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Abstract

How veridical is perception? Rather than representing objects as they actually exist in the world,
might perception instead represent objects only in terms of the utility they offer to an observer? Pre-
vious work employed evolutionary modeling to show that under certain assumptions, natural selection
favors such “strict-interface” perceptual systems. This view has fueled considerable debate, but we
think that discussions so far have failed to consider the implications of two critical aspects of percep-
tion. First, while existing models have explored single utility functions, perception will often serve
multiple largely independent goals. (Sometimes when looking at a stick you want to know how appro-
priate it would be as kindling for a campfire, and other times you want to know how appropriate it
would be as a weapon for self-defense.) Second, perception often operates in an inflexible, automatic
manner—proving “impenetrable” to shifting higher-level goals. (When your goal shifts from “burning”
to “fighting,” your visual experience does not dramatically transform.) These two points have impor-
tant implications for the veridicality of perception. In particular, as the need for flexible goals increases,
inflexible perceptual systems must become more veridical. We support this position by providing evi-
dence from evolutionary simulations that as the number of independent utility functions increases, the
distinction between “interface” and “veridical” perceptual systems dissolves. Although natural selec-
tion evaluates perceptual systems only on their fitness, the most fit perceptual systems may nevertheless
represent the world as it is.
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1. Introduction

Do we see the world as it truly is? On one hand, we are all familiar with cases in which
perception is inaccurate—sometimes to a striking degree, as in visual illusions. (You may
know with certainty that two lines in front of you are equally long, while still irresistibly
seeing one as longer than the other, as in the Miiller—Lyer illusion.) But on the other hand,
most of us still intuitively assume that these are the exceptions that prove the (opposite) rule:
our percepts reflect the external world faithfully, and are useful only to the degree to which
they are accurate. (If you see a bunny in front of you, but it is really a tiger, you may pay the
price for that inaccuracy.) Recently, however, a provocative view has emerged that questions
such assumptions, arguing that our perceptual representations of the world are in general very
different from the actual state of the world.

1.1. A new evolutionary perspective: The “interface” theory of perception

The “interface theory of perception” (henceforth ITP) proposes that our percepts may
almost always differ radically from the ground-truth to the extent that even key dimensions of
perception (such as space and time) may have little to no basis in external reality (Hoffman
2009, 2014, 2016, 2018, 2019; Hoffman & Prakash, 2014; Hoffman, Singh, & Prakash, 2015;
Mark, Marion, & Hoffman, 2010). According to I'TP, illusions are the rule, and veridicality1
a rare exception.

1.1.1. Conceptual introduction

ITP is inspired by straightforward evolutionary considerations. Perception can only make
a difference—and can only have evolved in the first place—if it impacts our fitness. And so,
we should therefore not think of perceptual representations in terms of their correspondence
to objective external reality, but rather to the underlying utility functions that relate behavior
to fitness. If reality differs in some way that is orthogonal to utility, then those differences
would have no impact on our fitness, and there is no mechanism by which we could have
evolved an accurate representation of those aspects of reality. And conversely, if distinctions
that do not reflect an underlying reality (e.g., between space and time) nevertheless have
fitness benefits, then they will become incorporated into our percepts. In short, whenever
an element of the world differs in terms of its objective properties and its subjective utility,
the most fit perceptual system will always be one that represents the element in terms of its
subjective utility.

To help make this perspective clear, consider a concrete example. Imagine a frog that lays
eggs in pools of brackish water, and that the eggs’ viability depends in part on the water’s
salinity: if the frog lays its eggs in a pool that is either too salty or insufficiently salty, then
the eggs will not hatch. And assume that the function relating salinity to viability is both
unimodal and symmetric, centered on some ideal value (i.e., a bell curve). That function
might be represented by the generic utility curve depicted in Fig. 1a (adapted from Hoffman
et al., 2015), where the horizontal axis represents salinity, and the vertical axis represents the
eggs’ viability. Here, the four colored regions represent different percepts that the frog could

:sdny) SUONIPUOD) PUE SWIAL U 998 [SZ0T/Z0/9T] U AIeIqrT UIUO ASIIA “S61€1'S309/1 11 1°01/10p/wiod Kajia Areaqrjour[uoy/:sdny woiy papeojumod *01 ‘20 60L91 S

19)/w0d" Ka[Im’ KIeIqraul]

ASU20IT suowwo)) aanear) a[qeatjdde ayy £q paurasos are sa[dnIe Y s Jo sa[ni 10j KIeiqig aur[uQ L3[IAN UO (SUONIPUOI-PUE-S



M. D. Berke et al./ Cognitive Science 46 (2022) 3of 21

(a

N’

Payoff

[=]
[
o

(

=)
-~

100

Payoff

o
[
o

100

Fig. 1. (a) A hypothetical veridical perceptual system; and (b) a strict-interface perceptual system. In each case, the
horizontal axis represents an objective dimension of the world (e.g., the salinity of pools of water), and the vertical
axis represents the evolutionary payoff of each value of that dimension (e.g., the viability of a frog’s eggs). The
curve then depicts a hypothetical utility function relating the underlying dimension to its payoff, and the colors
indicate four possible binned percepts (e.g., of different levels of salinity). In the veridical perceptual system, the
two values highlighted by the dots would correspond to different percepts (of different absolute salinity levels).
In the strict-interface perceptual system, these two values would correspond to the same percept, since they have
equivalent utilities. (Adapted from Hoffman et al., 2015).

have—distinguishing different binned degrees of salinity. But according to the logic of ITP,
there is no mechanism by which this perceptual function could evolve. Consider, for example,
the two highlighted points on this curve: these points correspond to two objectively different
salinity levels, but those salinity levels have the very same impact on the eggs’ viability, and
so there would be no utility to distinguishing between them. Instead, ITP proposes that what
would evolve would necessarily be a perceptual function such as the one depicted in Fig. 1b—
wherein these same two points correspond to identical percepts (here depicted by the fact that
they both lie within the green regions). In this toy example, the frog’s resulting perceptual
system would essentially be representing the “goodness” or “badness” of the salinity levels
(and not their absolute values), since only the former would have any downstream fitness
consequences.

