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Abstract We examine the influence of convective organization on extreme tropical precipitation events
using model simulation data from the Radiative-Convective Equilibrium Model Intercomparison Project
(RCEMIP). At a given SST, simulations with convective organization have more intense precipitation extremes
than those without it at all scales, including instantaneous precipitation at the grid resolution (3 km). Across
large-domain simulations with convective organization, models with explicit convection exhibit better
agreement in the response of extreme precipitation rates to warming than those with parameterized convection.
Among models with explicit convection, deviations from the Clausius-Clapeyron scaling of precipitation
extremes with warming are correlated with changes in organization, especially on large spatiotemporal scales.
Though the RCEMIP ensemble is nearly evenly split between CRMs which become more and less organized
with warming, most of the models which show increased organization with warming also allow super-CC
scaling of precipitation extremes. We also apply an established precipitation extremes scaling to understand
changes in the extreme condensation events leading to extreme precipitation. Increased organization leads to
greater increases in precipitation extremes by enhancing both the dynamic and implied efficiency contributions.
We link these contributions to environmental variables modified by the presence of organization and suggest
that increases in moisture in the aggregated region may be responsible for enhancing both convective updraft
area fraction and precipitation efficiency. By leveraging a controlled intercomparison of models with both
explicit and parameterized convection, this work provides strong evidence for the amplification of tropical
precipitation extremes and their response to warming by convective organization.

Plain Language Summary Organization of tropical clouds into clusters has profound effects on
Earth's climate. We examine the impact of this organization on heavy rain events. Across an ensemble of high-
resolution computer simulations of an idealized tropical atmosphere, we find that when storms become more
clustered with warming, the heaviest rainfall events increase by more than expected. This work shows the
importance of accurately modeling the changes in organization with warming as well as the importance of
running computer models with a fine enough resolution to capture individual storms.

1. Introduction
1.1. Motivation and Background

Convective organization is well-established as a major element of the tropical climate (Muller & Takayabu, 2020;
Pendergrass, 2020). A more organized scene leads to profound changes in the atmospheric state, including a net
warming and drying in the mean state while a moister convecting region forms (Wing, 2019). These changes
cause an increase in mean precipitation, as the drier region cools more efficiently, requiring more convection to
maintain a state of radiative-convective equilibrium (RCE) (e.g., Allen & Ingram, 2002). Unlike the mean state,
extreme precipitation is not constrained by energetics. Extreme precipitation's response to warming is thus more
uncertain, particularly in the tropics (O’Gorman & Schneider, 2009a) where other factors such as moisture
availability, updraft vertical mass flux, and microphysics control it (O’Gorman & Schneider, 2009a; see also
Muller et al., 2011). Cloud-resolving model (CRM) simulations of RCE broadly support a thermodynamic scaling
with lower-tropospheric humidity (Abbott et al., 2020; Muller & Takayabu, 2020; Muller et al., 2011;
Romps, 2011). Departures from thermodynamics may occur (Singh & O’Gorman, 2013; Westra et al., 2014), and
have been linked to changes in updrafts (O’Gorman, 2015). As tropical precipitation extremes are observed to be
frequently produced by organized features (e.g., Dai & Soden, 2020; Hamada et al., 2014; Nesbitt et al., 2006;
Roca & Fiolleau, 2020; Semie & Bony, 2020), recent work has examined the link between tropical extreme
precipitation and convective organization and how this link may change in a warming climate.
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Many studies have examined the link between extreme precipitation and convective organization in model
simulations under a wide variety of circumstances. Changes in extreme precipitation have been linked to changes
in organization modulated by changing domain size alone (e.g., Da Silva et al., 2021), sea surface temperature
(SST) (Pendergrass et al., 2016), shear (Abramian et al., 2023; Muller, 2013), radiative effects (e.g., Bao &
Sherwood, 2019; Fildier et al., 2021), surface fluxes (Fildier et al., 2021), convective parameterizations, large-
scale circulations, resolution (Bao et al., 2017), and storm size (Bao et al., 2024). Most such papers find in-
creases in extreme rainfall with increased organization and/or a super-Clausius-Clapeyron (super-CC) increase in
extreme rainfall with warming when the system becomes more organized. Previous work on the topic has
examined either a single model or ensembles of GCMs, in either an RCE state or using an AMIP configuration
(e.g., Li et al., 2022; Medeiros et al., 2021; O’Gorman, 2012; O’Gorman & Schneider, 2009a). This paper is the
first to examine the relationship between changes in extreme precipitation and convective organization across an
ensemble of cloud-resolving models. Resolving convection is critical to realistically representing certain orga-
nized features in the tropics (e.g., Rios-Berrios et al., 2022), so this is an important step in advancing our un-
derstanding of extreme rainfall events. We also note that previous work on extreme tropical rainfall used a variety
of definitions of “extreme,” with a range of percentiles from the 99" to the 99.99"" and beyond, timescales from
instantaneous to daily, and spatial scales from CRM grid resolutions to hundreds of kilometers. Perhaps because
of this wide range of methodologies and the variety of models used, these prior studies disagree on the physical
mechanisms responsible for the relationship between convective organization and extreme precipitation, such as
whether the link is modulated primarily via properties of updrafts (a dynamic contribution) or via precipitation
efficiency. The dynamic term shows wide variation across studies. Pendergrass et al. (2016) find a massive 60%/K
contribution from updraft magnitude across the boundary between SSTs that lead to aggregation and those that do
not. Fildier et al. (2021) find a much smaller 12%/K contribution in the same situation. In both studies, changes in
precipitation extremes are much smaller when there are not large changes to the degree of organization. Defi-
nitions of precipitation efficiency can also vary. Lutsko and Cronin (2018) find that precipitation efficiency
decreases with increased organization (though not enough to counteract its increases with warming) while Fildier
et al. (2021) suggest efficiency is modulated by the humidity of the region where precipitation falls. Authors also
disagree on whether there is any effect of organization on instantaneous rain rates. Da Silva et al. (2021) found a
30% increase in rain rates due to the presence of organization, caused by a +50% microphysical contribution and a
—25% dynamic contribution. By contrast, Bao and Sherwood (2019) found instantaneous precipitation showed
little change, caused by offsetting decreased dynamic contribution and increased efficiency. By applying a
common methodology across the model ensemble, we seek to resolve these disagreements and more firmly
establish the link between extreme precipitation and organization.

1.2. RCEMIP

The Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) (Wing et al., 2018, 2020a)
provides a controlled framework to examine the properties of convective organization across models. Many
models- including cloud-resolving models (CRMs), general circulation models (GCMs), large eddy simulation
models (LES), and global cloud-resolving models (GCRMs)- took part in RCEMIP. Each model was run with a
common framework representative of the tropical atmosphere. No rotation and no diurnal cycle of solar radiation
were used, and each model was run with a fixed and uniform SST of 295, 300, and 305 K. Each simulation was
allowed to evolve to an RCE state. However, each model used its own microphysical and radiation schemes:
common results across RCEMIP are thus likely to be robust to such parameterizations. RCEMIP is the first model
intercomparison of the RCE state involving CRMs and thus the first to include storm-scale dynamics.

