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Mapped monthly data products of surface ocean acidification indicators from 1998 to 2022 on a 0.25°
by 0.25° spatial grid have been developed for eleven U.S. large marine ecosystems (LMEs). The data
products were constructed using observations from the Surface Ocean CO, Atlas, co-located surface
ocean properties, and two types of machine learning algorithms: Gaussian mixture models to organize
LMEs into clusters of similar environmental variability and random forest regressions (RFRs) that

were trained and applied within each cluster to spatiotemporally interpolate the observational data.
The data products, called RFR-LMEs, have been averaged into regional timeseries to summarize the
status of ocean acidification in U.S. coastal waters, showing a domain-wide carbon dioxide partial
pressure increase of 1.4 & 0.4 patm yr—! and pH decrease of 0.0014 = 0.0004 yr—1. RFR-LMEs have been
evaluated via comparisons to discrete shipboard data, fixed timeseries, and other mapped surface
ocean carbon chemistry data products. Regionally averaged timeseries of RFR-LME indicators are
provided online through the NOAA National Marine Ecosystem Status web portal.

Background & Summary

The accumulation of carbon dioxide (CO,) in the atmosphere as a result of human activities, and the uptake of
~25% of anthropogenic CO, by the ocean"?, has led to increasing acidity of ocean waters of about —0.016 pH
units per decade on a global scale since the 1980s°-°. This ocean acidification (OA) signal is measurable at time
series sites”®, observed in mapped data products of CO, partial pressure®*~'2, captured by decadal repeat hydro-
graphic cruises'!', and simulated by ocean models'® and coupled Earth system models™'®!”. Superimposed on
steady increases in accumulated anthropogenic carbon (C,,,) and decreases in ocean pH, however, are various
modes of temporal (e.g., diurnal, seasonal, interannual) and spatial (e.g., latitudinal, nearshore-oftshore) var-
iability, which are particularly pronounced in coastal ecosystems. This variability in coastal OA brings unique
impacts to marine organisms that reside in coastal zones and are vulnerable to corrosive waters'®.

Large marine ecosystems (LMEs) are ocean regions that border coastlines and are characterized by distinct
bathymetry, hydrography, productivity, and trophic structure'>. LMEs encompass estuaries and river mouths,
nearshore coastal zones, continental shelves, and the outer margins of ocean current systems. Typically, the off-
shore boundary of an LME extends to the continental shelf break or to the seaward edge of a current system. Due
to their coastal proximity, LMEs tend to be natural hotspots of variability in carbon cycling and rapid exchange
between carbon pools. For example, intense surface primary productivity in the coastal ocean is fueled by nutri-
ents from river input, atmospheric deposition, and coastal upwelling'®; sinking organic matter from surface
production leads to intense respiration throughout the water column and at the seafloor?’; and high rates of
sedimentation are observed in LMEs from both biogenic and lithogenic inputs?’.
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Ongoing anthropogenic climate drivers coupled with the natural processes occurring in coastal ecosystems
make it challenging to attribute modes of OA variability to the appropriate driving mechanisms. For example,
anthropogenic eutrophication from freshwater runoff and atmospheric pollution can augment natural nutri-
ent inputs, leading to even greater net primary production in coastal surface waters and greater respiration in
subsurface waters. Whereas the direct effect of CO, uptake by primary producers mitigates OA at the surface,
highly respired subsurface waters can be laterally transported and upwelled onto the continental shelf, leading
to enhanced OA in the surface waters there'®?2. These and other OA-modulating processes differ across eco-
systems®, but their impacts are frequently correlated with environmental driver variables such as sea surface
height, temperature, salinity, and chlorophyll-a concentration. These correlations allow OA metrics to be recon-
structed from measurements and data products that are available at high spatial and temporal resolution!"**2>.,

The data product described here is based on direct observations, which are used to reconstruct a recent his-
tory of surface ocean OA indicators at monthly, 0.25° resolution in U.S. LMEs. Observations are from a publicly
available, annually updated database of surface CO, observations: the Surface Ocean CO, Atlas (SOCAT)*.
SOCAT is an international data synthesis effort that has facilitated the production of global surface CO, flux
maps?’ that contribute data-constrained estimates of the ocean CO, sink in the Global Carbon Budget®. We also
rely on publicly available satellite-derived surface ocean properties and data reanalysis products to leverage the
predictive power of environmental variables for upscaling SOCAT observations across U.S. LMEs. This kind of
spatiotemporal upscaling has historically been accomplished using statistical interpolations®**, multiple linear
regressions’!, and machine learning approaches®***>33, We build upon the approach of Sharp et al.** — who pre-
sented a monthly surface ocean CO, partial pressure (pCO,) mapped product for the California Current System
region called RFR-CCS — to train random forest regression (RFR) algorithms to predict surface CO, fugacity
(fCO,) from environmental variables that can be derived with spatial and temporal continuity across U.S. LMEs.

We advance the Sharp et al.** approach by first clustering each LME into sub-regions with similar environ-
mental variability using Gaussian mixture modelling. In addition to fCO,, we predict surface total alkalinity
(and nutrients) from empirical property estimation algorithms that have been validated and published**. We
use fCO, and total alkalinity (Ay) to compute eight additional OA indicators — partial pressure of CO,, total
dissolved inorganic carbon, pH on the total scale, hydrogen ion amount content, carbonate ion amount con-
tent, saturation states for aragonite and calcite, and the Revelle factor — to produce monthly data products
over 1998-2022 on a 0.25° x 0.25° resolution grid. We refer to these data products as RFR-LMEs?*, which are
freely available online and will be updated annually. Throughout this paper, we will use the term “mapped data
products” to describe RFR-LMEs; “mapping” refers to the reconstruction of OA indicators on monthly, spatially
continuous grids via the two-step approach of clustering on regional variability and applying trained RFR algo-
rithms to gridded predictor variables.

This work was partially motivated by a partnership with the National Oceanic and Atmospheric
Administration (NOAA) Ecosystem Indicators Working Group (EIWG), who manage the National Marine
Ecosystem Status (NaMES) website (https://ecowatch.noaa.gov). The NaMES website was created to provide
an at-a-glance overview of conditions in U.S. LMEs. These conditions are presented as indicators, which are
quantitative and/or qualitative measures of key components of the ecosystem and span the following categories:
climatological (e.g., El Nifio Southern Oscillation index), physical-chemical (e.g., sea surface temperature), bio-
logical (e.g., chlorophyll-a concentration), and human dimensions (e.g., coastal county population). Indicator
datasets are used by many NOAA stakeholders, such as fisheries managers, to monitor their ecosystems of inter-
est and to assess the potential for future changes. Indicators included on the NaMES website must be theoreti-
cally sound, have demonstrable importance to the system, be relevant and understandable, show sensitivity to
environmental variability or policy actions, and complement other indicators that are already served. This paper
will describe the theoretical basis of RFR-LMEs and their relevance their respective ecosystems, to justify the use
of RFR-LMEs as NaMES indicators of ocean acidification. The NaMES requirements also state that the data used
to develop ecosystem indicators should be publicly available, quantitative, directly measurable, and updated on
a regular basis; they stipulate that data should have adequate spatial coverage and that the time-series duration
should be greater than 10 years and expected to continue for the foreseeable future. Because RFR-LME:s fit these
requirements, we aggregate three mapped OA indicators from RFR-LMEs into monthly and annual regional
averages of those indicators (and their uncertainties). Timeseries of the selected OA indicators (pCO,, pH on the
total scale, and aragonite saturation state) are available on the NaMES website and, like the RFR-LME mapped
data products, will be updated annually.

