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ABSTRACT: The eigenstate thermalization hypothesis (ETH) is the leading conjecture
for the emergence of statistical mechanics in generic isolated quantum systems and is for-
mulated in terms of the matrix elements of operators. An analog known as the ergodic
bipartition (EB) describes entanglement and locality and is formulated in terms of the
components of eigenstates. In this paper, we significantly generalize the EB and unify it
with the ETH, extending the EB to study higher correlations and systems out of equilib-
rium. Our main result is a diagrammatic formalism that computes arbitrary correlations
between eigenstates and operators based on a recently uncovered connection between the
ETH and free probability theory. We refer to the connected components of our diagrams
as generalized free cumulants. We apply our formalism in several ways. First, we focus
on chaotic eigenstates and establish the so-called subsystem ETH and the Page curve as
consequences of our construction. We also improve known calculations for thermal reduced
density matrices and comment on an inherently free probabilistic aspect of the replica ap-
proach to entanglement entropy previously noticed in a calculation for the Page curve of an
evaporating black hole. Next, we turn to chaotic quantum dynamics and demonstrate the
ETH as a sufficient mechanism for thermalization, in general. In particular, we show that
reduced density matrices relax to their equilibrium form and that systems obey the Page
curve at late times. We also demonstrate that the different phases of entanglement growth
are encoded in higher correlations of the EB. Lastly, we examine the chaotic structure of
eigenstates and operators together and reveal previously overlooked correlations between
them. Crucially, these correlations encode butterfly velocities, a well-known dynamical
property of interacting quantum systems.


mailto:siddharth@sidjindal.dev

Contents

J

Q @ »

Introduction
Many-body Berry’s conjecture

Generalized free cumulants

3.1 FEigenstate correlations: perturbed Hamiltonian

3.2 Operator correlations: OTOCs and freeness

3.3 Random matrices, replicas, and higher moments
3.4 Eigenstate correlations: interacting subsystems

3.5 Operator-eigenstate correlations
3.6 Numerical evidence

Eigenstate correlations I: the structure of chaotic eigenstates

4.1 Reduced density matrix
4.2 Entanglement entropies and the Page curve
4.3 Subsystem ETH

Eigenstate correlations II: thermalization of a non-equilibrium initial

state

5.1 Reduced density matrix

5.2 Entanglement entropies and the Page curve
5.3 Entanglement growth

Operator-eigenstate correlations
6.1 The decay catastrophe
6.2 The butterfly velocity

Conclusions and discussion
Free probability in quantum chaos
Saddle-points in the ETH

Non-zero width of the window function
C.1 Subsystem energy fluctuations
C.2 Form of the window function

Operator thermalization

11
12
16
19
20
23
24

27
27
29
32

34
34
36
38

42
42
43

45

46

51

53
53
55

58




1 Introduction

There has been recent interest in the physics of thermalization in quantum many-body
systems. Thermalization was historically established by Boltzmann’s ergodic hypothesis,
which states that systems uniformly sample the entire phase that is consistent with their
macroscopic symmetries [1]. Despite its remarkable predictive power, the ergodic hypoth-
esis is manifestly inconsistent with unitarity. A similar issue arises in the study of the
black hole information paradox, where general relativity appears inconsistent with uni-
tarity near an event horizon [2]. Nonetheless, quantum systems do thermalize [3-6], and
understanding how they thermalize has led to a deeper understanding of quantum and
statistical mechanics [7, 8]. Since the field of quantum chaos was born partly to resolve
the inconsistency between quantum and statistical mechanics, it is fitting that it has re-
turned to prominence in attempts to solve the inconsistency between quantum mechanics
and general relativity [9, 10].

Roughly 30 years ago, Deutsch and Srednicki introduced the eigenstate thermaliza-
tion hypothesis (ETH) to justify the emergence of statistical mechanics for generic isolated
quantum systems [4, 5]. Since then, the ETH has been implicated in a variety of physical
phenomena including holography [11], quantum error correction [12], scrambling [13, 14],
and transport [15]. Furthermore, the failure of the ETH has led to the discovery of a fas-
cinating phase of matter known as many-body localization [16]. Six years ago, motivated
by contemporaneous work in the string theory community [17], Foini and Kurchan refor-
mulated the ETH to account for higher order correlations [13], and last year, along with
Pappalardi, reinterpreted their results in terms of free probability theory [18].

The ETH purports that the emergence of statistical mechanics and thermalization in
isolated quantum systems is the result of pseudorandomness in the matrix elements of
operators. Formally [13],

Xivig - Xiyiy = €SBV f (B3, iy £y for p#q. (1.1)

where X is a local operator!, {|i,,)} are eigenstates of a chaotic Hamiltonian, S is the
microcanonical entropy, f is an O(1) spectral function, and the overline denotes arithmetic
averaging over a narrow energy band. More than justifying the results of equilibrium
statistical mechanics, the ETH ensures that thermalization occurs in real time. Though
systems which obey the ETH are considered chaotic, it is not clear how the ETH interacts
with other principles of quantum chaos. For instance, eq. (1.1) does not fundamentally
harbor a notion of locality except via an implicit but vague restriction that it only applies to
“simple” operators. It also does not obviously capture the non-local entanglement structure
of the Page curve.

A recent, state-based idea that addresses this issue is the ergodic bipartition (EB), an
ansatz on the pseudorandom structure of chaotic eigenstates when split over two subsys-

1One may consider correlations between n distinct operators, too. For any sequence of operators
or “word”, W, constructed from individual operators or “letters”, there is a unique associated fw, up
to cyclic permutations of the letters. For example, for operators X, Y, Z and word YZY X, we have

—3S(E T, —~ P P
Yiiio Zigis Yigia Xigi, =€ ( )fYZYX(E,w) for distinct 41,12, 3, 94.




tems. Formally [19-21],

(ilab) = ¢y, |cy|* = e SEIF(B; — E, — By) (1.2)

a

where |i) is an eigenstate of the full Hamiltonian H = H4 + Hp + H p, |ab) is a product
of eigenstates of subsystem Hamiltonians H4 and Hp, and H4p is the interacting term
that couples subsystems A and B. e5®) is the density of states of the system at energy F
and F' is a window function that ensures F; ~ E, + Ep. The moments of F' are roughly
those of Hap, [ F(w)w" ~ (H}p), (see appendix C.2). Therefore, if Hap lives on the
boundary between A and B, it may be regarded as a subextensive perturbation and F
is sharply peaked in its argument. The EB implies that the reduced density matrices
of eigenstates are consistent with those of the microcanonical ensemble and obey a Page
curve. Additionally, the tensor product structure allows it to distinguish local systems from
nonlocal ones. Structurally, the EB is formulated in analogy with the ETH, but presently
is only capable of computing static quantities for systems prepared in eigenstates.

Both the ETH and the EB are avatars of Berry’s conjecture [22]: the hypothesis that
most eigenfunctions of chaotic potentials are, in essence, Gaussian random waves. Berry’s
conjecture is predated by Von Neumann’s quantum ergodic theorem [3], which states that
the overwhelming majority of pure states in a many-body system approximate the local
properties of microcanonical ensemble arbitrarily well. It is then natural to conjecture
that the eigenstates of many-body systems also retain the properties of the microcanonical
ensemble, if they can be treated as random waves. In this light, Berry’s conjecture would be
a manifestly quantum version of Boltzmann’s ergodic hypothesis where uniform sampling
of phase space has been supplanted by random vectors.

In systems with few degrees of freedom, not all eigenstates can be treated as ran-
dom [22]. However, as one takes the thermodynamic limit, V — oo, provided it is well-
defined, two things happen simultaneously: (1) the level spacing of the system vanishes
exponentially fast ~ O(e™) and (2) the local physics of the system become insensitive to
microscopic perturbations? < O(1) [23]. As such, any microscopic perturbation < O(1)
added to the system can mix an exponentially large number of eigenstates ~ O(e¥) with-
out modifying any physics. Thus, if the thermodynamic limit is to be well-defined, all
pure states in a microscopically small energy window should have identical physical prop-
erties [15, 24]3. This line of reasoning underlies early work on chaos in many-body sys-
tems [4, 26] and, more recently, investigations into emergent rotational symmetry at small
frequencies, that is, an invariance of physics to arbitrary norm-preserving? linear trans-
formations of eigenstates that are sufficiently close in energy [27, 28]. From it, we can

2This cannot strictly be true for eigenstates sufficiently close to the ground state of the system as both
conditions are violated. An arbitrarily small relevant perturbation can modify IR physics and the density
states is not exponentially large.

3In a system with multiple conservation laws, or in a symmetry broken phase [25], mixing states with
distinct, non-energy, quantum numbers would generically require a perturbation that is ~ O(1) and capable
of modifying some local physics. In integrable systems, which contain an extensive number of conservation
laws, the number of states in the microscopic window that can be mixed by an integrability-preserving
perturbation is not exponentially large, and the ETH cannot hold in the strong form we present [23].

4i.e. orthogonal, unitary, or symplectic



Figure 1: The system is split into two subsystems A and B. An operator X lives within
A, a distance R from the boundary.

conjecture that eigenstates of thermodynamically large systems retain the properties of
random vectors and of the microcanonical ensemble.

In this paper, we formulate a many-body Berry’s conjecture (MBBC): the hypothesis
that chaotic eigenstates are essentially random vectors up to the symmetry constraints of
the system, and show that it unifies the ETH and the EB. To our knowledge, this term was
first used in ref. [20], which studied entanglement entropies of chaotic eigenstates. We show
that free probability theory naturally emerges from the MBBC and build on this insight to
develop a diagrammatic formalism for calculating general correlations of eigenstates and
operators, greatly generalizing the EB, in particular. With this formalism we are able to
justify or improve several known results for chaotic eigenstates on a common footing. We
show that chaotic eigenstates have thermal reduced density matrices consistent with the
subsystem ETH conjecture and Von Neumann entanglement entropies consistent with the
Page curve. We then show that both these properties are shared by non-equilibrium states
at late times, indicating that chaotic systems thermalize in real time. We additionally study
signatures of local dynamics: ballistic and diffusive entanglement growth and butterfly
velocities.

In our setup, we consider a system split into two subsystems A and B and a local
operator X living deep within A, see figure 1. The goal of doing so is to study the
reduced density matrix on a single subsystem and the bipartite entanglement between
the subsystems. However, our techniques should extend to any kind of partitioning of the
system.

The outline of this paper is as follows. In section 2, we motivate our approach by
studying the properties of random vectors without appealing to formal results of Haar
measures or of free probability theory. The main result in this section, which illustrates the
basic principle behind the MBBC, is that random vectors, and therefore chaotic eigenstates,
have the same properties as equilibrium density matrices.



Section 3 is the technical backbone of the paper and contains our main results. It
builds on section 2 to establish the framework of free probability theory and its connec-
tion to the EB and the ETH. Here, we introduce generalized free cumulants and describe
the diagrammatic framework for computing arbitrary correlations between states and op-
erators. This formalism is the main result of our paper. We compare our technique to
analogous techniques in the literature and provide some numerical evidence for its validity.
Furthermore, we connect the predictions of the MBBC to the predictions of rotationally
invariant random matrix ensembles. We also discuss how the emergence of free probability
in the ETH has unique consequences for the behavior of local observables over long times,
connecting our observations to recent results in the literature. We argue that the ETH,
eq. (1.1), the quantum butterfly effect characterized by the decay of out-of-time-ordered
correlators (OTOCs) [17, 29], and the emergence of rotational symmetry at small frequen-
cies [27, 28] are all, in essence, equivalent definitions of chaos and avatars of free probability
(we elaborate on these ideas in appendix A). To summarize, this section contains the math-
ematical and diagrammatic framework of free cumulants and a glimpse of implications that
we explore in depth in the next two sections.

In section 4, we study the structure of chaotic eigenstates. Several previous works
have been dedicated to this topic [19-21, 30], but our discussion is more than a review. We
provide new derivations that show disparate results as consequences of the MBBC. First,
in section 4.1, we show that the reduced density matrix of chaotic eigenstates takes the
form,

péa’ = <CL|TI‘B [|’L><ZH‘(L,> = e_S(Ei)+SB(Ei_Eaa/) <5aa’ + \/esmin(Eaa/)F(Eaa’;waa’)Raa’>
(1.3)

where Eu = (Eq + Egr) /2, Smin = min [Sa(Euq), SB(E; — Egar)], F(Eqq,wae) contains
a Wae = By — By dependence narrowly peaked around zero, and R, is a nearly Gaussian
random matrix that encodes higher correlations in the density matrix. Eq. (1.3) improves
the result of [21] which contained an unphysical suppression of off-diagonal elements and
generalizes the state-averaging ansatz of ref. [31]. Next, we study the entanglement entropy
of chaotic systems and show that we are able to reproduce the results of ref. [21] exactly.
In particular, we show that the Von Neumann entropy obeys a Page curve,

S1 =min [Sa(Fia), Sp(E;iB)] + AS (1.4)

where F;4 and E;p are the microcanonically expected subsystem energies defined by F;4 +
E;p = E; and S (E;a) = S5(Eip) and AS denotes subextensive corrections to the Page
curve. Furthermore, we discuss an inherently free probabilistic structure in the replica
calculation of entanglement entropy previously noticed in the gravitational path integral
calculation of the Page curve for an evaporating black hole [32-34]. Finally, in section
4.3, we show that reduced density matrices of nearby eigenstates are exponentially close in
trace distance, a hypothesis known as the subsystem ETH [35]. More precisely, we show,

_ i : (o0) _
O (54/2752) S |loly = phll S O (oS /2450/27512) (1.5)



where || - - - ||1 is the Schatten 1-norm® and Slgffn) is the microcanonical entropy of the smaller
subsystem at infinite temperature®.

In section 5, we then study a system prepared out-of-equilibrium with no entanglement
between the subsystems. We first verify that all states with the same initial energy, Fy,
relax towards that same equilibrium at late times, which shares its properties with nearby
chaotic eigenstates”. Our approach reproduces the equilibrated pure state formalism of

ref. [32]. Precisely, we show in section 5.1 that

Paa’ (t — OO) = 6_S(E0)+SB(EO_E“‘1/) ((5[1(1/ + \/esmin(Eaa/)F(Eaal; waa/)Raa/> (16)

and in section 5.2 that
Sl(t — OO) = min [SA(EUA), SB(EOB)] + AS (1.7)

where Fga, Egp are the microcanonical subsystem energies for total energy Ey. The key
insight behind this result is that the time-independent partitions of the diagrams for time-
dependent states map uniquely to those of eigenstates. In section 5.3, we study the different
phases of entanglement growth [37-39] and find that distinct phases are encoded in distinct
diagrams. Our results provide a novel organization to chaotic entanglement dynamics.

In section 6, we consider the correlations between operators and eigenstates. When
an operator X lives deep within subsystem A, it may be natural to assume it becomes
uncorrelated with ¢ defined in eq. (1.2). In section 6.1, we show that this assumption
strongly violates causality and that operator-state correlations are necessary for the ETH
to apply in a system with many degrees of freedom. In essence, decorrelating the elements
of X with those of ¢ disconnects X from the time evolution operator e*'* and trivializes the
dynamics of the system. Thus, in section 6.2, we exploit causality to constrain operator-
state correlations. For X living deep within subsystem A, time evolution under H4 + Hp
will be identical to that under H for times shorter than R/vp, where vp is the butterfly
velocity of the system [40] and R is the distance to the boundary. Thus, local physics is
necessarily encoded in eigenstate-operator correlations.

Some calculations and discussions in this paper are left to the appendices. Appendix A
contains an informal introduction to the concepts of free probability theory we use in this
paper and motivate why the subject plays a central role in quantum chaos. Appendix B
provides an introduction to the use of saddle-point approximations for making thermal
approximations with the ETH. Appendix C discuss the non-zero width of the F' function
that we mostly neglect in the body of this paper. Appendix C.1 focuses on corrections to the
energy fluctuations of subsystems that are a finite fraction of the whole system, which are
able to distinguish different pure states with the same energy density, even in equilibrium.

