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A mapped dataset of surface  
ocean acidification indicators in 
large marine ecosystems of the 
United States
Jonathan D. Sharp   1,2 ✉, Li-Qing Jiang   3,4, Brendan R. Carter   1,2, Paige D. Lavin   3,5, 
Hyelim Yoo3,4 & Scott L. Cross6

Mapped monthly data products of surface ocean acidification indicators from 1998 to 2022 on a 0.25° 
by 0.25° spatial grid have been developed for eleven U.S. large marine ecosystems (LMEs). The data 
products were constructed using observations from the Surface Ocean CO2 Atlas, co-located surface 
ocean properties, and two types of machine learning algorithms: Gaussian mixture models to organize 
LMEs into clusters of similar environmental variability and random forest regressions (RFRs) that 
were trained and applied within each cluster to spatiotemporally interpolate the observational data. 
The data products, called RFR-LMEs, have been averaged into regional timeseries to summarize the 
status of ocean acidification in U.S. coastal waters, showing a domain-wide carbon dioxide partial 
pressure increase of 1.4 ± 0.4 μatm yr−1 and pH decrease of 0.0014 ± 0.0004 yr−1. RFR-LMEs have been 
evaluated via comparisons to discrete shipboard data, fixed timeseries, and other mapped surface 
ocean carbon chemistry data products. Regionally averaged timeseries of RFR-LME indicators are 
provided online through the NOAA National Marine Ecosystem Status web portal.

Background & Summary
The accumulation of carbon dioxide (CO2) in the atmosphere as a result of human activities, and the uptake of 
~25% of anthropogenic CO2 by the ocean1,2, has led to increasing acidity of ocean waters of about −0.016 pH 
units per decade on a global scale since the 1980s3–6. This ocean acidification (OA) signal is measurable at time 
series sites7,8, observed in mapped data products of CO2 partial pressure6,9–12, captured by decadal repeat hydro-
graphic cruises13,14, and simulated by ocean models15 and coupled Earth system models5,16,17. Superimposed on 
steady increases in accumulated anthropogenic carbon (Cant) and decreases in ocean pH, however, are various 
modes of temporal (e.g., diurnal, seasonal, interannual) and spatial (e.g., latitudinal, nearshore–offshore) var-
iability, which are particularly pronounced in coastal ecosystems. This variability in coastal OA brings unique 
impacts to marine organisms that reside in coastal zones and are vulnerable to corrosive waters18.

Large marine ecosystems (LMEs) are ocean regions that border coastlines and are characterized by distinct 
bathymetry, hydrography, productivity, and trophic structure19. LMEs encompass estuaries and river mouths, 
nearshore coastal zones, continental shelves, and the outer margins of ocean current systems. Typically, the off-
shore boundary of an LME extends to the continental shelf break or to the seaward edge of a current system. Due 
to their coastal proximity, LMEs tend to be natural hotspots of variability in carbon cycling and rapid exchange 
between carbon pools. For example, intense surface primary productivity in the coastal ocean is fueled by nutri-
ents from river input, atmospheric deposition, and coastal upwelling18; sinking organic matter from surface 
production leads to intense respiration throughout the water column and at the seafloor20; and high rates of 
sedimentation are observed in LMEs from both biogenic and lithogenic inputs21.
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Ongoing anthropogenic climate drivers coupled with the natural processes occurring in coastal ecosystems 
make it challenging to attribute modes of OA variability to the appropriate driving mechanisms. For example, 
anthropogenic eutrophication from freshwater runoff and atmospheric pollution can augment natural nutri-
ent inputs, leading to even greater net primary production in coastal surface waters and greater respiration in 
subsurface waters. Whereas the direct effect of CO2 uptake by primary producers mitigates OA at the surface, 
highly respired subsurface waters can be laterally transported and upwelled onto the continental shelf, leading 
to enhanced OA in the surface waters there18,22. These and other OA-modulating processes differ across eco-
systems23, but their impacts are frequently correlated with environmental driver variables such as sea surface 
height, temperature, salinity, and chlorophyll-a concentration. These correlations allow OA metrics to be recon-
structed from measurements and data products that are available at high spatial and temporal resolution11,24,25.

The data product described here is based on direct observations, which are used to reconstruct a recent his-
tory of surface ocean OA indicators at monthly, 0.25° resolution in U.S. LMEs. Observations are from a publicly 
available, annually updated database of surface CO2 observations: the Surface Ocean CO2 Atlas (SOCAT)26. 
SOCAT is an international data synthesis effort that has facilitated the production of global surface CO2 flux 
maps27 that contribute data-constrained estimates of the ocean CO2 sink in the Global Carbon Budget28. We also 
rely on publicly available satellite-derived surface ocean properties and data reanalysis products to leverage the 
predictive power of environmental variables for upscaling SOCAT observations across U.S. LMEs. This kind of 
spatiotemporal upscaling has historically been accomplished using statistical interpolations29,30, multiple linear 
regressions31, and machine learning approaches9,24,32,33. We build upon the approach of Sharp et al.24 — who pre-
sented a monthly surface ocean CO2 partial pressure (pCO2) mapped product for the California Current System 
region called RFR-CCS — to train random forest regression (RFR) algorithms to predict surface CO2 fugacity 
(fCO2) from environmental variables that can be derived with spatial and temporal continuity across U.S. LMEs.

We advance the Sharp et al.24 approach by first clustering each LME into sub-regions with similar environ-
mental variability using Gaussian mixture modelling. In addition to fCO2, we predict surface total alkalinity 
(and nutrients) from empirical property estimation algorithms that have been validated and published34. We 
use fCO2 and total alkalinity (AT) to compute eight additional OA indicators — partial pressure of CO2, total 
dissolved inorganic carbon, pH on the total scale, hydrogen ion amount content, carbonate ion amount con-
tent, saturation states for aragonite and calcite, and the Revelle factor — to produce monthly data products 
over 1998–2022 on a 0.25° × 0.25° resolution grid. We refer to these data products as RFR-LMEs35, which are 
freely available online and will be updated annually. Throughout this paper, we will use the term “mapped data 
products” to describe RFR-LMEs; “mapping” refers to the reconstruction of OA indicators on monthly, spatially 
continuous grids via the two-step approach of clustering on regional variability and applying trained RFR algo-
rithms to gridded predictor variables.

This work was partially motivated by a partnership with the National Oceanic and Atmospheric 
Administration (NOAA) Ecosystem Indicators Working Group (EIWG), who manage the National Marine 
Ecosystem Status (NaMES) website (https://ecowatch.noaa.gov). The NaMES website was created to provide 
an at-a-glance overview of conditions in U.S. LMEs. These conditions are presented as indicators, which are 
quantitative and/or qualitative measures of key components of the ecosystem and span the following categories: 
climatological (e.g., El Niño Southern Oscillation index), physical–chemical (e.g., sea surface temperature), bio-
logical (e.g., chlorophyll-a concentration), and human dimensions (e.g., coastal county population). Indicator 
datasets are used by many NOAA stakeholders, such as fisheries managers, to monitor their ecosystems of inter-
est and to assess the potential for future changes. Indicators included on the NaMES website must be theoreti-
cally sound, have demonstrable importance to the system, be relevant and understandable, show sensitivity to 
environmental variability or policy actions, and complement other indicators that are already served. This paper 
will describe the theoretical basis of RFR-LMEs and their relevance their respective ecosystems, to justify the use 
of RFR-LMEs as NaMES indicators of ocean acidification. The NaMES requirements also state that the data used 
to develop ecosystem indicators should be publicly available, quantitative, directly measurable, and updated on 
a regular basis; they stipulate that data should have adequate spatial coverage and that the time-series duration 
should be greater than 10 years and expected to continue for the foreseeable future. Because RFR-LMEs fit these 
requirements, we aggregate three mapped OA indicators from RFR-LMEs into monthly and annual regional 
averages of those indicators (and their uncertainties). Timeseries of the selected OA indicators (pCO2, pH on the 
total scale, and aragonite saturation state) are available on the NaMES website and, like the RFR-LME mapped 
data products, will be updated annually.