Methods

An overview of the methodological procedure to create RER-LMEs is provided in Fig. 1. First, data were
obtained from a variety of sources and bin-averaged or interpolated onto a consistent grid. Then, within each
LME, a two-step cluster-regression strategy was employed. In the first step, spatial clusters were created using
Gaussian mixture models (GMMs) based on variability in environmental predictors. In the second step, random
forest regression (RFR) algorithms were trained for each cluster using fCO,ocar) as the target variable and
co-located environmental variables as predictors. These algorithms were then applied to gridded (0.25° x 0.25°)
monthly environmental predictor fields to create monthly RFR-LME mapped data products of sea surface CO,
fugacity (fCO,gpr 1Mr))- Applying GMMs on surface data to first divide each LME into subregions reduces the
burden on the RFRs to represent many different regimes of dynamic variability at once. Therefore, the RFR
algorithms are able to reconstruct sea surface fCO, more accurately than if all data points from the entire LME
were included in the algorithm training®. To create RER-LMEs for the other indicators, sea surface total alkalin-
ity and nutrient values were estimated, and carbonate system calculations were performed. Uncertainties were
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Fig. 1 Schematic of the procedure used to construct the ocean acidification indicator data products described
by this study. Steps within each section on the right (A, B, and C) are labelled in the schematic on the left.

propagated through these calculations to obtain uncertainty estimates for each RFR-LME. Finally, RFR-LMEs
were evaluated against independent datasets.

Data sources. Surface ocean fCO, observations were downloaded from the Surface Ocean CO, Atlas Version
2023 (SOCATv2023; https://doi.org/10.25921/r7xa-bt92)* in a large quadrangle surrounding North America
and U.S. Pacific Islands with the following coordinates: 18°S to 82°N, 140°E to 58°W (Fig. 2). These observations
were filtered by year (1998-2022), dataset flag (A, B, C, or D), and quality flag (q.f. =2, good data), and binned
into 0.25 degrees latitude by 0.25 degrees longitude monthly grid cells using platform-weighted averages. A spa-
tial resolution of 0.25° x 0.25° was chosen largely for coherence with the majority of available predictor datasets.
Platform-weighted averages mean that, within each latitude by longitude by month bin, a platform-specific (e.g.,
ship-only, mooring-only) average was first calculated, then an average was taken of those averages (if more than
one platform was represented within the cell). This was done to mitigate unwanted biases toward high-resolution
measurement systems. For validation exercises, this binning process was also repeated with only moored buoy
observations and with a dataset that excluded moored buoy observations.

Binned observations were grouped into eleven LMEs defined according to the United States Exclusive
Economic Zone (EEZ), in accordance with the practice of the NOAA EIWG (Table 1; Fig. 2). Platform-weighted
SfCO, from SOCATv2023 observations (fCO,socar)) in each of these grid cells over time shows large-scale patterns
of spatial variability (Fig. 2a) — such as relatively high fCO,ocar) at the equator and relatively low fCO,socar
surrounding Alaska, compared to the region as a whole — and temporal variability (Fig. 2b) — such as relatively
high standard deviation in fCO,socary Observations surrounding Alaska and near the coastlines of the conti-
nental U.S. compared to the relatively low standard deviation in these observations around the Pacific Islands,
again compared to the region as a whole. The distribution of the total number of months sampled within each
0.25° x 0.25° grid cell and the number of months of the year sampled at least once across the full dataset (1998-
2022) within each grid cell reveal consistent patterns (Fig. 2c,d). The Northeast U.S. has especially high obser-
vational coverage (9.5% of all 0.25° x 0.25° monthly grid cells covered and 63.6% of seasonal seasonally binned
0.25° x 0.25° grid cells covered); the Southeast U.S. (4.0% total, 50.0% seasonal), Gulf of Mexico (5.2% total,
53.1% seasonal), Caribbean Sea (6.6% total, 40.2% seasonal), and California Current System (3.0% total, 42.1%
seasonal) have moderately high observational coverage (Table 1). Observational coverage generally decreases
farther offshore.

Next, gridded fields of satellite, reanalysis, and in situ observational products were downloaded from the
sources detailed in Table 2. When applicable, these fields were re-gridded using standard interpolation functions
to match the resolution and/or central grid cell positions of the binned fCO,socar) Observations. In many cases,
multiple datasets could be chosen, but preference were given to those that were provided at 0.25° resolution and
that covered the relevant time and space. Rigorous comparison between different input datasets is planned for
future development of RFR-LMEs as they are prepared for dynamic, operational production. Sea surface tem-
perature (SST; Fig. 2e) and ice concentration were obtained from the NOAA Optimum Interpolation Sea Surface
Temperature version 2 (OISSTv2) product at daily, 0.25° x 0.25° resolution®; values were averaged to monthly
resolution. Sea surface salinity (SSS; Fig. 2f) and mixed layer depth (MLD) were obtained from the Copernicus
Marine Environment Monitoring Service (CMEMS) Global Ocean Ensemble Physics Reanalysis (GLORYYS)
product at monthly, 0.25° resolution®. Sea surface height (SSH) was obtained from the CMEMS satellite gridded
product, which is produced at monthly, 0.25° resolution by optimal interpolation of along-track measurements
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Fig. 2 Observations used to develop ocean acidification indicator data products in the eleven U.S. large marine
ecosystems (LMEs) considered in this study. LME boundaries are displayed with (a) platform-weighted fCO,
from SOCATv2023, averaged over 1998-2022 in 0.25 degrees latitude by 0.25 degrees longitude grid cells;

(b) platform-weighted fCO, variability from SOCATv2023, calculated as the standard deviation over time

in 0.25 degrees latitude by 0.25 degrees longitude grid cells; (c) the total number months over the timeseries
with at least one observation in each grid cell; (d) months of the seasonal cycle with at least one observation in
each grid cell; (e) sea surface temperature from OISSTv2%; (f) sea surface salinity from the CMEMS GLORYS
reanalysis product®; (g) wind speed from the ECMWF ERA5 reanalysis product®; and (h) bathymetry from the
ETOPO 2022 Global Relief Model**. LME name abbreviations shown in panel (a) are provided in Table 1.

from available altimeter missions*’. Sea surface chlorophyll (CHL) was obtained from the National Aeronautics
and Space Administration (NASA) Ocean Colour Level-3 Mapped Chlorophyll Data product at monthly, 1/12°
resolution and re-gridded to 0.25° resolution*"*>. One-dimensional, linear interpolation was used within each
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Large Marine Ecosystem (LME) Abbrev. Area (10°km?) | Total Data Coverage (%) | Seasonal Data Coverage (%) | N
California Current CCS 0.81 3.0 42.1 3
Gulf of Alaska GA 1.00 1.7 25.5 5
Aleutian Islands Al 0.67 0.8 18.4 4
East Bering Sea EBS 1.40 1.1 18.7 4
Beaufort Sea BS 0.24 1.4 17.6 5
Chukchi and Northern Bering Seas | NBCS 0.46 2.6 27.3 6
Northeast U.S. NE 0.46 9.5 63.6 4
Southeast U.S. SE 0.42 4.0 499 3
Gulf of Mexico GM 0.70 5.2 53.1 5
U.S. Caribbean CS 0.21 6.6 40.2 3
Pacific Islands PI 5.79 1.1 15.4 4

Table 1. Summary information for the eleven U.S. large marine ecosystems (LMEs) considered in this study.

Areas are calculated as the sum area of all 0.25° x 0.25° grid cells that fall within the limits of each LME, taking into
account the percentage of each grid cell covered by ocean determined via the ETOPOv2022 Global Relief Model.
Data coverage is calculated as the percentage of monthly grid cells occupied by an observation over the entire time
series (Total) and binned over a seasonal cycle (Seasonal). The number of Gaussian Mixture Model (GMM) clusters
(N) for each LME is determined by the GMM optimization procedure described in the Spatial clustering section.

grid cell to fill gaps in the chlorophyll dataset. Wind speed (Fig. 2g) was obtained from the fifth generation
European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis for the global climate and weather
(ERAS5) at monthly, 0.25° resolution®’. Bathymetry (Z, Fig. 2h) was obtained from the ETOPOv2022 Global
Relief Model at 1/60° resolution and re-gridded to 0.25° resolution?. Sea level pressure (SLP) was obtained from
the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) Reanalysis II model
at monthly, 2.5° resolution and interpolated to 0.25° resolution®*. Atmospheric pCO, was obtained from the
NOAA Marine Boundary Layer (MBL) product at weekly resolution and varying latitudinal resolution and was
re-gridded to monthly, 0.25° resolution®. Binned observations of fCO,socat) Were co-located in both time and
space with the gridded predictors in preparation for algorithm training.