This perspective was dubbed an “interface theory” because of its metaphorical connection
to other familiar types of technological interfaces. In ITP’s analogy, a computer desktop rep-
resents the underlying information in the computer in terms of folders, icons, and perhaps a
trash bin—but these are “useful fictions” to a large degree: two files that appear inside the
same folder, for example, may actually be stored in entirely different (or even fully inter-
mingled) locations in the underlying hard drive. (And this example makes clear why this
particular fiction is useful—since a desktop that explicitly depicted the actual locations in
memory would be distracting, useless, or worse.) Similarly, ITP suggests that much (or all)
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of human perception is a useful fiction—nothing but a user “interface” to the outside world,
which may radically distort (or even hide) external reality.

1.1.2. Computational support

Theoretical debates about these questions of “perceptual realism” are legion, and have been
heavily featured both in the history of philosophy and in contemporary philosophical work—
for example, contrast the realist views of Campbell and Cassam (2014), Locke (1690), or
Searle (2015) with the antirealist arguments of Berkeley (1709, 1725), Jackson (1977), or
Robertson (1994). And more recently, these debates have featured evolutionary arguments on
both sides (e.g., Korman, 2019; McKay & Dennett, 2009; Popper, 1987; Shepard, 1990, 1992,
1994, 2001; Thompson, 1995). But the ITP has had a notable impact on recent discussions in
part because it has taken an entirely new (and fresh) approach to the thoughts and arguments
reviewed above by supporting them with data from evolutionary simulations using “genetic
algorithms.”?

Genetic algorithms are a method in computer science and artificial intelligence that is use-
ful for understanding how computational systems are shaped by evolutionary pressures. In
genetic algorithms, a set of artificial agents (often generated randomly) are placed in a simu-
lated environment and must complete a series of decisions that yield different payoffs. In the
context of ITP, the environment consists of a collection of resources, each associated with a
different payoff, and each agent is initialized with a random perceptual system (i.e., an arbi-
trary mapping from resources to perceptual representations). Each agent is then allowed to
make a sequence of choices about which resources to “forage” and its final payoff is given by
the sum of payoffs obtained.

After simulating how the initial set of artificial agents behaves in the simulated environ-
ment (perhaps across many rounds of foraging), a new generation of artificial agents is then
created through a process of selection, recombination, and mutation. In this step, agents are
selected for reproduction as a function of their fitness, such that agents who performed bet-
ter in the simulated environment have a higher chance of passing on their cognitive system
(and, conversely, low-fitness agents have a low chance of passing down their cognitive sys-
tem). New agents are then generated by combining the cognitive systems of pairs of selected
agents, introducing a small probability of mutation which allows for the introduction of novel
cognitive systems. In the context of ITP, this means that the perceptual strategies of agents
that selected better resources will be represented in the next generation of agents, while the
perceptual strategies of agents that made poor choices will die off. By repeating this process
over many (perhaps hundreds, or even thousands, of) generations, those perceptual strategies
with the highest fitness scores will end up dominating the population. And correspondingly,
one can then look at the distribution of strategies that remain after these simulations are com-
plete in order to identify those that are the most fit. A crucial benefit of this type of simulated
evolution is that this process can produce entirely new (and better-adapted!) strategies that
were not even present in the initial population.

These are the sorts of evolutionary simulations that were conducted with veridical versus
“strict-interface” perceptual strategies (initially by Hoffman, 2009; Mark et al., 2010; later
published and reviewed in Hoffman et al., 2015). (While an “interface perceptual strategy”
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could accidentally be a homomorphism of real-world structures, a “strict-interface perceptual
strategy” is one that lacks any coincidental homomorphism to the real world.) And in this
context, the results were clear and compelling: strict-interface perceptual strategies (such as
that depicted in Fig. 1b) consistently dominated in the final population, while the veridical
perceptual strategies (such as that depicted in Fig. 1a) effectively died out. This is the empir-
ical/computational support for ITP’s suggestion that in a contest between strategies tuned to
objective reality and subjective utility, the latter always wins.

1.2. The current project: Flexible goals and inflexible perceptual systems

ITP has gained widespread attention, having been recognized as an unusually distinctive
and influential contribution. For example, one of its recent incarnations (Hoffman et al., 2015;
see also Hoffman, 2009, 2014; Hoffman & Singh, 2012) so impressed the Editor of Psycho-
nomic Bulletin and Review that it was not only published but was also featured in its own
special section, with a breathless introduction (questioning whether it might be “the future of
the science of the mind”; Hickok, 2015, p. 1479), along with associated commentaries from
10 other groups and an extensive reply by the authors. Given how provocative ITP is, it is
perhaps no surprise that it has also been criticized on several grounds—for example, for its
(mis)characterization of veridicality (Cohen, 2015; Edelman, 2015), for its failure to consider
key roles of adaptation on ontogenetic timescales (Anderson, 2015), for ignoring other exper-
imental evidence in favor of veridicality (Pizlo, 2015), and for failing to explain how interface
strategies could be functional in novel situations (Jansen, 2018).