Methods
An overview of the methodological procedure to create RFR-LMEs is provided in Fig. 1. First, data were 
obtained from a variety of sources and bin-averaged or interpolated onto a consistent grid. Then, within each 
LME, a two-step cluster–regression strategy was employed. In the first step, spatial clusters were created using 
Gaussian mixture models (GMMs) based on variability in environmental predictors. In the second step, random 
forest regression (RFR) algorithms were trained for each cluster using fCO2(SOCAT) as the target variable and 
co-located environmental variables as predictors. These algorithms were then applied to gridded (0.25° × 0.25°) 
monthly environmental predictor fields to create monthly RFR-LME mapped data products of sea surface CO2 
fugacity (fCO2(RFR-LME)). Applying GMMs on surface data to first divide each LME into subregions reduces the 
burden on the RFRs to represent many different regimes of dynamic variability at once. Therefore, the RFR 
algorithms are able to reconstruct sea surface fCO2 more accurately than if all data points from the entire LME 
were included in the algorithm training36. To create RFR-LMEs for the other indicators, sea surface total alkalin-
ity and nutrient values were estimated, and carbonate system calculations were performed. Uncertainties were 
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propagated through these calculations to obtain uncertainty estimates for each RFR-LME. Finally, RFR-LMEs 
were evaluated against independent datasets.

Data sources.  Surface ocean fCO2 observations were downloaded from the Surface Ocean CO2 Atlas Version 
2023 (SOCATv2023; https://doi.org/10.25921/r7xa-bt92)37 in a large quadrangle surrounding North America 
and U.S. Pacific Islands with the following coordinates: 18°S to 82°N, 140°E to 58°W (Fig. 2). These observations 
were filtered by year (1998–2022), dataset flag (A, B, C, or D), and quality flag (q.f. = 2, good data), and binned 
into 0.25 degrees latitude by 0.25 degrees longitude monthly grid cells using platform-weighted averages. A spa-
tial resolution of 0.25° × 0.25° was chosen largely for coherence with the majority of available predictor datasets. 
Platform-weighted averages mean that, within each latitude by longitude by month bin, a platform-specific (e.g., 
ship-only, mooring-only) average was first calculated, then an average was taken of those averages (if more than 
one platform was represented within the cell). This was done to mitigate unwanted biases toward high-resolution 
measurement systems. For validation exercises, this binning process was also repeated with only moored buoy 
observations and with a dataset that excluded moored buoy observations.

Binned observations were grouped into eleven LMEs defined according to the United States Exclusive 
Economic Zone (EEZ), in accordance with the practice of the NOAA EIWG (Table 1; Fig. 2). Platform-weighted 
fCO2 from SOCATv2023 observations (fCO2(SOCAT)) in each of these grid cells over time shows large-scale patterns 
of spatial variability (Fig. 2a) — such as relatively high fCO2(SOCAT) at the equator and relatively low fCO2(SOCAT)  
surrounding Alaska, compared to the region as a whole — and temporal variability (Fig. 2b) — such as relatively 
high standard deviation in fCO2(SOCAT) observations surrounding Alaska and near the coastlines of the conti-
nental U.S. compared to the relatively low standard deviation in these observations around the Pacific Islands, 
again compared to the region as a whole. The distribution of the total number of months sampled within each 
0.25° × 0.25° grid cell and the number of months of the year sampled at least once across the full dataset (1998–
2022) within each grid cell reveal consistent patterns (Fig. 2c,d). The Northeast U.S. has especially high obser-
vational coverage (9.5% of all 0.25° × 0.25° monthly grid cells covered and 63.6% of seasonal seasonally binned 
0.25° × 0.25° grid cells covered); the Southeast U.S. (4.0% total, 50.0% seasonal), Gulf of Mexico (5.2% total, 
53.1% seasonal), Caribbean Sea (6.6% total, 40.2% seasonal), and California Current System (3.0% total, 42.1% 
seasonal) have moderately high observational coverage (Table 1). Observational coverage generally decreases 
farther offshore.

Next, gridded fields of satellite, reanalysis, and in situ observational products were downloaded from the 
sources detailed in Table 2. When applicable, these fields were re-gridded using standard interpolation functions 
to match the resolution and/or central grid cell positions of the binned fCO2(SOCAT) observations. In many cases, 
multiple datasets could be chosen, but preference were given to those that were provided at 0.25° resolution and 
that covered the relevant time and space. Rigorous comparison between different input datasets is planned for 
future development of RFR-LMEs as they are prepared for dynamic, operational production. Sea surface tem-
perature (SST; Fig. 2e) and ice concentration were obtained from the NOAA Optimum Interpolation Sea Surface 
Temperature version 2 (OISSTv2) product at daily, 0.25° × 0.25° resolution38; values were averaged to monthly 
resolution. Sea surface salinity (SSS; Fig. 2f) and mixed layer depth (MLD) were obtained from the Copernicus 
Marine Environment Monitoring Service (CMEMS) Global Ocean Ensemble Physics Reanalysis (GLORYS) 
product at monthly, 0.25° resolution39. Sea surface height (SSH) was obtained from the CMEMS satellite gridded 
product, which is produced at monthly, 0.25° resolution by optimal interpolation of along-track measurements 

Fig. 1  Schematic of the procedure used to construct the ocean acidification indicator data products described 
by this study. Steps within each section on the right (A, B, and C) are labelled in the schematic on the left.
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from available altimeter missions40. Sea surface chlorophyll (CHL) was obtained from the National Aeronautics 
and Space Administration (NASA) Ocean Colour Level-3 Mapped Chlorophyll Data product at monthly, 1/12° 
resolution and re-gridded to 0.25° resolution41,42. One-dimensional, linear interpolation was used within each 

Fig. 2  Observations used to develop ocean acidification indicator data products in the eleven U.S. large marine 
ecosystems (LMEs) considered in this study. LME boundaries are displayed with (a) platform-weighted fCO2 
from SOCATv2023, averaged over 1998–2022 in 0.25 degrees latitude by 0.25 degrees longitude grid cells; 
(b) platform-weighted fCO2 variability from SOCATv2023, calculated as the standard deviation over time 
in 0.25 degrees latitude by 0.25 degrees longitude grid cells; (c) the total number months over the timeseries 
with at least one observation in each grid cell; (d) months of the seasonal cycle with at least one observation in 
each grid cell; (e) sea surface temperature from OISSTv238; (f) sea surface salinity from the CMEMS GLORYS 
reanalysis product39; (g) wind speed from the ECMWF ERA5 reanalysis product43; and (h) bathymetry from the 
ETOPO 2022 Global Relief Model44. LME name abbreviations shown in panel (a) are provided in Table 1.
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grid cell to fill gaps in the chlorophyll dataset. Wind speed (Fig. 2g) was obtained from the fifth generation 
European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis for the global climate and weather 
(ERA5) at monthly, 0.25° resolution43. Bathymetry (Z, Fig. 2h) was obtained from the ETOPOv2022 Global 
Relief Model at 1/60° resolution and re-gridded to 0.25° resolution44. Sea level pressure (SLP) was obtained from 
the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) Reanalysis II model 
at monthly, 2.5° resolution and interpolated to 0.25° resolution45. Atmospheric pCO2 was obtained from the 
NOAA Marine Boundary Layer (MBL) product at weekly resolution and varying latitudinal resolution and was 
re-gridded to monthly, 0.25° resolution46. Binned observations of fCO2(SOCAT) were co-located in both time and 
space with the gridded predictors in preparation for algorithm training.

As one of several validation exercises, the pCO2 reconstructions from our method were compared to other 
mapped pCO2 data products downloaded from SeaFlux (v2021.04)47, which is an ensemble of six surface pCO2 
products that enables users to calculate air–sea CO2 flux consistently across the global ocean27. SeaFlux har-
monizes six data-based pCO2 products: CMEMS-FFNN9,48, MPI-SOMFFN33,49, and NIES-FNN50, which are 
each constructed using neural networks; JENA-MLS30, which is constructed based on a mixed layer scheme; 
JMA-MLR10, which is constructed using multiple linear regressions; and CSIR-ML636, which is constructed 
using an ensemble of multiple machine-learning techniques. In an additional exercise, RFR-LME mapped data 
products were evaluated through comparisons to co-located, independently calculated OA indicators from 
research cruises included in the Global Ocean Data Analysis Project database (GLODAPv2.2022)51 and the 
Coastal Ocean Data Analysis Project – North America database (CODAP-NA)52. Measurements of SST, SSS, 
AT, CT, and nutrients were obtained from the GLODAP and CODAP-NA databases, then filtered to retain only 
observations with good quality flags for each of those variables that were collected at a depth of 10 meters or less.

Spatial clustering.  Three clustering methods were tested: self-organizing mapping — a neural-network-based 
method of producing a low-dimensional representation of a set of input data — k-means clustering — an iterative 
method that optimizes a defined number of centroids by minimizing the in-cluster distances from the centroid for 
a multidimensional dataset — and Gaussian mixture modelling (GMM)53 — a method of clustering that assumes 
a multidimensional dataset is represented by a mixture of several Gaussian distributions with different properties. 
Of these methods, preliminary testing suggested GMM provided the best results in terms of k-fold cross-validated 
root-mean-square error (RMSE) in fCO2 (described in the following section) after RFRs were fit for each clus-
ter. In addition, GMM clustering affords the benefit of providing probabilities that each spatiotemporal grid cell 
belongs within a given cluster instead of simply providing the cluster assignment to each grid cell as done in the 
other two clustering methods. These probabilities are used in our method to mitigate discontinuities at boundaries 
between clusters.