As one of several validation exercises, the pCO, reconstructions from our method were compared to other
mapped pCO, data products downloaded from SeaFlux (v2021.04)*, which is an ensemble of six surface pCO,
products that enables users to calculate air-sea CO, flux consistently across the global ocean”. SeaFlux har-
monizes six data-based pCO, products: CMEMS-FFNN®#, MPI-SOMFFN*+# and NIES-FNN*, which are
each constructed using neural networks; JENA-MLS*, which is constructed based on a mixed layer scheme;
JMA-MLR', which is constructed using multiple linear regressions; and CSIR-ML6%, which is constructed
using an ensemble of multiple machine-learning techniques. In an additional exercise, RFR-LME mapped data
products were evaluated through comparisons to co-located, independently calculated OA indicators from
research cruises included in the Global Ocean Data Analysis Project database (GLODAPv2.2022)"" and the
Coastal Ocean Data Analysis Project - North America database (CODAP-NA)*2. Measurements of SST, SSS,
Ay, Cp, and nutrients were obtained from the GLODAP and CODAP-NA databases, then filtered to retain only
observations with good quality flags for each of those variables that were collected at a depth of 10 meters or less.

Spatial clustering.  Three clustering methods were tested: self-organizing mapping — a neural-network-based
method of producing a low-dimensional representation of a set of input data — k-means clustering — an iterative
method that optimizes a defined number of centroids by minimizing the in-cluster distances from the centroid for
a multidimensional dataset — and Gaussian mixture modelling (GMM)*>* — a method of clustering that assumes
a multidimensional dataset is represented by a mixture of several Gaussian distributions with different properties.
Of these methods, preliminary testing suggested GMM provided the best results in terms of k-fold cross-validated
root-mean-square error (RMSE) in fCO, (described in the following section) after RFRs were fit for each clus-
ter. In addition, GMM clustering affords the benefit of providing probabilities that each spatiotemporal grid cell
belongs within a given cluster instead of simply providing the cluster assignment to each grid cell as done in the
other two clustering methods. These probabilities are used in our method to mitigate discontinuities at boundaries
between clusters.

Variability (defined as the standard deviation within a spatial grid cell over time) in SLP, SST, and CHL were
used as feature sets to form clusters in most LMEs; CHL was replaced with wind speed in two LMEs (BS and
NBCS) due to insufficient CHL observations at high latitudes. The decisions to cluster based on variability over
time instead of monthly values and to use the specified sets of variables were based on initial testing and opti-
mization in terms of k-fold cross-validated RMSE in fCO, (not shown). Future development of RFR-LMEs may
continue to explore alternative clustering strategies.

GMM models with full, unshared covariance matrices were created using the MATLAB “fitgmdist” func-
tion. Full covariance matrices were used for GMM based on the a priori assumption that some of the predictor
variables were correlated due to the nature of oceanographic environmental variables. Covariance matrices for
GMM were unshared based on the a priori assumption that each spatial cluster had its own, different covari-
ance matrix. The number of components (i.e., clusters; N in Table 1) was optimized, primarily by minimizing
the k-fold cross-validated RMSE in fCO,, but also taking into account the Bayesian information criterion — a
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Fig. 3 Example for Gaussian Mixture Model (GMM) optimization in the North Bering Chukchi Seas (NBCS).
(a) Parameters used for GMM evaluation in the NBCS, plotted against the number of GMM clusters (N).

The goal of the optimization procedure was to minimize the root mean squared error, maximize the global
mean silhouette score, and identify the N at which the Bayesian information criterion was no longer sharply
decreasing. N = 6 was ultimately selected for the NBCS region. (b) Distribution of GMM clusters for the NBCS
and (c) the probability for grid cells belonging to cluster 1 (C1).

Variable Dataset DOI Original Resolution (Lat. X Lon. X Time)

Temperature™* NOAA OISSTv2* https://doi.org/10.1175/JCLI-D-20-0166.1 | 0.25° x 0.25° x daily

Ice Concentration NOAA OISSTv2% https://doi.org/10.1175/JCLI-D-20-0166.1 | 0.25° x 0.25° X daily

Salinity CMEMS GLORYS* https://doi.org/10.48670/moi-00024 0.25° % 0.25° x monthly

Mixed Layer Depth | CMEMS GLORYS® https://doi.org/10.48670/moi-00024 0.25° x 0.25° x monthly

Sea Surface Heightt | CMEMS L4% https://doi.org/10.48670/moi-00148 0.25° % 0.25° x monthly
https://doi.org/10.5067/ AQUA/MODIS/

Chlorophyll** NASA L3#42 L3M/CHL/2022; https://doi.org/10.5067/ 9km x 9km x monthly
ORBVIEW-2/SEAWIFS/L3M/CHL/2022

Wind Speed* ECMWF ERA5% https://doi.org/10.24381/cds.f17050d7 0.25° x 0.25° x monthly

Bathymetry NOAA ETOPO 2022% | https://doi.org/10.25921/fd45-gt74 1/30° % 1/30° x N/A

Sea Level Pressure®* | NCEP-DOE AMIP-II* | https://doi.org/10.1175/BAMS-83-11-1631 | 2.5° x 2.5° x monthly

Atmospheric CO, NOAA MBL* https://doi.org/10.15138/wkgj-f215 sin(Lat.) =0.5 x N/A x weekly

Table 2. Sources of gridded fields of satellite, reanalysis, and in situ observational products used to create
RFR-LME maps. The digital object identifiers and original three-dimensional resolutions of each product are

provided. *Used for GMM clustering in most LMEs. *Used for GMM clustering in BS and NBCS. *Not used for
REFR training in the BS or NBCS.
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LME |pCO,patm |A;pM | CrpM | pHy [H*];nM |RE | Q, |Q, |[CO>];pM
Cccs | 3684 2197.1 [1993.6 |[8.065 |8.63 118 [223 [350 |1447
GA 363.2 21716 | 20109 |[8.065 |8.68 134 [178 |282 |1161
Al 395.5 22139 [2069.8 |[8.035 |9.27 142|162 |257 |106.2
EBS 3823 22046 | 20601 [8.049 |9.04 143 [162 [257 |1064
BS 301.5 21355 [2013.6 |8.124 |7.54 153|139 (223 |91l
NBCS | 3313 21535 [20202 |8.096 |8.14 148 [151 [241 |988
NE 366.2 22731 20291 [8.075 |8.46 111|268 |414 |[1725
SE 375.7 23746 | 2039.2 [8.072 |8.49 92  |369 [559 |2346
GM 3817 2371.8 | 2040.9 |8.070 |8.54 93 (371 |562 |2334
cs 377.1 23202 [19768 [8.062 |8.68 89 |385 |579 |[239.9
PI 375.6 22996 |19705 |8.063 |8.67 91 |368 |555 |2299
All 374.1 2269.9 [1999.8 [8.063 |8.69 107 [3.01 [459 |190.3

Table 3. Long-term mean values for OA indicators in each LME. Long-term means are calculated as averages
over the monthly timeseries (1998-2022) of area-weighted average indicator values.

pCO, Ar Cr pH: [H ]y RF Qe Q. [COs* "]
LME patm/yr | pM/yr uM/yr 10~3/yr nM-10~%/yr | 10~/yr 10=3/yr 10=3/yr pM-10~"fyr
CCS 1.84+0.2 0.0+0.5 0.64+0.3 —1.84+0.1 35+0.3 1.6+0.5 —4.7+1.6 —7.6+24 —32+1.0
GA 1.1+0.1 —0.44+0.3 —0.1+0.5 —1.24+0.1 23+£03 1.0+1.4 —23+31 —3.8+45 —-16+18
Al 09+0.1 —0.34+0.2 —0.14+0.1 —0.94+0.1 1.94+0.3 04+0.3 —-1.1+0.6 —1.84+09 —0.84+0.4
EBS 0.9+0.1 —0.3+0.1 —0.2+0.1 —0.8+0.1 1.8+0.3 0.0+£0.3 0.3+£0.8 03+1.2 0.1+£0.5
BS 1.14+0.1 0.6+0.4 09+0.3 —1.4+0.2 24+£0.3 1.7£0.5 —22+11 —37+17 —-1.54+0.7
NBCS |03+£0.1 0.8+£0.4 0.5+£0.4 —0.2+0.2 0.5+0.3 —09+04 |26+1.0 39+15 1.74+0.6
NE 1.34+0.1 1.0+0.5 0.8+0.3 —1.24+0.1 23£0.2 —0.3+0.5 23+32 2.7+47 13+22
SE 1.84+0.2 0.3+0.1 1.0+0.1 —1.7+0.2 34+04 1.14+0.1 —6.54+0.7 —10.5+1.0 —4.4+04
GM 14412 0.1+0.1 0.6+0.2 —13+1.1 2.7£22 0.8+0.2 —50+1.3 —8.0+19 —3.34+09
CS 1.24+0.1 07+1.9 1.0+1.4 —1.1+0.1 22+0.2 0.5+0.1 —29433 —4.9+4.6 —1.9+22
PI 1.6+0.1 —0.3+0.8 044038 —1.6+0.1 3.1£0.2 1.0+0.1 —-73+11 —115+1.6 —5.0+0.8
All 14404 —0.24+0.5 0.4+0.6 —1.4+04 2.7£0.9 0.8+0.9 —0.5+0.3 —0.8+0.5 —32+19