Our goal in the present paper is not to review this entire (large, multidimensional) debate
(see also Angelucci, Fano, Ferretti, Macrelli, & Tarozzi, 2021; Feldman, 2015; Fields, 2015;
Koenderink, 2015; Martinez, 2019; Mausfeld, 2015; McLaughlin & Green, 2015; O’Connor,
2014; Schlesinger, 2015; Wilson, 2021), however, and we will largely refrain from weighing
in on these many previous critiques and subsequent defenses. Instead, we aim to contribute
something new to this discussion, by presenting some key considerations concerning our
“cognitive architecture” that pose a stark challenge to ITP (and support the intuitive notion
of veridical perception)—but that to our knowledge have not previously been considered in
past discussions (by either ITP’s proponents or detractors). In particular, we seek to explore
the implications of two ideas, both related to (in)flexibility: (1) perception must be flexible
enough to serve multiple largely independent goals, but (2) the cognitive architecture of per-
ception often renders it “informationally encapsulated” and “cognitively impenetrable”—and
thus unable to flexibly change in response to shifting goals. In this section, we will expand
on the nature and theoretical implications of these two ideas, and then in Sections 2 and 3,
we will explore their computational implications when they are implemented in the context
of evolutionary games and genetic algorithms.

1.2.1. Flexible perceptual goals

In the concrete example discussed above, the frogs need to perceive salinity in order to
assess the viability of the water for laying eggs. But of course, that may not encompass all
of the frogs’ needs and goals. Suppose, for example, that the same frogs also need to eat fly
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Fig. 2. A hypothetical utility function (as indicated by the curves) that prioritizes the ability to detect low values.
(a) When the same interface perceptual system from Fig. 1b (as indicated by the colored bars) is matched with this
function, the fit is poor. (b) But this same utility function is well-matched to a very different interface perceptual
system.

larvae, and the most nutritious fly larvae tend to be found in freshwater pools. Clearly hungry
frogs which are able to determine which pools contain freshwater will then accrue fitness
benefits, and a veridical perceptual system (such as that in Fig. 1a) would allow for this.
But this would prove deeply problematic for a frog whose strict-interface perceptual system
is tuned to egg-laying and which thus cannot distinguish between pools of high versus low
salinity (as in Fig. 2a, where the same perceptual system from Fig. 1b is now matched with
an ill-fitting utility function). And similarly, a frog with a perceptual system that was only
able to distinguish between especially low salinity and everything else (such as that depicted
in Fig. 2b) might be well adapted for finding food, but that same frog would then be at a
stark disadvantage when needing to lay its eggs. Put differently, the two perceptual systems
depicted in Figs. 1b and 2b are each individually well-adapted to a particular goal, but they
are irreconcilable with each other—and so to meet both goals at the same time requires a
more multipurpose system, moving the frog closer to something like Fig. 1a.

These ideas can be generalized: perception will often support behavior in the context of
multiple largely independent goals. Sometimes when looking at an apple, for example, you
may want to know how appropriate it is for eating, and in that context, it may be helpful
to analyze its properties (say, its specific spatial luminance profile) in one way, as a cue to
ripeness. But other times—for example, when your prospective snack is rudely interrupted by
the appearance of a predator—you may suddenly want to know how appropriate the apple is
for throwing, and in that context, those same properties may suddenly need to be analyzed in a
very different way, as a cue to solidity or density. (This sort of flexibility has often been noted
in the context of “affordances,” insofar as most objects afford many disparate actions; Gibson,
1977.) In particular, the function that associates utility with different regions of the relevant
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luminance space might be very different in the context of these different goals. A person
with a strict-interface system that is well-adapted to eating might be less adept at choosing
projectiles, and vice versa—while a person with a veridical perceptual system might excel at
both. And critically, these two functions could very well be in effective conflict: the portion
of a stimulus space that conveys the most fitness under one goal might convey the least fitness
under a different goal.

This perspective has been obscured in most past discussions of ITP, which have typically
only engaged with a single task or utility function at any given time. (In one of the earliest
ITP papers, Hoffman & Singh [2012] did acknowledge that organisms may not always have
only one utility function, but speculated that “there is no principled reason why” more fitness
functions would necessarily produce veridical perceptual strategies, and noted that “this must
remain an open question until detailed mathematical models of this process are developed
and studied” [p. 1086]. However, such models were not addressed in subsequent work. And
in the large and growing body of commentary on ITP, we know of only two previous papers
that have considered this factor, albeit from rather different perspectives; cf. Angelucci et al.,
2021; Martinez, 2019.) But surely having multiple independent potential goals is the norm for
human perceptual systems. Indeed, the toy examples discussed above with frogs and apples
surely vastly understate the extremity of this variability, as we shift so frequently among
so many different goals—related to food, mating, child-rearing, predation, clothing, shelter,
politics, war, entertainment, and on and on—in our everyday experience. (To make this point
more concrete, consider all the many and diverse goals you might have when looking at a tree
branch—e.g., assessing its utility as a potential weapon, as kindling for a fire, as a walking
stick, as a fishing pole, as a backscratcher, as a tool for knocking an apple out of a tree, as a
patch for your canoe, as a support for your wigwam, as a drumstick, as a splint for a broken
bone, as a flagpole, as a fencepost, as an oar for rowing, as a mast for a sail, as something to
sit on, as something to artistically carve into, or as a stick for roasting marshmallows.) And
this does not even yet include the development of entirely new goals and utility functions; for
example, part of the majesty of human perception and cognition is our ability to readily adapt
to entirely novel goals that may have never faced past generations. (Perhaps you want to use
your tree branch as a replacement leg for your standing desk?)

All of this seems important, insofar as the conclusions of ITP may seem far more intuitive
and compelling in the context of individual, isolated goals and utility functions, compared
to the multiplicity of goals alluded to above. And the key point here is not that any of this
obviates the critical role of fitness in shaping our perceptual systems: this underlying logic
of ITP seems correct and undeniable. Of course, that logic can also still apply just as readily
even in the face of a multiplicity of goals: one can just average all of these utility functions
together, and then point out again that what we perceive may reflect only this global/averaged
utility function, rather than any objective external reality. But what matters for an organism’s
fitness is not some average utility of a resource (e.g., an apple) across all possible contexts,
but rather the utility of the resource at each moment the organism has to act (when feeding,
or fending off predators). The conclusions of ITP may thus be undercut, since although the
resulting perceptual system may still technically be an interface, it may also be veridical.
Indeed, we suspect that as we allow more and more independent (and potentially conflicting)
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goals (and corresponding utility functions) into the mix, the distinction between an interface
and veridical systems will simply collapse—since, in the end, the perceptual system that is
most fit (and most flexible) in the context of many shifting goals will be a veridical one.