Variability (defined as the standard deviation within a spatial grid cell over time) in SLP, SST, and CHL were 
used as feature sets to form clusters in most LMEs; CHL was replaced with wind speed in two LMEs (BS and 
NBCS) due to insufficient CHL observations at high latitudes. The decisions to cluster based on variability over 
time instead of monthly values and to use the specified sets of variables were based on initial testing and opti-
mization in terms of k-fold cross-validated RMSE in fCO2 (not shown). Future development of RFR-LMEs may 
continue to explore alternative clustering strategies.

GMM models with full, unshared covariance matrices were created using the MATLAB “fitgmdist” func-
tion. Full covariance matrices were used for GMM based on the a priori assumption that some of the predictor 
variables were correlated due to the nature of oceanographic environmental variables. Covariance matrices for 
GMM were unshared based on the a priori assumption that each spatial cluster had its own, different covari-
ance matrix. The number of components (i.e., clusters; N in Table 1) was optimized, primarily by minimizing 
the k-fold cross-validated RMSE in fCO2, but also taking into account the Bayesian information criterion — a 

Large Marine Ecosystem (LME) Abbrev. Area (106 km2) Total Data Coverage (%) Seasonal Data Coverage (%) N

California Current CCS 0.81 3.0 42.1 3

Gulf of Alaska GA 1.00 1.7 25.5 5

Aleutian Islands AI 0.67 0.8 18.4 4

East Bering Sea EBS 1.40 1.1 18.7 4

Beaufort Sea BS 0.24 1.4 17.6 5

Chukchi and Northern Bering Seas NBCS 0.46 2.6 27.3 6

Northeast U.S. NE 0.46 9.5 63.6 4

Southeast U.S. SE 0.42 4.0 49.9 3

Gulf of Mexico GM 0.70 5.2 53.1 5

U.S. Caribbean CS 0.21 6.6 40.2 3

Pacific Islands PI 5.79 1.1 15.4 4

Table 1.  Summary information for the eleven U.S. large marine ecosystems (LMEs) considered in this study. 
Areas are calculated as the sum area of all 0.25° × 0.25° grid cells that fall within the limits of each LME, taking into 
account the percentage of each grid cell covered by ocean determined via the ETOPOv2022 Global Relief Model. 
Data coverage is calculated as the percentage of monthly grid cells occupied by an observation over the entire time 
series (Total) and binned over a seasonal cycle (Seasonal). The number of Gaussian Mixture Model (GMM) clusters 
(N) for each LME is determined by the GMM optimization procedure described in the Spatial clustering section.
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Variable Dataset DOI Original Resolution (Lat. × Lon. × Time)

Temperature*,# NOAA OISSTv238 https://doi.org/10.1175/JCLI-D-20-0166.1 0.25° × 0.25° × daily

Ice Concentration NOAA OISSTv238 https://doi.org/10.1175/JCLI-D-20-0166.1 0.25° × 0.25° × daily

Salinity CMEMS GLORYS39 https://doi.org/10.48670/moi-00024 0.25° × 0.25° × monthly

Mixed Layer Depth CMEMS GLORYS39 https://doi.org/10.48670/moi-00024 0.25° × 0.25° × monthly

Sea Surface Height+ CMEMS L440 https://doi.org/10.48670/moi-00148 0.25° × 0.25° × monthly

Chlorophyll*,+ NASA L341,42
https://doi.org/10.5067/AQUA/MODIS/
L3M/CHL/2022; https://doi.org/10.5067/
ORBVIEW-2/SEAWIFS/L3M/CHL/2022

9 km × 9 km × monthly

Wind Speed# ECMWF ERA543 https://doi.org/10.24381/cds.f17050d7 0.25° × 0.25° × monthly

Bathymetry NOAA ETOPO 202244 https://doi.org/10.25921/fd45-gt74 1/30° × 1/30° × N/A

Sea Level Pressure*,# NCEP-DOE AMIP-II45 https://doi.org/10.1175/BAMS-83-11-1631 2.5° × 2.5° × monthly

Atmospheric CO2 NOAA MBL46 https://doi.org/10.15138/wkgj-f215 sin(Lat.) = 0.5 × N/A × weekly

Table 2.  Sources of gridded fields of satellite, reanalysis, and in situ observational products used to create 
RFR-LME maps. The digital object identifiers and original three-dimensional resolutions of each product are 
provided. *Used for GMM clustering in most LMEs. #Used for GMM clustering in BS and NBCS. +Not used for 
RFR training in the BS or NBCS.

Fig. 3  Example for Gaussian Mixture Model (GMM) optimization in the North Bering Chukchi Seas (NBCS). 
(a) Parameters used for GMM evaluation in the NBCS, plotted against the number of GMM clusters (N). 
The goal of the optimization procedure was to minimize the root mean squared error, maximize the global 
mean silhouette score, and identify the N at which the Bayesian information criterion was no longer sharply 
decreasing. N = 6 was ultimately selected for the NBCS region. (b) Distribution of GMM clusters for the NBCS 
and (c) the probability for grid cells belonging to cluster 1 (C1).
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measure of model fit that includes a penalty for the number of clusters — and silhouette score — a measure 
of the accuracy of the clustering technique that is calculated by comparing each point’s similarity to the other 
points in its assigned cluster to how dissimilar it is to the points in the next nearest cluster (Fig. 3).

Machine learning regressions.  Once the numbers of spatial clusters were determined for each LME, ran-
dom forest regressions (RFRs)54 were trained for each cluster within each LME using binned fCO2(SOCAT) as a 
target variable and each of the co-located gridded variables listed in Table 2 along with longitude (degrees east 
with a 0° to 360° convention), latitude, distance from the coast, month of the year (sine- and cosine-transformed 
to maintain cyclicity throughout the year and predictability within each month), and year as predictors. These 
variables were found to be useful predictors of fCO2 by Sharp et al.24.

RFRs are a collection of regression “trees”, each of which is trained with a bootstrapped subset of the dataset. 
Each tree aims to generate a representation of the relationship between the predictor variables and the target 
variable for its bootstrapped subset of the data. This is done by splitting the data into a series of “branches” based 
on the predictors. At each branch point, only a random subset of the predictor variables is made available to the 
algorithm. The algorithm then optimally selects a predictor dataset and a specific value from that dataset on 
which to split the dataset into two additional branches/groups with the lowest possible within-group fCO2(SOCAT) 
variance. This continues until the branches become “leaves”, which means they are no longer split, either due to 
reaching a defined minimum leaf size or a certain criterion (e.g., variance of the remaining fCO2(SOCAT) obser-
vations). The use of an ensemble of regression trees constitutes the “forest” aspect of an RFR. The “randomness” 
aspect of the forest is due to the fact that each tree is constructed with different subsets of the full dataset and 
that different subsets of the predictors are available at each branch point, making it possible for each tree to 
provide a slightly different empirical regression for the dataset. New predictor data can be passed through each 

LME pCO2 μatm AT μM CT μM pHT [H+]T nM RF Ωar Ωca [CO3
2−]T μM

CCS 368.4 2197.1 1993.6 8.065 8.63 11.8 2.23 3.50 144.7

GA 363.2 2171.6 2010.9 8.065 8.68 13.4 1.78 2.82 116.1

AI 395.5 2213.9 2069.8 8.035 9.27 14.2 1.62 2.57 106.2

EBS 382.3 2204.6 2060.1 8.049 9.04 14.3 1.62 2.57 106.4

BS 301.5 2135.5 2013.6 8.124 7.54 15.3 1.39 2.23 91.1

NBCS 331.3 2153.5 2020.2 8.096 8.14 14.8 1.51 2.41 98.8

NE 366.2 2273.1 2029.1 8.075 8.46 11.1 2.68 4.14 172.5

SE 375.7 2374.6 2039.2 8.072 8.49 9.2 3.69 5.59 234.6

GM 381.7 2371.8 2040.9 8.070 8.54 9.3 3.71 5.62 233.4

CS 377.1 2320.2 1976.8 8.062 8.68 8.9 3.85 5.79 239.9

PI 375.6 2299.6 1970.5 8.063 8.67 9.1 3.68 5.55 229.9

All 374.1 2269.9 1999.8 8.063 8.69 10.7 3.01 4.59 190.3

Table 3.  Long-term mean values for OA indicators in each LME. Long-term means are calculated as averages 
over the monthly timeseries (1998–2022) of area-weighted average indicator values.