RCEMIP was designed to examine the effect of convective organization, and for this purpose models were run on
two domain sizes: a large domain allowing convective self-aggregation and a small domain too confined to
support it. The organized nature of the large-domain simulations causes notable changes to the atmospheric
structure, including a net drying and warming. Although the RCE state varies between models, the mean pre-
cipitation across the large-domain simulations is larger than that across the small-domain simulations because of
enhanced radiative cooling in dry regions (Wing et al., 2020a). Although the wide spread in the degree of or-
ganization and its response to warming makes it difficult to understand what sets the degree of organization, this
spread allows examination of how the degree of organization modifies other climate properties. For example,
organization has been shown to be an important factor in setting climate sensitivity, where the GCMs typically
have a lower climate sensitivity than CRMs in part because the GCMs show increased organization with warming
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(Becker & Wing, 2020). In this paper, we examine how organization and its changes with warming impact
extreme precipitation and its changes with warming.

1.3. Objectives
Our objectives in performing this study include:

1. Assessing the impact of the existence, degree, and changes with warming of convective organization on
extreme precipitation

2. Systematically evaluating the spatiotemporal scales at which precipitation extremes are impacted by domain-
wide convective organization

3. Testing the applicability of an established scaling for precipitation extremes across a large ensemble of models
with explicit convection

4. Establishing physical mechanisms linking organization and extreme precipitation

2. Methods
2.1. O’Gorman and Schneider (2009a) Scaling

O’Gorman and Schneider (2009a) separated changes in extreme precipitation into components caused by dy-
namic and thermodynamic changes by using a scaling comparing precipitation to the condensation that occurs to
balance it. To maintain the atmosphere at saturation during an extreme precipitation event, the precipitation rate P
must be balanced by the vertically integrated condensation rate C. At hot or cold SST denoted by subscripts % or c,
respectively, P and C are given by

dq;
Ph,c ~ Ch,c = ./011,cdp = ./_wh,c<d )
D

The condensation rate at a point is given by the product of vertical velocity (@) and the vertical derivative of

(1

0" ;h,c

saturation specific humidity along a moist adiabat at the local temperature and pressure <<ig;)) ) Muller
0" h,c
et al. (2011) pointed out that not all of this condensation precipitates, so they added a precipitation efficiency

factor € outside the integral.

The dynamic term is found by isolating changes caused solely by changes in the updrafts, including changes in
updraft height, area, and strength. The thermodynamic term is found by isolating changes caused solely by
differences in the temperature structure of the atmosphere at two different sea surface temperatures. Letting
angled brackets denote an SST-averaged vertical profile, we calculate the dynamic condensation integrals as

dg;
Dh,c = ./_wh,c' <£> dp (2)

and the thermodynamic integrals as

0. = / —<w>(”f1—‘jj) dp. 3)
h,c

For a given term X in the scaling, let X;, represent the value at a warm temperature and X, be the value at a cold
temperature. We choose to calculate the change in X as a function of the sea surface temperature 7 arithmetically
as a percentage of the average condensation rate. This is consistent with Muller et al. (2011) but modified to work
well over a large temperature difference. Using AX as a shorthand:

_dX 1 X,—X,
TdT T AT EI

AX )

The only exception is the change in precipitation, for which the denominator is the average value of extreme
precipitation:
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_dP_ 1 P,—P.

AP=ar = ar nam

©)

Equations 2 and 3 are used to calculate the dynamic (AD) and thermodynamic (AQ) components of the change in
precipitation with warming as in Equation 4. The full scaling is given as the condensation rate by Equation 1.
Notice that by using the common denominator of G JZ'C‘ in Equation 4, we find AC = AD + AQ; there is no
nonlinearity between these three terms. We then calculate the efficiency term as a residual:

AE = AP — AC (6)

This term includes any other factor impacting the amount of precipitation. This clearly includes the actual pre-
cipitation efficiency (including changes in horizontal convergence of condensate, detrainment, storage, and re-
evaporation) as well as any other inaccuracies in the relationship between the scaling and true condensation.

In addition to Equation 4, we tested two alternative calculations based on geometric rates of change, that is,
AX = ﬁln ;i Results were qualitatively similar, so we chose to use Equation 4 for the remainder of the paper.

Quantitatively, Equation 4 results in smaller calculated rates of change than the geometric rate of change
calculation. If both C;, and C, are positive, Equation 4 is capped at 20%/K for a 10 K interval. One side effect of
this is that any outliers are tempered, reducing their impact on our correlations. For rates of change under 10%/K
(exhibited by most models, especially CRMs), the two methods give results within 1%/K.

By definition, Equation 4 results in no non-linearity, although coupled changes between the thermodynamic and
dynamic terms may exist in reality. In practice, this nonlinearity is small: less than 1%/K when using geometric
scaling calculations. We can thus safely ignore it in this analysis.

2.1.1. Dynamic Magnitude and Shape Separation

We further separate the dynamic term into contributions from updraft magnitude and shape. Defining the

)+ o,
2

temperature-averaged updraft structure (w) = , We can express wj in terms of some factor times this

standard profile plus a difference term dw that comes only from the shape of the vertical profile:

W, = my{w) + dw @)
We define
_ f wydp
ny, = f(a))dp (8)

which implies [ dwdp = 0; dw includes no component of the updraft magnitude. Defining the magnitude
condensation integrals as

My = my, f <w><fl—is> dp. ©)

we then define the dynamic magnitude sub-component AM similarly to the other components using Equation 4.
The shape sub-component AH is calculated as the residual of the dynamic component:

AH = AD — AM (10)

We carefully choose the word “magnitude” here as AM still refers to the combined contribution of changes in
updraft strength, the number of convective cells, and the size of each cell. When examining AM on the model grid
resolution, a single updraft always fills the entire box, so there is no meaningful updraft size contribution.
However, most of our results examine coarsened data. A coarser box experiencing extreme precipitation can
include strong convective updrafts and downdrafts as well as weaker motions, so while a positive AM implies that
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updrafts either strengthen with warming or cover a larger fraction of the area, it does not imply each statement
individually. We explore this further in Section 5.3.

2.2. Characteristics of RCEMIP Models

In RCEMIP, models were run on two domain sizes. The small domain was an approximately 100 x 100 km? grid
at 1-km resolution for CRMs and a single-column configuration for GCMs. The large domain was a long channel
of about 6000 x 400 km? at 3-km resolution for CRMs, and an Earth-radius aquaplanet at roughly 1° resolution
for most GCMs.

Although the RCEMIP data set includes simulations from many models, not all of them are suitable for this
analysis. For a large-domain model to be useful here, it must contain all of the needed data fields (at minimum this
includes the hourly averaged two-dimensional precipitation field, returned once every hour as well as the
instantaneous three-dimensional temperature, pressure, specific or relative humidity, and vertical velocity, which
are returned once every 6 hr). We further exclude the GCRMs as they include so much data that it would have
been too computationally intensive to analyze them. This leaves 21 models for analysis, given in Table 1.