®For an operator M, the Schatten p-norm is defined as || M||, = /3, [mi[F where m; are the eigenvalues
or singular values of M.

A stronger bound was derived in ref. [36] using similar methods.

"This statement holds for all properties except for fluctuations of approximately conserved operators,
namely the fluctuations of subsystem energies. We discuss this caveat in appendix C.1 and thank Tarun
Grover for bringing it to our attention.



Appendix C.2 discusses the form of F' in eq. (1.2) in the context of previously conjectured
Gaussian and Lorentzian forms for F' [21, 30]. Our analysis complements appendix A of
ref. [30]. Appendix D derives eq. (1.1) from the MBBC.

2 Many-body Berry’s conjecture

Our fundamental postulate is that eigenstates of a chaotic Hamiltonian behave for all
intents and purposes as random vectors up to the symmetry constraints of the system.
This idea is what we refer to as the many-body Berry’s conjecture and attempt to make
precise in this section. We will assume conservation of energy and no other symmetries
going forward. The purpose of this section is to develop the properties of random vectors
while sidestepping a formal discussion of Haar measures or of free probability.

First, consider a d-dimensional Hilbert space and sample two normalized vectors ran-
domly, |1),]2) from it. What is the expected value of their squared overlap, (1[2)(2|1)?
An easy way to calculate this overlap is to rotate into an orthonormal basis, {|1’)}, that
contains |1). Then, |2), being chosen independently of |1), on average will have overlap
1/+/d with each basis element. Thus,

(T2 = (21)
We may sample three vectors, |1), |2) and |3), and want to know the expected value of
(1]2)(2|3)(3|]1). One may be forgiven for guessing that each overlap contributes a factor
of d3 yielding d_%, but that is incorrect. The fluctuating part of a single amplitude is
indeed d_%, but the noncommutativity of the projection operators |i)(i| ensures that the 3
overlaps are correlated. Instead, consider again summing over the entire basis that contains
|1). This procedure corresponds to

ST (V|2)I3)3[') = Tr[12)2I3)K3]) = (3[2)(213). (2.2)

1/

Linearity of averages implies

Tr | 12020331 ] = (312203}, (2.3)

Lastly, since the basis {|1’)} is essentially arbitrary,

(RRERNEI = 5 - (1| ERENa | V) = o T [FNEN6I) = SO = d 2 (24)
-

Following this inductive argument, we can now assert:

(12)2[ -~ [n){n[1) = d~"~ . (2.5)

Eq. (2.5) applies to vectors sampled uniformly over their Hilbert space. Note that the
mean d~ ("1 is smaller than the fluctuating part d="/2 for n > 2.

We now want to understand how eigenstates of chaotic Hamiltonians can be understood
as random vectors. First consider a pair of Hamiltonians: H; and Hy = Hi+ AX, where X



is some subextensive perturbation. Physical arguments [4, 26] and numerical evidence [41]
indicate that even for a very small® \ the eigenstates of Hy are nearly orthogonal to those
of Hj. Specifically, we expect that for eigenstates |i1) of Hy and |ig) of He with F;, =~ E;,,

TNl ~ 5. 26)

Furthermore, even for A ~ O(1), AX cannot mix eigenstates of H; that are very distant
in energy. Our precise requirement is that AX is small enough that H; and H; retain
the same entropy functions, S2(E) ~ S1(F) = S(F), which is expected to hold for any
subextensive perturbation [30]. Lastly, X may have some nontrivial energy dependence.
Thus we hypothesize,

(i1 |ig)igli1) = e BV F(E; w). (2.7)

where E = 1 (E;, + E;,), & = E;, — Ej,, and F serves as a cutoff function that en-
codes the nontrivial energy dependences. Analogously, considering n distinct Hamiltonians
Hy,..., H, and an overlap of n respective eigenstates |i1),..., |in), we hypothesize,

(ix[iz)ia] -~ [ininlir) = e~V EV p(E; @) (2.8)

where E = %ZmEm and & = (EZ _Eizv"' aE

7f'n—1

— E;,). The crux of the MBBC is
that the structure of eq. (2.8) holds for the eigenstates of any set of chaotic Hamiltonians
that are neither extremely close to one another nor extremely far from one another. In
section 3.1 we consider the situation where non-adjacent eigenstates in eq. (2.8) are taken
from the same Hamiltonian.

To reiterate, we can understand eigenstates of physical Hamiltonians as random vec-
tors by incorporating two constraints: mutual orthogonality and fixed energy. To handle
the first constraint, we asserted that consecutive projection operators in eq. (2.8) are eigen-
states of distinct, but similar, Hamiltonians. For the second constraint, the Hilbert space

dimension, d was replaced with the density of states, e®. Lastly, we inserted a cutoff

function, F(E;d), that ensures correlations are local in energy.

It is useful to formulate the above argument in terms of the density matrix of the space
from which the eigenstate was sampled. Consider, again, the overlap of n random vectors
sampled from the entire Hilbert space. The corresponding density matrix is simply the

infinite temperature state, é]l. Our result for random vectors can be stated as

112)2[- - [n)n[1) = Tr [(;11)”] =d-d"=d ™Y (2.9)

while for eigenstates,

(i1lia)ia] - [inNinlir) ~ Tr[p(E)"] ~ e~ ("~ DSE) (2.10)

8The precise expectation is that for AX > O(V™7), eigenstates of Ho and H; within a small energy
window are related essentially by a random rotation and cannot be computed from one another to any
order in perturbation theory where V is the volume of the system, and ~ is an exponent that depends on
the transport properties of the system [15, 42, 43].



where p(E) is the microcanonical density matrix with energy E. Hence, narrow band
averaging imbues eigenstates with the properties of corresponding equilibrium ensembles.

We can also consider subsystems. Let the Hilbert space be a tensor product of sub-
spaces A and B with dimensions d4 and dp = d/d 4, respectively. We want to know how
to compute the expected value of an arbitrary overlap between vectors sampled on the
subspaces and the full space. If the vectors are sampled uniformly, we will again assume
they can be replaced with the corresponding density matrix. For example, consider two
vectors from each space [1), |2), |14), [24), |1B), |28) and the following overlap?,

A[1a1p)142512)212425)241p[1) = d 2 Tr |1 [1a15)X1a25] 1[2425)2415]

=d(24[14)14]224)
=d2dy". (2.11)

An analogous overlap of eigenstates is expected to have weight e=25=%4, We clarify this
generalization in section 3.4 and provide numerical evidence for it in section 3.6.

Remarkably, eq. (2.8) has the same form as eq. (1.1). The fact that both changes-
of-basis and local observables obey the same correlated structure may seem surprising and
raise the question of precisely which objects are amenable to such an analysis. The answer
is that eigenstates are the natural object of study of the ETH, where local operators and
change-of-basis rotations serve equally well as scramblers (see appendix D for details).
We claim that one can mix any combination of chaotic eigenstates, density matrices, and
observables and retain such an expression. The remaining task of the section is to relate
this observation to thermalization.

We study an n-point cumulant of an operator defined as the time-dependent sum over
a product of operators that neglects repeated indices:

—

Z eiw'tXiliQ ce X’iniu FE (tl, PN ,tnfl) s W= (UJZ‘”'Q, c. ?win—l’in) (212)
[i2-in]
where the braces [---] indicate that indices are not to be repeated in summation (i.e.

im # im ). We will replace sums over sufficiently smooth correlations with integrals via the
substitution

Z—>/ eS(Ei), (2.13)

Then we replace the right-hand-side of eq. 2.12 with an integral as
> X Xy = Y DB

[7:2"'1.”} [12171]
_ / 5T T (S(Bin)=S(E) £ )
E«LQ"'Ein
it— ﬁ'@‘ N - n—1 1
= we(t Ay f(E’Ll’w)a l:( n 7"‘7n>
= f(Ei;T+iBl) (2.14)

An analogous calculation was performed in Appendix B of ref. [35].



where 8 = S’(Ej;,) is the thermodynamic temperature. To go from the second to the third
line in eq. (2.14), we have utilized the approximation S(E;,,) — S(Ei,...) = BWinimi:
which holds so long as the heat capacity of the system is extensive (see appendix B) and

—
l -

we have approximated f(E;d) = f(E;, — - @;&) ~ f(F;,;d) since f is a slow function of
the total energy.

It is clear that the time-dependent cumulant is simply a mixed Fourier—Laplace trans-
form of f. For the case of n = 1, the right-hand side of eq. (2.14) simply reduces to the
time-independent microcanonical expectation value of X. For n > 1, we instead have a
complete set of thermal correlation functions which must decay in order for the system to
equilibrate. These cumulants are more precisely operator free cumulants, which we discuss
in more detail in section 3.2.

One should wonder when replacing sums with integrals over smooth components, as
we did in eq. (2.14), is safe. For example, the fluctuating component of Xj,;, - -+ Xj i, i8
larger than its smooth component, e /2 & ¢=(=1S  The answer is that it depends on
the number of sums being performed. Let the number of sums being performed be n*.
While the smooth parts will grow with e”°, the fluctuating parts are uncorrelated and

will only grow with e /2. Thus, replacing the sums with integrals is valid when

e MS/2ANTS)2 o= (=SS g s 9 (2.15)
In eq. (2.14), we had n* = n — 1 and were safe by one factor of e%. If n* = n — 2, then
the fluctuating and smooth parts will have the same magnitude. If n* < n — 2, then the
smooth part will be washed away. In general, one may consider more complex situations
with different entropy factors that will need to be compared.

Another difficulty with converting sums to integrals is the presence of level repulsion'C.
In chaotic systems, the eigenvalues of the Hamiltonian should be considered correlated
(pseudo-)random variables [44]. Thus when converting a sum over multiple indices to a

multi-variable integral, in principle, one would have to introduce a joint density of states,
e.g.,

S — S (Ei.Ej) (2.16)
7 EiE;

for a pair of energy indices [45]. However, to leading order in e, the joint density of states

factorizes €5 (BiEj) S(E:)+S(Ej)

e Furthermore, level spacing corrections only become
relevant at unphysical late times order of the Heisenberg timescale 1y ~ e [6]. In principle,
level spacing corrections may be computed if one has e.g. a matriz model'! [46] for a system

but a matrix model is not generally accessible in practice. More importantly, though we

Othe suppressed likelihood of finding two eigenstates much closer in energy than the average level spacing
in a chaotic system

1A matrix model is an integral over matrices (e.g. a probability distribution). For example, the matrix
model of ref. [46] is a distribution over all Hamiltonians consistent with a given set of correlators. Within the
validity of saddle-point integration, (single trace) correlators computed from a single Hamiltonian sampled
from a matrix model are identical to those averaged over that matrix model to all orders in e~°. The ETH
holds for a system if there is a matrix model in the sense of ref. [46] that generalizes its Hamiltonian.

~10 -



consider higher-order corrections in e~

, we largely neglect the timescales necessary to
observe level repulsion effects and will presume that joint densities of states factorize.

By the convolution theorem, the decay of time-dependent free cumulants, f (f), is equiv-
alent to the fine resolution behavior of their spectral free cumulants, f(J). If the spectral
free cumulant becomes smooth at over an energy scale e, the associated time-dependent
free cumulant will vanish to zero over a timescale e~'. In general, correlation functions of
local operators are expected to have nontrivial behavior over short timescales that are as-
sociated with dissipation and scrambling and become trivial over longer timescales that are
associated with transport and hydrodynamics [15]. Beyond those timescales, correlation
functions are expected to vanish until the Heisenberg time when the level spacing of the
system becomes relevant. Accordingly, a given spectral free cumulant should appear en-
tirely smooth over energy scales that are smaller than those associated with hydrodynamics
but are much larger than the level spacing of a system.

3 Generalized free cumulants

Recently, it was shown that the structure of the ETH, eq. (1.1), is intimately related to free
probability theory [18], which describes the statistics of highly non-commutative random
variables [47]. For correlated operators, eq. (1.1), turn out to be their free cumulants,
analogs of the classical cumulants for maximally non-commutative variables. When classi-
cal (commutative) random variables are sampled independently, their classical cumulants'?
vanish. Analogously, when large N x N random matrices are sampled independently, their
free cumulants vanish to leading order in 1/N. In the context of the ETH, we think of

physics as being local in energy space so the 1/N expansion is replaced by an e

expansion
and free probability becomes a good model in the thermodynamic limit. We discuss free
probability theory and its role in quantum chaos in more detail in appendix A.

While ref. [18] clarifies the role of free cumulants for operators, an analogous structure
is missing for states, even though the analysis of section 2 indicates that factors of e~
show up for correlations of states in the same manner as they do for operators. In this
section, we show that correlations between states are described by generalized free cumu-
lants (GFCs) of which the EB, eq. (1.2), is a simple example. Our generalizations account
for the partitioning of our system (figure 1) and correlations between eigenstates from dis-
tinct Hamiltonians. We introduce a diagrammatic representation of GFCs that will aid
the investigation of state-based physics, such as evolution towards an equilibrium density
matrix and the behavior of entanglement entropy without requiring a firm knowledge of

free probability. In general, we are able to compute to arbitrary order in an e~

expansion.
This formalism is the main result of the paper.

To study ordinary free cumulants, refs. [13, 18, 48] utilize a similar diagrammatic
formalism known as cactus diagrams while standard references on free probability utilize
so-called non-crossing partitions [49] and ref. [46] utilizes 't Hooft diagrams. Existing

diagrammatic approaches have substantial merit and we may have been able to modify

12A cumulant of degree n is, in general, some polynomial in the moments of degree m < n. Both free
and classical cumulants can be defined by their respective moment-cumulant relationship.
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them instead of introducing our own diagrams. However, we feel the diagrams we introduce
will be more natural for our purposes.

3.1 Eigenstate correlations: perturbed Hamiltonian

To ease the introduction of GFCs, we first consider a Hamiltonian Hy and a perturbed
Hamiltonian H without necessarily bipartitioning the system. Later, we will take Hy to
be Hy + Hg and H to be Hy + Hg + Hap. We wish to compute, as an example, the
diagonal elements with respect to Hy of a system prepared in the canonical ensemble of
Hy but evolved under H. Let us again define the symbol ¢, = (u|v) for the change-of-basis
tensor, |I),|J) as eigenstates of the initial Hamiltonian, and |é),|j) as eigenstates of the
perturbed Hamiltonian. Then our expression is,

prr(t) = 7= S UKD € 7Bt = S clehelcpe PEobont. (31)

Jij ’8 Jig

One should expect that the typical magnitude of an element p;7 is of order O(e™). The
right-hand expression in eq. (3.1) appears to sum e3% terms while Z3 is the canonical
partition function and contributes a factor of e, so the summand should have average
weight e™3%. We need the overall expression to have magntidue e~°. If we compare the
summand to eq. (2.8), we see that a cyclic product of 4 overlaps has the necessary remaining
factor of e35.

However, we have neglected some terms. If I = J, the dominant contribution to the
sum will be a product of 2 2-cycles, (cI c’I) (c]I c}) and the summand will have magnitude

2 .
(e_(2_1)s) = e~2%. But we have also dropped a sum and are now only summing over e2°

terms, so our overall magnitude is the same. The same argument applies when ¢ = j. We
may also have I = J and ¢ = j simultaneously. Indeed, there are 4 distinct index partitions
to consider:

Zspri(t) = 3 eleyel e PPainst 1N el el el PPt
73] [i4]
_‘_chcbcjczle /BEJ‘FZCICZICICZIQ BE;
[J4] [4]

_ / e~ it(wartws)=B(Br = jw1= 302+ 199) B0y | s, w3)
wWiwaws
+/ e*it(*wl+W3)*5(EI+%W1+%W?’)F(IJ)(WlaWS)
wiws
+ / G_BEIF(M)(WLWQ)
wiwo
+ / e SETIEF 5y i (w1) (3.2)
w1
where we have defined window functions for contracted partitions, F...), and used the sym-

bol (---) to label relevant index contractions. We have also dropped the slow dependence
of F' on the average energy. Notice how the partition (I.J)(ij) carries an extra factor of
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ensuring that its contributions will be suppressed. Furthermore, notice that the only
other time-independent term is (ij). Therefore, if each F' has a finite resolution, then the
long time value of p;; will be entirely determined by the Laplace Transform of F{;;).