LME

pCO2 AT CT pHT [H+]T RF Ωar Ωca [CO3
2−]T

μatm/yr μM/yr μM/yr 10−3/yr nM·10−2/yr 10−2/yr 10−3/yr 10−3/yr μM·10−1/yr

CCS 1.8 ± 0.2 0.0 ± 0.5 0.6 ± 0.3 −1.8 ± 0.1 3.5 ± 0.3 1.6 ± 0.5 −4.7 ± 1.6 −7.6 ± 2.4 −3.2 ± 1.0

GA 1.1 ± 0.1 −0.4 ± 0.3 −0.1 ± 0.5 −1.2 ± 0.1 2.3 ± 0.3 1.0 ± 1.4 −2.3 ± 3.1 −3.8 ± 4.5 −1.6 ± 1.8

AI 0.9 ± 0.1 −0.3 ± 0.2 −0.1 ± 0.1 −0.9 ± 0.1 1.9 ± 0.3 0.4 ± 0.3 −1.1 ± 0.6 −1.8 ± 0.9 −0.8 ± 0.4

EBS 0.9 ± 0.1 −0.3 ± 0.1 −0.2 ± 0.1 −0.8 ± 0.1 1.8 ± 0.3 0.0 ± 0.3 0.3 ± 0.8 0.3 ± 1.2 0.1 ± 0.5

BS 1.1 ± 0.1 0.6 ± 0.4 0.9 ± 0.3 −1.4 ± 0.2 2.4 ± 0.3 1.7 ± 0.5 −2.2 ± 1.1 −3.7 ± 1.7 −1.5 ± 0.7

NBCS 0.3 ± 0.1 0.8 ± 0.4 0.5 ± 0.4 −0.2 ± 0.2 0.5 ± 0.3 −0.9 ± 0.4 2.6 ± 1.0 3.9 ± 1.5 1.7 ± 0.6

NE 1.3 ± 0.1 1.0 ± 0.5 0.8 ± 0.3 −1.2 ± 0.1 2.3 ± 0.2 −0.3 ± 0.5 2.3 ± 3.2 2.7 ± 4.7 1.3 ± 2.2

SE 1.8 ± 0.2 0.3 ± 0.1 1.0 ± 0.1 −1.7 ± 0.2 3.4 ± 0.4 1.1 ± 0.1 −6.5 ± 0.7 −10.5 ± 1.0 −4.4 ± 0.4

GM 1.4 ± 1.2 0.1 ± 0.1 0.6 ± 0.2 −1.3 ± 1.1 2.7 ± 2.2 0.8 ± 0.2 −5.0 ± 1.3 −8.0 ± 1.9 −3.3 ± 0.9

CS 1.2 ± 0.1 0.7 ± 1.9 1.0 ± 1.4 −1.1 ± 0.1 2.2 ± 0.2 0.5 ± 0.1 −2.9 ± 3.3 −4.9 ± 4.6 −1.9 ± 2.2

PI 1.6 ± 0.1 −0.3 ± 0.8 0.4 ± 0.8 −1.6 ± 0.1 3.1 ± 0.2 1.0 ± 0.1 −7.3 ± 1.1 −11.5 ± 1.6 −5.0 ± 0.8

All 1.4 ± 0.4 −0.2 ± 0.5 0.4 ± 0.6 −1.4 ± 0.4 2.7 ± 0.9 0.8 ± 0.9 −0.5 ± 0.3 −0.8 ± 0.5 −3.2 ± 1.9

Table 4.  Long-term trends and uncertainties for OA indicators in each LME. Trends and trend uncertainties 
are determined by fitting a linear least-squares model with an intercept, trend, and annual and semi-annual 
harmonics to monthly area-weighted average indicator values. Area-weighted averages are calculated using a 
consistent fraction of ice-free cells for each month in each region, even though in reality some years have less 
ice coverage than others. Uncertainties are calculated by scaling the standard error on the trend by the effective 
degrees of freedom, determined from the decorrelation timescale of residual values.
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tree in the ensemble of a trained RFR, and an average of the values output from each tree is the fCO2 prediction 
(fCO2(RFR-LME)).

For each cluster, all grid cells with a GMM probability of greater than 10% for that cluster were used to train 
an RFR using the MATLAB “TreeBagger” function. This means that many grid cells on the geographic bound-
ary between one or more clusters may then have been used to train multiple RFRs. The number of trees used 
for each RFR was set to 1000, which was confirmed to be sufficient through visual inspection of the out-of-bag 
RMSE with respect to the number of trees (not shown). The minimum leaf size was set to three based on k-fold 
cross-validation testing, and the number of predictors used for each decision split was set to 6 (equal to the total 
number of predictors divided by three and rounded up to the nearest whole number).

To create an RFR-LME map of fCO2 for each LME, all the gridded predictor variables (0.25° × 0.25°, 
monthly) within the LME were run through each cluster-specific RFR. This produced N fCO2(RFR-LME) maps 
for each LME, where N is equal to the number of clusters. These maps were then merged as weighted average 
fCO2(RFR-LME) maps using the GMM probabilities as weights, which helped to smooth out discontinuities between 
clusters. Lastly, RFR-LME maps of fCO2 were converted to maps of pCO2 (pCO2(RFR-LME)) using SST and SLP55.

Cross-validation was used to evaluate the skill of the fCO2(RFR-LME) estimates in each cluster and overall in 
each LME. This k-fold cross-validation was performed by sequentially withholding subsets of 20% of data, 
training versions of RFR algorithms with the remaining 80% of data, then, for each data point in the valida-
tion dataset, comparing the fCO2 obtained using the k-fold cross-validation algorithms (fCO2(RFR-LME-kFold)) to 
the observed fCO2(SOCAT) value. This procedure was repeated five times for each LME so all data points were 
included in the validation data once, producing ΔfCO2 values for each data point.

Alkalinity and nutrient estimation.  Sea surface total alkalinity (AT), phosphate (PO4), and silicate 
(Si(OH)4) were estimated from gridded monthly fields of SSS and SST using Empirical Seawater Property 
Estimation Routines (ESPERs)34. ESPERs consist of both locally interpolated multiple linear regressions 
(ESPER-LIR) and feed-forward neural networks (ESPER-NN) trained to estimate seawater properties from a 
given set of input properties. Though ESPERs are global in nature, the regionally tuned ESPER-LIR coefficients 

LME pCO2 μatm AT μM CT μM pHT [H+]T nM RF Ωar Ωca [CO3
2−]T μM

CCS 20.5 15.6 18.4 0.022 0.47 0.40 0.17 0.26 7.9

GA 24.4 17.8 19.9 0.026 0.56 0.54 0.14 0.23 7.3

AI 20.6 13.6 15.4 0.021 0.48 0.49 0.12 0.19 5.7

EBS 18.1 16.2 17.3 0.020 0.43 0.50 0.12 0.19 5.7

BS 58.9 33.1 45.9 0.070 1.36 1.43 0.27 0.43 16.7

NBCS 106.2 27.8 56.8 0.097 2.38 2.15 0.39 0.63 25.0

NE 23.4 14.5 19.2 0.025 0.51 0.42 0.20 0.31 9.3

SE 10.8 8.3 12.3 0.013 0.26 0.16 0.22 0.33 8.0

GM 24.1 12.4 20.4 0.024 0.48 0.29 0.27 0.42 12.3

CS 3.4 11.5 11.6 0.008 0.16 0.11 0.21 0.31 6.5

PI 2.8 12.5 12.1 0.008 0.15 0.11 0.20 0.30 6.3

All 11.6 13.8 15.2 0.015 0.31 0.27 0.18 0.28 7.1

Table 6.  Average uncertainties for OA indicators in each LME. Uncertainties are determined by filtering and 
scaling fCO2 error estimates, pairing those with AT uncertainties from ESPER estimates, and propagating those 
through CO2 system calculations.