2.3. General Procedures

As we find below in Section 3.2, changes in organization and extreme precipitation are correlated over a wide
range of spatial and temporal scales. However, they do not significantly correlate at the 3-km base resolution of
the CRMs on 1-hourly timescales. An ideal scale for the analysis would coarsen the CRM data enough to find
significant relationships but remain fine enough to observe robust statistics of the low-probability extreme pre-
cipitation events. While we evaluate the relationship between organization and extreme precipitation and their
changes with warming across a wide variety of spatiotemporal scales in Section 4.2, for our application of the
O’Gorman and Schneider (2009a) scaling, we choose to spatially coarsen the CRM data to 15-km resolution
while keeping the 1-hr timescale. This leaves 0(103) extreme precipitation events at or above the 99.9%"
percentile for each model run. This 15-km scale is sufficient to reach a strong correlation between the changes in
organization and extreme precipitation. The GCMs were run at a coarser resolution of approximately 1°
(~00 km), so no additional coarsening is required to see correlations between changes in organization and
extreme rainfall in these models. Note that although CRM and GCM results are frequently plotted in the same
figures in this paper, analyses are generally not performed at the same spatial resolution.

In their analysis, O’ Gorman and Schneider (2009a) examined daily precipitation. Here, when applying the scaling
we instead examine hourly precipitation. We examine the scaling by compositing the 3-D data fields conditional on
extreme values of 2-D precipitation. If we calculate these profiles at the same time as the extreme rainfall, we find
no significant correlation between the changes in the scaling and changes in precipitation extremes. The 2-D
precipitation field represents the hourly precipitation ending at the given timestamp in most of the RCEMIP
models, at a time when convective downdrafts may be occurring. As we implemented the scaling in a way that does
not filter out downdrafts, this results in a possibility of a negative scaling. This occurs in some model runs: in three
CRMs, the scaling flips sign between the 295 and 305 K runs. To avoid this problem, note that the scaling is
designed around near-equilibrium of condensation and precipitation, suggesting an alternative: using 3-D data
conditioned on extreme precipitation occurring over the following hour. Physically, this follows from how
condensation must precede precipitation: although this was not an issue for the daily timescale of O’Gorman and
Schneider, our 1-hr timescale is too close to the lifetime of storms to ignore this delay in precipitation. When we
perform this, we find a significant correlation between changes in the time-shifted scaling and extreme precipitation
with warming across the CRMs (r = 0.87 with the shift, r = 0.47 without it), elaborated on in Section 5.1. Although a
strong correlation exists between these variables for GCMs even without the shift (r = 0.98 with the shift, r = 0.99
without it), we chose to shift the GCM data as well for consistency in our methodology. An alternative method
would be to calculate the scaling at every model gridpoint and then composite over extreme condensation events (as
in Da Silva et al. (2021)), but this is much more computationally expensive for the large ensemble of RCEMIP.

We generally choose to average over all events at or above a given percentile of extreme precipitation. This is a
fairly common technique when working with the scaling to improve statistics; this exact procedure was performed
by Muller et al. (2011). In all sections of this paper involving correlations (Section 3.2 and all sections including
and after Section 4.2) we also average the precipitation over all events at or above the percentile. In other sections
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Table 1
All the Models Used in This Work
Abbreviation Name Model type Domains
CAMS5-GCM Community Atmosphere Model v5 GCM L
CAM6-GCM Community Atmosphere Model v6 GCM L
CM1 Cloud Model 1, cm1r19.6 CRM/LES L/S
CNRM-CM6 Atmospheric component of the CNRM Climate Model 6.1 GCM L
DALES Dutch Atmospheric Large-Eddy Simulation model v4.2 CRM/LES S
DAM Das Atmosphaerische Modell CRM L/S
ECHAM6-GCM MPI-M Earth System Model-Atmosphere component v6.3.04p1 GCM L
FV3 GFDL-FV3CRM CRM L/S
GEOS-GCM Goddard Earth Observing System model v5.21 GCM L
ICON-GCM ICOsahedral Nonhydrostatic Earth System Model-Atmosphere GCM L
component
ICON-LEM-CRM ICOsahedral Nonhydrostatic-2.3.00, LEM config. CRM L/S
ICON-NWP-CRM ICOsahedral Nonhydrostatic-2.3.00, NWP config. CRM L/S
IPSL-CM6 IPSL-CM6A-LR GCM L
MESONH Meso-NH v5.4.1 CRM/LES L/S
MicroHH MicroHH v2.0 CRM/LES S
SAM-CRM System for Atmospheric Modeling 6.11.2 CRM/LES L/S
SAMO-UNICON Seoul National University Atmosphere Model vO GCM L
SCALE SCALE v5.2.5 CRM L/S
SP-CAM Super-Parameterized Community Atmosphere Model GCM L
SPX-CAM Multi-instance Super-Parameterized CAM GCM L
UCLA-CRM UCLA Large-Eddy Simulation model CRM L/S
UKMO-CASIM UK Met Office Idealized Model v11.0—CASIM CRM L/S
UKMO-GA7.1 UK Met Office Unified Model Global Atmosphere v7.1 GCM L
UKMO-RAI-T UK Met Office Idealized Model v11.0—RA1-T CRM L/S
UKMO-RAI-T-hrad UK Met Office Idealized Model v11.0—RA1-T (homogenized CRM L/S
radiation)
UKMO-RA1-T-nc UK Met Office Idealized Model v11.0—RA1-T (no cloud CRM L/S
parameterization)
WRF-COL-CRM Weather Research and Forecasting model v3.5.1 CRM L/S
WRF-CRM Weather Research and Forecasting model v3.9.1 CRM L/S

Note. Italicized names are excluded from correlation analysis and are only used in Figures 1, 2, and 4. L and S indicate the
large and small domains, respectively.

we only use the threshold value for extreme precipitation. As for which percentile to use to identify extreme
precipitation, we consider a variety of different high percentiles when considering the difference in extreme
precipitation between the small and large simulations in Section 3.1 and when considering the response of
precipitation to warming in Section 4.1, but focus on one high percentile for the rest of the analysis. The 99.9%-
percentile seems to be a middle ground across studies, with some using either a higher (e.g., 99.99" by Singh and
O’Gorman (2014)) or lower (e.g., 99" by Pendergrass et al. (2016)) percentile. Higher percentiles seem to be
more often used on shorter, smaller timescales, so we usually checked results for both the 99.9" and 99.99"
percentile. Results were typically similar, so we show only the 99.9"-percentile results here. We calculate these
percentiles as a function of all hours, not just rainy hours, following a convention set by O’Gorman and
Schneider (2009a) and many other works cited in this paper. This avoids any issues related to changing
precipitating fraction with warming (Schér et al., 2016) as well as any cross-model differences in handling
immeasurably small but positive rainfall amounts.
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2.4. Quantification of Convective Organization

To compare the degree of organization across models, we utilize the three metrics computed by Wing

et al. (2020a): organization index (/,,,; Tompkins & Semie, 2017), subsidence fraction (SF), and variance of

rg?
column relative humidity (V). Higher values of each denote more strongly organized convection. We choose to
focus our analysis on I,,,, as it most directly represents the spatial clustering of convection. Its values range from
0 to 1, where a value of O represents regularly spaced convection, 0.5 represents random convection, and 1
represents fully organized convection. In RCEMIP, the convective cells used to calculate /,,, were identified by
using a threshold of OLR. Changes in I,,, show the strongest correlation with changes in extreme precipitation
across models. Larger SF also correlates with larger precipitation extremes. Large V does not significantly
correlate with extreme precipitation across models, perhaps because it represents an environmental response to
clustered convection rather than representing the clustering itself. It may thus be susceptible to how each model
represents the environment's base state, seen as a proportionally larger cross-model spread in V compared to the
other metrics (Wing et al., 2020a).