1.2.2. Inflexible (and impenetrable) perceptual systems

The lesson of the previous section was that perception needs to be flexible, insofar as it
must serve many different shifting goals (and corresponding utility functions), and that when
these goals and utility functions are all considered in tandem, the resulting interface systems
converge on veridicality. But one way that ITP could avoid such implications is simply to
deny that there is any such “global” consideration in the first place: instead of fitness operating
through a single global “average” utility function, different local utility functions could just
be considered sequentially, with only one operating at any given moment to determine the
character of what we see. When you want to eat an apple, it may look one way—but when
you want to throw it, it may appear entirely different. This would be a way to salvage the
provocative conclusions of ITP: rather than looking at one (mostly veridical) way all of the
time, objects would appear in many different (and differently nonveridical) ways from goal
to goal, and from moment to moment.

Our second point is simply that actual human perception does not seem to work like this
since the underlying “cognitive architecture” of perception does not allow for goals to influ-
ence either the details of visual processing or the resulting percepts in this way. Instead,
perception is “cognitively impenetrable” due to a form of informational encapsulation: a par-
ticular process (or “module”) in the visual system, for example, may have access to certain
inputs (often in the form of the shifting patterns of light on the retinae, and the subsequent
representations of the environmental factors that are deemed via unconscious inferences to
have caused those patterns of light), but the process may not have access to information about
conscious or deliberative goal states from other parts of the mind—and accordingly, there
is no way for those goal states to change the nature of the processing or its resulting per-
cepts, aside from directing attention to some properties more than others. This is a familiar
phenomenon from almost all visual illusions (for discussion, see van Buren & Scholl, 2018):
once you learn that the illusion is in fact an illusion (and perhaps even understand exactly
how it arises), that newfound knowledge and certainty does nothing to diminish the percep-
tual oomph of the illusion itself. (You continue to see the two lines in the Miiller—Lyer illusion
as having different lengths, even while you know that they are the same length—say, because
you just measured them with a ruler.)

This perspective has been supported by a wealth of both theoretical arguments and empir-
ical studies. Theoretically, it has been argued that although certain distortions of perception
by high-level states could be helpful in particular circumstances, those same distortions might
be highly maladaptive in other circumstances—and you cannot always know in advance just
which circumstances you may suddenly find yourself in. If wearing a heavy backpack makes
hills look steeper, for example (e.g., Bhalla & Proffitt, 1999), then that could be helpful in
leading to wiser decisions about whether to climb them in some circumstances (say, in terms
of conserving energy)—but it could also lead to devastating decisions in other circumstances
(e.g., making the hill seem more safe than it actually is during a flood). This has recently
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been phrased in terms of the same motivations as a “free press” enjoys (Gilchrist, 2020): top-
down distortions of news by a government could certainly be useful for certain political goals,
but “if the information is distorted, the well is poisoned, with serious damage to other func-
tions, educational and scientific, among many others, that depend on reliable information”
(p. 1002). So too with perception: just as societal functioning may result in pressure for accu-
rate news reporting, evolutionary pressures may drive perception toward veridicality.

Empirically, there have been hundreds of reports of putative influences of top-down states
(such as conscious, voluntary goals) on perception, but later work has often demonstrated
that these apparent effects are better explained away in other ways. The putative influence of
heavy backpacks on perceived hill steepness, for example, has been shown to depend on task
demands—such that if you provide an alternate explanation for why participants are wearing a
backpack (of the same heaviness), the effects vanish (Durgin et al., 2009; see also Firestone &
Scholl, 2014). And more generally, it has been argued that these hundreds of purported effects
can be collectively deflated by only a small handful of common empirical “pitfalls”—such as
failing to recognize subtle low-level visual differences that are correlated with the high-level
factors (e.g., Firestone & Scholl, 2015a), mistaking effects on memory for effects on visual
experience (e.g., Firestone & Scholl, 2015b), or mistaking higher-level judgment for percep-
tion (e.g., Woods, Philbeck, & Danoff, 2009). In each case, critiques of the initial studies not
only argued that such pitfalls could explain the relevant top-down effects in principle, but they
also showed empirically that those pitfalls did actually explain those effects, in practice. (And
more generally, researchers have tended to look only for confirmatory evidence in support of
such top-down effects, rather than checking to make sure that such effects also do not appear
when the “cognition affecting perception” theory says that they should not; e.g., Firestone &
Scholl, 2014.)

Our goal in the present paper is not to mount a defense of the cognitive impenetrability of
perception since this view remains deeply controversial, and since the controversy has been
extensively documented elsewhere (for an empirically oriented review with many vigorously
objecting commentaries, see Firestone & Scholl, 2016). Rather, our argument here is a con-
ditional one: if perception is cognitively impenetrable (as many have argued), then it is not
possible for proponents of ITP to appeal to the possibility that each different goal activates a
different perceptual interface, which in turn drives a different experience (each of which may
individually diverge dramatically from reality).> And to our knowledge, no previous discus-
sions of ITP have ever acknowledged this connection to the (im)penetrability of perception.