Table 4. Long-term trends and uncertainties for OA indicators in each LME. Trends and trend uncertainties
are determined by fitting a linear least-squares model with an intercept, trend, and annual and semi-annual
harmonics to monthly area-weighted average indicator values. Area-weighted averages are calculated using a
consistent fraction of ice-free cells for each month in each region, even though in reality some years have less
ice coverage than others. Uncertainties are calculated by scaling the standard error on the trend by the effective
degrees of freedom, determined from the decorrelation timescale of residual values.

measure of model fit that includes a penalty for the number of clusters — and silhouette score — a measure
of the accuracy of the clustering technique that is calculated by comparing each point’s similarity to the other
points in its assigned cluster to how dissimilar it is to the points in the next nearest cluster (Fig. 3).

Machine learning regressions.  Once the numbers of spatial clusters were determined for each LME, ran-
dom forest regressions (RFRs)** were trained for each cluster within each LME using binned fCO,ocar) as a
target variable and each of the co-located gridded variables listed in Table 2 along with longitude (degrees east
with a 0° to 360° convention), latitude, distance from the coast, month of the year (sine- and cosine-transformed
to maintain cyclicity throughout the year and predictability within each month), and year as predictors. These
variables were found to be useful predictors of fCO, by Sharp et al.?.

RFRs are a collection of regression “trees”, each of which is trained with a bootstrapped subset of the dataset.
Each tree aims to generate a representation of the relationship between the predictor variables and the target
variable for its bootstrapped subset of the data. This is done by splitting the data into a series of “branches” based
on the predictors. At each branch point, only a random subset of the predictor variables is made available to the
algorithm. The algorithm then optimally selects a predictor dataset and a specific value from that dataset on
which to split the dataset into two additional branches/groups with the lowest possible within-group fCO,socar)
variance. This continues until the branches become “leaves”, which means they are no longer split, either due to
reaching a defined minimum leaf size or a certain criterion (e.g., variance of the remaining fCO,socar) Obser-
vations). The use of an ensemble of regression trees constitutes the “forest” aspect of an RFR. The “randomness”
aspect of the forest is due to the fact that each tree is constructed with different subsets of the full dataset and
that different subsets of the predictors are available at each branch point, making it possible for each tree to
provide a slightly different empirical regression for the dataset. New predictor data can be passed through each
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LME |pCO,patm | A;pM | CopM | pHy [H*l;nM |RF |Q, |Q, |[CO;>"];pM
ccs 12.3 11.0 35.1 0011 |0.21 1.0 [033 [049 |195
GA 953 248 1098 [0107 212 36 085 |132 |542
Al 77.9 14.2 83.2 0083 |1.76 31 066 |1.02 |423
EBS 1372 425 1315|0147 296 40 |084 [132 |s541
BS 56.0 2058 2066 |0.070 |1.19 14 023 [037 |150
NBCS | 110.8 87.3 1741|0142 249 43 084 |133 |542
NE 56.5 36.1 1035  [0.055 | 1.06 24 1095 |136 |540
SE 59.9 158 439 0065 |1.26 06 045 |057 |21.1
GM 496 25 459 0051 | 1.01 08 072 |096 |347
cs 32.8 68.1 49.1 0.039 |0.77 01 [016 |025 |132
PI 238 1.7 113 0026 | 0.50 02 016 020 |72
All 12.3 20.1 442 0014 027 1.0 [029 [042 |162

Table 5. Seasonal amplitudes for OA indicators in each LME. Seasonal amplitudes are calculated from the
annual sine and cosine component amplitudes of a linear least-squares model with an intercept, trend, and
annual and semi-annual harmonics fit to area-weighted average indicator values.

LME | pCO,patm | A pM | CrpM | pH,. [H';nM |RE  |Q, |Q. |[CO>],uM
ccs | 205 156  |184 |0022 |047 040 |017 |026 |79
GA 244 178|199 |0026 |0.56 054 |0.14 |023 |73
AI 20.6 136|154 |0021 |048 049 [012 [019 |57
EBS 18.1 162|173 |0020 |043 050 [012 [019 |57
BS 58.9 331|459 0070 |1.36 143 027 043 |167
NBCS | 1062 278  |568 0097 |2.38 215 039 |063 |250
NE 234 145 [192  [0025 |051 042 [020 [031 |93
SE 10.8 83 123 0013|026 016 |022 |033 |80
GM 24.1 124|204 [0024 |048 029 |027 [o042 |123
cs 34 115 |116 |0008 |0.16 011 |021 [031 |65
PI 2.8 125|121  |0008 |0.15 011 [020 [030 |63
All 116 138|152 |0015 |031 027 |018 [028 |71

Table 6. Average uncertainties for OA indicators in each LME. Uncertainties are determined by filtering and
scaling fCO, error estimates, pairing those with A} uncertainties from ESPER estimates, and propagating those
through CO, system calculations.

tree in the ensemble of a trained RFR, and an average of the values output from each tree is the fCO, prediction
(FCOwer 1ME))-

For each cluster, all grid cells with a GMM probability of greater than 10% for that cluster were used to train
an RFR using the MATLAB “TreeBagger” function. This means that many grid cells on the geographic bound-
ary between one or more clusters may then have been used to train multiple RFRs. The number of trees used
for each RFR was set to 1000, which was confirmed to be sufficient through visual inspection of the out-of-bag
RMSE with respect to the number of trees (not shown). The minimum leaf size was set to three based on k-fold
cross-validation testing, and the number of predictors used for each decision split was set to 6 (equal to the total
number of predictors divided by three and rounded up to the nearest whole number).

To create an RFR-LME map of fCO, for each LME, all the gridded predictor variables (0.25° x 0.25°,
monthly) within the LME were run through each cluster-specific RFR. This produced N fCOyrgg 1mEy maps
for each LME, where N is equal to the number of clusters. These maps were then merged as weighted average
SCOyrer Ly Maps using the GMM probabilities as weights, which helped to smooth out discontinuities between
clusters. Lastly, RFR-LME maps of fCO, were converted to maps of pCO, (pCO,rpr 1mr)) using SST and SLP>.

Cross-validation was used to evaluate the skill of the fCO,ppr 105y €Stimates in each cluster and overall in
each LME. This k-fold cross-validation was performed by sequentially withholding subsets of 20% of data,
training versions of RFR algorithms with the remaining 80% of data, then, for each data point in the valida-
tion dataset, comparing the fCO, obtained using the k-fold cross-validation algorithms (fCO,rpp 1ME kFold)) 1O
the observed fCO,ocar value. This procedure was repeated five times for each LME so all data points were
included in the validation data once, producing AfCO, values for each data point.

