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Abstract—Cardiovascular diseases, such as heart attack and
congestive heart failure, are the leading cause of death in the
United States and worldwide. The current medical practice
for diagnosing cardiovascular diseases is not suitable for long-
term, out-of-hospital use. A key to long-term, at-home cardiac
care is the ability to provide continuous monitoring, and detect
abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Various
big data and deep learning based approaches have been developed
to analyze electrocardiogram data to identify arrhythmia condi-
tions. However, most existing studies only focus on the accuracy
of arrhythmia classification, instead of runtime performance
of the workflow, which is critical for real-time detection. In
this paper, we propose progressive resolution shrinking, a new
method for supporting efficient execution of deep learning models
for arrhythmia detection, without compromising the detection
accuracy. Specifically, we explored multidimensional methods in
reducing the amount of information needed for the learning task,
and developed a new training method to leverage the advantage
of reduced resolution. We have evaluated this approach using real
electrocardiogram data, and the experimental results show that it
effectively improves the efficiency of arrhythmia detection while
preserving high accuracy. We expect this approach will pave the
way for real-time arrhythmia detection on resource-constrained
wearable devices.

Index Terms—Arrhythmia Detection; ECG Data Analytics; Big
Data; Deep Learning; Convolutional Neural Networks

I. INTRODUCTION

Arrhythmia, defined by the National Heart, Lung and Blood
Institute (NHLBI) as irregular rate or rthythm of the heart, e.g.,
the heart beat is too fast, too slow, or out of rhythm. According
to a study carried out by the American Heart Association [1],
arrhythmia is listed as the primary cause of death for over
50,000 people, and it is also listed as one of the reasons leading
to death for over 550,000 people. In addition, atrial fibrillation,
a type of arrhythmia that is linked to strokes, is expected to
be diagnosed in 2.6 million Americans in 2030. The most
common way to diagnose arrhythmia is through examining
electrocardiogram (ECG) recordings generated by traditional
ECG machines [2], which are located in a hospital setting.
Examining ECG recordings are usually done by medical
professionals. However, the ever-increasing cost of in-hospital
care has become a significant challenge. It is estimated that
the total cost of diagnosing arrhythmia in 2012 is about $20
billion and is expect to raise to $53 billion in 2030 [3]. Patients
with less-severe, chronic conditions would prefer an in-home,
on-going monitoring system, which requires continuous, near
real-time arrhythmia detection.
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Many heart conditions exhibit biophysical signals that can
be detected before acute, irreversible damage is sustained by
the heart or before more extensive damage is incurred, thereby
reducing adverse health events. For example, various types
of arrhythmia, can be monitored using home-based/mobile
health (m-Health) monitoring platforms based on single-mode
sensing (i.e., electrocardiogram (ECG) [4]-[6]). In our prior
work [7], we designed a rechargeable, compact, and wear-
able heart health monitor that acquires real-time ECG from
the human body. Recorded information can be transferred
wirelessly to the user’s phone or computer, where a machine
learning model can be used to monitor biophysical data and
identify anomalies. The relatively inexpensive cost of this
device enables home monitoring in many cases, if real-time
ECG data processing can be implemented.

Existing studies on applying big data and machine learning
technologies on ECG data for arrhythmic detection often focus
on the learning performance, such as accuracy, precision, etc.,
instead of the potentials of supporting real-time processing.
Some early work on real-time analysis of ECG data uses 1D
representation coupled with time-series based processing to
achieve higher computational performance [8]-[10]. However,
representing ECG data in 1D loses the rich 2D features,
and may hinder the potential of integrating data analytics
technologies with traditional diagnostic approaches. In this
paper, we present a different approach in supporting efficient
arrhythmia detection using convolutional neural networks,
aiming to preserve the 2D features and also satisfy the
real-time processing needs. Specifically, we have investigated
strategies for reducing the amount of data needed to perform
the arrhythmia classification, and developed a novel training
method to support the learning task with progressive reso-
lution reduction. We have carried out extensive experiments
to evaluate the proposed approach, and the results show that
it demonstrates stable performance with much less demand
on computational resources. This research provides potentials
for faster diagnostic of arrhythmia and can be deployed in a
medical environment without powerful hardware.