3. Extreme Precipitation and Organization
3.1. Characteristics of Extreme Precipitation in RCEMIP

Although most of this paper focuses on how the varying degree of organization across the large-domain simu-
lations impacts the rate of increase of extreme precipitation with warming, we can gain some insight into how the
presence of organization impacts extreme rainfall by comparing the large- and small-domain simulations. As the
large domain allows organization while the small domain prohibits it, differences between the two can be caused
by the presence or absence of organized convection. Figure 1 shows the hourly precipitation rate as a function of
percentile for each model of the RCEMIP ensemble, when the CRM data are coarsened to 15 km and the GCM
data are left at the default resolution. Solid lines represent CRMs, while dashed lines represent GCMs. Above
roughly the 99" percentile, the large domain simulations show dramatically higher rain rates than the small
domain. Py g is greater than 5 mm/hr in nearly every large-domain CRM, while the same CRMs show rain rates
below 5 mm/hr in the small domain. The exceptions, in the DALES model family, do not have corresponding
large-domain simulations. Extreme precipitation in the GCMs tends to converge toward rain rates of around
10 mm/hr in the highest percentiles in the large domain. Extremes are not shown for GCMs in the small domain,
as the single-column model setup cannot meaningfully simulate local extreme precipitation.

Figure 2 highlights this difference by showing the ratio of large-domain to small-domain rainfall at a given
percentile. The gray dashed line shows a ratio of 1: values above this line imply that the large domain shows larger
rain rates. At low percentiles, precipitation rates in the small domain exceed that of the large domain, reflecting
how the organized large-domain simulations spontaneously form large dry regions. However, above around the
99" percentile, precipitation in the large-domain simulations dramatically exceeds the corresponding small
domain simulations. Although this is partially due to poor statistics in the small domain simulations (with this
coarsening, values above the 99.9"" percentile are defined by less than 10 events), large-domain hourly rain rates
exceed small domain rain rates at the highest percentiles in most models even at their native resolutions (not
shown), despite the expectation that large-domain grid cells should smooth out some extremes due to the larger
area. When the small-domain data are coarsened to 3-km resolution to match the large-domain simulations, every
model's extreme rain rates are more intense in the large domain. This may be connected to the observation by
Parodi and Emanuel (2009) that modeled extreme updrafts are weaker when cramped into a smaller domain, even
when only comparing domains too small to support organization. This enhancement of rainfall is also seen with
instantaneous rates as approximated by lowest-level precipitating liquid water content, which is consistent with
the results of Da Silva et al. (2021). Thus, the presence of organization appears sufficient to increase extreme
precipitation rates. The effect is larger when examined over a larger area, although it is unclear how much of this
effect is due to the enhancement of extreme precipitation due to organization and how much is instead caused by
the limited sample size in the small domain simulations. We also cannot rule out model resolution as a factor:
although not as universal as the comparison between large and small-domain simulations, a comparison of the six
model families with both a standard small-domain simulation and an LES simulation shows that even with the
same domain size, a majority of models show decreased 1 and 3-km extreme precipitation with the finer LES
resolution.
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Figure 1. Values of extreme hourly precipitation by model and percentile, with CRM data coarsened to 15 km. CRMs are
represented by solid lines and GCMs are represented by dashed lines.

3.2. Correlations Between Extreme Precipitation and Organization Index

Across the CRMs of RCEMIP, extreme precipitation correlates with /., when the data are sufficiently coarsened.
Figure 3 shows the correlation coefficients of Pog g against I, for the 300 K large-domain CRMs used in this
analysis over a wide range of spatiotemporal scales. While no significant correlations exist at the 1-hr, 3-km grid
scale, coarsening in space quickly causes correlations to appear. At 30 km it reaches statistical significance with
p < 0.01. The strongest correlation appears for 12—-24-hr precipitation at 90 km resolution. We find no significant
correlations between Pog g and I,,, at instantaneous timescales at any spatial scale. This map of correlation co-

efficients is robust when instead examining the 99.99" percentile.
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Figure 2. Ratio between 1-hourly, 15 km extreme precipitation of a given percentile between the large and small domain
simulations at 300 K. The black dashed line is the multi-model average, and the gray dashed line is a ratio of 1.

4. Changes in Extreme Precipitation and Changes in Organization

4.1. Change of Precipitation With Warming in the Large-Domain Simulations

Figure 4 shows the rate of change of extreme 15-km hourly precipitation with SST warming between the coolest
and warmest simulations in the large-domain models. Though the intermodel spread is large, all but one show an
increase in extreme precipitation. The sole exception, WRF-CRM, is noted by Wing et al. (2020a) as the only
model to include a disorganized large-domain simulation at 300 K as well as the model with the largest decrease in

Correlation of Precipitation
vs. Organization Index
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[¢§-0.350.250.250.240.250.270.300.370.420.45 0.46
(3§ 0.400.040.050.060.070.090.130.190.260.300.34

g§ 0.440.140.13-0.130.120.10-0.07-0.030.02 0.06 0.12

Coarsening

0 1 2 3 4 6 8 12 18 24 48
Hours

Figure 3. Correlation coefficients between the values of extreme precipitation (defined as precipitation averaged above the
99.9™ percentile) and organization index across the 300 K large-domain CRM simulations. Black text denotes a p-value less
than 0.01, and gray text denotes a p-value less than 0.05.
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Figure 4. Rate of change of 1-hourly, 15-km precipitation percentiles with warming in each large-domain model of the
RCEMIP ensemble. These rates of change are calculated between 295 and 305 K.

organization index with warming between 295 and 305 K. The only other CRM simulation with /,,, <0.5 is
UKMO-CASIM's 305 K simulation, and this model is seen to have the slowest increase in extreme precipitation
with warming.

Importantly, we see that most models approach constant rates of change as a function of percentile. This allows us
to define an extreme regime beginning around the 99.8™ percentile, within which we should expect similar results
no matter what percentile we choose to examine. We chose to work primarily with the 99.9" percentile for the
maximum number of extreme precipitation events, though most results also hold at the 99.99" percentile.

Fildier et al. (2017) showed that in a comparison between a GCM setup and superparameterized convection,
resolved convection allows convergence of the change in rain rates with warming closer to the Clausius-
Clapeyron (CC) relation, an observation which is supported by Figure 4. In our work, CRMs (solid lines) and
GCMs (dashed) are distinguished by their intermodel spread and their average rates of change in precipitation
with warming. GCMs show faster increases in extreme precipitation with warming and a wider spread in results.
CRMs are more confined to smaller rates of change, and the CRM average in the extreme regime is remarkably
close to the Clausius-Clapeyron relation with respect to surface temperature. The following sections focus on why
this Clausius-Clapeyron scaling holds and on how the intermodel spread is related to organization.