General expressions may have many more partitions, and counting every possible par-
tition would be tricky. To simplify the process of identifying partitions, we introduce index
diagrams in fig. 2. The building blocks of index diagrams are labeled in table 1. Let us

state the rules of these diagrams.

1. Each change-of-basis is represented by a triangle vertex, each index by a line. Oper-
ators are represented in labeled boxes. An arrow on a line indicates time evolution.
Solid lines are summed over; dashed ones are fixed.

2. An index contraction occurs when two or more indices are equal, and is represented
by an open circle. Attached to each contraction are 2p legs for some p > 2. The
weight of the partition is given by the sum over distinct contributions from each of
the (2p — 1)!! pairings of the 2p legs'3.

3. Cycles appear as loops in the diagrams and contractions decompose large loops into
smaller ones non-uniquely. However, there will be at least one decomposition with
the largest overall weight that is, in general, the decomposition with the greatest
number of component loops.

4. The smooth weight assigned to each partition is dominated by the product of the
weights of its component loops multiplied by an appropriate density of states factor

(n—1)§ (E), where n is the number of indices

for each sum. The weight of each loop is e~
in each loop and E is the average energy of those indices. So long as we neglect the
finite width of F, we can replace E with the energy of any index in the loop. Each

S(E:)

sum contributes e , where E; is the energy being summed over.

5. The fluctuation assigned to each partition is dominated by the product of fluctuations
from each wavefunction overlap multiplied by an appropriate factor for each sum.

n—n*)S(E)/2

This term amounts to, in general, e~ , where n is the number of indices

and n* is the number of indices being summed over.

6. The arguments of the window function F' are the average energy of the connected
part of the diagram and the energy differences across the triangle vertices. Per cycle,
one such argument is redundant and omitted. We will not study the dependence of
F functions on average energy in this paper, so we will usually drop its dependence.

These rules are intended to reproduce factors of e in line with what one would expect for
factors of d that appear in uniform sampling of a Hilbert space. However, they will also
allow us to introduce frequency-dependent structure into the smooth part of correlations
that encode the nontrivial physical properties of systems.

13We show in section 3.3 that the assumption that contractions decompose into pairs is equivalent to the
assumption that random matrix terms are Gaussian to leading order, which is, in essence, a converse of
Isserlis’ (Wick’s) theorem and a generic prediction of rotationally invariant random matrix ensembles.
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Object Symbol

Summed index: ) . -

2

T

Unsummed index: -0+ |  meecececeeea————

Summed index with time depen-
dence: Y, - --e'Fitg,; -

Index contraction: ---d;j - - -

Change-of-basis: --- (i|J) - - - A

Operator: --- Xj; - - X

Table 1: Building blocks of the index diagrams.

First, recognize that in Fig. 2d, the suppression of (1.J)(ij) is related to a double
constraint imposed by the two contractions. In general, partitions may have any number
of contractions, however, if any two contractions are connected by more than two indices
topologically, they will be suppressed by a relevant factor of the density of states. What we
refer to as a generalized free cumulant is a single connected partition, without contractions,
before summing, in which no two indices are equal. In this case, the GFC’s are individual
loops. For example, a single, n = 4 generalized free cumulant is pictured in figure 2a,
whereas each of figures 2b, 2c, 2d depict partitions which are dominated by a product (or
products) of n = 2 generalized free cumulants. GFCs are the irreducible building blocks of

correlations in the e=°

expansion.
Each GFC has an associated window function. In the present case, we can use Fs(w) to
represent the window function for the n = 2 GFC and Fj (w1, ws,ws) for the n = 4 GFC!4.

More precisely,
clep = e F1) By(Br — )
el = e S F) By (B — By, B, — Ej, By — Ej), 1#J,i#. (3.3)

14YWe should point out here the F depends, in general, on the Hamiltonians considered. Rather than name
distinct functions for the various cases we consider throughout this paper, with some abuse of notation, we
will reuse the label F' for general window functions and let its arguments and context specify the specific
function under consideration.
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J (b) Partition (I.J) is dominated by a product of 2
(a) The full partition has 1 4-loop and 3 sums, 2-loops with 2 sums, therefore the overall weight

therefore the overall weight is O(e35735) ~ O(1). is O(e297975) ~ O(1).

iy A A A A
A A A A i i
i i i i ‘;----O:::::; = b =t W e I
I O j= + +
5 5 5 | v v v v v v
v v v v

i=j

(c) Partition (i) is dominated by a product of 2 (d) Partition (I.J)(j) is dominated by a prod-
2-loops with 2 sums, therefore the overall weight uct of 2 2-loops with 1 sum, therefore the overall
is 025975 ~ O(1). weight is O(e3~57%) ~ O(e™).

Figure 2: The partitions in eq. (3.2). We have used color to indicate the eigenstates of
different Hamiltonians. Unless explicitly stated otherwise in the figure, indices are taken
to be distinct in summations. When a partition contains a contraction, it can be expressed
as a sum of products of connected components obtained from different ways of pairing off
indices. In (b) and (c), there are 3 pairings only 1 of which is dominant. In (d), there
are 3 x 3 = 9 pairings, of which we have drawn 2 of 3 dominant terms. In (c) and (d),
notice that a contraction of indices with opposite time-dependences yields partitions that
are time-independent. Note: Though we have removed the contraction symbol on the
right-hand side of the above figures, the contractions still exist and need to be considered
when counting the number of sums in a diagram.

Then, by comparison to eq. (3.2) or by inspecting figure 2, we can write down the window

functions for the contracted terms to leading order,

F(wi,ws,ws) = Fy(wr,ws,ws)

Firpy(wi,wa) = Fo(wi) Fa(ws)

Flij)y(wi,w2) = Fa(wr) Fa(w2)

Firy)ij) (W) = 3F(w)*. (3.4)

The general procedure for performing computations in this paper will be inspecting dia-
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Notation Example

&
~—

Ejjk... E;; = 3(E;i + Ej)

E E= % Z%:l Em

wij LL)Z']' = Ez — Ej
e eq. (3.2)
[] Do) Xig X = 225 204 Xig Xji
f Py (Biw) = 5B S X0 V3ud(By — (B +w/2))(E; — (B - w/2))
F eq. (3.2)

(XY (0)X ()Y (0)); = | X($)Y(0)X (@)Y (0)]3)

(X ()Y (0)X ()Y (0)) 5 = D500 Xig Y X Visel 0+t BEiut 57, 0P

—~
o

o

¢

TN N N N TN

DN = CE s (o8

~— N N e N
—

~

3 N

—~
—
N
o~ o~
~
[

Table 2: Table of various notation. All notation holds analogously for various indices
we will use (i, j, I, J, a, b). (a) We use subscripts of E to denote average energies over
specified indices. (b) We use an overline to denote averaging the energy over an unspecified
number of indices. (¢) We use w in general to denote energy differences, and subscripts to
specify indices. (d) We use parentheses, (---), as a short hand to denote a set of indices
that are contracted. Multiple contractions are written as products, (---)(---). (e) Braces
are used to indicate indices that are not equal to any other index in the expression. (f) We
use the letter f to denote operator free cumulants in time and frequency space. (g) We used
the letter F' to denote state generalized free cumulants in time and frequency space. (h) We
use (---); to denote the ordinary expectation value evaluated on an individual eigenstate
i. (1) We use (--)5 to denote special thermally regulated correlators that are cyclically
symmetric in their arguments and are natural objects in quantum chaos.

grams to acquire the correct factors of e° and the correct form of the window function,
then evaluating integrals via saddle-points by neglecting the finite width of the window
functions. We have included a summary of notation we use in this paper in table 2.

3.2 Operator correlations: OTOCs and freeness

In eq. (2.14), we showed that the sum over a product of operators neglecting repeated
indices evaluated on an eigenstate reduced to the mixed Fourier-Laplace transform of the
relevant f function. We referred to this object as a free cumulant. Instead of evaluating
the free cumulant on an eigenstate, we can evaluate it via a special thermal regulator,

1 o . 7
- Xiviy - X, s, 60 FPE — 65E5—5(E3)/ (T (n=1)S(E)-BE (5. )
B fo
[i1+in]
@
= fn(Eg;t). (3.5)

where the integral over E was evaluated via its saddle-point (see appendix B). The symme-
try between indices has removed the shift vector ['which forced us to work in complex time.
Thus we find it is more natural to work with the thermally regulated correlator which is
conventional in the study of quantum chaos [17, 50].
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Here, we study an out-of-time-ordered correlator (OTOC),

1

<X®Y®Mﬁnmm5:2g

Z XijijXklYlieiwz'jt-&-iwm—ﬁEijkz_ (3.6)
ijkl

We have drawn all the possible contractions of eq. (3.6) in figure 3. In this case, since
any index can contract with any other index, the GFCs of our diagrams, which are the
cumulants mentioned above, are the celebrated free cumulants of the operators X (¢) and

Y (0) and are represented by single loop diagrams and are associated to the f functions.

j=k=1

(x4),~0(1)

(x2),~0(1) i=j=k=
(x1),~0(1) (x1),~0(e™%)

Figure 3: There are a total of 15 partitions from 7 different graphs. We have drawn one
representative partition from each graph and labeled their multiplicities. Note that two
different partitions with the same graph contribute differently, so the multiplicity is not a
“symmetry factor”. We have also labeled the overall weight of each partition divided by
an implicit factor of Zg.

We can isolate the free cumulants from eq. (3.6) using non-crossing operator partitions
inline as follows. For convenience we will assume that all 1-point functions vanish, (X) 5=
(Y)z = 0. We define an operator partition as a symbol that represents the associated free
cumulant of an ordered set of operators. A crossing of operator partitions results in an
overwhelming suppression. Then,

(XY (0)X ()Y (0); = (XOY(0)X (@)Y (0)),

— — 1
(XY (0)X ()Y (0))5 + (XY (0)X(#)Y(0))4
= fxyxv(Est,0,t) + 2fxy (Eg; t)?

. it :
= / Fxvxy (Eg;wi, wa,ws)ett@itews)
wiwows

2 ( / fXY(Eﬂ;m«aM)Z (3.7)

where Eg = (H) 3 and we have extracted 3 terms: a partition of all 4 operators, a product
of the partition of the first two and last two operators, and a product of the partition of
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the first and last operator and the second and third operator. To a non-crossing partition
of n operators is associated their n-point free cumulant. From eq. (3.7) we can see that the
f-functions of the ETH are the regularized free cumulants that have a special significance
in quantum chaos.

Partitions whose contractions cross exist, but are suppressed. In this case, we have
one:

—F— 1

(XY (0)X ()Y (0), = Zlﬁ (2fxv (Esit)® + fxx(Ep; 0) fyy (Ep;0)) ~ O(e®).  (3.8)
One may wonder why 2 copies of fxy(FEgs;t)? appeared in eq. (3.8) when we appeared
to have only contracted the pair of X’s and the pair of Y’s. One can find all 3 terms
from the last partition in figure 3. But it is not obvious how to derive them directly from
the left-hand expression in eq. (3.8). However, it is also natural to utilize non-crossing
index partitions. In table 3, we compare our own diagrammatic approach to correlations
to others in the literature, namely, cactus diagrams, non-crossing partitions of indices, and
't Hooft diagrams. All approaches fundamentally contain the same content and are united
in their connection to free probability. Redoing the above calculations but taking into
account 1- and 3-point functions will generate all 15 partitions discussed in figure 3. The
full decomposition into non-crossing partitions is given in appendix A.

As discussed in section 2, the thermalization of a system follows from the decay of
these free cumulants at late times. The equilibrium value of a correlation function can
be obtained by dropping all time-dependent partitions or, equivalently, all diagrams that
contain arrows. An equivalent formulation of this statement is that operators that satisfy
the ETH become freely independent, or free, at long time separations. Free independence,
or simply freeness, is the free probabilistic analog of classical independence [47]. For exam-
ple, whereas a sum of many classically independent random variables acquires a Gaussian
probability distribution function, a sum of many freely independent random variables ac-
quires a semicircle spectrum, a famous signature of Gaussian matrix ensembles [45]. We
can draw conclusions about physical operators from this observation.

Consider an operator X restricted to a narrow energy band,

X9 = Xi50(we — |wij]). (3.9)

Ref. [54] showed numerically on a spin chain that as w. — 0, X(“¢) obtains a semicircular
spectrum and interpreted this observation as the onset of random matriz theory. We can
interpret this observation as a consequence of free independence and, thus, a necessary
consequence of the ETH. Consider the following identity,
) = x.p we [ .
i = Xijf(we — |wij|) = — Xi;(t) sinc(wet)dt (3.10)
—o0

which allows us to see X(“¢) as an average of X(t) over a time period of w; . If X(t)

becomes freely independent from X (0) for ¢ greater than some tg.ee, then for w. < tf;;e,
X @e) must obtain a semicircular spectrum. This has been more recently interpreted in
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terms of the onset of an emergent rotational symmetry in the energy eigenspace of ETH
satisfying systems at asymptotically small frequencies [28].

We can draw a more direct line between freeness and the quantum butterfly effect by
defining the freeness of sublagebras. Consider two subalgebras, X and ), of the algebra of
operators that act of the Hilbert space of our system. These subalgebras may be under-
stood, for example, to be the Pauli algebras of two possibly identical sites in a spin chain
at possibly different times. X and ) are freely independent if and only if for every X; € X
and Y; € Y with (X;) = (Y;) =0,

<X1Y1 o XqY;]> = 0, \V/q Z 1. (311)

Shifting X' forward in time'® X = e'#*X(0)e~*#*  we can see that eq. (3.11) contains the
statement that all g-OTOCs of an element of X with an element of ) have decayed. Thus
OTOCs are themselves a measure of freeness. This observation was first made in ref. [55],
where a connection was drawn between OTOCs, freeness, and unitary designs. The idea we
wish to convey is that satisfying the ETH, the quantum butterfly effect, and the emergence
of rotational symmetry at small frequencies are, in essence, equivalent definitions of chaos
and avatars of free probability (see appendix A for an elaboration on these ideas).

3.3 Random matrices, replicas, and higher moments

One may also be interested in partitions where some legs are left open, as these partitions
represent fluctuations with a random tensor term, e.g. (i|J) = /e 5Fi) F(w; ;)R or
Xij = f[i(Eij)dij + \/e*S(Eij)fz(w,-j)Rij, where R represents random matrix terms with
mean 0 and variance 1. The variance of such a term can be computed by replicating the
diagram and connecting the open legs of the original to the open legs of its conjugate,
e.g., | (i|lJ)|*> o« R,R] ~ 1. In general, one may compute higher moments from suitably
many replicas and apply the above-stated rules for the partitions that are generated. This
procedure is key to our computations of entanglement entropy in sections 4.2 and 5.2.

A simple consequence of the rules we have presented is that random matrix terms
are Gaussian distributed, to leading order in e™®. For example, we can show that Rf]
is Gaussian distributed ~ N(0,1) by recognizing that (a) odd moments of R have open
indices and vanish while (b) even moments will be dominated by the decompositions with
the largest number of loops: products of pairs (see figure 4). Then, |R}|?’+! = 0 while
|RY |2 = pigy(RYRY)P + O(e™) = (2p — 1)1, where g, = (2p — 1)!! is the number of ways
to pair up 2p copies of |RY| and are the central moments of the Gaussian distribution. An

analogous argument was made for matrix elements of operators in [6] and follows concretely
from (1.1). Another result which can readily obtained is that variance of the diagonal
elements of operators is exactly twice the variance of nearby off-diagonal operators [27, 56],
as the number of ways to pair indices of 2p copies of a diagonal element R;; is instead
22P(2p — 1)!1. These properties are expected features of matrices sampled from rotationally
invariant ensembles [45, 57].