1.2.3. Putting the pieces together: Inflexible perceptual systems supporting flexible goals

Cognitive impenetrability on its own poses no direct challenge to ITP—since we could
readily perceive the world via a single (unpenetrated) interface of the sort described in Sec-
tion 1.1.1 (along the lines of Fig. 1b). And the need to flexibly serve multiple goals on its
own poses no direct challenge to ITP—since our experience could just shift among different
radically false interfaces whenever our goals shift. But we suggest here that when these two
points are put together, ITP cannot survive: when an inflexible perceptual system must flex-
ibly serve many goals, the distinction between veridical and interface systems dissolves—as
the best interface becomes one that is veridical.
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2. Computational modeling

The arguments in the previous section contribute to a long-running theoretical conversa-
tion about the possibility of perceptual realism, but ITP has become prominent less for its
own arguments and more for the computational models which showed just how interface per-
ceptual systems “win” in evolutionary contests, driving veridical systems to extinction. In the
present project, we embrace this approach and explore the computational consequences of
the two primary points from Sections 1.2.1 and 1.2.2, when implemented in the framework
of genetic algorithms. In particular, we adopt the evolutionary modeling framework that ITP
introduced, and we show that expanding the number of tasks (per Section 1.2.1, operational-
ized as distinct payoff functions) has a dramatic influence on the perceptual strategies that
“win” such evolutionary contests—at least when perceptual strategies cannot change from
one payoff function to the next (per Section 1.2.2). When there is only one (or a few) task,
we replicate previous ITP findings that the most fit strategy is usually a nonveridical interface
tuned to that particular task. But as the number of independent tasks increases, the most fit
strategies become increasingly veridical.

2.1. Elements adopted from previous work

We first highlight the high-level similarities between ITP simulations and ours, before dis-
cussing the implementational details specific to our work. For the current model, we adopted
the ITP framework of evolutionary games as described in Section 1.1.2, including individual
agents with differing perceptual strategies making choices between resources that offer differ-
ent fitness payoffs. After many rounds per generation (during which these perceptual strate-
gies stayed fixed), these agents then reproduce based on their accrued fitness, with strategies
reproducing—with random mutation—at generational breakpoints, and producing gradual
evolution of perceptual strategies across hundreds of generations.

Beyond these core components of genetic algorithms, our model also adopts many more
particular elements from the previous modeling work that has been used to support ITP (Mark,
2013), including: (1) the space of resources; (2) the definition of payoff functions mapping
resources to fitness payoffs; and (3) the definition of veridical, nonveridical, and interface
perceptual strategies.

As in previous models, we use 11 possible resources {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
and these resources have a ground-truth ordered structure (1 <2 <3 < ... < 11). A payoff
function maps each resource to the fitness payoff for acquiring that resource. An example of
a payoff function could be {0, 2, 10, 15, 19, 20, 19, 15, 10, 2, 0}, where resource 1 offers a
payoff of 0, resource 2 offers a payoff of 2, resource 3 offers a payoff of 10, and so on (here
with the maximum payoff of 20 being offered by resource 6). When an organism chooses
a resource, it gets the fitness payoff corresponding to the resource it chose under the payoff
function.

A perceptual strategy is defined as a mapping from the resources to perceived colors. Using
two colors—*“r” for red and “g” for green—a perceptual strategy could be {r, 1,1, 1, 1,1, g, &,
g, g, g}, or {6r, 5g} for short. This perceptual strategy maps resource quantities of 1-6 to
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red and 7-11 to green. Perceptual strategies are classified as veridical if there is an order-
preserving homomorphism between the resource in the real world and the perceived color,
such that all resources producing the percept of red were earlier/smaller (or later/bigger) in
real-world structure than all resources producing the percept of green. Or equivalently: a
veridical strategy is one without any disjoint between the perceived colors. Veridical strategies
are thus those like {2r, 9g} or {5g, 6r}, but not those like {3r, 6g, 2r} or {1r, 1g, 1r, 1g,
Ir, 1g, Ir, 1g, 1r, 1g, 1r}. Nonveridical perceptual strategies are simply those that are not
veridical under this definition. And interface strategies are those that reflect the ordering of
the resources according to payoff. So, given a payoff function like {0, 2, 10, 15, 19, 20, 19,
15, 10, 2, 0}, interface strategies are strategies like {3r, 5g, 3r} or {2g, 7r, 2g}.*

2.2. Novel properties of the current models

From the perspective of the current project, the key property of the previous I'TP models
was that agents only ever had to perform a single task—or only had to make choices under a
single payoff function. In our simulations, in contrast, agents complete several different tasks
during each round—operationalized as choosing under different payoff functions—and fit-
ness results from payoffs accumulated across many tasks with different payoff functions. We
run these evolutionary simulations across several conditions. In the simplest condition (most
similar to the original ITP simulations), there is only one payoff function: each individual per-
forms 100 rounds of making decisions under the same payoff function, performing the same
task 100 times. In other conditions, however, we use multiple payoff functions (ranging from
2 to 2000)—where each round employs a payoff function that is sampled with replacement
from the set of possibilities. None of these payoff functions are monotonically increasing (or
decreasing) functions, as under monotonic payoff functions, interface strategies will trivially
be veridical (Hoffman et al., 2015). Additionally, the agent always knows the current rele-
vant payoff function. Our models also eliminated recombination, and simply had each parent
produce a copy of itself with mutation. We implemented this form of asexual reproduction
simply because it is more likely to preserve the properties of the parental perceptual systems
from one generation to the next.

2.2.1. Implementation details and parameters

Specifically, each simulation begins with an initial population of 1000 agents, each of
which has a perceptual system that is created by sampling from a uniform distribution over
all possible permutations. All agents then perform the same 100 rounds. During a round,
each agent is presented with a set of 2—11 resource options (with the set size sampled from
a discrete uniform distribution from 2 to 11, and the resources are sampled without replace-
ment from the set {1, ..., 11} of all resources) and must choose one of them. Critically, as
an implementation of cognitive impenetrability, the agent must always use the same mapping
from stimulus (resource) to percept (color), regardless of what the current payoff function is.
At the same time, actions are allowed to vary depending on the goal context. Using the current
payoff function, an agent calculates whether red or green resources have a higher expected
payoft, and then simply chooses a resource of that color.
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Performance on these tasks determines reproductive success. After each agent has per-
formed these 100 rounds, its total fitness is calculated by summing the payoffs of each
resource that it chose. Each agent then probabilistically produces a number of offspring pro-
portional to its fitness (with parents sampled from the currentj populations of agents according