II. RELATED WORK

Cardiovascular diseases are the leading cause of death both
in the U.S. and worldwide. The direct domestic medical costs
associated with congestive heart failure (CHF) are expected to
reach $53 billion by 2030 [11], with the majority of costs
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related to hospitalization. However, hospitalization may be
avertible provided patients and clinicians are cued to intervene
prior to significant deterioration in cardiac functions. Long-
term and realiable in-home monitoring is needed to address
these challenges. Cardiac monitoring using ECG electrodes
and bedside monitors has been implemented in the medical
field for over 70 years. The standard 12-lead ECG, along
with other reduced-lead (5- or 3-electrode) configurations, can
accurately measure signals and help diagnose complex heart
conditions [12]-[15]. Various machine learning approaches
have been applied for predicting cardiovascular diseases [16]—
[21]. One of the most well-known and popular methods used
to classify ECG data is a Support Vector Machine (SVM)
[22]-[24] with various kernels, feature extraction methods, and
categories of arrhythmia.

For neural network approaches, a common method is to use
a convolutional neural network. Giiler and Ubeyl propose a
method for data engineering for ECG signals, by using discrete
wavelet transform (DWT) to extract additional information
about the signal in the form of wavelets [25]. These wavelets,
in addition to a few statistical features derived from the signal,
are used in a modular neural network, where each input of the
network has its own neural network and work independently
of each other. This network works because DWT can be
broken down multiple times and each wavelet can be learned
by the network. A 34-layer deep residual neural network is
proposed in [26]. Beside the 1D-convolutional approaches,
2D-convolutional approaches exist [27], [28]. For example,
[29] extracts an image from an ECG sample and uses a 2D-
convolutional neural network to learn patterns from images.
The network architecture of their proposed work is similar to
that found in existing deep learning image models such as
VGGNet [30].

Real-time decision making is the key requirement of many
emerging applications that pose a set of new challenges to
the deployment of machine learning models [31]. Specifically,
machine learning models must be able to operate with low
latency [32] and high throughput [33], [34], in order to satisfy
the real-time requirement of these applications. In the area
of cardiovascular medicine, initial efforts have been made
towards real-time processing of ECG signals to diagnose rele-
vant diseases [35], [36]. To this end, processing and analyzing
ECG data as time series attracts increasing attention, and long
short-term memory networks [10] have been used to achieve
higher performance.

The existing studies on real-time processing have not used
CNN based 2D approaches, due to its deep architecture
which presents challenges for meeting the real-time processing
needs. However, preserving 2D features offers the potential
of integrating machine learning based approaches with the
traditional diagnostic approaches, which opens up a broad
range of opportunities to enhance the at-home monitoring. In
this paper, we bridge this gap by exploring the potentials of
using CNN based approaches to support efficient arrhythmic
detection. Specifically, we have investigated various methods
to reduce the amount of data needed for the learning task, and
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developed a new training method to leverage the efficiency
enabled by data reduction without sacrificing the accuracy
needed for arrhythmia detection. This approach is validated
using an open-source dataset. We expect this approach will
pave the way for continuous, real-time heart monitoring using
small wearable devices.

Existing studies on 2D CNN based approaches focus mainly
on either architectural development for the neural network
or developing the preprocessing stage. Our exploration into
data reduction along with our proposed training method takes
a different approach for improving performance that can be
applied independently to preprocessing or model choice under
certain assumptions. Specifically, our methods can build upon
previous workflows as long as the data resolution can be
dynamically controlled and the choice of neural network can
handle dynamic input sizes which most modern 2D CNNs
can.