5%y time evolving each element of X
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AA . AA = () AAX X AA +..
L L

———

2p

Figure 4: Decomposition of a contraction of 2p replicas into pg, products of p 2-loops.
This decomposition is not special to the case shown but a general result on the moments of
random matrix terms. Where the triangle is in the above figure, any arbitrarily complicated
diagram with two external legs may be placed instead but the consequence of the replica
calculation will be the same: random matrix terms are Gaussian distributed to leading

order in e~ %,

The emergence of a Gaussian distribution originated from the decomposition of con-
tractions into pairs of indices (rule 2). This derivation is essentially a converse of Isserlis’
(Wick’s) theorem. For the case of pure operator correlations, the validity of this decom-
position is implicitly assumed throughout the literature and in key works [13, 18] and is
supported by numerics on spin chains [58]. This assumption is justified so long as we
imagine random matrix terms are consistent with a rotationally invariant random matrix
ensemble. The matrix model of ref. [46] formalizes this idea for pure operator correlations,
but heuristically it should hold for general eigenstate or operator-eigenstate correlations
as well. To be more precise, as we discuss in appendix A, eq. (1.1) is an extension of the
general form for the free cumulants of random matrices. But for the terms in eq. (1.1)
to retain the combinatorial properties of free cumulants (i.e. generate non-crossing parti-
tions), the pairwise decomposition must hold and as shown in ref. [46], eq. (1.1) implies
that non-Gaussian terms in the corresponding matrix model are suppressed by appropriate
density of states factors. Thus the suppression of non-Gaussianities should be understood
as a generic feature of the ETH.

The procedure of using replicas to compute higher moments also holds for partitions
without open legs. In general, computing moments will reduce to counting contractions
between replicas. One will find that partitions with sufficiently many summed indices (in
the sense of eq. (2.15)) will have higher central moments suppressed by factors of e, as
contractions inevitably cost sums without yielding sufficiently advantageous factorizations.
Thus, these partitions will be very sharply peaked around their mean value. In contrast,
partitions with very few summed indices will lose no sums from contractions but will gain
advantageous factorizations and thus will be widely distributed from their means. The
situation with open legs discussed in the previous paragraphs is a special case where random
matrix terms acquire a Gaussian distribution with O(1) variance about their means.

3.4 Eigenstate correlations: interacting subsystems

We now wish to generalize our formalism to the situation of two interacting subsystems
A and B. We take Hy = Hq + Hgp and H = Hgy + Hp + Hap. Take |i) and |j) as
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Figure 5: Schematic calculation of the weight associated with the uncontracted partition
of eq. (3.12). Whole system indices are removed, each carrying a factor of e, and then
subsystem indices contribute a total of e~%4 from what is left. Note that we are neglecting
fluctuations which will vanish under summation.

possibly identical eigenstates of H. We study, as an example of the various subtleties we
will encounter, the Hilbert—Schmidt inner product of their reduced density matrices on A:

(Pla|phy) = Tra [pim’A] = > e, (3.12)
aa’bb’

First, take ¢ and j as distinct indices. We recognize that without sums, the term in eq.
(3.12) is the eigenstate analog of equation (2.11) which we conjectured to have unsummed
weight e25~94, The spirit of the calculation in eq. (2.11) was that we can remove indices
on the whole system and collect a factor of e for each removed index until we are left
with a product of partitions on the subsystem. We represent this calculation schematically
in figure 5. The remaining subsystem partitions contribute their factors of the subsystem
densities of states. In this case we get e~ from each of 7 and j, and a factor of e%4 from
the remaining 2 index cycles from a, a’. We neglect the orthogonality of (a|a’) so long as
a and a’ are not adjacent in the original diagram.

However, we can also read the correct weights off from the full diagram directly. Re-
stricted to subsystem B, the left-hand-side of figure 5 appears as a product of 2 2-loops
(vellow and green lines), each of which would contribute a factor of e™°5. Restricted to
subsystem A, it appears as a single 4-loop (blue and green lines) which would contribute
e~3%4, For connected partitions that have potentially distinct behavior over different sub-
systems, the correct weight is acquired by combining terms of S4 and Sp as Sa+Sg — S,
leaving leftover factors of S(p). In this case, we get e~258=35 _ ¢=25-54,

Next, we discuss the consequences of index contractions. When summing over a, a’, b,
b, there will be terms where a = a’, or b = ¥, or both. For a = a’, we can see from figure
6b that the diagram factorizes into two pieces, each with weight e=°. However, for b =¥/,
we see from figure 6¢ that the contraction does not yield any advantageous factorization.
Previously, in the case without subsystems, every contraction yielded an advantageous
factorization. This is one way in which GFC’s diverge from ordinary free cumulants. In
the case of both a = a’ and b = ¥/, the best factorization is the same one as when a = a’
alone.
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***************

A b A
a a
b

(a) The full partition from eq. (3.12) has overall
weight O(e=54).

***************

***************

(¢) Partition (bd’) is dominated by the same
partition as in figure 6a, but with 1 fewer
sum on subsystem B, so the overall weight is

(b) Partition (aa’) is dominated by a product of 2
2-cycles with 2 sums on subsystem B and 1 sum

on subsystem a. Therefore the overall weight is
O(€2SB+SA_S_S) ~ O(E_SA).

"'0(?75) ~0(e™%)
L
A A A A
| b=b |
—0O
= +..
a=a

(d) Partition (aa’)(bb’) is dominated by the same
partition as in figure 6b but with 1 fewer sum
on subsystem B, therefore the overall weight is

O(e=94758) = O(e™9). O(e™9).

Figure 6: The partitions of eq. (3.12). For each diagram, leading order contributions are
shown. It can be seen that the partition in figure 6a will share its window function with
that of 6¢ and that the partition in figure 6b will share its window function with that of
figure 6d while in each case having different weights.

Now, take i = j, as in figure 7. First, note that unlike the case i # j, there is a
choice in how to decompose the contraction (ij). This results in two possible weights
from the partition, e %4 or e °B, depending on the smaller of S4 and Sp (see figure 7a).
In other words, the contraction (ij) has introduced a symmetry between the subsystems.
Next, we consider again the effects of additional index contractions from a = a’ or b = b'.
The contraction (aa’) works as before factorizing the partition into 2 simple partitions (see
figure 7b). The contraction of (bb'), however, can now take advantage of the new symmetry
and factor the partition into 2 simple partitions as well (see figure 7c). The contraction
(aa’)(bb') also receives an additional contribution (see figure 7d). Thus, we have seen that
index contractions on partitions with subsystems can lead to more diverse behavior than
on partitions without subsystems.

An analogous technique for calculating such partitions was utilized in ref. [36] which
treated Céb as a narrow banded Wishart matrix on its lower indices and then performed
ensemble averages to calculate distinguishability measures via a version of 't Hooft double
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*********

(a) The partition (ij) receives a contribution (b) Partition (ij)(aa’) is dominated by the same
from two competing factors with respective term as the diagrma in figure 6b, which is 1 of
weights ¢4 and e %8, We define Spi, as 2 partitions which contribute to the diagram in

min(S4, Sp) in this context. figure 7a, and carries the same weight, O(e=94).

,,,,,,,,,,

,,,,,,,,,,

(d) Partition (ij)(aa’)(bd’) is dominated by the
(c) Partition (i7)(bb') is dominated by 1 of 2 par- same partition as in figure 6d and one other en-
titions that contribute to the diagram in figure abled by the contraction (ij) and carries overall
7a and carries weight O(e™°8). weight O(e™%).

Figure 7: The partitions of eq. (3.12) for ¢ = j. Since there is no summation over i or
j their contraction has not cost any factors of e, however, their contraction has enabled
advantageous decompositions when b = ¥ in figures 7a, 7c, and 7d not available in figures
6a, 6¢, and 6d.

line notation'®. Where both techniques apply, calculations are identical. However, our
technique has the conceptual advantage of treating eigenstates of the full system on the
same footing as eigenstates of the subsystem, while interpreting eigenstates as individual
samples in the ensemble average. This conceptual advantage is particularly useful for
introducing and discussing time-dependent physics as we do in sections 5 and 6.

3.5 Operator-eigenstate correlations

Lastly, we consider partitions which contain operators and changes-of-basis. Take an oper-
ator X deep within subsystem A. X can be understood in terms of its matrix elements in
both the H4 and H eigenbases. We propose that either form of X can be used in GFC’s.

10We thank Jonah Kudler-Flam for bring these calculations to our attention.
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Figure 8: The summed and unsummed partitions representing eq. (3.13).

For instance, consider the 2-point correlator of X,
(X(D)X), = Y Xijehy Xawcf Pt (3.13)
jaa’db
We have represented the right-hand side of eq. (3.13) in figure 8. One may wonder if there

is any nontrivial relationship between the matrix elements X, and X;;. We explore such
a relationship in section 6.

3.6 Numerical evidence

In this section, we provide some numerical evidence for our conjectured scalings via exact
diagonalization of a quantum spin chain. We consider the non-integrable Ising model for
N spins with periodic boundary conditions, augmented by unequal local fields on the first
and the last site to break translational and reflection symmetries:

H = h,107 + h,nyox + Z [JoZoZ 1 + h.of + h.oy ] (3.14)
T

We choose the parameters J = 1.0, h, = 0.5, h, = —1.05, h,; = —0.45, h,n = 0.15.
We split the system into two subsystems A and B with N4 and Ng = N — N4 spins,
respectively, and define subsystem Hamiltonians,

N
Hy = h,noy + Z [Jafaf+1 + h,o; + hzaf] ,
r=Np+1
Np
Hp = haaof + Y [Joioi, + heof + hoof] . (3.15)
r=1

In this setup, we study the object we previously examined in figure 5 and redrawn
in figure 9 for convenience. We had argued that C' should scale as O(e~257%4) based
on correlations under the implicit overline averaging. Now, we explicitly implement the
overline averaging via a Gaussian weight function over a narrow energy band of width ¢,

; _(Ez‘*Ea*J’“Jb)2
AQ“’J) =e 22 . Thus, we compute
(iab) A (jab') A (§a’V') i ab’ J  _a'b
Dlijaae) A AN ey cf

a

Z [ijaa’bb'] Agab) Agjab,) Agja/b/)

C= cﬁlbc‘;b'ci,b,cg/b = (3.16)
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Figure 9: Diagrammatic representation of C' (eq. (3.16)), up to averaging. Averaging
ensures that fluctuations are suppressed.

Our results are presented in figure 10. We check the scaling with respect to N by
fixing Ny = 6 and varying N from 10 to 14. We also check the scaling of N4 by fixing
N = 12 and varying N4 from 5 to 7. In all cases, we find ¢ = 0.4 to be adequate. We
are significantly limited by finite size corrections associated with the subsystem sizes which
require us to discard data points for N4, Ng < 5. Nonetheless, we find good agreement
between the slopes of ln(d_QdZI) = (=2N — N4)In(2) and In(C) for accessible system
sizes, which supports our analytical expectation of the scaling of C' with N and N 4.

(@) o - In(C)
-e— In(C) -7 —(24 + NyIn(2)
----- —(2N + 6)In(2)

-14

-16 -18

.18 -19

-20
-20
-21

-2 . »

224 - -23
10 11 12 13 14 5 6 7

Figure 10: Scaling of C' (eq. (3.16)) vs. (a) N for fixed Ny = 6, and (b) N4 for fixed
N = 12. We compare are numerical calculations for an Ising spin chain (solid dots) to the
asymptotic scaling associated with the Hilbert space dimensions (dashed line). We find
qualitatively good agreement in both figures (a) and (b) for the slope of the curve.
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Cactus Non-crossing ’t Hooft

X vy X L v X Y

i j=k=1 [ k
Y X Y l X Y X
X X Y
i=k j=1
X

Y X

Table 3: Comparison of diagrammatic techniques. Column 1 contains two partitions from
figure 3. Column 2 redraws these partitions using the formalism of refs. [13, 18]. Whether
a diagram is leading order is equivalent to whether it resembles a cactus (essentially a tree
with round branches) in the following sense. Each loop is a cactus pad; to any cactus pad,
any number of other pads may be connected. However, to travel from any pad to any other
by hopping to adjacent pads, there can only ever be one route without crossing the same
contraction twice. This feature of cactus diagrams is shared by the loops in index diagrams
so long as we are not considering subsystems (which we do in the next section). We also
note that these are essentially the properties of tadpole diagrams which govern the Hartree
approximation in large N vector systems [51]. Column 3 utilizes so-called non-crossing
partitions of indices whose order is determined by the number of crossings. In eq. (3.7)
we utilized non-crossing partitions of operators. Non-crossing partitions of operators and
of indices enjoy a dual relationship and both function to describe free cumulants [18].
The black circumscribing circle represents the trace and the internal lines represent index
contractions. The top row contains no crossings, while the bottom row contains 1. Column
4 depicts analogous 't Hooft diagrams, which play a role in large N gauge theories and
whose order is closely related to the genus of the surface on which the diagram may be
drawn without crossings [52]. As for non-crossing partitions, the black circumscribing
circle represents the trace and the internal lines represent index contractions. The solid
circles explicitly represent the appropriate free cumulants, often referred to in this context
as planar connected Green’s functions [52, 53|, and as such the bottom row only encodes
the first term on the right hand side of eq. (3.8) and not all terms of order e™. 't
Hooft diagrams are the natural method of evaluating matrix models and main technology
employed by ref. [46] to study the ETH. Both ’t Hooft and index diagrams utilize a type of
double-line notation, where the former uses open circle to denote index contractions, and
the latter uses solid circles to denote operator contractions. In this way, index and 't Hooft
diagrams share a dual relationship similar to the one shared by non-crossing partitions of
operators and of indices.
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4 Eigenstate correlations I: the structure of chaotic eigenstates

In this section, we consider an eigenstate |i) of the full system Hamiltonian H. We focus
on two aspects of thermalization: the reduced density matrix and entanglement entropy.
In section 4.1, we compute the on and off-diagonal elements of the reduced density matrix
on subsystem A, improving the calculation of ref. [21] and generalizing that of ref. [31]. In
section 4.2, we reproduce best-known results for the entanglement entropy of chaotic eigen-
states from our formalism and discuss subextensive corrections. In doing so we remark on
a qualitative resemblance of our calculation to the gravitational path integral calculation
of the entanglement entropy of an evaporating black hole that is inherently free proba-
bilistic [32-34]. Lastly, in section 4.3, we show that reduced density matrices of nearby
eigenstates are exponentially close in trace distance, a hypothesis known as the subsystem
ETH [35].

4.1 Reduced density matrix

We wish to study the matrix elements of the reduced density matrix of subsystem A,
Pt = (a|Trg [i Zc“bczlb (4.1)

Focusing on the diagonal elements first, we find a simple expression,

o= anbczb :/ eS8 S(B) (B, — B, — E,) = e SF+55(Fi=Ea) (4.2)

b

which reduces to a Gibbs state when A is much smaller than B. This term is represented
in figure 11. We evaluated eq. (4.2) at the trivial saddle-point E; — E, — E}, = 0 associated
with neglecting the finite width of F'. If we neglect the width of window functions we are
able to take the arguments of F' functions (other than the overall energy) as saddle-points.
However, including a nonzero width of F' will slightly modify eq. (4.2) and the outcomes of
the various saddle-point integrals we take in this paper. However, such a modification will
only be felt by the fluctuations of approximately conserved operators (i.e. the fluctuations
of subsystem energies) and only when subsystem A is a finite fraction of the whole system
(see appendix C.1).