itness;

to a multinomial distribution where n = 1000 and p; = T fimens: ). To produce offspring
j=1 Juness;

from a parent, the parent’s perceptual strategy is copied, but each of the 11 colors in a strat-
egy (“r” or “g”) independently has a 0.001 probability of switching to the other color.”> The
offspring from this process then participate in the next generation, whereupon this full pro-
cess restarts. In our primary set of simulations—aimed at exploring the effect of the number
of tasks on the resulting perceptual strategies—we ran each simulation for 1500 generations,
and ran 1000 simulations for each of nine different numbers of payoff functions (1, 5, 25,
100, 200, 300, 400, 500, and 2000), for 9000 simulations in total. In our secondary set of
simulations—aimed at exploring the effect of the similarity between two tasks on the result-
ing perceptual strategies—we ran each simulation for 500 generations, and ran 100 simula-
tions for each of 90 different bins of overlap between a pair of payoff functions ([0.10-0.11],
[0.11-0.12], ..., [0.99-1.0]), for 9000 simulations in total.

The payoff functions are beta functions that are then discretized, such that the payoff of
a resource 7 is the integral of the beta distribution over the interval from ((n-1)/11, n/11).
These beta functions are sampled based on their mode and concentration (following the repa-
rameterization of beta distributions from Kruschke, 2015, p. 129), with the mode sampled
uniformly on (0,1) and the concentration sampled according to an exponential distribution
(with lambda = 1/15 in the primary set of simulations, and lambda = 1 in the secondary
set of simulations).® In both sets of simulations, monotonic functions were discarded and
replaced.

3. Results

3.1. Veridicality as a function of the number of tasks

The central result from our primary simulations is that as the number of possible tasks
increases, the most fit perceptual strategy becomes veridical.” This pattern is depicted in
Fig. 3. When there is only one task, operationalized here as a single payoff function (as
depicted here by the red line at the bottom of the graph), the vast majority (92%) of sim-
ulations result in a nonveridical perceptual system—with this result thus largely replicating
the results of the original ITP simulations, where veridical perceptual strategies effectively
died out. The 8% that do still evolve veridical perceptual systems often look something like
{3r, 8g} (that, while not disjoint, do not carve up the resource space evenly).® These kinds of
strategies tend to evolve when the underlying payoff function is higher at one end than at the
other. (Although none of the payoff functions used were monotonic, sometimes the highest
valued resources are ones grouped at one end—so that the interface strategy of distinguishing
high-valued resources from low-valued ones just happens to preserve the ground-truth. If we
do not allow such ‘“‘accidentally” veridical strategies to count as veridical, then the red line
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Fig. 3. The central results from our primary evolutionary simulations, exploring the connection between the num-
ber of tasks and the evolution of veridicality. The x-axis is the number of generations that have been simulated, and
the y-axis is the proportion of simulations where the dominant (most common) strategy is a veridical one. Each
colored line shows the results for a condition with a different number of tasks (payoff functions). The colored error
bars represent 95% confidence intervals.

will effectively drop to 0% of simulations resulting in veridical strategies, as found in the
initial ITP simulations.)

As the number of tasks and payoff functions increases, so too does the proportion of sim-
ulations in which the dominant strategy ends up being veridical—where these perceptual
systems tend to be those that evenly divide up the resource space, such as {5r, 6g}.” Thus,
we can see that (1) considering only five payoff functions (rather than just one) effectively
increases the propensity of veridical strategies to dominate in a simulation by 50% (from 8%
to 12%, as depicted by the difference between the red and orange lines [i.e., the two lowest
lines] at the rightmost edge of Fig. 3); (2) by the time we consider 200 payoff functions, the
strategies that evolve and dominate are veridical on the majority of simulations (as depicted
by the turquoise line [fifth from the top] in Fig. 3); and (3) by the time we consider 2000
payoff functions, the nonveridical interface theories have been overrun on nearly every simu-
lation (as depicted by the pink line near the top of Fig. 3, where 97% of the simulations result
in perceptual strategies that end up being veridical).

Beyond considering the dominant strategy, we can also examine the distribution of strate-
gies that evolve. In the condition with 2000 utility functions, in the final generation, there are
1000 agents per each of the 1000 simulations, resulting in 1 million total agents. We found
that 82% of those agents have either {5g, 6r}, {6g, 5r}, {61, Sg} or {51, 6g} as their perceptual
strategy, with each of those four strategies equally prevalent. Other veridical strategies make
up another 2%. The most common interface strategies differed from veridical strategies only
by one letter at the end: {6g, 4r, 1g}, {1g, 4r, 6g}, {61, 4g, 1r}, {11, 4g, 61}, {51, 5¢, 11}, {5¢,
5r, 1g}, {1r, 5g, 5r}, and {1g, 5r, 5g}, collectively totaling to 11% of the total. The remaining
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Fig. 4. The central result of our secondary evolutionary simulations, exploring the connection between task simi-
larity and the evolution of veridicality. The horizontal axis represents the overlap between the two utility functions,
and the vertical axis represents the proportion of simulations where the dominant (most common) strategy was a
veridical one. The error shading represents 95% confidence intervals.

5% of strategies were assorted interface strategies (e.g., {1r, 1g, 3r, 6g}). While veridical per-
ceptual systems are highly prevalent (> 80%) under 2000 utility functions, they do not even
make it into the top 10 strategies under one utility function.