4.2. Correlations Between Changes in Extreme Precipitation and Organization

Figure 3 demonstrated that extreme rainfall can be linked to organization. We can more strongly link changes in
these two variables with warming by correlating APy g against Al,,.,. While there is again no significant cor-
relation at the native data resolution of 3 km, coarsening by just a factor of 2 in space is sufficient for significance
at the p = 0.05 level (Figure 5b). As demonstrated in Figure 5a, correlations between changes in organization and
changes in extreme precipitation appear in both CRMs and GCMs. Both regression lines also pass close to the
point where no change in organization would correspond to a Clausius-Clapeyron scaling in extreme precipi-
tation. Among the CRMs, which are nearly evenly split between increasing and decreasing organization, the
majority of those which become more organized also show super-CC increases in extreme precipitation and vice
versa. Most of the GCMs show increases in organization, and as such most of them also show super-CC increases
in extreme precipitation with warming. Thus, the behavior of organization appears to play a large role in whether
and how a model deviates from CC scaling.

In a comparison between Figures 3 and 5b, it is reasonable to expect stronger correlations between changes in
organization and changes in extreme precipitation than between the values of each. Comparisons of the values
themselves depends heavily on model properties impacting the base state and base rain rates, while examining
changes in extreme rain rates within a given model should cancel out some of the cross-model variability in the
base state.
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Figure 5. (a) Change in 99.9"-percentile precipitation (defined by averaging all events at or above this percentile) at 1-hourly,
15-km scale versus the change in organization index across the large-domain simulations, as calculated between the 295 and
305 K simulations. Each circle represents a CRM within the ensemble, while each cross represents a GCM. The vertical
dotted line marks no change in the degree of organization while the horizontal dotted line shows the Clausius-Clapeyron rate.
(b) Correlation coefficients between the changes in 99.9"-percentile precipitation and organization index across CRMs at
various spatiotemporal scales. Black text denotes a p-value less than 0.01, and gray text denotes a p-value less than 0.05.

Significance in these correlations remains when extreme precipitation is correlated against subsidence fraction
instead of organization index, although the exact spatiotemporal scales required for correlations change some-
what. SF and Py 9 correlate significantly down to smaller length scales, with similar maximum correlation co-
efficients. Most of the correlations between ASF and AP are slightly weaker than those between Al,,,, and AP,
although the correlations at instantaneous time scales just reach significance at length scales of at least 30 km.
While correlations remain between Pog¢ and CRH variance at coarser and longer-duration scales, correlations

involving the changes of these variables are lost (not shown).

The correlation coefficients here justify our choice of primarily using 1-hourly, 15-km precipitation extremes.
This scale is large enough to show relevant correlations between organization and extreme precipitation: if a link
exists, it should be found here. This agrees with Fildier et al. (2017), who found a difference in the response to
organization between the mesoscale and convective scale: extreme mesoscale precipitation shows a stronger
response to warming. This 15 km scale is still fine enough that we have a large number of samples of extreme
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Figure 6. Scaling components for 1-hourly, 15-km precipitation for the large-domain models. Components are calculated
between 295 and 305 K. Each circle represents a CRM while each cross represents a GCM. The boxes-and-whiskers show
the cross-model spreads for all models (left), CRMs (center), and GCMs (right). The solid orange lines show the multi-model
mean values, while the dashed green lines show the median.

precipitation. Each large-domain CRM has over 2000 events exceeding the 99.9"-percentile threshold on this
scale.

5. Using the Scaling
5.1. Values of the Scaling Components in RCEMIP

Figure 6 shows the spread in each component for each model, separated into CRMs and GCMs. Several key
takeaways are clear. Scaling and precipitation show similar spread, and the scaling does a good job of predicting
extreme precipitation (AC and AP correlate across models with r = 0.87 for CRMs and r = 0.98 for GCMs) (not
shown).

The near-Clausius-Clapeyron growth in precipitation extremes is driven by the thermodynamic component, as
shown by the tight cluster of almost all CRMs. The most notable outlier from this cluster is WRF-COL-CRM. The
key contributor to the thermodynamic component's value is the Clausius-Clapeyron relation, shown by the tight
cluster of models around this value. Within the thermodynamic component, the main source of spread is the
vertical structure of the updrafts leading to extreme precipitation: maximum updrafts higher in the atmosphere
experience super-CC increases in the local saturation specific humidity lapse rate caused by the increased
warming in the upper atmosphere along a shifted moist adiabat due to upper-tropospheric amplification
(O’Gorman & Schneider, 2009b). When considering the mass-weighted updraft pressure (calculated as

p = %), WRE-COL-CRM is the sole CRM with p below 400 hPa: all other CRMs fall between 510 and

620 hPa, with 8 of the 11 CRMs studied falling between 570 and 620 hPa. The correlation between AQ and p has
r = —0.95 across CRMs and r = —0.87 across GCMs. GCMs show a slightly higher thermodynamic contribution,
in part because their updrafts occur slightly higher in the atmosphere; all but one have p between 520 and 575 hPa.
As noted by O’Gorman and Schneider (2009a), when changes to the updraft structure are small, the scaling can be
simplified to a measure of updraft velocity times the near-surface saturated water vapor content, a value which
scales as the Clausius-Clapeyron relation. This is physically supported by Abbott et al. (2020), who found that
variations in updraft structure generally collapse to a common profile when examined as a function of a moisture-
based vertical coordinate in an aggregation-permitting CRM.

Dynamics and efficiency contribute to the intermodel spread in AP. Both terms are important in the CRMs, while
the dynamic term is far more important in GCMs. At the ~ 1° resolution of RCEMIP's GCMs, we found that the
fraction of extreme precipitation produced by the convective parameterization is large (not shown). This pre-
cipitation can instantly fall out without experiencing the moister atmosphere of the aggregated region, resulting in
no link between the precipitation efficiency component and organization. Although not shown, further coarsening
of the CRMs (e.g., to 60 km) reduces the spread in efficiency but increases the spread in the dynamic contribution.
Other studies have found that running GCMs at finer scales causes them to rely less on their convective
parameterization to produce extreme rainfall (Nikumbh et al., 2024; Terai et al., 2018), which may allow the
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Figure 7. Scaling components for 1-hourly, 15-km precipitation for the large-domain models (defined in Section 2.1) versus
the change in organization index. All values are calculated between the 295 and 305 K simulations, and extreme precipitation
and scaling components are averaged above the 99.9" percentile. Circles represent CRMs while crosses represent GCMs.
The dotted gray vertical lines show no change in organzation. The dotted gray horizontal lines show Clausius-Clapeyron scaling
for the components which we expect to scale with SST (AP, AC, and AQ), while they show no change with warming in the other
subplots.

restoration of the link between CRH and precipitation efficiency. This suggests the differences between CRMs
and GCMs shown here may alternatively be an artifact of the coarser resolution of the GCMs.