LME pCO2 μatm AT μM CT μM pHT [H+]T nM RF Ωar Ωca [CO3
2−]T μM

CCS 12.3 11.0 35.1 0.011 0.21 1.0 0.33 0.49 19.5

GA 95.3 24.8 109.8 0.107 2.12 3.6 0.85 1.32 54.2

AI 77.9 14.2 83.2 0.083 1.76 3.1 0.66 1.02 42.3

EBS 137.2 42.5 131.5 0.147 2.96 4.0 0.84 1.32 54.1

BS 56.0 205.8 206.6 0.070 1.19 1.4 0.23 0.37 15.0

NBCS 110.8 87.3 174.1 0.142 2.49 4.3 0.84 1.33 54.2

NE 56.5 36.1 103.5 0.055 1.06 2.4 0.95 1.36 54.0

SE 59.9 15.8 43.9 0.065 1.26 0.6 0.45 0.57 21.1

GM 49.6 2.5 45.9 0.051 1.01 0.8 0.72 0.96 34.7

CS 32.8 68.1 49.1 0.039 0.77 0.1 0.16 0.25 13.2

PI 23.8 1.7 11.3 0.026 0.50 0.2 0.16 0.20 7.2

All 12.3 20.1 44.2 0.014 0.27 1.0 0.29 0.42 16.2

Table 5.  Seasonal amplitudes for OA indicators in each LME. Seasonal amplitudes are calculated from the 
annual sine and cosine component amplitudes of a linear least-squares model with an intercept, trend, and 
annual and semi-annual harmonics fit to area-weighted average indicator values.
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and spatial coordinate predictors in ESPER-NNs mean that ESPERs function similarly to regional property esti-
mation algorithms. ESPERs also provide the benefit of estimating uncertainty corresponding to each predicted 
value, allowing for the propagation of those uncertainties through downstream computations. The ESPER-Mixed 
routine (an average of both the ESPER-LIR and ESPER-NN approaches) was used for this study, due to assess-
ment statistics that have indicated a lower global RMSE for the ESPER-Mixed approach (e.g., a global average 
RMSE of 3.7 μmol kg−1 for AT) compared to ESPER-LIR (4.0 μmol kg−1) and ESPER-NN (4.1 μmol kg−1) when 
producing property estimates from SSS and SST34.

Fig. 4  Long-term means of RFR-LME mapped OA indicators. Mapped averages of (a) pCO2(RFR-LME), (b) CT(RFR-LME), 
(c) pHT(RFR-LME), (d) [H+]T(RFR-LME), (e) Ωar(RFR-LME), (f) Ωca(RFR-LME), (g) [CO3

2−]T(RFR-LME), and (h) RF(RFR-LME) over the 
timeseries (1998–2022) within each LME.
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Carbonate system calculations.  CO2 system calculations were performed using CO2SYSv3 for 
MATLAB56 to determine additional ocean acidification (OA) indicators: dissolved inorganic carbon (CT(RFR-LME)), 
pH on the total scale (pHT(RFR-LME)), total hydrogen ion amount content ([H+]T(RFR-LME)), total carbonate ion 
amount content ([CO3

2−]T(RFR-LME)), saturation states for aragonite (Ωar(RFR-LME)) and calcite (Ωca(RFR-LME)), and 
Revelle factor (RF(RFR-LME)). These calculations were performed using well established thermodynamic equa-
tions describing the chemistry of carbon dioxide in seawater57,58. Input parameters to these equations were 
fCO2(RFR-LME), along with ESPER-estimated AT (AT(ESPER)), phosphate (PO4(ESPER)), and silicate (Si(OH)4(ESPER)). 
Carbonic acid dissociation constants from Lueker et al.59, the boric acid dissociation constant from Dickson60, the 
total boron to salinity ratio from Lee et al.61, the dissociation constant of water from Dickson62, and the hydrofluo-
ric acid dissociation constant from Perez and Fraga63 were used in CO2 system calculations. Uncertainties were 
propagated through these calculations (see following section).

Uncertainty estimation.  Uncertainties in RFR-LME maps of fCO2 were evaluated based on the previously 
described k-fold cross-validation approach. First, spatially gridded absolute values of ΔfCO2 from k-fold 
cross-validation were low-pass filtered (using 0.5° × 0.5° windows) two times in each LME to begin to fill nearby 
grid cells with uncertainty values. Then, nearest-neighbor interpolation was used to fill any remaining empty grid 
cells with data-based, spatially scaled uncertainty values ( fCO s2( )Ε ). This approach only assesses the strength of the 
fit for available. It is therefore prudent to assign greater uncertainties for periods and regions where training data 
are less abundant or absent. For this reason, the ΕfCO s2( ) values were further scaled over time by calculating two 
scaling factors specific to each LME, one representing the seasonal data coverage (using 3-month running means 
of the relative data coverage across the seasonal cycle) and another representing the relative annual data coverage 
(using 5-year running means of the relative data coverage across the timeseries).

The seasonal scaling factor ( .εseas ) was calculated as:

=
∑

.
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+( )n n MY

n n
ε

/ /
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my my
my

obs my tot my

obs my tot my

1
1
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where my is the numbered month of the year (1–12), myref is the reference month of the year for each time step 
(1–12), nobs(my) is the number of grid cells with observations in the corresponding month of the year, ntot(my) is the 

Fig. 5  Seasonal means of CT(RFR-LME). Mapped averages of CT(RFR-LME), in the northern hemisphere (a) winter 
(DJF), (b) spring (MAM), (c) summer (JJA), and (d) fall (SON) over the timeseries (1998–2022) within  
each LME.
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total number of available grid cells in the corresponding month of the year, and MY is the total number of 
months considered within the window for each time step. Because January (1) comes after December 
(12), myref − 1 = 12 when myref = 1 and myref + 1 = 1 when myref = 12. The long-term scaling factor ( .εann ) was 
calculated as:

=
∑
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+( )n n MS
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/ /
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ms ms
ms

obs ms tot ms

obs ms tot ms

24
24
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where ms is the numbered month in the full series (1–228), msref is the reference month in the series for each 
time step (1–228), nobs(ms) is the number of grid cells with observations in the corresponding month of the series, 
ntot(ms) is the total number of available grid cells in the corresponding month, and MS is the total number of 
months considered within the window for each time step. Fewer months were considered within each window 
near the beginning and end of the time series. Finally, the estimated uncertainty of fCO2(RFR-LME) scaled spatially 
and temporally (i.e., seasonally and annually) was calculated as:

ε εfCO s t fCO s seas ann2( , ) 2( )Ε Ε= × × .. .

The window sizes of the scalers were selected to balance data coverage in each time window with realistic 
periods of time over which observational data may exhibit serial correlations.

Uncertainties in ESPER-estimated AT and nutrients were provided by the ESPER algorithms, which estimate 
uncertainty using a polynomial fit to salinity and depth. The ESPER algorithms are less skillful in the surface 
ocean where we use them than they are globally across all depths, and the uncertainty estimates are correspond-
ingly greater at shallow depths.

The uncertainty estimates were propagated along with standard estimated total uncertainties in carbonate 
system constants (see Table 1 in Orr et al.64) to calculate uncertainty in mapped OA indicators. Gaussian uncer-
tainty propagation was employed, using CO2SYSv3 for MATLAB56, which is based on uncertainty propagation 
code introduced in CO2SYSv2 by Orr et al.64.

Fig. 6  k-fold cross-validated differences between estimated and measured fCO2 and scaled uncertainty in 
fCO2(RFR-LME), AT(ESPER), and Ωar(RFR-LME). (a) Absolute differences (|ΔfCO2|) between fCO2(RFR-LME-kFold) and 
fCO2(SOCAT) calculated via a k-fold cross-validation approach compared to (b) long-term average uncertainty  
in fCO2(RFR-LME-kFold), calculated and scaled according to the procedure in the Uncertainty estimation section. 
Long-term average uncertainty in (c) AT(ESPER) and (d) Ωar(RFR-LME) are also shown.
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Fig. 7  pCO2 timeseries for the eleven U.S. LMEs considered in this study. Area-weighted annual (red) and 
monthly (black) means are presented along with envelopes of uncertainty. Uncertainties are calculated by 
scaling k-fold cross-validated uncertainties spatially with a two-dimensional low-pass filter, then temporally 
according to long-term data coverage (5-year running windows) and seasonal data coverage (3-month running 
windows). Average values across the timeseries are indicated by dotted lines. Note the different y-axis for each 
LME. For many LMEs, uncertainties are larger near the beginning of the timeseries, when SOCAT observations 
are less dense. Inset within each timeseries plot is a figure showing the percent of the LME represented across 
the seasonal cycle by grid cells that remain ice-free across the entire timeseries; these are the grid cells used to 
compute monthly and annual means.