For off-diagonal elements, we can immediately see that pfm, contains uncontracted
indices and must have mean zero. We study instead, the variance,

7 7 ab i a'b z
Paa Para = Zc CapCi . Copy - (4.3)
by’

We represent eq. (4.3) in figure 12. Notably, the leading order contribution to eq.
(4.3) depends on the smaller of S4(E,) and Sp(E; — E,;). We define Syin(Eq, Ep) =
min [S4(E,), Sp(Ep)] and Spmin(E,) = min [S4(E,), Sg(E; — E,)]. Then, we can read off
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Figure 11: The diagonal elements of a reduced density matrix are represented by the
simplest eigenstate cumulant for a bipartitioned system.

leading order terms from figure 12 and evaluate via saddle-points,

|p;Lw § :Cabczlbcab jzb’+§ :cabcllbcab i
[bb’]

— / 6253(Ebb/)*QS(E)*Smin(Eaa’vab’)F<. .. ) + / esB(Ebb/)*2S(E)F(bb,)(. .. )
EyEy Ey

_ 672S(E)+QSB(EifEaa/)fsmin(Eaa/)F(Eaa/; waa’) (44)

where F(Eaa/; waa) has been defined to capture a leftover wg,, dependence that suppresses
correlations away from the diagonal. Combining eqs. (4.4) and (4.2), we obtain for the
reduced density matrix,

pia/ — e_S(Ei)+SB(Ei_Eaa’) <5aa/ + \/e_smin(Eaa’)F( aa 15 Waa! )Raa/) (45)

where R, is an approximate Gaussian random matrix with mean zero and variance one
that encodes higher correlations in the reduced density matrix. Eq. (4.5) is a generalization
of the state-averaging ansatz of ref. [31] to the case of arbitrary subsystem sizes. Ref. [31]
further discusses higher correlations in R,, which we discuss implicitly in the next section
in the context of entanglement entropy.

Eq. (4.5) also improves the result of ref. [21] which neglected the terms in figure 12a
while keeping the term in figure 12b. As a result, instead of our factor of Spn, they
had a factor of Sp(F; — E,4e) in our notation. Our improvement implies a much smaller
suppression of off-diagonal elements of the reduced density matrix below the critical energy.
This improvement is physically necessary on the following grounds. The suppression by
e 9B would imply that the eigenstates of H,4 are exponentially close to the eigenstates
of pY via <a|(pf4)2|a> = (pia)? (1+0(e7%7)). However, Hy is only defined up to an
arbitrary area scaling term on the boundary of the subsystem and any two definitions
of H, would likely share no eigenstates. In contrast, pf4 is defined unambiguously and
cannot have eigenstates that are simultaneously exponentially close to eigenstates of all
definitions of H4. Another way of seeing the same problem is to consider preparing the
system in an eigenstate of the total Hamiltonian H and then switching off the interaction
H 4p thereby perturbing subsystem A along its boundary. If the off-diagonal elements of pf4
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(a) A true 4-point contribution which captures (b) Contribution that factors into 2-point func-
sharp behavior in system size when S4 ~ Sp. tions and only contributes at leading order when
Note the similarity to figure 7a. S4 2 Sp. Note the similarity to figure 7c.

Figure 12: Diagrams which contribute to the off-diagonal matrix elements of reduced

density matrices.

are suppressed by e °B, the timescale for diagonal elements of pf4 to evolve is exponentially
long ~ O(e58794). Physically, however, we should only expect the timescale to be the time
it takes for information from the boundary of A to reach the rest of the subsystem.

4.2 Entanglement entropies and the Page curve

To compute the entanglement entropies we first focus on the a-Renyi entropies for a > 2,

1 , 1 . )
Sa = g I (Tra [ ]) = g2 | 2 can ™ o hp ™ | (46)
{ab}

The diagrammatics for eq. (4.6) are represented in figure 13 for o = 2, 3, 4. To lead-
ing order, we can ignore additional contractions in the sum and focus only on the full
diagrams. The leading order terms will come from different ways of decomposing the
contraction of ¢ indices into pairs. When subsystem A(B) is far smaller than its comple-
ment, there is a single leading partition with weight e~ ®5(F)=(a=1Sas) (Faw)  However,
when the subsystems are similar in size, there will be a critical energy Ej‘( B) such that
Sa( B)(Ez( B)) = Spa)(Ei — EZ( B)) which denotes a crossover between leading partitions.
Near E’/S( B) there will also be contributions from all other non-crossing pairings of 4 in-
dices, and we draw examples of these partitions in figure 14. However, these partitions
will, at best, contribute an area law term to entanglement entropy for a < 1 and will be
neglected other than to match terms to the time-dependent case we consider in section 5.
Then we can read off for general «,

S, — L / (@S (Ea)+aSp (By) oS (Es)~(a—1)Smin (FasB) (... ) (4.7)
]._Oé EaEb{w}

and taking o — 1,

Sy = / eIalBa)+85(E) =SB g - (B, By)F(E; — Eqy — Eyp). (4.8)
E.E,
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Figure 13: Diagrams which compute the second, third, and fourth moments of the reduced
density matrix contained inside the log in eq. (4.6). For general Renyi index «, the diagram
will appear as an a-fold rotationally symmetric version of the diagrams above.

Figure 14: Pictured are the 5 five leading order contributions to eq. (4.6) for o = 3, which
come from the non-crossing pair partitions of the ¢ index. There is be a term associated
to each pair partition of 2« ¢ indices. The non-crossing condition is not universally true of
index contractions in index diagrams but are a consequence of the ordinary rules presented
in section 3.1 applied to the Renyi entropy diagrams, figure 13. We focus only on the first
2 terms as the remaining 3 only contribute near the isolated point S4(E,) = Sp(Ep). Not
drawn are contractions of ¢ and b indices that will also contribute near the critical energy
so long as they do not create any additional crossings.

Egs. (4.7) and (4.8) are equivalent to expressions derived in ref. [21] and our results are
equivalent as well. In taking the o — 1 limit, we have neglected the implicit dependence
of F on «. This neglect is valid as long as we also neglect the non-zero width of F'.

We can then evaluate the integrals via saddle-points. The first saddle-point condition
is given by F which will enforce that E, + Ep = F;. The second saddle-point condition is
given by maximizing the exponents in eqs. (4.7) and (4.8). For o # 1,

1

So = 14 {a[Sa(€a) + Sp(EB) — S(E;)] — (¢ — 1)Smin(€4,EB)} (4.9)




where £4 and Ep are the subsystem energies that dominantly contribute to the Renyi
entropies and are defined by the saddle-point conditions of eq. (4.7):

(IL1) S (Ex) =
(1) Ea+Ep=E & {(I1.2) S,(E) = aSy(Ea) (4.10)
(I1.3)  Sa(€a) = Sp(ER)

Here, condition (II) is determined by which of the three given saddle-points minimizes S,.
For a > 1, the saddle point is given by condition (IL.1) if S4 < Sp and condition (II.2)
if S4 > Sp. For a < 1, the same result holds except at high temperatures and when the
systems are of similar size, where condition (IL.3) can hold, in which case £4 = E%. For
a =1, we derive

S1 =min [Sa(E; ), Sp(EiB)] +AS (4.11)
where the saddle-point conditions of (4.8) are given by,
(I) Ei,A + Ei,B =F & (H) SA(E%A) = SIB(EZ7B) (4.12)

and AS < 0 denotes subextensive corrections to S we will discuss shortly.

First, we note that eq. (4.11) recovers a finite temperature version of the Page curve,
noted for its linear slopes as a function of subsystem size [59]. However, for a # 1,
eq. (4.9) does not obtain this form. In particular, S, is superadditive, and Sy« is
subadditive and thus are convex and concave functions of system size, respectively. This
convexity /concavity is referred to as the “failure of the Page curve” [20]. We can interpret
this failure in the following manner. The subsystems of a chaotic eigenstate |7) obtain an
effective thermodynamic inverse temperature from S(E;), 8 = S’(E;), which determines all
aspects of local physics in finite energy density states. However, for oo # 1, Renyi entropies
of subsystems that are a finite fraction of the whole system have access to highly nonlocal
information that encodes physics at different temperatures [60]. Thus, as the size of a small
subsystem is increased, the Renyi entropies gain access to more information from different
parts of the spectrum and bend accordingly. For o > 1 (o < 1), the Renyi entropies are
dominated by low (high) temperature physics and as & — oo (o — 0) the entropy will
approach that of the ground (infinite-temperature) state.

We now discuss the corrections to the Von Neumann entropy, AS. One generally
expects area law corrections to entanglement entropy. To acquire them, one would need to
carefully consider the structure of the F' functions in the o — 1 limit. As the F' functions
are generally system-dependent, so are the area law corrections, but we do not preclude
the possibility that some generic structure may exist. There is another correction from
contributions away from the saddle point in eq. (4.8). These contributions are controlled by
the heat capacities of the subsystems and, in homogeneous systems, contribute a correction
to entanglement entropy that is order square root in system size. This term is derived in
ref. [21], and we direct readers to their calculation rather than repeat it. This is the leading
order correction in D < 2 dimensional systems, whereas the area law correction generally
is leading order in D > 2 dimensions. For D = 2 dimensions both terms have equal order.
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Despite the fact that previous studies of eigenstate entanglement [20, 21, 35, 61, 62]
did not have a general way to compute higher eigenstate correlations, refs. [20, 21] still
successfully computed the Renyi and Von Neumann entropies'”. Ref. [20] utilized similar
assumptions to our own and computed the moments of the reduced density matrix averaged
over all states consistent with the form in eq. (1.2). Ref. [21], on the other hand, computed
entanglement entropies by guessing a distribution of eigenvalues of the reduced density
matrix. Since the moments of the reduced density matrix are entirely determined by its
eigenvalues, it is not necessarily surprising that this calculation could be done without
direct computation of higher correlations.

The non-crossing constraint depicted in figure 14 is similar to one found in the gravi-
tational path integral computation for the Page curve of an evaporating black hole in JT
gravity and discussed in refs. [32-34]. A connection was drawn to the non-crossing parti-
tions of free probability theory in ref. [33] and explicated in ref. [34] in terms of so-called
Kreweras complements and free multiplicative convolution. To make the analogy precise,
we model subsystem B as an evaporating black hole and subsystem A as its radiation. At
early times, when B is much larger than A, the Page curve is dominated by the first parti-
tion on the right-hand side of figure 14 where pairings of i-indices disconnect the replicas
of B. At late times, when most of B has evaporated, the Page curve is dominated by the
second partition where pairings of i-indices connect all replicas of B together. Where in our
calculation arise simple index contractions, the gravitational path integral predicts semi-
classical wormholes that (dis)connect the black hole replicas (contrast our figures 13 and
14 with figure 2 of ref. [34]). Ref. [63] finds a similar analogy between index contractions
and replica wormholes in a toy model for entanglement dynamics.

The common thread between all calculations is an implicit ensemble averaging over
correlations of wavefunction overlaps that connect originally disconnected replicas and sup-
press crossings by an appropriate density-of-states factor. The validity of such an averaged
calculation in systems without explicit ensemble averaging is referred to as the factorization
problem [63]. The ETH may provide a solution. In our calculation, the ensemble average
emerged as the smooth portion of the GFCs that dominate over fluctuating portions with-
out any explicit ensemble average. Similar logic is summoned in ref. [31] to justify the
appearance of semiclassical wormholes in evaluating gravitational path integrals.

4.3 Subsystem ETH

The expression for the density matrix given in eq. (4.5) holds up to polynomial corrections
in the system size. In contrast, ref. [35], conjectured that reduced density matrices for a
given subsystem of nearby!® eigenstates of the full system should be exponentially close in
trace distance when the subsystem is smaller than one-half the system. More precisely,

ol = phll = Tra [l — pyl] ~ O(e=572). (4.13)

"aside from the fact that [20] missed the possible saddle-point condition (II.3) in (4.10) and neglected
subleading corrections
18defined as having a difference in energy at the order of the level spacing
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for E; = E; up to irrelevant corrections of order the level spacing. The significance of this
definition is that it implies the existence of an equilibrium reduced density matrix, pETH
that specifies the thermal properties of subsystem A to a far greater degree than that of
the canonical ensemble.

Our diagrammatic formalism does not directly compute the Schatten 1-norm ||---|;.

However, we can compute the Schatten 2-norm and utilize the following bound'?,

[1M]l2 < [[M]ly < v/rank(M)|| M|z (4.14)

which holds for an arbitrary operator M and is a corollary of the Cauchy—Schwarz inequal-
ity. First, let us expand,

1P = P41I3 = Tra [(pix ) } ~2Txa [ |+ Tea [(P0)?] + Tra [ (0)?]
NQ(TrA [(Pfq —Try [p Jo ])

52((,0f4\p ) = (Pa] ) ) (4.15)

where we the error in the approximation Tr4 [(pfél)Q] ~ Try [(pﬁ)ﬂ is suppressed by e~°

when |i) and |j) are nearby eigenstates?’

We can now recognize that the diagrammatics of (,ofg‘ pf4) and (pi“ /77,4) are given in
figures 7 and 6, respectively. By inspection, the leading order difference comes from the
terms in figures 7a and 7c that are absent in 6a and 6¢, where the contraction of index i
allowed diagrams of order e~ B to contribute. Thus,

(Palpt) = (Palph) = / 2% Baar 150 (B 225 B ()
EyEy BB,

+/ 2Sa (B +Sn(E) 28BN (o)
EyEoE,,

~ e~ S(Ei)+Sa(Eia) (4.16)

Lastly, recognizing that In[rank(p4)] is the 0-Renyi entropy, per eq. (4.9), we can recognize
that the reduced density matrices are full rank (up to a polynomial correction in subsys-
i(j)) §e)

. (o0) . . .
tem sizes): rank( ~ €“min | where ¢%min is the mlcrocanomcal entropy of the smaller

subsystem at infinite temperature. Then, rank(p ij ) < eSmin ! and eq. (4.14) becomes
O(54/2-52) < |loly — Il < 0<e5553/2+3f*/2 512) (4.17)

which establishes the subsystem ETH as a consequence of the MBBC by its e dependence.
The remaining factor crucially dictates the subsystem sizes for which the trace distance is
suppressed [35, 36]. However, this factor remains to be determined and we leave a direct
computation of the trace distance to future work.

19Tt was brought to our attention that under the same assumptions a replica calculation of fidelities yields
a stronger bound on the trace distance. This calculation was performed in ref. [36] (eq. (197)).

20the given suppression can be justified by recognizing the gradual dependence of the 2-Renyi entropy on
total energy and its small fluctuations between nearby eigenstates
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5 Eigenstate correlations II: thermalization of a non-equilibrium initial
state

In this section, we will show how a system that is not prepared in an eigenstate reaches
thermal equilibrium. The general result reproduces the equilibrated pure state formalism of
ref. [32]. Specifically, we show that reduced density matrices relax towards a form associated
with their energy density, and entanglement entropies will relax towards their equilibrium
values. The key insight that provides our general result in this section is that (a) time-
dependent partitions vanish and (b) the time-independent partitions factor into a product
of an “outer” partition that is identical to that of a system prepared in equilibrium and an
“inner” partition that integrates out. In the special cases we consider, this factorization
will reproduce the partitions we saw in section 4.

We initialize our system in a product of subsystem eigenstates |ab) s.t. HYHp |ab) =
EJE}" |ab), but we stress that our main results do not depend on this choice. Our state
has initial energy Fy = F, + Ep, and all states with initial energy FEy will relax to the
same equilibrium so long as we neglect the width of F. In appendix C.1, we show how
fluctuations of the subsystem energy are sensitive to the specific form of F' and do not
exactly obtain the properties of eigenstates, even in equilibrium, when subsystem A is a
finite fraction of the system. Ultimately, this is because the energy of a thermodynamically
large subsystem is an approximately conserved quantity.

Since dynamics are generally system-dependent, the specific forms of time-dependent
partitions that encode dynamics will be system-dependent as well. However, that does not
preclude generic features in the time-dependent partitions. Indeed, in section 5.3, we find
that the growth of entangelement entropy has an intriguing diagrammatic organization. We
find that distinct diagrams contain the ballistic growth, diffusive growth, and saturation
of entanglement entropy.