3.2. Veridicality as a function of the variety of tasks

The primary analyses in the previous section clearly showed a powerful role for the number
of tasks, but those analyses may also seem to suggest that veridicality will not evolve unless
or until there are many (possibly hundreds, or thousands of) distinct tasks. But in fact, it is
not just the number of tasks that matter, but also how distinct those tasks are—as we explored
in a set of secondary simulations, finding that even just two highly distinct tasks can cause
selective pressure for a perceptual system to become veridical. One way to operationalize
the similarity between two tasks is by using the overlap of the two payoff functions. This
relationship between the similarity between two tasks and the resulting evolution of veridi-
cality is depicted in Fig. 4. When the two tasks are nearly identical (as in the leftmost part
of the plot)—operationalized here as two payoff functions with very large areas of overlap
(0.99 < area of overlap < 1.0)—then the vast majority (90%) of simulations result in a strict-
interface perceptual system. This result largely replicates the original ITP simulations, finding
that veridical perceptual strategies do not evolve when there is effectively only one task. But
when the two tasks differ tremendously from one another (as in the rightmost part of the
plot)—operationalized here as two payoff functions with small areas of overlap (0.10 < area
of overlap < 0.11)—then veridical perceptual systems dominate (with 100% of simulations
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resulting in a veridical perceptual system). And even when the two tasks are only moder-
ately different from one another (0.50 < area of overlap < 0.51), veridical perceptual systems
readily evolve (with 91% of simulations resulting in a dominant veridical perceptual system).
These simulations demonstrate that even just two highly distinct tasks can cause selective
pressure for a perceptual system to become veridical.

4. Discussion

ITP holds that perceptual systems which are tuned to the real world (and are thus veridi-
cal) will inevitably be less fit than perceptual systems tuned directly to a payoff function.
And when tested across numerous evolutionary simulations—always with just a single payoff
function—the result was always the same: interface perceptual systems thrived, while veridi-
cal perceptual systems almost always went extinct. This central modeling result helped ITP
to transcend past theoretical discussions and has fueled most of the excitement and contro-
versy surrounding this view. And in the present work, while adopting this modeling approach,
we readily replicated this result when our simulations were also limited to a single payoff
function.

Everything changed, however, when we tweaked the nature of these simulations in two
related ways—to allow for both more and less flexibility. First, we embraced the need for per-
ception to accommodate a wide range of goals—implemented in our simulations by introduc-
ing different underlying payoff functions for different choices, with these different functions
all operating within the same simulated generation. Second, we adopted a form of “cognitive
impenetrability” within this framework, such that switching from one goal or task to another
could not effectively make the world appear entirely different—implemented in our simula-
tions by requiring each agent to have a single perceptual system that helps to determine each
choice, regardless of the currently relevant payoff function.

Under these conditions, the “winning” perceptual strategies were (of course) still driven
by their underlying fitness, and in this sense were still “interface” systems. However, the key
result of our simulations (as depicted by everything in Fig. 3 above the red line for one task)
was that when these two tweaks were made, the distinction between interface and veridical
systems collapsed—with those interface systems that were not also veridical being driven to
near extinction when faced with the demands of numerous tasks (holding out in only 3% of
simulations when there were 2000 tasks).

These results—which effectively “save the day” for perceptual realism—are even more
striking insofar as our simulations were designed to “stack the deck” against veridical strate-
gies in at least four ways. First, all monotonic payoff functions were excluded, because they
produce interface systems that trivially align with veridicality. Second, payoff functions in
our primary simulations were randomly sampled—such that they were often very similar to
each other. (Rather than purposefully selecting maximally distinct payoff functions, we ran-
domly sampled payoff functions without biasing them toward being distinct.) But as we then
showed in the secondary simulations, even sampling only fwo payoff functions with malice
aforethought to be maximally distinct (minimally overlapping) is sufficient to give veridicality
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the evolutionary edge. (And of course, in real-world contexts, it often seems trivially easy to
recognize multiple tasks that seem as different as can be—e.g., when using a stick as kindling
for a fire vs. a mast for a sail.) Third, because the space of possible nonveridical systems is
much larger than the space of possible veridical systems (2024 nonveridical to 24 veridical),
the initial population of (entirely randomly selected) strategies was overwhelmingly (~99%)
nonveridical. Fourth, by the same token, mutations were always overwhelmingly (by an order
of magnitude) more likely to result in nonveridical strategies than veridical ones (even when
the reproducer is a veridical parent). Despite these four factors, our evolutionary simulations
nevertheless found that an increased number and variety of tasks both drove perceptual strate-
gies to become veridical.

4.1. Generalizing to more complex environments

In line with the original simulations used to support ITP, our simulations were quite
simple—including only one perceptual dimension. This raises the question of whether and
how our results would generalize to more complex environments with multiple perceptual
dimensions. Suppose, for example, that resources and payoffs vary along multiple (N) dimen-
sions, rather than just one, and that the agents’ perceptual system is able to perceive along
multiple (M) dimensions as well. For some intuition, imagine that resources are determined
by two features that are accessible to a perceptual system. Resources can then be represented
as points in a 2D space, utility functions as functions over that 2D space, and the percep-
tual system as transforming each dimension into percepts. These two dimensions could be
orthogonal to one another, but do not need to be. We can imagine the perceptual system map-
ping each dimension into two categories: red and green for dimension 1, and perhaps big and
small for dimension 2. Over the course of evolution, the perceptual system will tend toward
the optimal mapping for each dimension. So long as the number of distinct tasks (or 2D utility
functions) far outnumbers the dimensions along which the agent can perceive, the perceptual
system will be unable to successfully specialize for individual tasks without detriment to the
other tasks. On the other hand, if the perceptual system can perceive along more dimensions
than there are tasks, then the perceptual system could evolve to perceive mappings between
each dimension and the utility function for a particular task. In other words, perceptual map-
pings for each dimension could specialize for just one or a few particular tasks, leading to an
interface perceptual system. But so long as the number and variety of tasks overwhelm the
dimensions that the perceptual system can perceive, this entails that our results will hold in a
space of any dimension.