LME Mean ΔfCO2 Mean |ΔfCO2| Median ΔfCO2 Median |ΔfCO2| IQR RMSE R2

CCS −0.51 21.48 0.61 8.47 16.85 44.10 0.67

GA 0.11 14.03 0.16 7.66 15.31 23.95 0.89

AI 0.02 13.44 0.64 6.52 13.10 26.11 0.76

EBS 0.79 14.81 0.67 9.33 18.53 22.40 0.92

BS −0.35 8.68 −0.57 4.64 9.24 14.40 0.91

NBCS −1.04 19.14 0.05 11.93 23.85 29.95 0.88

NE −0.11 15.58 0.39 10.86 21.70 22.89 0.81

SE −0.08 8.01 0.47 4.14 8.30 16.82 0.82

GM −0.07 13.82 −0.01 6.00 12.03 29.08 0.75

CS −0.05 3.68 0.24 2.46 4.89 5.41 0.93

PI −0.02 2.37 0.09 1.62 3.24 3.56 0.98

Average −0.10 12.24 0.25 6.68 13.34 21.53 0.85

Table 7.  Error statistics of fCO2 predicted by k-fold cross-validation algorithms (fCO2(RFR-LME-kFold)) compared 
to fCO2 from SOCAT observations (fCO2(SOCAT)). The k-fold cross-validation procedure performed within each 
LME is described in the Machine learning regressions section. Statistics shown include the mean and absolute 
mean ΔfCO2 (fCO2(RFR-LME-kFold) − fCO2(SOCAT)), median and absolute median ΔfCO2, interquartile range (IQR) 
of ΔfCO2, root mean square error (RMSE) of ΔfCO2, and Pearson’s correlation coefficient (R2) between and 
fCO2(RFR-LME-kFold) and fCO2(SOCAT).
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Validation and evaluation.  The skill of the RFR-LME maps was evaluated through comparisons with 
co-located OA indicators independently calculated from the ship-based GLODAPv2.2022 and CODAP-NA 
measurements described above. OA indicators were computed at in situ temperature from the AT and CT 
observations using CO2SYSv3 for MATLAB56 and the same equilibrium constants as before. Although the 
GLODAPv2.2022 and CODAP-NA databases also include pHT and pCO2 measurements, they are not as wide-
spread as AT and CT measurements, so we chose to calculate all indicators from AT and CT for evaluation. Each 
observation was then co-located with the corresponding RFR-LME grid cell and compared.

In addition, RFR-LME maps were compared to global mapped data products of sea surface pCO2 obtained 
from SeaFlux (v2021.04)47. Long-term averages of pCO2 from RFR-LME maps and SeaFlux maps were computed 
across the overlapping time periods of both products (i.e., 1998–2019). Mapped differences between RFR-LME 
and each SeaFlux ensemble member, as well as an average across the ensemble, were computed and compared.

Finally, observations of pCO2 at fixed buoy locations were compared to pCO2 from RFR-LME data products 
at grid cells corresponding to those moored buoy observations. For this exercise, special-case RFR-LME maps 
were created by training RFRs on gridded fCO2(SOCAT) data with buoy observations excluded, then using those 
algorithms to construct the maps. Comparing pCO2 mapped from datasets both with and without the underly-
ing buoy observations allowed for evaluation of the influence that those seasonally resolved observations have 
on the fidelity of the pCO2 reconstruction. pCO2 values extracted from the mapped SeaFlux datasets were also 
included in this comparison, allowing for separate evaluation of how the LME-scale, 0.25° × 0.25° monthly 
reconstructions compare to global 1° × 1° monthly reconstructions.

Data Records
RFR-LME maps can be accessed through the NOAA National Centers for Environmental Information (NCEI) 
via the Ocean Carbon and Acidification Data System (OCADS; https://doi.org/10.25921/h8vw-e872)35. The 
dataset is available in NetCDF format on 0.25° × 0.25° spatial grids at monthly timesteps. Each mapped OA 
indicator and its uncertainty is provided via a separate NetCDF file, along with a reference grid that indicates 
to which LME each spatial grid cell belongs. Additionally, regional timeseries for CO2 partial pressure, calcium 
carbonate saturation state, and pH are displayed at the NOAA Marine Ecosystem Status website (https://eco-
watch.noaa.gov). Average values, trends, seasonal amplitudes, and uncertainty estimates of ocean acidification 
indicators from RFR-LMEs vary considerably among the regions (Tables 3–6).

Long-term means (Table 3; Fig. 4) allow for the description of LME-scale patterns in surface ocean car-
bonate chemistry. Tropical LMEs (PI and CS) are characterized most notably by high carbonate ion param-
eters ([CO3

2−]T, Ωar, and Ωca) and low RF values. Within this pair, the CS can be described as more acidified  
(higher pCO2 and lower pHT) but better buffered (lower RF and higher AT/CT ratio). Subtropical Atlantic LMEs 

Fig. 8  pHT timeseries for the eleven U.S. LMEs considered in this study. Same as Fig. 7, except for pHT.
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(GM and SE) also have high carbonate ion parameters ([CO3
2−]T, Ωar, and Ωca) and low RF values. Compared to 

the Tropical LMEs however, Subtropical Atlantic LMEs have higher CT and AT values, although AT/CT ratios and 
therefore RFs are similar between the two groups. Temperate and subarctic coastal LMEs (CCS, GA, and NE) 
can generally be considered intermediate in all parameters: pCO2, pH, carbonate ion parameters, CT, AT, and RF. 
Within the group, the GA has the highest RF and lowest carbonate ion parameters, the NE has the lowest RF and 
highest carbonate ion parameters, and the CCS is between the two. Subarctic North Pacific LMEs (AI and EBS) 
are characterized by high CT, pCO2, and RF; and low pHT and carbonate ion parameters. Arctic LMEs (NBCS 
and BS) are characterized by high pHT and RF; and low AT, pCO2, and carbonate ion parameters.

LME

Means Trends Amplitudes

Temp. °C Sal Temp. °C/yr Sal yr−1 Temp. Sal

CCS 14.0 32.6 0.04 ± 0.03 0.00 ± 0.01 4.9 0.3

GA 7.9 32.0 0.04 ± 0.04 −0.01 ± 0.01 7.9 0.6

AI 6.2 32.7 0.04 ± 0.01 −0.01 ± 0.00 6.7 0.2

EBS 5.5 32.5 0.05 ± 0.06 0.00 ± 0.00 6.8 0.9

BS −0.4 30.2 0.01 ± 0.01 0.01 ± 0.01 3.8 4.3

NBCS 2.1 30.9 0.04 ± 0.01 0.02 ± 0.01 9.2 1.7

NE 16.3 34.0 0.07 ± 0.01 0.02 ± 0.01 13.5 0.8

SE 24.8 36.2 0.03 ± 0.01 0.01 ± 0.00 7.5 0.3

GM 25.5 35.0 0.02 ± 0.01 0.01 ± 0.00 8.9 0.9

CS 27.8 35.3 0.02 ± 0.01 0.01 ± 0.03 2.7 1.2

PI 26.7 35.0 0.03 ± 0.01 −0.01 ± 0.01 2.8 0.0

Table 8.  Long-term mean values, trends, and seasonal amplitudes for temperature and salinity in each LME. 
Long-term means are calculated as averages over the monthly timeseries (1998–2022) of area-weighted average 
values; trends and trend uncertainties are determined by fitting a linear least-squares model with an intercept, 
trend, and annual and semi-annual harmonics to monthly area-weighted average values; and seasonal amplitudes 
are calculated from the annual sine and cosine component amplitudes of the linear least-squares model.

Fig. 9  Ωar timeseries for the eleven U.S. LMEs considered in this study. Same as Fig. 7, except for Ωar.
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Spatial variability in OA indicators is evident within each LME and throughout the seasonal cycle (Fig. 5). 
For example, the CCS develops a strong dipole in the summer (June/July/August; Fig. 5c), with low CT off the 
coast in the northern CT and high CT off the coast in the central CCS. This dipole becomes much weaker in the 

Fig. 10  Comparisons between OA indicators retrieved from RFR-LME maps and those calculated from 
discrete observations. (a,c,e) Histograms showing differences between calculations of (a) pCO2, (c) pHT, and 
(e) Ωar from discrete surface (depth ≤ 10 m) observations of AT and CT and values of the same OA indicators 
from RFR-LME maps. Discrete observations that fall within the boundaries of LMEs were obtained from the 
GLODAPv2.202251 and CODAP-NA52 data products. Error statistics shown represent the median errors and the 
interquartile ranges of errors for each comparison. (b,d,f) Mapped differences between calculations of (b) pCO2, 
(d) pHT, and (f) Ωar from discrete surface (depth ≤ 10 m) observations of AT and CT and values of the same OA 
indicators from RFR-LME maps. Discrete differences are binned into 1° × 1° grid cells for this map.
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winter (December/January/February; Fig. 5a). Similarly, relatively low CT occurs off the coast in the northern 
NE region in the summer but disappears in the winter (Fig. 5c). The southern continental Alaskan coastline 
exhibits low CT, especially nearshore in the summer, whereas the northern Alaskan coastline is relatively higher 
in CT than nearby offshore waters in the Arctic Ocean. A band of relatively low CT is evident from about 10° to 
20° N in the PI region, between higher CT in the equatorial Pacific and North Pacific subtropical gyre, a feature 
that has appeared in other sea surface CT data products6.