III. BACKGROUND

The ECG machine processes the signals picked up from the
skin by electrodes and produces a graphic representation of the
electrical activity of the patient’s heart. The impulses of the
heart follow a specific pattern as follows: electrical activity
towards a lead causes an upward deflection; electrical activity
away from a lead causes a downward deflection; depolarization
and repolarization deflections occur in opposite directions.
This basic pattern of the electrical activity, when captured
by ECG, show a common visual structure consisting of three
waves, which have been named P, QRS (a wave complex), and
T [37], as shown in Figure 1. The P wave is a small deflection
wave that represents atrial depolarization, the QRS complex
represent ventricular depolarization, and the T wave represents
ventricular repolarization.

Fig. 1. QRS Complex

Arrhythmia conditions can be diagnosed by visually exam-
ining ECG images, as they show abnormal patterns. Figure 2
shows the ECG signals of nine different types of heartbeats,
with the first being a normal beat while the remaining are
arrhythmia. As the figure shows, the overall pattern of any
arrhythmia differs from the normal beat, making it possible
for a classification algorithm to recognize and classify different
ECG patterns.

In this paper, we used the MIT-BIH Arrhythmia
Database [38] to train and evaluate our machine learning
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Fig. 2. ECG Signals of Nine Different Types of Heartbeat

TABLE I
MIT-BIH DATASET CLASS DESCRIPTION

Class
Normal

Annotation
Normal
Left bundle branch block
Right bundle branch block
Atrial escape
Nodal escape
Atrial premature
Aberrant atrial premature
Nodal premature
Supraventricular premature
Premature ventricular contraction
Ventricular escape
Fusion of ventricular and normal
Paced
Fusion of paced and normal
Unclassifiable

SVEB

VEB

Fusion
Unknown

TABLE I
MIT-BIH DATASET CLASS DISTRIBUTION

Class Samples | Train 80% | Test 20%
Normal 90593 72477 18116
SVEB 2781 2207 574
VEB 7235 5782 1453
Fusion 802 663 139
Unknown 8040 6431 1609
Total 109451 87560 21891

models. The database provides 48 records of different in-
dividuals, with varying age and medical conditions. Each
record includes a 30-minute ECG recording recorded in two
channels at a rate of 360 Hz (samples per second). The
database provides a list of annotations that describes what
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conditions have been diagnosed in the nearby ECG region,
as well as where the conditions are located. The full list of
annotations contains various annotations that are labeled as
single characters. These labels are divided into two categories,
beat and non-beat annotations. Beat annotations describe the
heartbeat and non-beat may describe the start/end to a region,
peaks, and comments.

The original MIT-BIH Arrhythmia Database contains 40
different annotations for heartbeats. However, many of the
annotations are not useful in classifying arrhythmic conditions.
To improve the learning process, we grouped the labelled
annotations into 5 classes as partitioned in Table I. The dataset
is broken into a 80/20 train-test split through random sampling.
Detailed information about data distributions are in Table II.

IV. METHODOLOGY

Memory and computation efficiency are two key factors
for optimized deep learning. With 2D convolutional neural
networks, it is observed that reducing the resolution of the
input image will result in less compute and less memory con-
sumption. In a preliminary study, we have measured the CPU
latency on three different models, ResNetl18, ResNet50, and
MobileNetV3 Large, when given different input resolutions.
The results are shown in Figure 3. For a given resolution, the

latency throughput is measured for each model by computing
the latency for a single forward pass with a dummy sample of

batch size 1, averaged across 1,000 iterations. This process
is done 10 times in total, then averaged to find the final
measurement. There is a clear trend that indicates reduced
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latency with smaller resolutions. For memory consumption,
consider the simple example of comparing 256 x 256 and
128 x 128 resolution images. The 256 resolution images are 4
times larger than the 128 resolution images. Therefore, we are
motivated to reduce the input resolution as much as possible.