5.1 Reduced density matrix

Consider the matrix elements of the reduced density matrix on subsystem A over time
given the initial state |ab):

Parar (t) = <a’}Tr [e_th |ab)ab| eth] |a”> (5.1)
= (dV]i)ilab)ab|j)j|a"b ) e~ Fi=E)t (5.2)

b'ij
= eyl et (5.3)

b'ij

We will once again be interested in both the diagonal elements p,/,s and the variance of
off-diagonal elements | pa/a//|2. Let us first consider the diagonal elements,

TV i I
Parar (t) = E i b cztbc?bcz]z’b’e_wwt' (5.4)
bij

For p to relax to its equilibrium form in general, two things must be true: (1) the time-
independent part of p must equal its equilibrium form, and (2) the time-dependent part
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must vanish. We show the former in this section. The latter condition is contained in the
smoothness assumption of the ETH — the belief that there is a finite energy scale below
which no structure can be seen in matrix elements. Given these conditions, in the ¢ — oo
limit the oscillatory terms vanish and the time-independent value of p is obtained.

Diagrammatically, time-independent partitions are found by contracting indices with
opposite time-dependences, thereby removing oscillatory terms. The expression in eq. (5.4)
has several unique partitions, but only 1 is both nontrivial and time-independent, so we
will restrict our attention to it (see figure 15). We compute,

pa/a/(oo) = Z }CZ/b/
b'i

2‘6’21)’2

_ / €S(Ei)+SB(Eb/)—2S(Ei)F(Ei - E, - Eb)F(El — B, — Eb/)
BB,

— ¢~ S(E0)+5p(Eo—E,) (5.5)

which is what we expect from the equilibrium case considered previously, though the second
F function will modify the subsystem energy variance expression (see appendix C.1). We
can see from this example that the recovery of the equilibrium result came from a factor-
ization of the time-independent partition into a partition equivalent to the one considered
for eigenstates, and a partition that was integrated out in eq. (5.5). This correspondence
between time-independent partitions and equilibrium partitions is general.

Next, we address the off-diagonal elements,

ENA . AN/ 5! . . F. .
parar (Dparar(t) = Y AV elycstcl ey e el e MR R (5.6)
b/b//,L'j,L‘/j/

There are several dozen independent partitions; however, we will focus on just 4: the full
partition and the 3 largest time-independent partitions (see figure 16). The full partition
drawn in figure 16a, is given by

AV ; nyrr g1 i’ _q _F.—FE. .
F(Egar; Warar; t) = E ci ’ CZbC(;bCZI/,b,C?/ ’ Cflbc?'bcilbu@ BBy =By +Ej)
[b/b//iji/]’/}
— 6_2S(E0+Eb)+2SB(Ea+Eb_Ea/a”)F(wa/a//; t) (57)

where F(wgrqr;t) is a smooth term fated to die off in ¢, whatever its precise form. There
are no other partitions that contribute at the same order. This partition will be studied in
the context of the 2-Renyi Entropy in section 5.3.

Moving on to the time-independent partitions, (ij)(i'j"), (ii')(j5"), (iji'j"), we find
that the partitions in figures 16b, 16¢c, 16d factor into inner partitions that integrate out
and outer partitions that resemble those in figures 12a and 12b. Then again, we see that
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(a) Uncontracted partition. Several contractions (b) Time independent contribution to the re-
exist, however, only ones which cancel that time duced density matrix. Note, there is only one
dependences on i and j will be time-independent. sum over index 1.

Figure 15: In (a) we have placed the uncontracted partition corresponding to eq. (5.4) for
clarity. Time dependence ensures that it will decay as long as its corresponding F-function
is smooth. In (b), we have placed the leading order time-independent partition. Time-
independence is achieved by contracting indices with opposite time dependences. Further
time-independent partitions can be generated by contracting a = a’ or b = b’. However,
the former case will only contribute a factor of 2 for the matrix element p,, while the latter
case will suppressed by a factor of e 5B, so we neglect both cases. Focusing on the right
hand side of the equation in (b) on the left, we have a partition that fully integrates out
when summing over index i; we refer to this as the “inner” partition. On the right, we have
an “outer” partition that is identical to the partition pictured in figure 11 and describes
the diagonal elements of an equilibrium reduced density matrix. When we consider higher
correlations the “inner” and “outer” labels will become more visually apparent.

time-independent partitions reduce to equilibrium partitions,

parar (00)|? = /
EgEb//EiEi/

+ / €QSB(Eb/b”)_QS(EO)_SB(Eb/b”)F(ii/)(jj/)(' . )
EyEunE;Ey

eQSB(Eb/b//)*QS(EO)*SA(Ea’a”)F(ij)(l./j,) ()

S VANZE S
n / BB E R o (o)
EyEunEEy
— 672S(E0)+253(EofEa/a//)*Smin(Ea/a//)ﬁﬁ(wa,a”) (58)
which is the same expression derived in eq. (4.4).

5.2 Entanglement entropies and the Page curve

Once again, initializing in |ab), we repeat our analysis for the Renyi entropies. The a-Renyi

entropy is
Sa(t) = l In (TrA [(TrB [e*th |ab)ab| eth])aD
-«
1 'y : I VA . . o
~ L n Y et o dbhdgards ot Taen | (59)
b imm
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(a) Full partition representing the time- (b) Time-independent partition (ij)(i'j’) that
dependent off-diagonal elements of the reduced contributes to the off-diagonal elements of the
density matrix on subsystem A. reduced density matrix on subsystem A.
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(¢) Time-independent partition (4i')(jj’) that (d) Time-independent partition (ii")(j5")(b'd")
contributes to the off-diagonal elements of the that contributes to the off-diagonal elements of
reduced density matrix on subsystem A. the reduced density matrix on subsystem A.

Figure 16: Diagrams that contribute to the off-diagonal matrix elements of the reduced
density matrix on subsystem A. Subfigures (b-d) picture the time-independent terms
and the factorizations that dominantly contribute. Each factorization contains an inner
partition that integrates out and an outer partition that reduces to the partitions in figure
12. Note that one should not overcount the number of integrals on the right-hand side of
each diagrammatic equation.

Time-independent partitions are those for which > w;, ;. vanishes, which are obtained
by contracting 7 indices with j. We have drawn the minimally contracted and the largest
time-independent partitions for subsystem A much smaller than B for the 2-; 3-, and
4-Renyi entropies in figure 17.

When Sp > S4, the largest time-independent partition is (i, ), while for S4 > Sp,
the largest is (iym+1Jm). When Sq ~ Sp, any pairing of ¢ indices with j indices that is
non-crossing, as depicted previously in figure 14, contributes. Once again, we can see that
the time-independent partitions factor into an inner partition that integrates out and outer
partitions that are identical to those considered in the equilibrium case. Since the result is
general, we do not repeat our calculations from section 4.2.
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(a) Time dependent 2°¢ Renyi entropy. (b) Time dependent 3'¢ Renyi entropy.
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(c) Time dependent 4 Renyi entropy.

Figure 17: Time-dependent Renyi entropies adjacent to their leading time-independent
counterpart. The contractions between i and j indices map one-to-one with the pairings
of ¢ for the equilibrium case, represented for the 3-Renyi entropy in figure 14.

5.3 Entanglement growth

From an initially unentangled state, the dynamics of Renyi entropies @ > 1 generically
exhibit 4 regimes: (i) local equilibration, (ii) ballistic growth, (iii) diffusive growth, and
(iv) saturation. At late times, the equilibrium partitions once again map to eigenstate
partitions and compute a Page curve. In the previous subsection we associated saturation
to equilibrium partitions. In this subsection we will provide similar diagrammatic interpre-
tations to the different regimes of entanglement growth by counting entropic factors (see
figure 18).
Initially, entanglement growth is limited by fidelity to the initial state [30],

1
-«

In | Fg (t)** (5.10)

~ <
Salt~0) S -

where FR(t) is the return amplitude Fgr(t) = (able~"!|ab) which arises under the con-
traction (aj ...aqa)(by ...bab), represented for v = 2 in figure 18a. We discuss functional
forms for F(t) in appendix C.2. At a later time, teq ~ O(1), the system will have reached
local equilibrium [64] and will transition to ballistic entanglement growth. However, as we
discuss later in this section, eq. (5.10) does not provide an adequate accounting of entan-
glement growth for ¢t < toq and further work is needed to clarify the local equilibration
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(a) The fourth power of the (modulus) return (b) The full, uncontracted partition is expected

amplitude is obtained by contracting all summed to govern the ballistic regime of entanglement
a- and b-indices with the initial state. This is the growth, t.q < t < tpa1, and encode the entan-
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(c) At late times prior to saturation diffusive V V V
spreading of energy limits the grwoth of o > 1- @g‘z -
Renyi entropies. This is captured in the relax-

ation of the diagonal elements of reduced density 2

matrices. Hence, we connect this behavior to the
partition that contracts all external (summed) a-
indices.

(d) At late times t > tg,4, phases cancel against
each leaving only partitions that contract for-
ward propogators with backwards propagators.

Figure 18: Four partitions associated with the growth of 2-Renyi entropy adjacent to their
leading factorization under the assumption that subsystem A is smaller than subsystem B.
When the subsystems are of similar size, there will more contributions.

timescale. The problem of modeling the propagator at short times in chaotic systems is
closely related to the motivation for the mazimum entropy approach to the properties of
chaotic eigenstates presented in ref. [65]. Such an approach may be able to shed light on
entanglement growth at early times.

At intermediate times teq St S thal = %, entanglement growth is expected to be
Vg
ballistic. For an effective 1D “strip” geometry (see figure 19), this expectation implies a
form,
v(a)t

Sa(t S tbal) & —5— (5.11)

where R is the radius of the strip. In this regime, e(!=®% is initially ~ O(1). Whichever
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partition(s) dominates this regime of entanglement growth will be the slowest decaying par-
tition that contributes at O(1). The remaining partitions that may contribute at O(1) are
the full, uncontracted partition and partitions generated by contractions of any summed
a;- and bj-indices with a and b. Performing all such contractions yielded the term composed
solely of powers of the return ampltidue, eq. (5.10). Any partial such contraction will com-
posed of other metrics of fidelity to the initial state such as <pA(B) (t)>a(b), <pA(B) (t)2>a(b),
or other powers of the return amplitude. Since each of these terms are highly nonlocal,
we expect they should decay at faster rates than any entanglement velocity. Hence, our
expectation is that for each a-Renyi entropy, only the full uncontracted partition governs
the whole regime of ballistic entanglement growth, while other terms ~ O(1) at best con-
tribute during local equilibration. We’ve included the case a = 2 in figure 18b. Then we
assert,

(o)
v t Iy I VA . .

(1—a)E—5Sa(c0) a1ty i1 ab L aabG g ab o —it > Wi
p(t/teq)e R DI Cabcjlcljyllaé Cig, cabcjaczz;lafle mmm
]

_ / ¢20S(B:) +aS a(Ea) +aS5 (By) 308 (Bat Bo) (.. )it Xon imim

- /{ } F(wijy, - )e_it 2m Wimdm (5.12)

where the left-hand side contains the exponential decay with a short time suppression,
p(t/teq), that ensures the expression vanishes at ¢t < toq and the right-hand side contains
the only relevant index partition. For convenience, we define wg‘) = (a— 1)1}](56!)504(00) /R
and study the spectral function,

F(wiyjy,)0 (W - sz’my‘m)
~ / p(t/teq)ei(w+@'w%a)>tdt. (5.13)

The exponential decay ensures that F(w) analytic within the strip —wgl) < Imfw] < w](g).

(o) .. .
Furthermore, we expect p(t/teq)e“r ! to maximize during the crossover from the local
equilibration regime to the ballistic regime, t ~ toq, which requires F(w) to oscillate over

all scales larger than te_ql. Lastly, general arguments based on locality [66] enforce a sharp
_lwl=Vap
cutoff at large frequencies F(w) < e 9, where V4 p is an area scaling term determined

by the higher moments of Hyp and g is an O(1) effective coupling constant.

At late times still prior to saturation the Renyi entropies for o > 1 will transition
from ballistic to diffusive growth [38, 39] in systems with conservation laws (i.e. energy
conservation). Close to saturation, diffusive growth implies a form

Su(t < te) o< VDL (5.14)

where D is the diffusivity of the system, and ¢, is the saturation time for the entanglement
entropy. Since we just argued that the Renyi entropies are dominated by the full index
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Figure 19: An effective 1D system split into two subsystems A and B. The width of A is
2R.

partition in the entropic factors, naively, one may expect the same partition to contain
both ballistic and diffusive regimes as was suggested in ref. [30]. However, at late times,
the exponential decay of the full partition will diminish its magnitude by the entropy of the
smaller subsystem. Then, any other partitions that were only suppressed by the entropy
of the smaller subsystem can contribute provided they decay sufficiently slowly. Taking A
to be the smaller subsystem, we find precisely one partition to be suitable: the contraction
of all summed a indices, (a1az...aq)?". Defining pa(Eq,t) = (a|Tra [e= " |ab)ab| '] |a)
as the diagonal elements of the reduced density matrix on subsystem A in the subsystem
energy eigenbasis, we can write,

Flajas...an)(t) = / e4Ee) (p 4 (B, t) — pa(Eq,00))* + -+ ~ O(ell 7)) (5.15)

where the error in eq. (5.15) consists of partitions associated with the now negligible return
amplitude (5.10) and partitions that are too suppressed to contribute at leading order in
any regime. From eq. (5.15), it’s clear why (ajas...aq) is the right partition to describe
diffusive relaxation: pa(FE,,t) encodes the dynamics of the approximately conserved sub-
system energy. From an arbitrary unentangled inital state, the diffusive dynamics depend
not only on the geometry of the subsystem, but on the temperature dependence of the
diffusivity and heat capacity as well. We can conclude, however, that since F(,,q,...a,)(t)
decays slower than any exponential, but faster than any polynomial, its spectral function
Flaras...aq)(w) is smooth, but non-analytic on the real line??.

2 analogously for subsystem B. When the subsystems are a similar size, there will be a contribution from

all non-crossing contractions of summed a and b indices.
22 As an example of an appropriate non-analytic function, the Fourier transform of the standard bump
function, exp 12—171 , |z] < 1, can be evaluated via saddle-points to get the desired asymptotic decay

7\/2, up to dimensionful constants and other physical features.

~ e
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We now discuss the a« — 1 limit. Since the saturation regime shares its structure
with pure eigenstates, the o — 1 limit will be the same as in section 4.2. Interestingly,
51 does not exhibit a diffusive regime and so we should expect F{4,q4,..q,)(t) to vanish
in this limit. Indeed, [, e54(Fe) (p4(Eq,t) — pa(Ea,0))" =1 — 1 = 0. For the ballistic
regime, eq. (5.11), the analytic continuation o — 1 holds by construction if U](Ea) and Sy (00)
can be regarded as analytic functions of « predicting a ballistic growth for S; where one
is seen for S,~1. In general, for the analytic continuation to exist??, o = 1 + € must
imply that Tr[pa(t)®] = 1 — S1(t)e + O(e?). However, eq. (5.10) clearly does not have
this property, except for ¢t = 0. Since |Fr(t > 0)[>** does not converge to 1 with a, there
must exist one or more partitions that exactly cancel the decay of Fr(t) for all ¢ > 0. We
are forced to conclude that decay of the return amplitude does not provide an adequate
picture of the local equilibration regime, which in our view remains a mysterious aspect
of entanglement growth. Otherwise, our diagrams provide an intriguing structure to the

phases of entanglement growth.

6 Operator-eigenstate correlations

In the preceding sections, we assume that both subsystems A and B are thermodynamically
large, as parameterized by expansions in e 45 It follows that an operator X obeys the
ETH, eq. (1.1), with respect to eigenstates both of H4 and of H. Furthermore, if X is
deep within subsystem A it should have the same properties on the subsystem and the full
system, at least over short times. This question was previously considered in ref. [30] where
it was remarked that correlations between X and ¢ are in principle unnecessary to satisfy
these conditions based on a calculation that matched factors of the density-of-states. In
fact, we show that this is not true and nontrivial correlations between X and c¢ are necessary
for physical consistency. We additionally show that these correlations encode the time at
which operator X receives information about subsystem B, and argue that this timescale
is determined by the butterfly velocity.