Mapped indicator uncertainties (see Fig. 6) are served alongside RFR-LME maps35, providing a resource for 
evaluating uncertainty in OA indicator values at a given location. Area-weighted mean u[pCO2(RFR-LME)] was 
12.0 μatm across the entire domain, u[pHT(RFR-LME)] was 0.015, and u[Ωar(RFR-LME)] was 0.18. These domain-wide 
means are influenced by the large area and low uncertainties in the Pacific Islands region; individual LME uncer-
tainties, particularly in Artic and Subarctic LMEs, may be considerably larger. Spatial patterns of uncertainties 
also differ for different OA indicators. For example, u[Ωar(RFR-LME)] tends to be relatively high in the tropical 
LMEs (Fig. 6d), where Ωar(RFR-LME) is also high (Fig. 4e); on the other hand, u[pCO2(RFR-LME)] is extremely low in 
tropical the LMEs (Fig. 6b).

Uncertainty values reflect not only uncertainty in the RFR predictions, but also uncertainty introduced by 
interpolating over spatial and temporal gaps in observational coverage. Average uncertainty values for each LME 
are presented alongside OA indicator timeseries on the NOAA NaMES website. Importantly, the uncertainty 
values provided in Table 6 and on the NaMES website represent weighted means of grid-cell-level uncertainties 
rather than uncertainties corresponding to region-wide averages, which may or may not be smaller due to can-
celling errors that are removed by areal averaging or larger due to inadequacies of our spatiotemporal scaling 
approach for representing uncertainties in under-sampled times and locations.

Technical Validation
Data-based validation.  A k-fold cross-validation approach was used to assess the skill of the fCO2 esti-
mates and subsequent OA indicator calculations. Region-wide error statistics for each of the eleven LMEs (before 
the spatial and temporal scaling) indicate that fCO2(RFR-LME-kFold) values are centered around (mean and median 
errors all close to zero) and tend to correlate closely with (nine of the eleven R2 values are 0.8 or greater) the 
measured values of fCO2(SOCAT) (Table 7). Root mean square errors (RMSEs) are generally about three times 
larger than median absolute errors, indicating error populations with long tails of a few particularly large errors. 
When viewed spatially (Fig. 6a), absolute differences (|ΔfCO2|) between fCO2(RFR-LME-kFold) and fCO2(SOCAT) are 
greatest near the coast and in the North Pacific and Arctic, and smallest in the open ocean and in the tropics 
and subtropics. High |ΔfCO2| values tend to correlate with areas of high background variability in fCO2(SOCAT) 
(Fig. 2b), emphasizing that the RFR algorithms may struggle to capture extreme values, which is consistent with 
the aforementioned long-tailed error populations.

Comparison to global trends.  RFR-LME indicator timeseries (1998–2022) represent spatially weighted 
annual averages of OA indicators computed from RFR-LME maps. Increasing pCO2(RFR-LME) and decreasing 
pHT(RFR-LME) are observed in each LME (Figs. 7, 8) — trends that are strongly influenced by anthropogenic CO2 
uptake and amplified by ocean warming (Table 8). Ωar(RFR-LME) decreases in many (but not all) LMEs over 1998–
2022 (Fig. 9), as Ωar decline is driven by anthropogenic CO2 uptake as well, but moderated by ocean warming and 

Buoy RFR-LME RFR-LME-NM CMEMS-LSCE NIES-FNN MPI-SOMFFN JENA-MLS CSIR-ML6 JMA-MLR

La Parguera 1.8 ± 6.1 34.8 ± 23.5 30.7 ± 31.9 21.4 ± 41.6 30.8 ± 32.0 22.4 ± 25.0 27.6 ± 32.7 36.1 ± 34.6

WHOTS 3.1 ± 4.6 9.9 ± 7.8 1.8 ± 12.9 10.4 ± 9.5 6.2 ± 12.3 −0.2 ± 9.9 6.0 ± 11.2 6.0 ± 21.5

Cheeca Rocks −11.0 ± 51.0 −25.4 ± 75.8 −7.3 ± 105.4 −11.6 ± 101.9 −7.0 ± 92.1 −2.5 ± 68.6 −8.6 ± 102.4 −12.1 ± 107.7

Gray’s Reef −2.7 ± 23.2 0.8 ± 51.3 12.1 ± 55.5 −4.0 ± 71.0 14.8 ± 66.3 1.0 ± 57.9 4.6 ± 52.4 17.3 ± 60.2

CCE1 1.1 ± 3.4 1.1 ± 7.4 0.8 ± 15.6 14.5 ± 25.6 3.9 ± 13.2 −1.5 ± 15.7 4.4 ± 16.9 14.9 ± 16.5

CCE2 1.4 ± 14.2 4.6 ± 36.0 2.1 ± 35.9 9.3 ± 41.7 11.4 ± 52.5 2.7 ± 33.3 11.2 ± 41.6 35.6 ± 51.3

Gulf of Maine 0.2 ± 17.8 −10.1 ± 32.2 −5.6 ± 43.3 12.8 ± 45.9 12.5 ± 64.8 −2.2 ± 50.1 7.4 ± 53.8 39.7 ± 53.8

CB-06 10.3 ± 42.7 50.1 ± 83.5 4.0 ± 89.0 33.2 ± 87.0 45.6 ± 99.8 −14.9 ± 63.6 38.6 ± 99.4 39.3 ± 120.4

Cape Elizabeth 1.8 ± 21.8 10.2 ± 50.0 −35.6 ± 77.5 2.5 ± 90.7 −28.3 ± 93.6 −11.4 ± 55.0 −50.0 ± 75.6 −16.0 ± 93.3

Twanoh 0.2 ± 49.2 −260.8 ± 118.1 −17.0 ± 107.0 46.4 ± 95.0 11.8 ± 85.8 40.2 ± 90.7 8.6 ± 78.3 14.8 ± 104.3

Châ bá −1.7 ± 24.9 −7.8 ± 63.7 −53.3 ± 67.3 −12.2 ± 79.9 −55.8 ± 95.3 −17.7 ± 50.0 −55.9 ± 69.5 −46.6 ± 111.9

M2 −6.2 ± 23.8 −15.3 ± 33.6 −35.1 ± 60.6 −52.7 ± 72.2 −39.4 ± 48.0 −34.0 ± 43.4 −53.9 ± 48.7 −45.6 ± 69.7

Kodiak 2.7 ± 38.3 25.7 ± 83.6 14.1 ± 80.8 57.4 ± 111.7 24.5 ± 126.1 −1.6 ± 91.3 22.8 ± 89.4 47.4 ± 110.4

GAKOA 0.0 ± 9.9 0.1 ± 21.6 −67.3 ± 40.7 −63.3 ± 100.3 −71.2 ± 66.6 −10.5 ± 27.1 −63.8 ± 48.5 −53.3 ± 54.4

Average 0.1 ± 23.6 −13.0 ± 49.2 −11.1 ± 58.8 4.6 ± 69.6 −2.9 ± 67.7 −2.2 ± 48.7 −7.2 ± 58.6 5.5 ± 72.1

Table 9.  Medians and interquartile ranges (μatm) of comparisons between moored buoy observations and 
corresponding grid cells from mapped monthly sea surface pCO2 data products. Only buoys within LMEs and 
with observations in more than 36 months of the timeseries were included. Grid cells nearest in space to the 
moored buoy coordinates were selected from each data product. If the nearest grid cell did not contain pCO2 
values, the next nearest grid cell was selected. This process was repeated until the chosen grid cell contained 
pCO2 values.
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also influenced by changes in SSS (Table 8). Trends in OA indicators across U.S. LMEs (Table 4) can be compared 
with global trends of about + 1.5 μatm yr–1 for pCO2 (+0.3 to +1.8 μatm yr–1 for RFR-LMEs), +0.9 μmol kg–1 
yr–1 for CT (–0.2 to +1.0 μmol kg–1 yr–1 for RFR-LMEs), –1.7·10–3 units yr–1 for pHT (–1.8·10–3 to –0.2·10–3 yr–1 for 
RFR-LMEs), and –7.0·10–3 yr–1 for Ωar

1,4,6,10 (–7.3·10–3 to +2.6·10–3 yr–1 for RFR-LMEs).
It is important to note that, for some of the Arctic and subarctic LMEs that are characterized by high seasonal 

ice coverage, these trends are driven by primarily summertime OA indicator values (see inset plots in Figs. 7–9). 
This limitation, along with the fact that these timeseries are relatively short (25 years) and regionally limited, can 
explain divergence in some specific cases from the global trends.