Resolution Impact on Latency

ResNetl8
ResNet50
—8— MobileNetV3

16
14
12

10
8
6

40 60 80 100 120 140 160
Resolution

Latency (ms)

Fig. 3. Resolution Impact on Latency (CPU: Intel Core i9-10900X)

However, these gains in efficiency generally have a trade-off
with accuracy. The reduction in accuracy can be correlated to
a loss of information, as lowering the input resolution will
decrease the information quality and the amount of infor-
mation. In this study, we explore two different methods for
reducing the input resolution. One approach is a reduction in
information range, while the other is a reduction in information
quality. Additionally, we propose a novel training method
to improve accuracy recover for low resolution inputs while
sacrificing no inference time penalties, namely Progressive
Resolution Shrinking.

A. Preprocessing For Resolution Reduction

For image-based ECG classification, the data preprocessing
can be divided into two stages. First, the raw ECG signal
data is segmented into heartbeat samples, then each sample is
subsequently transformed into an image.

During heartbeat segmentation, we begin by locating each
r-peak. For each r-peak we select some number of samples
before and after the peak to represent the heartbeat segments.
This process of sample selection is what will define our
two distinct resolution reduction methods. The first approach,
which will be referred to as window segmentation, simply
selects some window centered around the r-peak to use as
the heartbeat segment. For example, consider selecting 64
samples before and after the r-peak. In this case, the resulting
heartbeat segment will be 128 samples in total. The second
approach follows the same initial step as window segmentation
by first selecting some window centered around the r-peak.
Although this time, we will first sample at a higher resolution
(increased window size), then follow up with a resample down
to the desired resolution. For example, consider selecting 128

samples before and after the r-peak. The resulting heartbeat
segment will be 256 samples wide, but we will then apply a
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resample on this segment to reduce it down to a resolution
of 128. In the first approach, we maintain information quality
but the overall range is limited. In the second approach, we
maintain the information range but sacrifice quality due to the
resampling process. A visualization of these two preprocessing
approaches is shown in Figure 4.

After ECG signals have been separated into heartbeat seg-
ments, each segment can be transformed into an image. In this
study, we follow the transformation method outlined in [39],
[40]. Specifically, for each heartbeat segment, three unique
transformations are applied individually, Recurrence Plot (RP),
Gramian Angular Field (GAF), and Markov Transition Field
(MTF), to produce three separate images. RP extracts the
periodicity and recurring patterns in the ECG signal over time.
GAF encodes the signal by representing its angular perspective
through transformation to polar coordinates. Angular differ-
ences between the encoded points are then extracted, leading
to the detection of possible higher-order correlations. MTF
encodes the probabilistic transitions between different states
in the signal over time, essentially capturing the transition
dynamics between different signal values. These three images,
which capture unique aspects of the heartbeat signal’s temporal
dynamics, are then stacked in the channel dimension to create
a three channel image. This multi-transformation stacking
method has shown to produce strong results when compared
to single transformation methods, but increases the overall
computational cost. Thus, optimizing this particular method
is in our best interest.

B. Progressive Resolution Shrinking

In addition to exploring the impact of resolution reduction
methods, we propose a new training approach, namely pro-
gressive resolution shrinking, which establishes a mechanism
to leverage the resolution reduction in the learning process.
When reducing the resolution, information will always be
lost. Thus we take inspiration from the idea of transfer
learning to minimize the impact of this information loss. In
typical transfer learning, a neural network is first trained on a
generalized dataset and task to help the model establish broad
data understanding which can then be transferred over to a
new dataset or task through finetuning. For example, training
a model first for ImageNet classification then finetuning for
CIFAR classification. With progressive resolution shrinking,
instead of learning general understanding from a different
dataset, we choose to learn from the same dataset, as the
ECG data preprocessing stage allows for varying approaches
to generation using the same data. In this case, we will create
each heartbeat sample at various different resolutions, where
a higher resolution results in more information. Then, we can
first train our models using higher resolution samples before
finalizing them on a lower resolution version. In addition,
we propose to apply a progressive shrinking approach to this
multi-resolution reduction training to better distill information.
In other words, we begin training at the highest sample
resolution and gradually lower the resolution as training pro-
gresses. For example, consider training a model first with 256
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Window Segmentation: 256 to 128

Resample: 256 to 128

Fig. 4. Preprocessing For Resolution Reduction. The top path is with window segmentation and the bottom path is with resampling. Note that the resampled

signal is still slightly different than its base despite being barely viable.

resolution samples and decreasing that resolution by 16 every
10 epochs. This approach is illustrated in Algorithm 1.