Alkalinity and nutrient estimation. Sea surface total alkalinity (A;), phosphate (PO,), and silicate
(Si(OH),) were estimated from gridded monthly fields of SSS and SST using Empirical Seawater Property
Estimation Routines (ESPERs)*. ESPERs consist of both locally interpolated multiple linear regressions
(ESPER-LIR) and feed-forward neural networks (ESPER-NN) trained to estimate seawater properties from a
given set of input properties. Though ESPERs are global in nature, the regionally tuned ESPER-LIR coefficients
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Fig.4 Long-term means of RFR-LME mapped OA indicators. Mapped averages of (a) pCO,ggr 1z (b) Crpr 1ME)
(c) PH1®er LME) (d) [H+]T(RFR-LME)’ (e) Qa.r(RFR—LME)) (f) Qca(RFR—LME)> (® [C0327]T(RFR-LME)’ and (h) RF(gpr-1vE) OVEr the
timeseries (1998-2022) within each LME.

and spatial coordinate predictors in ESPER-NNs mean that ESPERs function similarly to regional property esti-
mation algorithms. ESPERs also provide the benefit of estimating uncertainty corresponding to each predicted
value, allowing for the propagation of those uncertainties through downstream computations. The ESPER-Mixed
routine (an average of both the ESPER-LIR and ESPER-NN approaches) was used for this study, due to assess-
ment statistics that have indicated a lower global RMSE for the ESPER-Mixed approach (e.g., a global average
RMSE of 3.7 pmol kg™ for A1) compared to ESPER-LIR (4.0 pmol kg~!) and ESPER-NN (4.1 pmol kg™!) when
producing property estimates from SSS and SST>*.
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Fig.5 Seasonal means of Crpr 1mr). Mapped averages of Crgpg 1) in the northern hemisphere (a) winter
(DJE), (b) spring (MAM), (c) summer (JJA), and (d) fall (SON) over the timeseries (1998-2022) within
each LME.

Carbonate system calculations. CO, system calculations were performed using CO2SYSv3 for
MATLAB* to determine additional ocean acidification (OA) indicators: dissolved inorganic carbon (Crggr 1ye))s
pH on the total scale (pHyrpr.1ump))> total hydrogen ion amount content ([H*]ygpr 1mr))> total carbonate ion
amount content ([COs*" | rrer.Lmr))» Saturation states for aragonite (Q,,rpr 1vr)) and calcite (Qeyrer Lvr))> and
Revelle factor (RF geg 1yp))- These calculations were performed using well established thermodynamic equa-
tions describing the chemistry of carbon dioxide in seawater®”%. Input parameters to these equations were
SfCOyger 1yE) along with ESPER-estimated Ay (Argspery)> phosphate (PO, gsper))> and silicate (Si(OH) ygspery)-
Carbonic acid dissociation constants from Lueker et al.*, the boric acid dissociation constant from Dickson®, the
total boron to salinity ratio from Lee et al.®!, the dissociation constant of water from Dickson®?, and the hydrofluo-
ric acid dissociation constant from Perez and Fraga® were used in CO, system calculations. Uncertainties were
propagated through these calculations (see following section).

Uncertainty estimation. Uncertainties in RER-LME maps of fCO, were evaluated based on the previously
described k-fold cross-validation approach. First, spatially gridded absolute values of AfCO, from k-fold
cross-validation were low-pass filtered (using 0.5° x 0.5° windows) two times in each LME to begin to fill nearby
grid cells with uncertainty values. Then, nearest-neighbor interpolation was used to fill any remaining empty grid
cells with data-based, spatially scaled uncertainty values (E,,))- This approach only assesses the strength of the
fit for available. It is therefore prudent to assign greater uncertainties for periods and regions where training data
are less abundant or absent. For this reason, the E . values were further scaled over time by calculating two
scaling factors specific to each LME, one representing the seasonal data coverage (using 3-month running means
of the relative data coverage across the seasonal cycle) and another representing the relative annual data coverage
(using 5-year running means of the relative data coverage across the timeseries).

The seasonal scaling factor (e,,, ) was calculated as:

my, .41
(Zmyimymff 1nobs(my)/ntat(my))/MY

nobs(my)/ntot(my)

€seas. =

where my is the numbered month of the year (1-12), my,is the reference month of the year for each time step
(1-12), 545 is the number of grid cells with observations in the corresponding month of the year, 7,5, is the
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Fig. 6 k-fold cross-validated differences between estimated and measured fCO, and scaled uncertainty in
SCOsrer-1ME)y ArEsprry a0d Qurer-imr)- () Absolute differences (|ACO,|) between fCO,wpr-1mE-kroly a0
SfCOys0car) calculated via a k-fold cross-validation approach compared to (b) long-term average uncertainty
in fCO,rer LME krold)» Calculated and scaled according to the procedure in the Uncertainty estimation section.
Long-term average uncertainty in (c) Aygspery and (d) Q,,rpr 1y are also shown.

total number of available grid cells in the corresponding month of the year, and MY is the total number of
months considered within the window for each time step. Because January (1) comes after December
(12), my,,,— 1 = 12 when my,,= 1 and my,,;+ 1 = 1 when my, = 12. The long-term scaling factor (e,,,, ) was
calculated as:

ann

ms,c+24
(Zms:}‘msre],_24nobs(ms)/ntot(ms))/MS

nobs(ms)/ntot(ms)

where ms is the numbered month in the full series (1-228), ms,,sis the reference month in the series for each
time step (1-228), #1,p(s) is the number of grid cells with observations in the corresponding month of the series,
iot(ms) 18 the total number of available grid cells in the corresponding month, and MS is the total number of
months considered within the window for each time step. Fewer months were considered within each window
near the beginning and end of the time series. Finally, the estimated uncertainty of fCO,ggr 1:r) Scaled spatially
and temporally (i.e., seasonally and annually) was calculated as:

EfCOZ(s,t) = EfCOZ(s) X Eseas. X Eann.

The window sizes of the scalers were selected to balance data coverage in each time window with realistic
periods of time over which observational data may exhibit serial correlations.

Uncertainties in ESPER-estimated A} and nutrients were provided by the ESPER algorithms, which estimate
uncertainty using a polynomial fit to salinity and depth. The ESPER algorithms are less skillful in the surface
ocean where we use them than they are globally across all depths, and the uncertainty estimates are correspond-
ingly greater at shallow depths.

The uncertainty estimates were propagated along with standard estimated total uncertainties in carbonate
system constants (see Table 1 in Orr et al.**) to calculate uncertainty in mapped OA indicators. Gaussian uncer-
tainty propagation was employed, using CO2SYSv3 for MATLAB®®, which is based on uncertainty propagation
code introduced in CO2SYSv2 by Orr et al.®.
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LME Mean AfCO, | Mean|AfCO,| | Median AfCO, | Median |AfCO,| |IQR RMSE | R*

CCS —0.51 21.48 0.61 8.47 16.85 44.10 0.67
GA 0.11 14.03 0.16 7.66 15.31 23.95 0.89
Al 0.02 13.44 0.64 6.52 13.10 26.11 0.76
EBS 0.79 14.81 0.67 9.33 18.53 22.40 0.92
BS —0.35 8.68 —0.57 4.64 9.24 14.40 0.91
NBCS —1.04 19.14 0.05 11.93 23.85 29.95 0.88
NE —0.11 15.58 0.39 10.86 21.70 22.89 0.81
SE —0.08 8.01 0.47 4.14 8.30 16.82 0.82
GM —0.07 13.82 —0.01 6.00 12.03 29.08 0.75
CS —0.05 3.68 0.24 2.46 4.89 5.41 0.93
PI —0.02 2.37 0.09 1.62 3.24 3.56 0.98
Average —0.10 12.24 0.25 6.68 13.34 21.53 0.85

Table 7. Error statistics of fCO, predicted by k-fold cross-validation algorithms (fCO,ggr 1k krolt)) cOmpared
to fCO, from SOCAT observations (fCOysocar))- The k-fold cross-validation procedure performed within each
LME is described in the Machine learning regressions section. Statistics shown include the mean and absolute
mean AfCO, (fCO,wer LmE krold) — fCOxsocar)), median and absolute median AfCO,, interquartile range (IQR)
of AfCO,, root mean square error (RMSE) of AfCO,, and Pearson’s correlation coefficient (R?) between and

fCOZ(RFR—LME—kFold) andfCOZ(SOCAT)-
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Fig. 7 pCO, timeseries for the eleven U.S. LMEs considered in this study. Area-weighted annual (red) and
monthly (black) means are presented along with envelopes of uncertainty. Uncertainties are calculated by
scaling k-fold cross-validated uncertainties spatially with a two-dimensional low-pass filter, then temporally
according to long-term data coverage (5-year running windows) and seasonal data coverage (3-month running
windows). Average values across the timeseries are indicated by dotted lines. Note the different y-axis for each
LME. For many LMEs, uncertainties are larger near the beginning of the timeseries, when SOCAT observations
are less dense. Inset within each timeseries plot is a figure showing the percent of the LME represented across
the seasonal cycle by grid cells that remain ice-free across the entire timeseries; these are the grid cells used to
compute monthly and annual means.
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Fig. 8 pHr timeseries for the eleven U.S. LMEs considered in this study. Same as Fig. 7, except for pHr.