6.1 The decay catastrophe

When X is deep within subsystem A it may be tempting to assume that its matrix elements
become uncorrelated with those of ¢. Consider the 2-point cumulant of X,

Pt +i8/2) = (X()X), = (X)) = D Chp Xaraa6]>" &, Xagas 25", (6.1)

[7larazazasbiba

If the elements of X and ¢ are uncorrelated, their combined diagram must factor as in
figure 20. There are two diagrams that contribute at leading order, but we just focus on
one, (ajaq)(agas), to illustrate the point. For a; # ag, this partition relates the 2-point
cumulant on the whole system, fo, to the 2-point cumulant of subsystem A, f2(A).

23it must since p4 is a positive semi-definite operator
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Figure 20: This figure depicts the false hypothesis that operator-eigenstate correlations
factor if operators are taken to be far from the boundary between the subsystems.

The factorization allows us to perform a direct computation,

- _ 7 asby J a1bs twiit
f(a1a4)(a2a3) (t + 1/8/2) - E Ca1b, G5 C;ng G Xa1a2X112a1e J
[ja1azbibsa]

A it — Bl s
/ F(a1a4)(a2a3)(Ei; ce. 7wij7 wa)fQ( )(Ea, wa)elwzjt 50-)2]/2
EaEl71 Eb2 WijWa

= (a1a4)(a2a3)(_t - iB/Q)fQ(A) (0) (6.2)

where in the second line, we have defined F' to be the relevant eigenstate cumulant and
emphasized its dependence on w;; and w, = E,;; — Eq4,. In general, decorrelating ¢ and X
causes correlation functions to become convolutions between wavefunction partitions and
operator partitions in frequency space and products in time.

Eq. (6.2) implies the obviously false conclusion that the entire dynamics of any local
observable in subsystem A far from the boundary are contained in the dynamics of a single
eigenstate cumulant that generally depends on the nature of the interaction between the
subsystems. This outcome is not a bug associated with the partition we have chosen but
an inevitable consequence of decorrelating ¢ with X. Thus, we are forced to conclude that
X and c are correlated even at short times and far separations. Consequently, the elements
of ¢ contain non-local information about the whole system. In section 6.2, we will square
this conclusion with causality.

6.2 The butterfly velocity

Existing literature discusses emergent causality in terms of the butterfly velocity, which
bounds the time at which out-of-time-ordered-correlators (OTOCs) between distant oper-
ators can decay [40]. The simplest OTOC is g(t) = (W (t)VW (t)V) for distinct operators
V and W which commute at time t = 0. Let W and V be separated by a distance R. The
decay of g(t) measures the nontriviality of the commutator [W(t),V]. Until information
of W has reached V, the commutator is approximately zero, and ¢(t) cannot decay. The
butterfly velocity vp is defined such that the time at which decay first occurs is tg = R/vp.
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We will study an analog of the OTOC between H p and X to bound when X has
received information about subsystem B. Consider the Heisenberg evolution of our operator
X located a distance R from the boundary between A and B. First, we will evolve X
forwards in time under H 4 for a time t, then switch on the interaction H4p and reverse
evolution back to time ¢ = 0. For ¢t < tp, X should return approximately to its initial
value. Concretely, we define

h(t) = <e_theiHAtXe_iHAtethX>i ) (6.3)

For convenience, we will take (X);, =0 and (X 2>i =1

We justify using A(t) to study the butterfly velocity by defining an interaction propa-
gator Up(t) = elHatHp)te=iHt for which Uj(t) = —iHap(t)Us(t), where we have defined
the time dependence of operators in terms of H4 + Hg. With this definition, we have:

h(t) = (U} (=0 XUr(-1)X) .
W (t) = =i (U} (=0 Hap(—), X|U(~)X ) . (6.4)

We can understand h’(t) as an inner product on the space of Hermitian operators between
—iU}L(—t)[HAB(—t),X]U[(—t) and X and utilize Cauchy—Schwarz,

WP < = (U] (-O1HAB(=0, XPUI(=0) (X?), = = ([Hap, XOF),.  (65)

Thus, h/(t) is bounded by the squared commutator of X and H 4p, separated by a time of
t. This result can be readily adapted into a bound on the decay of h(t) by assuming the
growth of the commutator square is monotonic prior to tp,

\h(t)—h(O)yg/O |W(t)] dt
< [ V= Han X OF)

< ty/= (Hap, X(O]2),, (6.6)

hence, the decay of h(t) is bounded by the nontriviality of the squared commutator.
We define t; as the decay timescale of h(t). When tp > ty4, h(t) will approach a
step function. Consequently, for w < ¢;', h(w) will behave as ~ sinc(Rw/vg), while for

w > t;l, h(w) will have some cutoff that in general depends on the decay of h(t). We want
to understand correlations in the energy eigenspace of our system, so let us write eq. (6.3)
in terms of components of X and c,

h(t) = Z 02161 Xayas C?le & Xasay C?4b2 et (Wayap —wij)t (6.7)

azbz
jaiazaszasbibs

Eq. (6.7) is nearly identical to eq. (6.1) and contains the same partitions. From the above

considerations,
hw) =21 Yy X2 ¢y, Xagar 6?0 (Wayay — wij — w)
jaiazazasbibe
~ SinC(RW/'UB)AtEI(W) (6.8)
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where At;1(w) is a cutoff function introduced by the finite rate of decay of h(t).

Egs. (6.7) and (6.8) ensure a nontrivial correlated structure between X and ¢ that
is relevant at arbitrarily short times and arbitrarily long distances. However, in contrast
to previous quantities we have studied, it is not obvious that the right-hand sides of egs.
(6.7) and (6.8) have any particular interpretation in terms of individual generalized free
cumulants indicating that our diagrammatic approach does not capture the full picture.
Our analysis mirrors that of ref. [67], which considered the eigenbasis representation of
the OTOC between spatially separated operators in the context of the ETH and found
an analogous sinc-like universal form. More recently, ref. [65] was able to capture the
physics of the butterfly velocity from a pure wavefunction perspective analogous to our
own, but considering correlations between distinct partitionings of the system. It would

be interesting to connect their approach to our own.

7 Conclusions and discussion

The eigenstate thermalization hypothesis was originally introduced to justify the applica-
tion of statistical mechanics to quantum many-body systems. However, in recent years,
especially given the connection to free probability theory, it has become clear that the
ETH does more than justify statistical mechanics. Free probability theory has previously
emerged in physics in the context of large N limits [53, 68]. Then, the ETH is perhaps best

understood as a set of phenomena associated with an emergent e~

expansion in quantum
many-body systems. This interpretation of the ETH is automatic in the matrix model
formulation developed in ref. [46]. In this work, we have presented the many-body Berry’s
conjecture as a reformulation of the ETH, which is traditionally understood in the sense of
eq. (1.1). However, we may alternately view eq. (1.1), the many-body Berry’s conjecture,
and the various results in this paper and the literature as just aspects of a large e° limit.
A mature understanding of this limit remains to be developed.

In this paper, we have formulated the eigenstate thermalization hypothesis and the
ergodic bipartition in terms of a many-body Berry’s conjecture, the hypothesis that eigen-
states of chaotic systems are random vectors up to the symmetry constraints of the system,
and we have argued that the MBBC is the natural quantum generalization of the ergodic
hypothesis. We showed how this approach naturally leads to a diagrammatic formalism
developed in the language of free probability, which is our main result. We demonstrate the
power of our formalism by showing that systems relax to a universal reduced density matrix
and obey the Page curve at late times, thus establishing irreversible thermalization under
reversible unitary evolution. We also establish the subsystem ETH as a consequence of the
MBBC. We also discuss the role that locality plays in the ETH and develop connections
to butterfly velocities and entanglement growth.

Our considerations in this paper are generic, and our results should apply to any system
where ergodicity is not explicitly broken, e.g., through many-body localization. Certainly
much more can be done on a similarly generic footing. While we have largely ignored the
functional forms of eigenstate cumulants (F functions), they are necessary to understand
the time-dependent dynamics of thermalization and entanglement. There is some work
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that suggests eigenstate cumulants, in some cases, have universal forms that depend on
the number of dimensions, locality of interactions, etc but not the model considered [30].
Additionally, while the operator cumulants (f functions) are generally model dependent,
their high-frequency cutoffs appear connected to universal properties of scrambling, and
future work may clarify this connection [14, 18]. Other work may clarify the connection
between the butterfly velocity and spectral correlations and uncover correlated structures
that exist beyond the ETH [65, 67]. We hope the formalism we have developed will aid in
the classification of generic properties of quantum many-body systems.

On the other hand, future work may focus on concrete realizations of the above results.
Exact functional forms of generalized free cumulants may be possible to derive within toy
models, such as the SYK model. Applications of the ETH to conformal field theories and to
holographic systems [11] have revealed important structure in those systems and provided
insights into the structure of black holes [36]. Additionally, numerical evidence for our
work is severely limited by the capabilities of exact diagonalization. Modern techniques
and greater computational power could provide clean demonstrations of our results in spin
chains or other toy models [69, 70].

Some techniques in this paper are reminiscent of others in the literature. In section
5, our means of imposing equilibrium on non-equilibrium partitions by matching opposing
time dependences reproduces the equilibrated pure state formalism of ref. [32]. In another
case, refs. [31, 65] study the statistical properties of eigenstates via an application of the
principle of mazimum entropy. Ref. [65] uses this principle to study propagators at early
times and studies the behavior of OTOCs in Floquet quantum circuits. Ref. [31] argues that
the various principles of the ETH may each be understood as consequences of a maximum
entropy principle and derives a special case of our eq. (4.5) to study saddle-points in the
gravitational path integral. In our view, the principle of maximum entropy is a more formal
and fundamental approach to the heuristic arguments we present in sections 2 and 3 that
may even extend the validity of our work.
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A Free probability in quantum chaos

In this appendix, we discuss the principles of free probability theory and their emergence
in quantum chaos. We do not present rigorous or technical arguments but instead discuss
informally how key ideas, namely freeness, free cumulants, and random matrices arise,
and obtain analogs in the study of quantum chaos. In particular, we wish to motivate
why the decay of out-of-time-ordered correlators (OTOCs), the eigenstate thermalization
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hypothesis (ETH), and emergent rotational symmetry are, in essence, equivalent definitions
of chaos and avatars of free probability theory. Except where another citation is provided,
we direct readers to ref. [47] for background on free probability.

First, we discuss what it means to have a probability theory in a non-commutative
setting??. The traditional foundation of classical probability theory starts with a sample
space of possible events and a rule for assigning probabilities to subsets of events. Non-
commutative probability theory instead starts with an algebra of observables and their
expectation values. The rules of non-commutative probability theory generalize the familiar
rules of quantum mechanics where we are given a (pure or mixed) density matrix and
some (generically non-commuting) observables whose expectation values are of interest
to us. Non-commutative probability also reduces to classical probability theory in the
limit that observables of interest commute. Often in quantum systems, particularly when
h can be considered small, operators are approximately commutative and principles of
classical probability theory such as sample spaces and (classical) independence become
useful emergent descriptions of statistical physics. Free probability theory concerns itself
with, in some sense, an opposite limit in which observables are as non-commutative as
possible. We will see that this notion of maximal non-commutativity can be made precise
and that quantum mechanics indeed contains such a limit.

Consider two algebras of observables, X and Y, and a state (- - -) that satisfies (ZW) =
(WZ). As an example, one can take ) to be the algebra generated by Pauli operators
on a single site of a spin chain, X to be the algebra generated by the Pauli operators on
a different site evolved far forward in time, and the state to be the conventional thermal
regulator discussed in row (i) of table 2. We will return to this example. X and ) are
considered freely independent, or free, if

(X1Y1--- X, Y,) =0 forall X;e€eX,Y; €)Y suchthat (X;)=(Y;))=0. (Al

The expression (X1Y] -+ X,,Y,,) is known as an alternating moment and so long as X and
Y are closed algebras any mixed moment of operators between them reduces to such an
expression. It is not obvious, but eq. (A.1) encodes maximal non-commutativity between
X and Y. If there were any nontrivial algebraic relations between elements of X and ),
e.g. XY =YX for some X, Y, then the definition (A.1) would imply that at least one of
X and Y is a scalar and thus that the algebraic relation is trivial, in contradiction with
the assumption of nontriviality. We sketch this proof just for commutators. Assume that
X and Y satisfy eq. (A.1) but that XY = Y X for some non-scalar X, Y. Consider the
fluctuations 60X = X — (X), Y =Y — (V). By (A.1),

((6X8Y)" (8Y)™ ") = (6X5Y -+ 6XoY™ ") = 0. (A.2)
Since X and Y commute, eq. (A.2) reduces to,

(SXTSY™) = 0. (A.3)

24For an elaboration on the ideas in this paragraph, we direct readers to ref. [71].
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However, eq. (A.1) implies for n = 1,
(X1 = (X)) —(M))) =0 = (XiV1) = (X1) (V1) (A.4)
and taking X; = 6X", Y = §Y™,
(5XY™) = (5X™) (5Y™) = 0. (A.5)

However, eq. (A.5) states that the product of arbitrary central moments of X and Y
vanish. This can only be the case if at least one of X, Y has vanishing central moments
and thus is a scalar®®. Hence, our hypothesis is contradicted, and no nontrivial element of
X can commute with any nontrivial element of ). This argument can be extended to any
algebraic relation between elements of X and ) and thus establishes the idea of maximal
non-commutativity. The notion of freeness can also be extended from algebras to pairs of
operators as freeness of the subalgebras they generate. X and Y are free if,

(X — (XD (Y = (V)" (X~ (X)) (V= (¥)™) =0 forall n>1, (A6

for positive integer exponents p,,, ¢mn. A pair of algebras are free if and only if any pair of
their operators are free?S.

Freeness has an analogy in quantum chaos. A many-body system is considered chaotic
if for simple, few-body observables X, Y,

<[(X(t) - <X(t)>5) (Y(O) - (Y(O)>ﬁ>]q>ﬁ 0 forall g>1 (A.7)

for t > tser, where tgc, is known as the scrambling time of the system [72] and we have used
the conventional thermal regulator. (A.7) is formulated to measure the non-commutativity
of X(t) with Y'(0). Eq. (A.7) is essentially the definition of the quantum butterfly effect, in
which the decay of OTOCs characterizes the ability for the unitary evolution of a system
to scramble quantum information [29]. In this light, the quantum butterfly effect is a
consequence of the asymptotic freeness between simple few-body observables at long time
separations. If the example of Pauli operators are to constitute freely independent algebras,
then their OTOCs must decay.

The definition of freeness given in eq. (A.1) is the maximally non-commutative analog
of the classical definition of independence between two variables. That is, X and ) are
classically independent, or simply independent, if,

<X1Y1XnYn> = <X1Xn> <Y1Yn> for all X; eX, Y, el (AS)

Egs. (A.1) and (A.8) are both rules for computing higher mixed moments from lower
moments. Such a rule is obtained from eq. (A.1) by performing the binomial expansion of
(X1 —(X1))(Y1 —(Y1))---) =0. The analogous rule from (A.8) is simply that mixed
moments factorize. Whereas eq. (A.1) implied that elements of X and ) have no nontrivial

Z5We assume faithfulness: <X2> =0 = X = 0. Freeness is defined with respect to a given state and
cannot say much about operators for which the chosen state is not faithful.
Z6freeness can be further extended to a collection of any number of algebras or operators
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algebraic relations, eq. (A.8) implies that all elements of X and ) satisfy the specific relation
that they commute, i.e. XY =Y X. This result is straightforward to prove. Consider two
alternating moments,

<X1Y1 T Xm—IYm—leYme+1Ym+1 T XnYn> = <X1 T Xn> <Y1 T Yn> )
(X1Y1 - X 1 (Yo 1Y) (Xn Xon 1) Yy - - X Yo) = (X1 -+ - Xo) (Y1--- V) (A9)

where both are equal per eq. (A.8). Then,

<' o Xm—IYm—leYme+1Ym+l o > - < o Xm—l(Ym—lym)(Xme+1)Ym+1 o > =0
— (e (X, Vo] ) = 0. (A.10)

Since X1,Y7 -+, Xin—1,Ym—1, Ximn+1, Ym+1, -+ , Xn, Y, are arbitrary, eq. (A.10) can only
hold if [X,,, Y,,] = 0 in general. Hence, eq. (A.8) enforces commutativity.