Algorithm 1 Progressive Resolution Shrinking

1: for Each input_resolution do

2 Generate dataset using current input_resolution

3: end for

4: Initialize model and training parameters

5: for Each (input_resolution, resolution_epochs) in de-
scending resolution order do

6: Initialize training dataset on current input_resolution
7: for Each epoch in resolution_epochs do

8: Train model with current dataset

9: end for

10: end for

To apply progressive resolution shrinking on the two pre-
processing methods used in this study, window segmentation
and resampling, we can simply generate different resolution
samples during the heartbeat segmentation stage. With window
segmentation, varying the time-step width on each sample
will result in different resolutions per sample. For resampling,
after a base resolution is selected, different resolutions can be
generated by varying the resampling rate. A visualization of
progressive resolution shrinking is provided in Figure 5.

V. EVALUATION
A. Experiment Design

We train ResNet18 models under seven different resolutions,
starting from 64 and incrementing by 32 up to a max resolution
of 256. For each resolution, we test the two previously
mentioned preprocessing approaches, window segmentation
and resampling. Resampling is done by first creating each
heartbeat segment at a resolution of 256 and then subsequently
downsampling to the desired resolutions. Additionally, we
train another set of ResNetl8 models on resolutions of 64
and 96 while applying the progressive resolution shrinking
framework for both window segmentation and resampling. For

progressive resolution shrinking models, they begin training at
a resolution of 128 with decrements of 8 until the final desired

resolution is reached.
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All baseline window segmentation and resampling models
are trained for 50 epochs. Progressive resolution shrinking
models are trained for 30 epochs during the high resolutions
stages and 50 epochs for the final stage. The training data batch
size is 128. The optimizer is Stochastic Gradient Decent with
a learning rate of 0.01, a momentum of 0.9, and a weight
decay of 1 x 10~%. A cosine annealing scheduler is used for
the learning rate [41]. Note that for progressive resolution
shrinking, the optimizer and scheduler states do not reset
during the resolution switches, only the dataset is swapped out.
For hardware, two NVIDIA RTX 3080 are used in a distributed
data parallel environment. Note that for distributed evaluation
on the test set, the DistributedSampler from PyTorch prefers
that the data be evenly divisible by the number of devices. If
the data is not evenly divisible, then the last bit of data may
be dropped. Although, because we are performing distributed
evaluation on the test set, we do not want the drop any of the
samples. In this case, PyTorch will add additional samples to
make the data evenly divisible. For our experiments, we have
two GPUs and the test set consists of 21,891 samples, thus
an additional sample is added automatically to make the data
evenly divisible. Because the difference between 21,891 and
21,892 is minuscule in terms of relative scale, we consider
this factor negligible as whether or not the model correctly
predicts the extra sample will have almost no overall impact.

B. Results and Discussion

For comparing the performance of each trained model, we
consider the overall accuracy. Each baseline model is trained
for 50 epochs and each progressive resolution shrinking model
trained for 50 epochs during the final resolution stage. To
make the accuracy measurements more reliable, every model is
evaluated with the test set after each epoch to keep record of a
running performance. The first 30 accuracy measurements are
discarded as to allow the model to converge. The remaining
final 20 accuracy measurements are then averaged. This mean
accuracy will be used as the comparison metric. Results for
all mean accuracy measurements are presented in Figure 6.
Note that extreme outliers are removed to keep the results
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Fig. 5. Progressive Resolution Shrinking. Each heartbeat signal generates training samples of varying resolutions. The model is trained on descending sample
resolution order, meaning the model trains on the highest resolution first and the lowest resolution last.

stable. Specifically we remove any accuracy measurement
below 90%. In this case, there is only one iteration during
the baseline resampling model trained under a resolution of
64 that hit 82.42% accuracy. All other accuracy measurements
are greater than 90%.