Validation and evaluation. The skill of the RFR-LME maps was evaluated through comparisons with
co-located OA indicators independently calculated from the ship-based GLODAPv2.2022 and CODAP-NA
measurements described above. OA indicators were computed at in situ temperature from the A and Cr
observations using CO2SYSv3 for MATLAB® and the same equilibrium constants as before. Although the
GLODAPv2.2022 and CODAP-NA databases also include pHy and pCO, measurements, they are not as wide-
spread as A and C; measurements, so we chose to calculate all indicators from A and C;. for evaluation. Each
observation was then co-located with the corresponding RFR-LME grid cell and compared.

In addition, RFR-LME maps were compared to global mapped data products of sea surface pCO, obtained
from SeaFlux (v2021.04)*". Long-term averages of pCO, from RFR-LME maps and SeaFlux maps were computed
across the overlapping time periods of both products (i.e., 1998-2019). Mapped differences between RFR-LME
and each SeaFlux ensemble member, as well as an average across the ensemble, were computed and compared.

Finally, observations of pCO, at fixed buoy locations were compared to pCO, from RFR-LME data products
at grid cells corresponding to those moored buoy observations. For this exercise, special-case RFR-LME maps
were created by training RFRs on gridded fCO,socar) data with buoy observations excluded, then using those
algorithms to construct the maps. Comparing pCO, mapped from datasets both with and without the underly-
ing buoy observations allowed for evaluation of the influence that those seasonally resolved observations have
on the fidelity of the pCO, reconstruction. pCO, values extracted from the mapped SeaFlux datasets were also
included in this comparison, allowing for separate evaluation of how the LME-scale, 0.25° X 0.25° monthly
reconstructions compare to global 1° x 1° monthly reconstructions.

Data Records

RFR-LME maps can be accessed through the NOAA National Centers for Environmental Information (NCEI)
via the Ocean Carbon and Acidification Data System (OCADS; https://doi.org/10.25921/h8vw-e872)*. The
dataset is available in NetCDF format on 0.25° x 0.25° spatial grids at monthly timesteps. Each mapped OA
indicator and its uncertainty is provided via a separate NetCDF file, along with a reference grid that indicates
to which LME each spatial grid cell belongs. Additionally, regional timeseries for CO, partial pressure, calcium
carbonate saturation state, and pH are displayed at the NOAA Marine Ecosystem Status website (https://eco-
watch.noaa.gov). Average values, trends, seasonal amplitudes, and uncertainty estimates of ocean acidification
indicators from RFR-LMEs vary considerably among the regions (Tables 3-6).

Long-term means (Table 3; Fig. 4) allow for the description of LME-scale patterns in surface ocean car-
bonate chemistry. Tropical LMEs (PI and CS) are characterized most notably by high carbonate ion param-
eters ([CO5* 7], Q, and Q) and low RF values. Within this pair, the CS can be described as more acidified
(higher pCO, and lower pHry) but better buffered (lower RF and higher A1/C; ratio). Subtropical Atlantic LMEs
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Fig. 9 Q, timeseries for the eleven U.S. LMEs considered in this study. Same as Fig. 7, except for ().

Means Trends Amplitudes
LME | Temp.°C |Sal | Temp.°C/yr | Salyr~! Temp. | Sal
CCS 14.0 32.6 |0.04£0.03 |0.004+0.01 4.9 0.3
GA 79 32.0 |0.04+0.04 | —0.01+0.01 |79 0.6
Al 6.2 32.7 10.04£0.01 | —0.01+0.00 |6.7 0.2
EBS 5.5 32,5 | 0.05£0.06 |0.0040.00 6.8 0.9
BS —0.4 30.2 | 0.01£0.01 |0.0140.01 3.8 4.3
NBCS | 2.1 309 |0.04£0.01 |0.0240.01 9.2 1.7
NE 16.3 34.0 | 0.07£0.01 |0.0240.01 13.5 0.8
SE 24.8 36.2 | 0.03£0.01 |0.014+0.00 7.5 0.3
GM 255 35.0 |0.02£0.01 |0.0140.00 8.9 0.9
CS 27.8 353 |0.02£0.01 |0.014+0.03 2.7 12
PI 26.7 35.0 | 0.03£0.01 —0.014+0.01 |28 0.0

Table 8. Long-term mean values, trends, and seasonal amplitudes for temperature and salinity in each LME.
Long-term means are calculated as averages over the monthly timeseries (1998-2022) of area-weighted average
values; trends and trend uncertainties are determined by fitting a linear least-squares model with an intercept,
trend, and annual and semi-annual harmonics to monthly area-weighted average values; and seasonal amplitudes
are calculated from the annual sine and cosine component amplitudes of the linear least-squares model.

(GM and SE) also have high carbonate ion parameters ([CO;*" ], Q,,, and Q,,) and low RF values. Compared to
the Tropical LMEs however, Subtropical Atlantic LMEs have higher C and Ay values, although A1/Cy ratios and
therefore RFs are similar between the two groups. Temperate and subarctic coastal LMEs (CCS, GA, and NE)
can generally be considered intermediate in all parameters: pCO,, pH, carbonate ion parameters, Cy, A, and RE
Within the group, the GA has the highest RF and lowest carbonate ion parameters, the NE has the lowest RF and
highest carbonate ion parameters, and the CCS is between the two. Subarctic North Pacific LMEs (Al and EBS)
are characterized by high Cy, pCO,, and RF; and low pHy and carbonate ion parameters. Arctic LMEs (NBCS
and BS) are characterized by high pH and RF; and low A, pCO,, and carbonate ion parameters.
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Fig. 10 Comparisons between OA indicators retrieved from RFR-LME maps and those calculated from
discrete observations. (a,c,e) Histograms showing differences between calculations of (a) pCO,, (¢) pHy, and

(e) Q,, from discrete surface (depth < 10m) observations of Ay and Cy and values of the same OA indicators
from RFR-LME maps. Discrete observations that fall within the boundaries of LMEs were obtained from the
GLODAPv2.2022°" and CODAP-NA® data products. Error statistics shown represent the median errors and the
interquartile ranges of errors for each comparison. (b,d,f) Mapped differences between calculations of (b) pCO,,
(d) pHp, and (f) Q,, from discrete surface (depth < 10m) observations of Ay and Cr and values of the same OA
indicators from RFR-LME maps. Discrete differences are binned into 1° x 1° grid cells for this map.