Within the dynamic component, changes in the updraft magnitude dominate. The updraft shape component has
very little spread and generally results in a tiny negative contribution to AP. This is caused by upward movement
of the peak updraft with SST warming, into a layer with a smaller saturation moisture lapse rate. As a validation of
our shifted-scaling methodology, we also tested correlations involving 99.9"-percentile hourly averaged 15-km
500-hPa vertical velocity (wsgg) and its changes across CRMs. We find that Aws, has correlation coefficients of
0.77 with AP, 0.82 with AD, 0.83 with AM, and 0.75 with Al,,,. Although these extreme hourly updrafts are not
necessarily exactly the same storms as the hourly updrafts associated with 15-km extreme precipitation events, the
strong correlations indicate that our results likely would hold if they were conditioned on extreme condensation
rather than extreme precipitation. We do not find significant correlations between changes in extreme instanta-
neous updraft velocity and the scaling components at many levels, consistent with the lack of correlations seen in
Figure 5b, although correlations do reach significance for AC and Aw from 500 to 800 hPa and for Al,,,, AP, and

AD at 900 hPa (not shown).

rg°

5.2. Correlations Between the Scaling Components and Organization

The terms which show large intermodel spreads in Figure 7 are correlated with changes in [,,,. While A, most
strongly correlates with AP, it also shows similar statistically significant correlations with AC, AD, AE, and AM.
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Figure 8. Correlation coefficients between changes in updraft area (a,) and velocity per unit updraft area (w,) and Al,,,
(blue) and the relevant scaling components (other colors). All scaling components are calculated from the 3-D snapshots

before extreme 15-km hourly rainfall, while updraft area and velocity are conditioned on extreme 15-km updrafts. Green
shading denotes a statistically significant correlation at p = 0.05.

These suggest primary mechanisms of action of organization on extreme precipitation through updraft magnitude
(discussed further in Section 5.3) and precipitation efficiency.

5.3. Understanding the Updraft Magnitude Contribution

As discussed in Section 2.1, the updraft magnitude contribution represents the combined effects of changes in
updraft strength and area. To attempt to separate these two effects, we examine the 500 hPa hourly vertical
velocity (wsqg) field across the CRMs without conditioning it on extreme precipitation. As changes in the 99.9
percentile of 1-hourly, 15-km wsg, show a strong correlation coefficient of r = 0.82 against AD, analyzing the
two-dimensional updraft velocity field independently of precipitation provides insight into the behavior of up-
drafts with both a larger sample size and less computation than conditioning three-dimensional updrafts on the
occurrence of extreme precipitation. This method also removes any ambiguity related to time-shifting the updrafts
relative to the precipitation as we did with the scaling. Within each 15-km hourly updraft extreme (an “extreme
box”), we examine statistics of the 3-km grid cells which build it. We can easily extract the updraft area fraction a,
from this by finding the portion of such grid cells which show a positive vertical velocity, or we can choose to
define a velocity threshold w, which must be exceeded to classify a point as an updraft.

dxd
au — ZM}SOU>WI X y (11)
Ydxdy

Once we have done so, we can calculate the updraft strength per unit updraft area by dividing the overall w5y, for

the extreme box by the updraft area: w, = Wa‘j This analysis parallels Bao et al. (2024)'s examination of the

duration of precipitation extremes, but here we examine spatial coverage.

We calculate the rates of change with warming of both a, and w, with various values of w;, and then calculate
correlation coefficients between these changes and Al,,,, AP, and the relevant scaling components (condensation
AC, dynamic AD, and updraft magnitude AM). These correlation coefficients are plotted as a function of w, in

Figure 8.
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When we use an updraft threshold of O (i.e., any point with a positive vertical velocity is considered an updraft),
60%—-90% of each extreme box shows rising motion. However, neither a, nor Aa, correlates with ,,, or its
change. As the fractional change in a,, is small, something else must explain the changes in the total updraft mass
flux, which is mathematically required to be the “strength” of the updrafts. Given this, it is unsurprising that
changes in w, do correlate with both A7 and AD. This pattern holds for small nonzero updraft thresholds as well.

If we instead choose a larger updraft threshold more representative of convection, we can find drastically different
results. A threshold velocity of 1 m/s is more typical of convective cells, so using this threshold may describe both
the convective area fraction and a typical convective updraft strength. This threshold is exceeded across 20%—60%
of the area of each CRM's extreme boxes at 300 K. Aqa, with this higher threshold is strongly correlated with both
Al (r = 0.80) and AD (r = 0.84). With this threshold, Aw, instead does not correlate with either Al or AD. Care
must be taken not to choose a threshold so high that updrafts of that magnitude are rare. Some models struggle to
produce frequent updrafts above about 2 m/s, so thresholds larger than this show small updraft area fractions. The
result is statistically noisy area changes driven more by variation in how models handle strong updrafts, with a
large enough cross-model spread to hide any connection between updraft area and both organization and the
components.

Thus, depending on the definition of an updraft, either updraft area fraction or updraft strength could be the factor
responsible for the dynamic contribution. We caution that given the nature of real-world updraft ensembles with a
spectrum of sizes and strengths, there may be no meaningful difference between changes in size and strength: if
updraft strength at each percentile increases, then the area of the updrafts exceeding a given threshold must also
increase, and vice versa. However, we overall favor updraft area fraction as the primary driver of the changes in
updraft magnitude. An alternative separator of updraft size and strength is the uncoarsened 1-hourly, 3-km case,
where there was no significant correlation between either changes in the 99.9"-percentile vertical velocity or AD
with A7 (not shown). As the area fraction is necessarily constant at 100% in this uncoarsened case, the dynamic
component is controlled solely by updraft strength. The lack of a correlation suggests updraft strength alone does
not modulate the link between organization and extreme precipitation. Consistent with the higher thresholds, this
suggests updraft area fraction is a major component of the spread in extreme precipitation with warming. This is
supported in observations by Schiro et al. (2020), finding that increased precipitation occurs in the same overall
environment in MCSs compared to less-organized convection, in part because of the increased area covered by
convection.

The result is also consistent with other results which separate the effects of precipitation intensity and spatio-
temporal coverage. Roca et al. (2022) find the precipitation area fraction, defined in the same way as we define the
updraft area fraction, is the primary driver of coarsened precipitation extremes. Another consistent result is Bao
et al. (2024)'s finding that precipitation duration (not intensity) drives the increase in extreme precipitation with
increased organization, although we do not find the decreases in intensity found in that study. Both increased
duration and increased area reflect an increase in the spatiotemporal extent of the rainfall in extreme precipitation
events. However, if we attempt to replicate their precipitation duration and intensity separation directly, we find
the same issue as our updraft separation with a low threshold: the duration of rainfall we find is large and changes
little, so we do see increases in precipitation “intensity” which may not reflect actual changes in the most intense
precipitation extremes (not shown).

5.4. Environmental Variables Linking Organization and Scaling Components

Convective organization is known to have a large impact on its environment, causing a domain-mean warming
and drying, with a vertical profile closer to a moist adiabat (Wing & Cronin, 2016). The convecting region also
warms but shows moistening. In this section, we examine which environmental variables modulated by orga-
nization may contribute to enhanced extreme precipitation via the dynamic and efficiency terms.