Resolution Impact on Accuracy

-2 /\‘
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Resolution

200 225 250

Fig. 6. Progressive Resolution Shrinking Accuracy. PG (the dark lines) marks
the progressive resolution shrinking model variant.

When comparing baseline resampling against window seg-
mentation, it is clear that resampling maintains stronger accu-
racy when decreasing the resolution. Notably, the resampling
accuracy from resolutions 256 to 128 did not see any negative
change with the 256 resolution accuracy at 99.09% and the
128 resolution accuracy at 99.10%. The accuracy only starts
to slightly drop off at resolutions below 128, with the 96
resolution accuracy at 98.93% and the 64 resolution accuracy
at 98.97%. For window segmentation, the accuracy differ-
ences between resolutions are much more substantial. From
resolution 256 to 160, the accuracy is relatively stable, only
seeing up to a 0.07% absolute decrease. When the resolution
reaches below 160, the accuracy degradation begins to be more
severe, with the 64 resolution model reaching a global low of
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97.92%. Therefore, we can conclude that resampling results
in far greater performance for resolution reduction.

With the addition of progressive resolution shrinking, im-
provements to the low resolution models (96 and 64) are appar-
ent for both resampling and window segmentation. For the 64
resolution models, resampling and window segmentation accu-
racies increased from 98.97% to 99.05% and from 97.92% to
98.07% respectively. For the 96 resolution models, accuracies
increased from 98.93% to 99.16% and from 98.49% to 98.66%
respectively. To better analyze progressive resolution shrink-
ing, we can explore the running metrics during the training
process. Specifically, we will consider the running accuracy
and accumulated loss, comparing the final stage of progressive
resolution shrinking against the baseline counterparts (Figure
7). For resampling-based progressive resolution shrinking the
running accuracy and loss are consistently ahead of their
baseline counterparts. With window segmentation progressive
resolution shrinking, the 96 resolution model also outperforms
the baseline. Additionally, the progressive resolution shrinking
methods generally show more stability. Therefore, progressive
resolution shrinking shows improvements to overall accuracy
while sacrificing no deployment penalties.

To understand the computational complexity and run-time
performance, we measure the MACs (Multiply-Accumulate
Operations) and latencies for the resampling-based models.
Results are provided in Table III. Without much accuracy loss,
we see the low resolution models with progressive resolution
shrinking hit upto a 16x reduction in MACs and a 9.9x
reduction in latency.

VI. ANALYSIS AND DISCUSSION

One observation with progressive resolution shrinking is
that it often performs better with resampling when compared
to window segmentation. To verify this observation, we define
a metric representing the relative accuracy recovery as follows:

o — ﬂlower

relative_accuracy_recover = —————
ﬁupper - /Blower

(D
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TABLE III
RESNET-18 RESOLUTION PERFORMANCE
RESAMPLING-BASED MODELS ARE USED FOR THE ACCURACY
MEASUREMENTS. LATENCY CPU IS MEASURED ON AN INTEL CORE
19-10900X, LATENCY GPU IS MEASURED ON A NVIDIA RTX 3080,
AND LATENCY EDGE IS MEASURED ON A JETSON ORIN NANO.

Latency

Resolution | Acc % MACs CPU GPU Edge
Batch 1 Batch 64 Batch 16
256 99.09 2382 M | 10.21 ms 1999 ms  64.42 ms
224 99.16 1824 M 8.53 ms 1571 ms  53.34 ms
192 99.17 1340 M 7.80 ms 12.56 ms  39.14 ms
160 99.10 930 M 6.17 ms 8.65 ms 29.40 ms
128 99.10 595 M 5.01 ms 5.47 ms 20.40 ms
96 w/ PRS 99.16 335 M 4.01 ms 3.95 ms 16.00 ms
64 w/ PRS 99.05 149 M 2.95 ms 2.02 ms 9.91 ms