In a similar vein, we might also ask about whether and how our results depend on the types
of payoff functions, and whether it matters that resources be ordered along a dimension. A
key assumption underpinning our modeling (and the simulations supporting ITP) is that there
is a relationship between the physical dimension along which the resources vary and the
payoff, such that two resources near to each other along the physical dimension are also near
to each other in payoff value. Were the values of each resource instead uniformly random
and unrelated to the position of the resource along some physical dimension, perceiving
that dimension would be utterly useless, and we would expect the distribution of perceptual
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systems at each generation to be uniform over all possible perceptual strategies. Similarly, for
multiple tasks where each payoff function is “jumpy” (e.g., a sinusoidal function with a high
frequency and amplitude), such that two resources nearby on this dimension are mapped to
very different payoffs, we would expect a uniform distribution of perceptual strategies. The
assumption that similar resources have similar payoffs, almost by definition, must be valid
for any perceptual system—since if there were no connection between a physical dimension
and fitness payoffs, why perceive it in the first place? Furthermore, both the original ITP
simulations and ours rely on the assumption that the stimuli/resources can be ordered along
some dimensions. If the stimuli/resources cannot be ordered, then there can be no systematic
connection between a physical dimension and fitness payoff. We are, therefore, comfortable
limiting the generality of our results to situations where there is indeed a relationship between
the ordering of the stimuli along a physical dimension and fitness payoffs.

4.2. Conclusion

Our evolutionary simulations suggest that the degree to which a perceptual system repre-
sents the world accurately may depend on the variety of tasks that it is used for—with more
tasks driving greater veridicality. As such, it seems likely that humans perceive the world in
a highly veridical way, given the vast number of goals that we can clearly entertain (from
war and child-rearing to food and politics, and on and on). Of course, this rich and multidi-
mensional “goalscape” may not apply to all organisms: perhaps a dung beetle, for example,
has only a single goal for its ball of dung. And perhaps ITP is an appropriate description
for organisms like beetles with a relatively limited goalscape and range of behavior. But for
humans, the combined pressures of flexible goals and inflexible perceptual systems lead us to
perceive the world as it is, after all.
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Notes

1 Following the original ITP proposals, we will refer to “veridicality” in this paper, in
order to meet ITP on its own rhetorical terms. This previous work operationally defined
“veridical perception” as a “homomorphism that preserves all structures” of a subset of
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the objective world (with the “subset” clause excluding the perception of X-rays and
quarks, etc.; Hoffman, Singh, & Prakash, 2015, p. 1484). We will similarly adopt this
conception, while acknowledging that other notions of veridicality have also been devel-
oped in cognitive science and philosophy (e.g., based on “reliability”’; Goldman, 1979;
see also Burge, 2010), and that this work often requires considerable theoretical nuance.
We will not explore such nuances in the current paper, since such details will not matter
for our primary points or computational demonstrations (and since the original ITP work
also does not do so).

In other recent work, Hoffman and colleagues have also analyzed such evolutionary ques-
tions using analytical proofs rather than evolutionary simulations (e.g., Prakash, 2020;
Prakash, Fields, Hoffman, Prentner, & Singh, 2020, 2021). But this work still shares
the same key assumptions—and problems—as do the computational projects. Here, we
focus on the computational project since it will help to make the underlying challenges
and implications of the interface theory especially salient—but the same points end up
applying as well to the analytical arguments.

In the current context, note that cognitive impenetrability would not forbid different map-
pings from percepts to actions depending on the current goal. Cognitive impenetrability
implies that the goal context cannot affect the mappings from stimuli to percepts, but
says nothing about how those percepts are used downstream to guide actions. So, an
agent with a cognitively impenetrable perceptual system can readily act differently when
under the influence of different goals, even while perception itself remains impenetrable
to goals.

4 In the context of these simulations, ITP assumes that any given perceptual function is
equally costly to implement (e.g., in terms of time or energy)—and accordingly, our
models also make that same assumption. We note in passing, though, that this may also
effectively “stack the deck” in favor of ITP, since certain strategies are likely to be more
difficult to implement in practice. In particular, those (veridical) strategies which need
only make a binary distinction (between levels along the ground-truth dimension that
are greater vs. less than some particular threshold, corresponding to the single “run”
of a given color in such strategies) may be easier to implement than those (interface)
strategies which need to distinguish multiple different levels (corresponding to multiple
different “runs” of “r” or “g” in such strategies).

This mutation rate affects the speed of convergence and the ceiling (i.e., the asymptote for
the highest proportion of the total population that any one strategy can achieve)—since
if the mutation rate is very high, no one strategy can dominate.

Lower values of lambda produce payoff functions with a larger range of concentrations,
or peakedness. The choice of lambda = 1/15 for the primary set of simulations was
designed to produce this variety in the peakedness of the sampled utility functions. The
goal in the secondary set of simulations, in contrast, was to explore the effect of overlap,
and so sampling less concentrated payoff functions (using lambda = 1) allowed for larger
areas of overlap that could be studied richly, which would not have been possible with
extremely peaked distributions.
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7 The qualitative pattern of results reported here does not depend on factors such as the
exact number of possible resources, the exact number of colors, the exact number of
individuals in the population, or the exact number of rounds in a generation.

8 Of this 8% of simulations, the median ratio of the more common color to the less com-
mon is 3.58, with a range from 1.75 (from a strategy like {4r, 7g}, with a ratio of 7:4) to
4.5 (from a strategy like {2r, 9g}, with a ratio of 9:2).

9 The perceptual strategies {5r, 6g}, {6r, 5g }, {6g, 5r}, and {5g, 6r} are treated here as
variations of the same strategy: they all divide up the perceptual space roughly evenly,
and it does not matter whether red or green comes first. There are information-theoretic
reasons why dividing up the space evenly might be beneficial, but that is beyond the
scope of our current discussion. (To briefly provide the intuition, learning that a resource
is “red” or “green” will be most informative—or will reduce entropy the most—when
the proportion of space that “red” and “green” span is equal.)
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