5.4.1. CAPE

If convective organization modulates updraft strength, CAPE is a reasonable variable to investigate as the
conversion of CAPE to kinetic energy places an upper bound on updraft strength. We investigate how CAPE, as
calculated from the local surface parcel and environment an hour before the onset of an extreme precipitation
event, relates to organization. Notice how this is an additional hour before we calculate the scaling components:
we must look earlier to remove the effect of existing updrafts, and use this additional hour of shifting to represent
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Figure 9. (a) Relationship between CAPE, calculated using the lowest-layer parcel and local environmental profile
conditioned on extreme precipitation, and organization index in the large-domain simulations. Values at 300 K (left) and
changes between 295 and 305 K (right) are shown. (b) Correlations between CAPE changes and the updraft magnitude and
efficiency scaling components between 295 and 305 K. CAPE is calculated before a precipitation extreme at 15-km
resolution.

the environment in which convection initiates. Although physically relevant, it does not appear that the exact time
shift chosen dramatically influences the results: we examined the environments from 3 hr before onset of extreme
precipitation to 1 hr after it finishes, finding little qualitative change as long as CAPE is calculated before extreme
precipitation occurs. When the extra shift is performed, Figure 9a shows a positive correlation between CAPE and
I,
Figure 9b shows CAPE does not significantly correlate with AM, and is strongly negatively correlated with AE.
The lack of a correlation between CAPE and AM generally agrees with Singh and O’Gorman (2015), finding that

CAPE increases far more rapidly with warming than updraft magnitude due to the influence of entrainment.

r¢ across CRMs, but a correlation of the opposite sign when considering changes with warming. However,

CAPE and precipitation efficiency have been theoretically linked: according to the analytic theory of
Romps (2016), if precipitation efficiency is treated as an external parameter, its increases should result in higher
CAPE. This is the inverse of the correlation we see here. However, changes in CAPE with warming across
RCEMIP's small-domain simulations are not driven by cross-model variations in efficiency (Wing &
Singh, 2024). Considering the mixed signals in how CAPE relates with organization index, we suspect the
negative relationship between CAPE and efficiency is a correlation without a direct causation, linked instead by
their mutual correlation with organization. This demonstrates the dangers of looking for causal effects on pre-
cipitation changes across models when there is known to be another linking factor, and suggests even strong
correlations may be spurious here.

Under quasi-equilibrium in the RCE state, CAPE is more of an emergent property of a continuously convecting
environment than a predictor of updraft strength (Arakawa & Schubert, 1974; Emanuel et al., 1994; Singh &
O’Gorman, 2013). The right panel of Figure 9a hints that the decrease in CAPE with increasing organization may
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Figure 10. (a) Relationship between CRH and organization index in the large-domain simulations. Values at 300 K (left) and
changes between 295 and 305 K (right) are shown. (b) Correlations between CRH changes and the dynamic and efficiency
scaling components in the large-domain simulations. CRH changes and scaling components are calculated between 295 and
305 K at 15-km resolution. Both are calculated at the beginning of an hourly precipitation extreme.

reflect an environmental property, namely, the warming and moistening with organization seen in the moist
region. This moistening could itself impact extreme precipitation, as demonstrated in the next section.

5.4.2. Column Relative Humidity

As a measure of moisture in the convecting region, we examine column relative humidity (CRH), conditional on
the beginning of an extreme precipitation event. Organization increases the contrast in moisture between the wet
and dry regions, and while this primarily manifests as a drying of the dry region, the convecting region is also
moistened. As with CAPE, we examined several time shifts of the environment relative to extreme precipitation,
and found that the choice of conditioning CRH on the time of extreme precipitation’s onset qualitatively makes
little difference, though correlations are somewhat stronger if the CRH is calculated temporally closer to the
extreme precipitation events. Although no correlation is seen between the value of CRH and the value of 1, in
Figure 10a, a significant correlation exists between changes in CRH and changes in I,,, in CRMs. This correlation
is robust to both percentile and organization metric, as changes in CRH also correlate with changes in subsidence
fraction.

Changes in CRH correlate extremely well with the efficiency contribution in CRMs while also correlating with
the dynamic contribution (Figure 10b). Both correlations are strong for 15-km resolution, but when further
coarsened to 60 km, the correlation between Al,,, and AD becomes stronger (r = 0.80) while the correlation
between Al,,, and AE weakens (r = 0.80) (not shown). In both the 15 and 60-km cases, ACRH correlates more
strongly with each of these scaling components than it does with Al,,,,, which is consistent with ACRH being a
pathway through which organization can influence the scaling components. However, the lack of a correlation
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between the value of CRH and the value of [,

rg and the lack of comparable correlations across the GCMs imply it

cannot be the only such pathway.

We investigated the relationship between the dynamic and efficiency components and CRH calculated both at the
beginning and at the end of an extreme precipitation event. One might expect the ACRH-AD correlation to be
more-dependent on the pre-precipitation environment (the environment encountered by a rising parcel) while the
ACRH-AE could depend more on the post-precipitation environment (the environment encountered and modified
by falling hydrometeors). However, we find that the CRH is similar before and after extreme precipitation, with
similar resulting correlation coefficients at both times.

The relationship between ACRH and AE could most easily be explained by reduced re-evaporation of hydro-
meteors in a more humid environment. The dynamic contribution is more difficult to attribute. One theory on how
environmental moisture impacts convective updrafts is that entrainment of moister air causes less reduction of
buoyancy (Singh & O’Gorman, 2015). An alternative theory is that a more humid environment reduces the MSE
difference between the free troposphere and the boundary layer, requiring more downdraft flux (and compen-
sating updraft flux) to balance surface energy fluxes in boundary-layer quasi-equilibrium (Emanuel, 2019). It is
also possible that the dynamic component and CRH are correlated without a causal pathway, simply because of
their mutual correlations with the degree of organization. We next examine MSE in hopes of understanding which
of these theories may apply.

5.4.3. MSE-Related Variables

For another perspective on how changes in organization impact extreme precipitation, we examined moist static
energy h = ¢,T + gz + L,g, as well as saturated MSE /" = ¢,T + gz + L,q, and the saturation deficit
h* — h. Saturation MSE effectively shows the importance of temperature, while the saturation deficit acts as a
measure of dryness. We examined the vertical structure of the correlations between changes in organization, the
organization-related scaling components, and each of these MSE variables by calculating the average MSE (in J/
kg) in each 100-hPa-thick layer of the atmosphere, as well as the total atmosphere from 100 to 1,000 hPa. Results
are graphed in Figure 11.

As with CRH, the value of each of these variables does not significantly correlate with I,,, (not shown), but the
changes in the MSE variables do correlate with Al,,,, at most levels. There is a statistically significant correlation
between Al,,,

Changes in 4 also correlate with the changes in precipitation in all layers, which appears to be dominated by the
efficiency component. In the tropics, variability of moisture dominates MSE variability, so it makes sense that

and Ah at all layers above the boundary layer, with hints of a correlation in the near-surface layer.

correlations seen here agree with those seen in the previous section: changes in MSE are sensitive to the same
variable that changes CRH.