where « is the accuracy after applying progressive resolution
shrinking, Sjower 18 the baseline lower-bound accuracy, and
Bupper is the baseline upper-bound accuracy. For example,
consider that we have a baseline upper-bound accuracy is
90% and a baseline lower-bound accuracy of 80%. Then if
we consider an « of 85%, the relative accuracy recover is 0.5,
and for an o of 86%, the relative accuracy recover is 0.6.
We can now apply this metric to the previously ran experi-

ment to understand the effectiveness of progressive resolution
shrinking for resampling and window segmentation. For each
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method, we let Bypper be the baseline mean accuracy at the
starting resolution (both methods started at a resolution of
128) and let Bjoer be the baseline mean accuracy at the final
resolution (96 and 64). Then, let o be the respective mean
accuracy when applying progressive resolution shrinking. To
better understand this, let us examine one concrete example.
For resampling, the baseline mean accuracy without progres-
sive resolution shrinking at a resolution of 128 is 99.1017%.
The baseline mean accuracy at a resolution of 64 is 98.9667%.
When progressive resolution shrinking is applied from 128
to 64, the resulting mean accuracy is 99.0538%. Using these
values, we find the relative accuracy recover for this case to
be 0.65. Continuing this, we find the relative accuracy recover
for progressive resampling at a resolution of 96 to be 1.37
and progressive window segmentation at 96 and 64 to be
0.47 and 0.16 respectively. We see that progressive resolution
shrinking with resampling is more effective than with window
segmentation as the relative accuracy recover for resampling
is far greater.

To better understand why progressive resolution shrinking
performs better with resampling when compared to window
segmentation, we will explore the information distillation
during resolution reduction. Specifically, how similar are the
images produced at each resolution stage to each other. The
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intuition is that greater similarity between resolutions will
result in a stronger distillation of information. To test this
idea, we compare multiple different resolution samples against
each other. Each data preprocessing method, resampling and
window segmentation, has five different resolutions generated
per sample, from 256 to 128 in decrements for 32. We then
measure the pairwise similarity between the resolutions. This
is performed across 100 random samples per resolution pair
to gather averages. For similarity measurements, two metrics
will be used, Mean Square Error (MSE) and Mean Structural
Similarity Index Measure (MSSIM) [42].

MSE is a computationally simple and intuitive similarity
metric that measures the average of the squared difference
between two values. It is expressed as

MSE = Y ji)?
==~ (Wi —u)

=1

2)

where n is the total number of elements, y and ¢ are the two
values to compare. A MSE of zero represent two identical
values.

MSSIM measures the similarity between two images taking
into account human perception. MSSIM in particular is an
extension of its base metric SSIM. SSIM is a weighted
combination of three comparison metrics defined as:

SSIM(z, y) = U(z,y)* - c(z,y)" - s(z,y)" 3)

where x and y are the images, «, 3,y > 0, and the functions
l,c,s are comparison metrics on luminance, contrast, and
structure respectively. These comparison functions are defined

as:
gty + Ch

l ) = 4

(z,y) 12+ 2 +Cl 4)
20,0, + C.

W)= ®
_ Ogy + Cs

stay) = 2o (©)

where (i, 1, are the pixel sample means, o,,0, are the
standard deviations of x and y, 02,0} are the variance of
x and y, 04y is the covariance of = and y, and C, Co, C5 are
constants. When C3 = C5/2 and o = 8 = v = 1, SSIM can

be simplified to:

(2pzpy + C1)(200y + C2)
(12 + 2 + C1)(02 + 02 + Ca)
In practice, computing the SSIM on the entire images can lead
to undesirable results, thus MSSIM is used instead. MSSIM

takes the mean SSIM of local windows across the images and
is defined as:

SSIM(z,y) =

(7

M
1
MSSIM(X,Y) = - > SSIM(z;, y,)

Jj=1

®)

where X and Y are the images, x; and y; are the image
contents of the jth local window, and M is the number of
local windows. The windows used in this analysis follow the
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original paper with a circular-symmetric Guassian weighting
function. MSSIM is a measurement from [—1, 1] where 0 rep-
resents complete dissimilarity and larger magnitudes represent
increased correlation or anti-correlation. Though, MSSIM can
be normalized to [0, 1].