Comparison to discrete shipboard data.  The RFR-LME fields presented in this work are constructed 
using surface CO2 measurements from shipboard flow-through analyzers. This automated observational 
approach allows for the collection of high spatial and temporal resolution observations of surface ocean car-
bonate chemistry. Discrete bottle measurements of carbonate chemistry parameters represent another approach 
for monitoring ocean acidification. The discrete approach allows for high-quality observations throughout the 
water column. Here we take near-surface discrete bottle measurements of AT and CT from GLODAPv2.202251 
and CODAP-NA52, use those measurements to calculate OA indicators, and compare those calculated values with 
mapped surface OA indicators from RFR-LMEs.

Fig. 11  Summarized differences between monthly binned moored buoy pCO2 observations and mapped pCO2 
data products. (a) Medians and (b) interquartile ranges of differences, (c) differences in seasonal amplitudes, 
and (d) correlations of residual values (after removing the trend and seasonal cycle) between binned moored 
buoy pCO2 observations and mapped pCO2 data products. Each of these statistics are shown as boxplots 
representative of all 14 mooring sites compared to each mapped product, where the boxes extend from the 25th 
to 75th percentile, the center line shows the median of the data, the whiskers extend to the most extreme data 
points not considered outliers, and dots denote outliers (arrows denote where outliers do not appear within the 
axis limits). RFR-LME is the product described in this work and RFR-LME-NM is the constructed using the 
same method but without moored buoy observations. References for the SeaFlux mapped products are provided 
in the Data sources section.
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RFR-LME indicator values are generally in good agreement with calculations from discrete bottle measure-
ments (Fig. 10). Compared to the k-fold-validation-based uncertainty estimates (Table 6), a greater spread (i.e. 
larger IQRs) in the differences between GLODAP/CODAP and RFR-LME values is expected in this exercise 
for two reasons. First, uncertainty stemming from CO2 system calculations will contribute to the spread (e.g., 
Orr et al.64), since GLODAP/CODAP indicators values are calculated from AT and CT and RFR-LME indicator 
values are calculated from fCO2 and AT. As an example, average propagated uncertainties for GLODAP/CODAP 
calculations using standard measurement errors for AT and CT (2 μmol kg−1 for both) and for equilibrium con-
stants64 were calculated as 12.0 μatm for pCO2, 0.014 for pHT, and 0.11 for Ωar. In addition, the two datasets are 

Fig. 12  Comparisons between pCO2 from selected moored buoy observations, RFR-LME and RFR-LME-NM 
maps, and other mapped surface products. (a) Mapped long-term mean pCO2(RFR-LME) along with mean pCO2 
from moored buoy observations (shaded dots). Colors of the arrows in the map correspond to the colors of the 
outlines of timeseries plots from grid cells that match the buoy locations. (b–i) Each timeseries shows buoy 
observations aggregated into monthly bins (black dots), corresponding timeseries from RFR-LME maps (red 
solid lines) and RFR-LME-NM maps (blue dashed lines), and corresponding timeseries from mapped global 
data products included in SeaFlux47 (thin colored lines).
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fundamentally different in their spatiotemporal resolution. RFR-LME grid cells represent averages for large 
swaths of the surface ocean over a monthly timestep, whereas shipboard measurements are appropriate for a 
distinct point in space at a distinct time. This spatiotemporal mismatch is especially noteworthy in the coastal 
ocean where diurnal and other sub-monthly modes of variability operate over spatial scales much finer that 0.25 
degrees of latitude or longitude. The calculations from bottle measurements also tend to indicate higher pCO2 
and therefore lower pHT and Ωar. These offsets between the two datasets may be partly related to inconsistencies 
in carbonate chemistry calculations, whereby calculations from AT and CT at most surface conditions tend to 
produce lower pHT (and higher pCO2) values than corresponding measurements of those properties65,66.

Comparison to moored buoy time series data.  Timeseries of pCO2 from fixed grid cells of RFR-LME 
maps and RFR-LME maps constructed without moored buoy observations (RFR-LME-NM) were compared to 
pCO2 observations at fixed buoy locations that were extracted from the SOCATv2023 database and aggregated 
in monthly bins. This provides a test of the capacity of RFR-LMEs to reproduce monthly variability in validation 
measurements that were withheld from training, and can be considered an assessment of the RFR-LME skill with 
monthly variability generally. Mapped global data products of surface ocean carbonate chemistry obtained from 
SeaFlux27,47 were also compared to the moored buoy observations.

Differences between moored buoy observations and mapped products (Table 9; Fig. 11) suggest that time-
series extracted from our regionally focused RFR-LME maps more meaningfully reflect observed pCO2 than 
those from mapped global products. Like RFR-LME, most of these alternative products were trained from 
versions of SOCAT that include the buoy observations. The average median ( ± IQR) ΔpCO2 (pCO2(moor.) 
– pCO2(grid)) was 0.1 ± 23.6 μatm for RFR-LME and increased to −13.0 ± 49.2 μatm for the RFR-LME-NM 
product, which excluded these observations from the training data. These increased error statistics emphasize 
the value of moored buoy observations for the surface CO2 observing system. Still, all but one (JENA-MLS; 
ΔpCO2 = −2.2 ± 48.7) of the mapped data products from SeaFlux exhibited more variability in their differences 
from buoy observations than even the version of RFR-LME constructed without moored buoy observations. 
JENA-MLS may perform better at representing pCO2 at these mooring sites because it explicitly models mixed 
layer fluxes and processes rather than relying on empirical relationships learned from large sets of data.

Individual timeseries from moored buoy sites (Fig. 12) emphasize the significant seasonal and interannual 
variability in buoy pCO2 observations (black dots), even when aggregated in monthly bins, and the challenge for 
mapped products (colored lines) to accurately capture each of those variations at a local scale. The performance 

Fig. 13  Comparisons between mapped surface pCO2 products and RFR-LME maps. Long-term mean pCO2 
for each of the SeaFlux47 mapped global products (a,c,e,g,i,k) and differences between those products and RFR-
LME (ΔpCO2 = pCO2(SeaFlux) − pCO2(RFR-LME); b,d,f,h,j,m) are shown. Area-weighted averages and standard 
deviations of ΔpCO2 are provided above each set of two figures.
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of the regional RFR-LME maps compared to the global mapped products reinforces the notion that locally spe-
cific relationships captured by training machine learning algorithms at the scale of objectively defined clusters 
within LMEs can resolve fine-scale variations in ocean biogeochemistry more effectively than global-scale algo-
rithms, even though those global-scale algorithms are trained with a larger amount of data24,67. Positive trends 
in pCO2 superimposed upon seasonal variations are visible in both the moored buoy observations and mapped 
data product timeseries (Fig. 12).

Comparison to mapped data products.  Finally, RFR-LME surface pCO2 was compared directly to the 
six global-scale mapped products of pCO2 from SeaFlux across the overlapping interval between them (1998–
2019). Maps of average surface pCO2 display similar patterns across all six SeaFlux products, but differences 
between those products and RFR-LME (ΔpCO2 = pCO2(SeaFlux) − pCO2(RFR-LME)) reveal subtle regional differences 
(Fig. 13). SeaFlux provides a pCO2 filler field derived from Landschützer et al.68 to fill spatial gaps in global sur-
face products; this gap filler is not used to produce the difference maps displayed in Fig. 13. However, for spatial 
consistency, it is used to calculate the averages and standard deviations of the differences for each data product 
shown in Fig. 13.

In the tropical Pacific, RFR-LME maps agreed well with all products but NIES-FNN, where a prevailing 
negative bias is evident in that product. In the Atlantic, RFR-LME maps generally agreed well, with visible biases 
in the Mississippi plume (CSIR-ML6), Georges Bank (JMA-MLR), Caribbean (JENA-MLS), and throughout 
(NIES-FNN). Coastal negative biases are visible for most products in the central CCS region, and coastal pos-
itive biases are visible in the northern CCS region. Both positive and negative biases occur in the regions sur-
rounding Alaska, where low observational density likely leads to significant diversity in pCO2 estimates among 
the gap-filling approaches.

Despite these regional discrepancies with some individual products, the median (±1 IQR) ΔpCO2 for 
the ensemble average of all six SeaFlux products is 0.8 ± 16.6 μatm. This indicates that RFR-LME — which 
represents local-scale temporal variability in surface pCO2 more effectively than global products (Table 9; 
Fig. 11) — agrees at broad scales with observation-based products that are well accepted and widely used by 
community-wide synthesis efforts such at the Global Carbon Budget2 and REgional Carbon Cycle Assessment 
and Processes Project (RECCAP2)69.

Code availability
Code for accessing and processing the data discussed in this study is freely available on Github (https://github.
com/jonathansharp/US-RFR-LMEs). Code was written in MATLAB version R2022a. Parameters used to generate 
and validate the current dataset are described throughout the Methods section and are listed in Table 2.
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