Saturation MSE (h*) instead focuses on temperature, removing the effect of varying moisture. The results are still
broadly similar to those seen with £, largely because environments which support extreme precipitation tend to be

near saturation. As with £, there are stronger correlations between h*, Al,,,, and the scaling components when h*

rgs
is examined higher in the troposphere. The correlation between Ah* and Al,,, implies that organization warms the
upper troposphere, as expected if rising parcels remain closer to a moist adiabat while being lifted. This could
itself be a symptom of the entrainment of moister air causing a reduction of buoyancy loss in updrafts, which
could explain why the Ah*-AD correlation strengthens with height. By contrast, the correlation between A2* and
AFE is notably weaker than the correlation between Ak and AE, suggesting it is instead the moisture component of

MSE connecting organization to precipitation efficiency.

We choose not to plot the saturation deficit in Figure 11. As the atmosphere surrounding an extreme precipitation
event can experience supersaturation, the saturation deficit sometimes becomes negative, resulting in non-
physical rates of change and extreme outliers making any correlations meaningless. However, when inte-
grating over the entire column, we find statistically significant negative correlations between changes in column-
integrated saturation deficit and 1,,, and the scaling components. This result is to be expected, as column-
integrated saturation deficit is effectively a measure of CRH, described in Section 5.4.2.
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Figure 11. Correlation coefficients between changes in MSE and saturation MSE calculated within the given layers and A,
(blue) and the relevant scaling components (other colors). The 100-1,000 hPa layer represents the full troposphere. All
variables are calculated from the 3-D snapshots before extreme 15-km hourly rainfall across CRMs. Green shading denotes a
statistically significant correlation at p = 0.05.
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5.5. Comparison of CRM and GCM Results

The previous section primarily focused on relationships between organization and extreme precipitation across
the CRMs of the RCEMIP ensemble. Comparing these results to the GCMs provides added context to our CRM
results, highlighting what we can learn from RCEMIP that prior GCM-based studies may have been unable to find
and proving which results are robust. Compared to CRMs, the GCMs are analyzed at coarser resolutions, and
show larger variation in the dynamic contribution but smaller variation in the implied efficiency contribution
(Figure 6). Like the CRMs, the GCMs show correlations between Al,,,
precipitation, condensation, dynamic, and magnitude (Figure 7). Notably, the correlation between Al,,,, and AE is
lost. As all three correlations between pairs of Al,,,, AE, and ACRH are present in CRMs but absent in GCMs,
this suggests the CRMs are able to capture an environmental factor contributing to changes in extreme precip-

and several scaling components, namely

itation that the GCMs are unable to represent through their parameterizations. We hypothesize that this involves
the convective parameterization. Eight of the 10 GCMs examined- specifically those which do not use super-
parameterization- output their convective precipitation P,. In four of these, P, comprises nearly all of the total
extreme precipitation, while in the other four approximately half of the total comes from the parameterization.
AP, correlates strongly with both AP (r = 0.87) and AM (r = 0.82) while remaining completely uncorrelated with
AE (r = —0.07), suggesting that the convectively driven extreme precipitation events in the GCMs are unaffected
by precipitation efficiency. If the convective parameterization includes instantaneous fallout of precipitation, then
this precipitation would not experience the moister environment of the organized region, breaking the links
between AP, AE, and ACRH seen in the CRMs.

On the updraft magnitude contribution, we still see correlations between Al,,,, and AM across the GCMs, but
correlations involving both of these and ACRH are lost. This implies the link between organization and updraft
magnitude is not modulated by moisture in the GCMs, but some other environmental variable must still link them
as the GCMs are unable to explicitly represent the convective updraft packing seen in the CRMs. It also may
suggest the link between changes in moisture and updraft magnitude in the CRMs could simply represent their
mutual correlations with the change in organization.
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We also note that many correlations seen in the GCMs are not statistically robust. One model (GEOS-GCM) is an
outlier in both its changes in organization and extreme precipitation. If this model is excluded from the analysis,
the correlations between Al,,., and the scaling components of AP, AD, and AM all lose significance at the
p = 0.05 level. While the Al,,,-AC correlation remains barely significant, and the I,,.,-AP correlation is only just
insignificant (p = 0.052), the lack of any correlations involving the dynamic, thermodynamic, and efficiency
terms shows that if we remove this model from the analysis, we are unable to extract physical mechanisms for the
relationship between changes in extreme precipitation and changes in organization by using the scaling
framework.

6. Conclusions

The presence of organized convection dramatically increases precipitation extremes across models in an RCE
configuration. Within simulations that permit organization, changes in the degree of organization with warming
correlate with changes in extreme precipitation across a wide range of spatiotemporal scales. Although these
changes are most strongly correlated on subdaily timescales on the mesoscale, significant correlations are seen
down to 6-km spatial resolution and hourly precipitation. Compared against the organization-forbidding small-
domain simulations, the presence of organized convection appears to amplify even 3-km rainfall at suffi-
ciently long timescales and instantaneous precipitation over sufficiently large regions. Organization modulates
extreme precipitation via changes in the updraft magnitudes leading to extreme condensation events and via the
microphysical processes linking condensation and precipitation rates. Both mechanisms could be explained by the
high column relative humidity present in the organized region, which could act through reduced buoyancy loss
through entrainment (Singh & O’Gorman, 2015), greater downdraft flux into the boundary layer (Ema-
nuel, 2019), and reduced re-evaporation. However, due to limits of the RCEMIP data set, it is difficult to causally
attribute changes in extreme precipitation to any of these mechanisms. Changes in updraft magnitude specifically
may be explained simply due to increased spatial coherence of convective updrafts in a more organized scene. It is
also unclear whether 3-km resolution is truly sufficient to resolve all relevant processes to modulation of extreme
precipitation, as it is still comparable to the scale of convective cells. Regardless of the responsible mechanism,
this analysis proves that changes in the degree of convective organization are clearly a primary factor in deter-
mining how extreme precipitation rates change with warming, and demonstrates that finer model resolutions may
help clarify prior disagreements on how extreme precipitation may change with warming from GCM studies. Our
results are generally consistent with prior studies, but by leveraging an ensemble of CRMs from RCEMIP this is
the most comprehensive analysis to date. Clearly, accurately modeling convective organization is crucial to
predicting the impacts of extreme rainfall both now and with future climate change.

RCEMIP phase II (Wing et al., 2024) will soon be available and will introduce SST gradients to the simulations.
These mock-Walker simulations will allow examination of precipitation extremes and organized convection
under more realistic conditions, including an SST-forced circulation in addition to the self-aggregation-induced
circulations.

Data Availability Statement

The standardized RCEMIP data (Wing et al., 2020b) is hosted by the German Climate Computing Center (DKRZ)
and is publicly available online at http://hdl.handle.net/21.14101/d4beee8e-6996-453e-bbd1-ff53b6874c0e.
Other data derived from RCEMIP for this study and the analysis scripts are in a Zenodo repository at http://doi.
org/10.5281/zenodo.12549358 (O’Donnell & Wing, 2024).
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