Spatial variability in OA indicators is evident within each LME and throughout the seasonal cycle (Fig. 5).
For example, the CCS develops a strong dipole in the summer (June/July/August; Fig. 5¢), with low C; off the
coast in the northern C; and high Cy off the coast in the central CCS. This dipole becomes much weaker in the
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Buoy RFR-LME RFR-LME-NM CMEMS-LSCE NIES-FNN MPI-SOMFEN | JENA-MLS CSIR-ML6 JMA-MLR
La Parguera 1.8+6.1 3484235 30.7+31.9 21.4+41.6 30.8+32.0 2244250 27.6+32.7 36.11+34.6
WHOTS 3.1+46 99+£78 1.8+12.9 10.4+9.5 6.2+12.3 —0.24+99 6.0E£11.2 6.01+21.5
Cheeca Rocks —11.04£51.0 —25.4+75.8 —7.3+£105.4 —11.6+101.9 —-7.0£92.1 —2.5+68.6 —8.6+£102.4 —12.1£107.7
Gray’s Reef —2.7+£23.2 0.8+51.3 12.14+55.5 —4.0+71.0 14.8 +66.3 1.0£57.9 4.6+52.4 17.3+£60.2
CCE1 1.1+34 11+74 0.8+15.6 14.5+25.6 39+13.2 —-1.5£157 4.4+16.9 14.9+16.5
CCE2 1.4+14.2 4.6+£36.0 2.1£359 9.31+41.7 11.4+£52.5 2.7+33.3 11.2+41.6 35.6+51.3
Gulf of Maine 02+17.8 —10.1+£32.2 —5.6+£43.3 12.8+£45.9 12.5+£64.8 —2.2+£50.1 7.4453.8 39.7453.8
CB-06 10.3+£42.7 50.1+83.5 4.01+89.0 33.2+87.0 45.61+99.8 —14.91+63.6 38.64+99.4 39.34+120.4
Cape Elizabeth 1.8+21.8 10.2450.0 —35.6+77.5 2.5490.7 —28.31+93.6 —11.44+55.0 —50.0+75.6 —16.0+£93.3
Twanoh 0.2449.2 —260.8+118.1 —17.0+£107.0 46.4195.0 11.84+85.8 40.24+90.7 8.61+78.3 14.8+104.3
Chaba —1.7+£24.9 —7.8+63.7 —53.3+67.3 —12.24+79.9 —55.84+95.3 —17.74+50.0 —55.94+69.5 —46.6+111.9
M2 —6.2+£23.8 —15.3+33.6 —35.14+60.6 —52.74+72.2 —39.4448.0 —34.01+43.4 —53.94+48.7 —45.6+£69.7
Kodiak 2.74+38.3 25.7483.6 14.14+80.8 57.4+111.7 24.5+126.1 —1.6+91.3 22.84+89.4 47.4+110.4
GAKOA 0.0+£9.9 0.1+21.6 —67.31+40.7 —63.31+100.3 —71.24+66.6 —10.5+27.1 —63.81+48.5 —53.31+54.4
Average 0.1£23.6 —13.01+49.2 —11.11+58.8 4.6 £69.6 —2.9+67.7 —2.2+48.7 —7.21+58.6 5.5+72.1

Table 9. Medians and interquartile ranges (patm) of comparisons between moored buoy observations and
corresponding grid cells from mapped monthly sea surface pCO, data products. Only buoys within LMEs and
with observations in more than 36 months of the timeseries were included. Grid cells nearest in space to the
moored buoy coordinates were selected from each data product. If the nearest grid cell did not contain pCO,
values, the next nearest grid cell was selected. This process was repeated until the chosen grid cell contained
pCO, values.

winter (December/January/February; Fig. 5a). Similarly, relatively low C; occurs off the coast in the northern
NE region in the summer but disappears in the winter (Fig. 5¢). The southern continental Alaskan coastline
exhibits low Cy, especially nearshore in the summer, whereas the northern Alaskan coastline is relatively higher
in C; than nearby offshore waters in the Arctic Ocean. A band of relatively low C; is evident from about 10° to
20° N in the PI region, between higher C; in the equatorial Pacific and North Pacific subtropical gyre, a feature
that has appeared in other sea surface C; data products®.

Mapped indicator uncertainties (see Fig. 6) are served alongside RFR-LME maps*, providing a resource for
evaluating uncertainty in OA indicator values at a given location. Area-weighted mean u[pCO g )] Was
12.0 patm across the entire domain, u[pHyggg 1vg)] Was 0.015, and u[Q,,ger 1ur)] Was 0.18. These domain-wide
means are influenced by the large area and low uncertainties in the Pacific Islands region; individual LME uncer-
tainties, particularly in Artic and Subarctic LMEs, may be considerably larger. Spatial patterns of uncertainties
also differ for different OA indicators. For example, u[Q,,gsr 1mr)] tends to be relatively high in the tropical
LME:s (Fig. 6d), where Q. zer 10 is also high (Fig. 4e); on the other hand, u[pCO,gpx 1] is extremely low in
tropical the LMEs (Fig. 6b).

Uncertainty values reflect not only uncertainty in the RFR predictions, but also uncertainty introduced by
interpolating over spatial and temporal gaps in observational coverage. Average uncertainty values for each LME
are presented alongside OA indicator timeseries on the NOAA NaMES website. Importantly, the uncertainty
values provided in Table 6 and on the NaMES website represent weighted means of grid-cell-level uncertainties
rather than uncertainties corresponding to region-wide averages, which may or may not be smaller due to can-
celling errors that are removed by areal averaging or larger due to inadequacies of our spatiotemporal scaling
approach for representing uncertainties in under-sampled times and locations.

Technical Validation

Data-based validation. A k-fold cross-validation approach was used to assess the skill of the fCO, esti-
mates and subsequent OA indicator calculations. Region-wide error statistics for each of the eleven LMEs (before
the spatial and temporal scaling) indicate that fCO,ggp 1mE krolq) Values are centered around (mean and median
errors all close to zero) and tend to correlate closely with (nine of the eleven R? values are 0.8 or greater) the
measured values of fCOysocar) (Table 7). Root mean square errors (RMSEs) are generally about three times
larger than median absolute errors, indicating error populations with long tails of a few particularly large errors.
When viewed spatially (Fig. 6a), absolute differences (| AfCO,|) between fCO,rer.1me-krold) a0 fFCOys0caT) are
greatest near the coast and in the North Pacific and Arctic, and smallest in the open ocean and in the tropics
and subtropics. High |AfCO,| values tend to correlate with areas of high background variability in fCO,socar)
(Fig. 2b), emphasizing that the RFR algorithms may struggle to capture extreme values, which is consistent with
the aforementioned long-tailed error populations.

Comparison to global trends. RFR-LME indicator timeseries (1998-2022) represent spatially weighted
annual averages of OA indicators computed from RFR-LME maps. Increasing pCO,gpr.1mr) and decreasing
PHryrer LuE) are observed in each LME (Figs. 7, 8) — trends that are strongly influenced by anthropogenic CO,
uptake and amplified by ocean warming (Table 8). Q,,rrr 1mr) decreases in many (but not all) LMEs over 1998-
2022 (Fig. 9), as Q,, decline is driven by anthropogenic CO, uptake as well, but moderated by ocean warming and
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Fig. 11 Summarized differences between monthly binned moored buoy pCO, observations and mapped pCO,
data products. (a) Medians and (b) interquartile ranges of differences, (c) differences in seasonal amplitudes,
and (d) correlations of residual values (after removing the trend and seasonal cycle) between binned moored
buoy pCO, observations and mapped pCO, data products. Each of these statistics are shown as boxplots
representative of all 14 mooring sites compared to each mapped product, where the boxes extend from the 25"
to 75 percentile, the center line shows the median of the data, the whiskers extend to the most extreme data
points not considered outliers, and dots denote outliers (arrows denote where outliers do not appear within the
axis limits). RFR-LME is the product described in this work and RFR-LME-NM is the constructed using the
same method but without moored buoy observations. References for the SeaFlux mapped products are provided
in the Data sources section.

also influenced by changes in SSS (Table 8). Trends in OA indicators across U.S. LMEs (Table 4) can be compared
with global trends of about + 1.5 patm yr~! for pCO, (+0.3 to +1.8 patm yr~! for RFR-LMEs), +-0.9 pmol kg!
yr! for C; (0.2 to +1.0 pmol kg™ yr™* for RFR-LMEs), -1.7-107 units yr! for pHy (-1.8-107 to -0.2:107 yr! for
RFR-LMEs), and -7.0-107 yr! for Q, "*%1° (-7.3.107% to 4+-2.6-10% yr! for RFR-LMEs).

It is important to note that, for some of the Arctic and subarctic LMEs that are characterized by high seasonal
ice coverage, these trends are driven by primarily summertime OA indicator values (see inset plots in Figs. 7-9).
This limitation, along with the fact that these timeseries are relatively short (25 years) and regionally limited, can
explain divergence in some specific cases from the global trends.

