels. The SSIM used in
the paper is defined as

SSIM=
2μμ0 +C1

� �
2σ0 +C2

� �

μ2 +μ2
0 +C1

� �
σ2 + σ2

0 +C2
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where μ,μ0

	 

and σ, σ0

	 

are the means and variances of X and X0,

respectively. σ0 is the covariance of X and X0. The two constants
C1 = k1L

� �2 and C2 = k2L
� �2 are chosen with k1 = 0:01, k2 =0:03, and

L=65535 as the dynamic range of the pixel values in 16-bit images. In
Fig. 2c, the axial resolution after isotropic resolution recovery was
measured by the full width at half maximum (FWHM) of the sub-
diffraction-limited beads in z-direction (mean ± standard deviation,
n = 50 beads). In Fig. 5, the resolution of the image was characterized
by the width in its Fourier spectrum. In Fig. 6b, d, the individual
granules were detected by an universal threshold of pixel value in raw,
software-corrected, and hardware-corrected images. The detection
accuracy of image X was characterized by the normalized cross-
correlation (NCC) against hardware-corrected image X as

NCC=
X�E Xf gð Þ � X�E X
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Statistics and reproducibility
All box plots adhere to the standard format: box bounds represent the
upper and lower quartiles, lines within boxes indicate medians, and
whiskers extend to data points within 1.5 times the IQR, with outliers
plotted individually beyond this range. Experiments in Figs. 4h–k, 5a–f,
and 6a–dwere independently repeated at least 3 times under different
random seeds, all achieving similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The open-source datasets of mouse brain vasculature, brain neurons,
and liver used in this study are available at https://doi.org/10.5281/
zenodo.788251932 (Fig. 5a, c, e). The open-source dataset of light-sheet
imaging of a whole mouse brain in this study is available at https://idr.
openmicroscopy.org/23 (under accession number idr0066, Fig. 6a;
download instructions can be found at https://idr.openmicroscopy.
org/about/download.html). The open-source dataset of confocal
imaging of a mitochondria in this study is available at https://zenodo.
org/record/549595514 (Fig. 6c). The label-free nonlinear imaging data-
sets as well as the network checkpoints, including pre-trained NAFNet,
sparsely fine-tuned NAFNet, and pre-trained surgeon network gener-
ated in this study are available at https://doi.org/10.5281/zenodo.
1395254960. Source data are provided with this paper.

Code availability
The implementations of SSAI-3D aswell as some examples are publicly
available at https://github.com/You-Lab-MIT/SSAI-3D and https://doi.
org/10.5281/zenodo.1395260360,61. Part of the code is built upon NAF-
Net, which is publicly available at https://github.com/megvii-research/
NAFNet41,42.
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