Note that MSE and MSSIM require the two images in
question to be of the same dimensions, thus for each lower
resolution image we downscale the higher resolution image
to match in size. Empirical results of the proposed analysis
are presented in Figure 8. For both methods, the similar-
ity decreases as the resolution gap increases. The overall
similarity for resampling across resolutions is far greater
than window segmentation, with resampling seeing a lower
MSE and a higher MSSIM. Therefore, we may conclude that
sample similarity across resolutions is one potential factor
in understanding the performance of progressive resolution
shrinking.

When resampling, the design space can be large. In this
work, we chose to resample from a base resolution of 256
down to the desired resolution, but the choice for the base
resolution could have been anything. For example, if our
desired resolution is 128, should we resample from 224, 256,
or 288. The choice for the base resolution could potentially
be impacted by the magnitude of the desired resolution, the
sampling rate of the ECG signal, or other variable factors. As
of this study, it is still unclear on how to efficiently choose
the best resampling parameters.

Progressive resolution shrinking requires that the models be
initially trained on higher resolution samples. This increases
training time and requires that the system be able to efficiently
process potentially large data samples. For the experiment ran
in this study, progressive resolution shrinking on the 96 and
64 resolution models extended training times by 4.6x and
8.8x respectively. Note though that total training time does
not always impact the accuracy convergence. On-device train-
ing may have difficulties implementing progressive resolution
shrinking. Although, despite the increase to training time, it
is important to state that the training time will not negatively
impact the model during its deployment. Additionally, due to
the nature of progressive resolution shrinking being a training
method, its application to existing workflows will not impose
any additional computational overhead post training.

VII. CONCLUSION

Arrhythmia such as atrial fibrillation is a common cause of
death in the United States. While the most common way to
diagnose arrhythmia is through an ECG reading, a challenge
that comes from this method of diagnosis is that it requires a
trained medical profession to evaluate the ECG reading. The
development of a machine assisted method can speed up the di-
agnostic process and potentially reduces fatality. Both 1D and
2D based deep learning approaches have been studied in the
context of arrhythmia detection. 2D based approaches provide
the advantages of high accuracy and preserving features that
can be used for visual verification, however, these approaches
have higher requirements on computational resources, due to
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Fig. 8. Resampling and Window Segmentation Similarity Analysis. For MSE, lower magnitude (blue) represents higher similarity. For MSSIM, higher

magnitude (red) represents higher similarity.

their complexity and amount of data required for learning. In
this paper, we have investigated strategies for reducing the
amount of data needed to perform the arrhythmia classifica-
tion, and developed a novel training method to support the
learning task with progressive resolution reduction. We have
carried out extensive experiments to evaluate the proposed
approach, and the results show that it demonstrates stable
performance with much less demand on computational re-
sources. This research provides potentials for faster diagnostic
of arrhythmia and can be deployed in a medical environment
without powerful hardware.

Work is ongoing in several directions. First, we will in-
vestigate mechanisms to improve the distillation capability of
progressive resolution shrinking. Second, we will build on
top of the classification results, and develop feature extraction
methods and machine learning models for anomaly detection.
Classification provides a good guidance on diagnosis, because
it classifies data samples to a number of known conditions.
However, in a real-time setting, it might not be necessary
to diagnose the underlying problems. Instead, being able to
quickly detect abnormal heart rhythms is more critical, i.e.,

anomaly detection. Therefore, a binary classifier which detects
anomaly signals from the normal ones is the essential part of

1842

real-time monitoring and detection of arrhythmia. Finally, we
will develop real-time sensing techniques to collect data at
real-time, and evaluate our models using data collected from
patients.
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