Comparison to discrete shipboard data. The RFR-LME fields presented in this work are constructed
using surface CO, measurements from shipboard flow-through analyzers. This automated observational
approach allows for the collection of high spatial and temporal resolution observations of surface ocean car-
bonate chemistry. Discrete bottle measurements of carbonate chemistry parameters represent another approach
for monitoring ocean acidification. The discrete approach allows for high-quality observations throughout the
water column. Here we take near-surface discrete bottle measurements of A; and C; from GLODAPv2.2022°!
and CODAP-NA?, use those measurements to calculate OA indicators, and compare those calculated values with
mapped surface OA indicators from RFR-LMEs.
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Fig. 12 Comparisons between pCO, from selected moored buoy observations, RFR-LME and RFR-LME-NM
maps, and other mapped surface products. (a) Mapped long-term mean pCOyggg 1 mx) along with mean pCO,
from moored buoy observations (shaded dots). Colors of the arrows in the map correspond to the colors of the
outlines of timeseries plots from grid cells that match the buoy locations. (b-i) Each timeseries shows buoy
observations aggregated into monthly bins (black dots), corresponding timeseries from RFR-LME maps (red
solid lines) and RFR-LME-NM maps (blue dashed lines), and corresponding timeseries from mapped global
data products included in SeaFlux* (thin colored lines).

RFR-LME indicator values are generally in good agreement with calculations from discrete bottle measure-
ments (Fig. 10). Compared to the k-fold-validation-based uncertainty estimates (Table 6), a greater spread (i.e.
larger IQRs) in the differences between GLODAP/CODAP and RFR-LME values is expected in this exercise
for two reasons. First, uncertainty stemming from CO, system calculations will contribute to the spread (e.g.,
Orr et al.%*), since GLODAP/CODAP indicators values are calculated from A and C; and RFR-LME indicator
values are calculated from fCO, and Ay. As an example, average propagated uncertainties for GLODAP/CODAP
calculations using standard measurement errors for A and Cr (2 pmol kg™! for both) and for equilibrium con-
stants® were calculated as 12.0 patm for pCO,, 0.014 for pHy, and 0.11 for Q,,. In addition, the two datasets are

SCIENTIFIC DATA

(2024) 11:715 | https://doi.org/10.1038/s41597-024-03530-7

18


https://doi.org/10.1038/s41597-024-03530-7

www.nature.com/scientificdata/

BPCOyennis = 3.8 £ 188 piatm

BpCOycsnns) = 1.4 + 17.8 patm

0 350 400
genamsy (Hatm) Sea Surface PCO g i) (Hatm) Apco,

omFN) =0.7£18.6 uatm

Sea Surface pCO, ey, i) (Hatm) ApCoO. 2Acsirmie) (42EM)

0
Sea Surface pCO. S— ) Sea Surface pCO.

2(04pr-somreny (42tM) ApCo 2 gasair) (#3EM) ApCO. (uatm)

ApCO,cmems-FrnN) = 2 7+17.8 |.1atm ApCO,yjes.enn) = —3-3 £16.1 patm

20MA-MLR)

350

0 0
Sea Surface PCO, yems,rry (43tM) APCO, cems.srny (HatM) Sea Surface pCO, (uatm)

0
2NIES-FNN)

igs-eay (#AEM) ApCo,
Fig. 13 Comparisons between mapped surface pCO, products and RFR-LME maps. Long-term mean pCO,
for each of the SeaFlux*” mapped global products (a,c,e,g,i,k) and differences between those products and RFR-
LME (ApCO, = pCOyscapiux) — PCOrer LME) bsdsfrh,j,m) are shown. Area-weighted averages and standard
deviations of ApCO, are provided above each set of two figures.

fundamentally different in their spatiotemporal resolution. RFR-LME grid cells represent averages for large
swaths of the surface ocean over a monthly timestep, whereas shipboard measurements are appropriate for a
distinct point in space at a distinct time. This spatiotemporal mismatch is especially noteworthy in the coastal
ocean where diurnal and other sub-monthly modes of variability operate over spatial scales much finer that 0.25
degrees of latitude or longitude. The calculations from bottle measurements also tend to indicate higher pCO,
and therefore lower pHy and Q.. These offsets between the two datasets may be partly related to inconsistencies
in carbonate chemistry calculations, whereby calculations from Ay and C; at most surface conditions tend to
produce lower pH (and higher pCO,) values than corresponding measurements of those properties®>.

Comparison to moored buoy time series data. Timeseries of pCO, from fixed grid cells of RER-LME
maps and RFR-LME maps constructed without moored buoy observations (RFR-LME-NM) were compared to
pCO, observations at fixed buoy locations that were extracted from the SOCATv2023 database and aggregated
in monthly bins. This provides a test of the capacity of RFR-LMEs to reproduce monthly variability in validation
measurements that were withheld from training, and can be considered an assessment of the RFR-LME skill with
monthly variability generally. Mapped global data products of surface ocean carbonate chemistry obtained from
SeaFlux** were also compared to the moored buoy observations.

Differences between moored buoy observations and mapped products (Table 9; Fig. 11) suggest that time-
series extracted from our regionally focused RFR-LME maps more meaningfully reflect observed pCO, than
those from mapped global products. Like RFR-LME, most of these alternative products were trained from
versions of SOCAT that include the buoy observations. The average median (4 IQR) ApCO, (pCOsmoor)
= pCOygriq)) Was 0.1 £23.6 patm for RFR-LME and increased to —13.0 =49.2 patm for the RFR-LME-NM
product, which excluded these observations from the training data. These increased error statistics emphasize
the value of moored buoy observations for the surface CO, observing system. Still, all but one (JENA-MLS;
ApCO,=—2.2+48.7) of the mapped data products from SeaFlux exhibited more variability in their differences
from buoy observations than even the version of RFR-LME constructed without moored buoy observations.
JENA-MLS may perform better at representing pCO, at these mooring sites because it explicitly models mixed
layer fluxes and processes rather than relying on empirical relationships learned from large sets of data.

Individual timeseries from moored buoy sites (Fig. 12) emphasize the significant seasonal and interannual
variability in buoy pCO, observations (black dots), even when aggregated in monthly bins, and the challenge for
mapped products (colored lines) to accurately capture each of those variations at a local scale. The performance
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of the regional RFR-LME maps compared to the global mapped products reinforces the notion that locally spe-
cific relationships captured by training machine learning algorithms at the scale of objectively defined clusters
within LMEs can resolve fine-scale variations in ocean biogeochemistry more effectively than global-scale algo-
rithms, even though those global-scale algorithms are trained with a larger amount of data?*%’. Positive trends
in pCO, superimposed upon seasonal variations are visible in both the moored buoy observations and mapped
data product timeseries (Fig. 12).

Comparison to mapped data products. Finally, RFR-LME surface pCO, was compared directly to the
six global-scale mapped products of pCO, from SeaFlux across the overlapping interval between them (1998-
2019). Maps of average surface pCO, display similar patterns across all six SeaFlux products, but differences
between those products and RFR-LME (ApCO, = pCOyseapiux) — PCOrer LuE)) Teveal subtle regional differences
(Fig. 13). SeaFlux provides a pCO, filler field derived from Landschiitzer et al.® to fill spatial gaps in global sur-
face products; this gap filler is not used to produce the difference maps displayed in Fig. 13. However, for spatial
consistency, it is used to calculate the averages and standard deviations of the differences for each data product
shown in Fig. 13.

In the tropical Pacific, RFR-LME maps agreed well with all products but NIES-FNN, where a prevailing
negative bias is evident in that product. In the Atlantic, RFR-LME maps generally agreed well, with visible biases
in the Mississippi plume (CSIR-ML6), Georges Bank (JMA-MLR), Caribbean (JENA-MLS), and throughout
(NIES-FNN). Coastal negative biases are visible for most products in the central CCS region, and coastal pos-
itive biases are visible in the northern CCS region. Both positive and negative biases occur in the regions sur-
rounding Alaska, where low observational density likely leads to significant diversity in pCO, estimates among
the gap-filling approaches.

Despite these regional discrepancies with some individual products, the median (£1 IQR) ApCO, for
the ensemble average of all six SeaFlux products is 0.8 £ 16.6 patm. This indicates that RFR-LME — which
represents local-scale temporal variability in surface pCO, more effectively than global products (Table 9;
Fig. 11) — agrees at broad scales with observation-based products that are well accepted and widely used by
community-wide synthesis efforts such at the Global Carbon Budget? and REgional Carbon Cycle Assessment
and Processes Project (RECCAP2)%.

Code availability

Code for accessing and processing the data discussed in this study is freely available on Github (https://github.
com/jonathansharp/US-RFR-LMEs). Code was written in MATLAB version R2022a. Parameters used to generate
and validate the current dataset are described throughout the Methods section and are listed in Table 2.
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