Many concepts of classical probability have exact analogs in free probability. Eq. (A.6)
is analogous to the factorization of mixed moments of classically independent variables
(XPY1) = (XP) (Y?). The classical probability distribution of an operator is instead re-
placed with its spectrum. The convolution of probability distributions for sums of inde-
pendent operators is replaced with a free additive convolution of spectra for sums of free
operators. Of key importance in classical and free probability is the existence of cumulants,
which to a physicist serve as the building blocks of a theory. Cumulants also compactly
formulate the rules for computing higher moments from lower moments mentioned above
for classically or freely independent variables. Whereas the vanishing of classical cumulants
indicates independence, the vanishing of free cumulants indicates freeness. Furthermore,
while classical cumulants admit a combinatorial interpretation in terms of set partitions,
free cumulants can be interpreted in terms of non-crossing partitions. As an example we
consider the cumulant decompositions of the moment (XY XY'). First, in the classical case,

(XYXY) = (XYXY)

Ll 1
+ (XYXY) + (XYXY) + (XYXY) + (XYXY)
L1l ] [ Ll L I
+ (XYXY) + (XYXY) + (XYXY)
L L L L
+ (XYXY)
[ B
= kx2y2
+2kix2yk’y +2]€Xy2]€X
+ kxoky2 + 2k3%y
o (A.11)
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where we’ve used k to denote classical cumulants. Then in the free case,

T 71 1
(XYXY) = (XY XY)
T T T L T
(XY XY) + (XYXY) + (XYXY) + (XYXY)
— =1
4 (XYXY) + (XYXY)
+ (XY XY)
= fxvyxy
+2fxey fy + 2fxyafx
+2f%y
+ IR (A.12)

where we’ve used f to denote free cumulants and we’ve distinguished ordinary set partitions
from non-crossing partitions by drawing the former below the line and the latter above it.

Hopefully the rules of the above partitions are clear, but there are a few aspects which
should be emphasized. It is straightforward to verify that the vanishing of free cumulants,
defined by the non-crossing partitions, implies freeness in the sense of eq. (A.6). Until 3™
order, free and classical cumulants are identical. At 4" order and above, classical cumulants
become undefined for non-commutative operators while free cumulants become sensitive to
order (up to cyclic permutations), i.e fxyxy = fyxvx # fx2y2 = fy2x2. The difference
is reflected in the fact that egs. (A.11) and (A.12) differ by a single partition. As we discuss
in section 3.2, free cumulants are crucial to the definition of the ETH. However, to justify
the form given in eq. (1.1), we will turn to a concrete construction of free probability.

Random matrices are known to model free probability in their large N limit. A finite
N x N hermitian matrix can be classically sampled from a distribution over its N real
diagonal and N(N — 1) complex off-diagonal elements®’. Of particular importance are
rotationally invariant probability distributions. That is, for any matrix X and unitary
rotation U,

p(X) =p(UTXU) (A.13)

where p is the probability density. Next, to take the large N limit one has to specify a

(V) sampled from a sequence of distributions p™), N € Z,

sequence of N x N matrices X
such that as N — oo, the spectrum of X@) converges to a well-defined limit. Then
consider two sequences of random matrices with large N limits, X(™) and YV, If for
each N, the elements of X®) and YV) are sampled independently and from rotationally

invariant probability distributions, then,

Jim <ﬁl (X(N) _ < X<N>>)“ (Y(N) _ <y<N>>)qi> =0 forall n>1.  (A.14)

—

27One can similarly consider real symmetric matrices and orthogonal rotations or self-adjoint quaternionic
matrices and symplectic rotations, but in this appendix we will stick to hermitian matrices and unitary
rotations.
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Eq. (A.14) is simply the freeness condition eq. (A.6) asymptotically in the large N limit.
Since we have considered rotationally invariant distributions, the specific state (---), is
unimportant.

What we have seen is the remarkable fact that hermitian random matrices whose
elements are sampled classically independently from a rotationally invariant ensemble, be-
come freely independent in the large N limit. Rotational invariance is crucial. Asymptotic
freeness in the large N limit holds if and only if the ensemble is rotationally invariant.
Hence, where in eq. (A.7) we found that freeness occurs at long time separations for sim-
ple observables, we should expect that at small frequencies the matrix elements of those
observables exhibit an emergent rotational invariance.

Lastly, we can introduce the expression for free cumulants in terms of matrix elements.
For a sequence of matrices, X V), that satisfies rotational invariance and has a well-defined
limit spectrum, its free cumulants in the large N limit are given by the classical cumulants
ky, of its matrix elements [57],

: — N N N
for any choice of distinct indices i1,...,4,. Ref. [57] presents the result in terms of clas-

sical cumulants, but as discussed in ref. [13] the only products of matrix elements whose
expectations are rotationally invariant are those whose indices are cyclic. Then, instead

we have,
= i -1 (N) y(N) (N)
an - ]\}E)noo N* E(X’hiz Xizis o inzl) (Alﬁ)
for any choice of distinct indices iy, ...,i,, where E represents the classical expectation

value. It is clear that eq. (1.1) is the chaotic analogy to eq. (A.16) where the theoretical
expectation value has simply been replaced with an empirical average and N with e°.

Hence we have seen how key concepts of quantum chaos: the butterfly effect, the ETH,
and emergent rotational invariance are each avatars of free probabilistic limit inherent
in chaos of quantum many-body systems. Yet, there are many more tools in the free
probability toolbox. We suspect broader awareness of the subject will help those tools find
applications in physics.

B Saddle-points in the ETH

We briefly review the use of saddle-point integration in the context of the ETH. The basic
principle of saddle-point integration is that the total integral of a rapidly varying integrand
is sharply concentrated around its peak(s) or of a rapidly oscillating integrand around its
point(s) of stationary phase. We refer to either peaks or stationary points as saddle-points.
In the cases we consider, the contributions to integrals from regions away from the saddle-
point will be suppressed by the system size, and thus, saddle-point integration becomes
exact in the thermodynamic limit, at least within a logarithm.

We assume that our system has a Hamiltonian H with V degrees of freedom (volume).
Extensive thermodynamic quantities such as the energy E' = (H), microcanonical entropy
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S(E) = In[Y,8(E; — E)], and heat capacity C(E) = —%[S”(E)]", all scale ~ O(V).
Intensive thermodynamic quantities, such as the inverse temperature § = S’(E) and the
expectation values of local operators (X) are ~ O(1).

The diagonal elements of ETH satisfying operators are equal to their microcanonical
expectation value,

X = €7S(Ei) Zé(E] — EZ)X] + 0(675) =fi (El) + 0(675)' (Bl)

Then eigenstates, by definition, obtain the same equilibrium properties as the microcanon-
ical ensemble. We can also check the expectation values in the canonical ensemble,

_ ZZ €7BE1X“‘ . fE ES(E)_BEfl (E) + 0(6_5/2)

(X)) = S~ o [ S E-E (B.2)

where we have exploited (B.1) and the definition of microcanonical entropy to turn the
sums into integrals. We find the saddle-point of the integral by setting the derivative of
the integrand to zero and obtain

fi(Ep)
f1(Ep)

Taking only the saddle-point value of each integral we find,

S'(Eg) — B+

= S'(Ep) =B+ 01/V). (B.3)

S(Eg)—BE E
(X)5= - ;(EB)BZ;(B 5) _ f(Bp). (B.4)

Eq. (B.4) implies that the properties of the canonical ensemble with temperature § are
equivalent to the properties of the microcanonical ensemble at a specific energy Eg. From
eq. (B.3), we can realize that the saddle-point associated to the canonical inverse temper-
ature (§ is equivalent to the microcanonical definition of temperature to leading order in
1/V. Thus, we establish ensemble equivalence in the ETH. This result extends readily to
the non-equilibrium functions f,, for their slow dependence on the total system energy.
However, we have not considered the magnitude of corrections away from the saddle-
point. To do so, we consider the Taylor expansion of the exponent about the saddle-point,

S(E) - BE = S(Ep) — fEg —

B*(E — Ep)? N i St (Eg)(E — Ep)™ B.5)

2C m)!

m=3

If we truncate this series to second order, we find that E is Gaussian distributed about
Eg with a width /C/B? that scales ~ O(V/2). However, since f|(E) is ~ O(1/V), con-
tributions away from the saddle-point in the Gaussian approximation will only contribute
at most at order ~ O(V~1/2). If we assume that E stays close to Eg at any order in the
expansion, self-consistently including higher derivatives of S results in an asymptotic series
about ¥V — oo which may be evaluated via Feynman diagrams. However, the higher order
terms will be suppressed by further powers of V, and going beyond zeroth order will be
unnecessary for our purposes.
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C Non-zero width of the window function

In this appendix we discuss the non-zero width of F. In C.1 we discuss how the width
can affect some of the calculations in this paper by focusing on a specific case: subsystem
energy fluctuations for both the eigenstates and non-eigenstates. In C.2 we discuss the
form of F' in eq. (1.2). This has been previously discussed in refs. [21] and [30] which
predict a Gaussian and a Lorentzian form, respectively, in tension with one another. We
shed some light on this disagreement.

C.1 Subsystem energy fluctuations

In this subappendix we consider an observable which can distinguish eigenstates from non-
eigenstates: subsystem energy fluctuations. As we will see, these fluctuations gain an extra
contribution from the energy uncertainty of a non-eigenstate when the subsystem is a finite
fraction of the whole system.

To consider the effects of finite ' width, we write

(w — wp)?

In[F(w)] ~ In[F(wy)] — 2A2

+ ... (C.1)
where A2 represents the variance of F and wy maximizes F. Eq. (C.1) is in essence a
Gaussian approximation for F' but the outcomes of convolutions will be exact so long as
we are only computing variances?®.

First, we consider the eigenstate case, eq. (4.2). The subsystem energy variance is

given by,
(AH3), = <(HA - EiA)2>' = / (Eq — Eip)?e S E+SaEI+S6(B) p(B, — B, — ).
i E.E,
(C.2)

Per appendix B, the density of states factors should be well approximated as Gaussians
about the saddle-point of eq. (C.2). e%4(B) obtains a variance of CA(B)T2, where Cy(py is
the heat capacity of subsystem A(B). Then, we can write,

1 _Ba—By)?  (By_Fip)®  (B;—Fa—Fy—w)®
.= N (Ea _ EiA)2€ 20T 2CgT 24§ (0'3)
E. By

where N represents an overall normalization that ensures (i[i) = 1. The Gaussian integrals

(AHZ)

in eq. (C.3) can be directly evaluated to find,

1 1 -

A%, =T? | — + ————— . C4

(AHA), <CA+CB+A§/T2> (4

The variance of subsystem energies was considered in ref. [60] which contrasted the

results for eigenstates and the canonical ensemble. For a Gibbs state on subsystem A, the
variance is

(AHZ) s = CaT>. (C.5)

28j e. Bienaymé’s identity
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For an eigenstate, one instead expects?”,

11\t
2 2
<AHA>Eigenstate =T (CA + C’B> : (C.6)

We can see that eq. (C.4) interpolates between the two cases. If for some reason A2/T? >
C4 eq. (C.4) reduces to eq. (C.5). This situation may be possible in models with long-range
interactions and would be interesting to explore further. Such systems may also exhibit
some nontrivial scaling with temperature. If A is vanishing, eq. (C.6) is recovered. This
is more physical because for an eigenstate we should expect A% to scale as the area of
the boundary between A and B. Thus, the finite width of F' adds only an area scaling
correction to the subsystem energy variance. Nonetheless, this correction is perceptible
in the numerical calculations presented in figure 11 of ref. [60], where the graph of the
subsystem energy variance shows a small enhancement with respect to eq. (C.6) for a
single high energy eigenstate when A is larger than B.

Next, we consider an arbitrary initial state |¢)) with initial energy E, = (H >w. We
consider its eigenstate components,

¥y =3 el li) (C7)

and define,
C;Z}Czp = eis(E)Fd,(Ei — Ew) (08)
and
(w—wy)®
In[Fy(w)] = In[Fy(wy)] = 55—+ (C.9)
2403,

where Ay is the energy variance of F, and wy maximizes it. Generalizing eq. (5.5), in
equilibrium, the subsystem energy variance will be given by,

(AHA(t = 00)),, = /EE _ (Ba= Big)Pe SO SENSEI (B, - By — 1) Fy(B, - By).
iva ip
(C.10)

In this case we have two more variances to consider: CT? from e° and Af/) from Fy. Once
again evaluating the Gaussian integrals, we calculate,

-1
1 1
(AHA(20), =T7 (CA T O AT (T2/A% + C—l)‘1> ' (©10

Thus we find some difference between the subsystem energy variance of a system prepared
in an eigenstate and of a system that is prepared outside of an eigenstate but allowed
to equilibrate. However, such a difference only shows up for a subsystem that is a finite
fraction of the whole system.

29To connect our expression to that of ref. [60] one has to assume homogeneity. Le. that Ca(p)y x Va(p)
where Va(p) is the volume of subsystem A(B). Then one recovers <AH%>Eigensmte = CAT? (1 -Va/V)
where V is the volume of the whole system.
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C.2 Form of the window function

We have not yet discussed the form of F'in eq. (1.2). Where in sections 5.3 and 6.2 we were
able to relate forms of F' in more complicated scenarios to known locality-related bounds,
for this simplest case the literature provides different answers.

Ref. [21] conjectured that in this case F' obtains an exactly Gaussian form in D > 1
dimensional systems,

_ (w—wp)?

Flw)xe 220 (C.12)

where wp maximizes F(w) and Ay is its variance. Their argument relies broadly on two
claims:

1. [ F(w)w"™ =~ (H%p), up to subleading order corrections that are polynomially sup-
pressed in the system size,

2. The moments of Hp are those of a Gaussian distribution.

Claim 2 follows from the fact that Ha4p, in D > 1 spatial dimensions, is a sum of an
area scaling number of local terms in a system with a finite correlation length and thus
its moments converge weakly towards those of a Gaussian distribution by central limit
theorem. Claim 1 is more subtle. We take H = Hq + Hp + Hap, Hy = Ha + Hp and |i),
|T) to label their respective eigenstates. Starting from the identity>"

(1(H = B = Y GDPE: - )" = [ P (€13

ref. [21] shows that,
(I|(H — E))"|I) = (I|([Ho — Eq) + Hag)"[I) = (I|(Hag)"|I) + O(nA"2")  (C.14)

where A denotes the area of the boundary between the subsystems. Since the moments
of Hyp are indeed Gaussian, ref. [21] concluded that F' must be as well with mean wy =
(Hap); and variance A3 = A? = <H313>I — (Hag)3. However, as pointed out in ref. [30],

eq. (C.14) only bounds the first p central moments of F'(w) for some p ~ O (\/Z) which
may not be sufficient to determine the form of F'.

Ref. [30] instead argues for a Lorentzian form with an exponential cutoff at large
frequencies in any number of dimensions. Their argument follows by approximating the
solution to the characteristic equations for the eigenvalues of H after perturbing Hy by
H,p. Preparing the system in a product state |I), we can decompose the Hilbert space
into the direct sum of |I) and its complement, H = H. & |I). Diagonalizing H on the
complement Hilbert space yields a set of d — 1 eigenstates |e,,). Ref. [30] then mirrors a
standard derivation of Fermi’s golden rule (FGR) [73]. The key assumption is that the
nonzero level spacing and finite bandwidth of the levels € are irrevelant, that is,

€max — €min > O(A) > de (C.15)

30Note that our normalization convention differs from that of ref. [21] but the difference can be absorbed
into the definition of F.
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where €pax (€min) is the largest (smallest) value of € and de is the typical spacing between
consecutive €. Under these assumptions one can approximately solve a set of characteristic
equations to yield,

Y

B = B~ 5 e 1 (o2

(C.16)

where I'} gives the width of F. So long as I'; has a sufficiently slow dependence on
E; — Er eq. (C.16) is consistent with a Lorentzian form for F'. As a consequence, the
return amplitude of a system prepared in |I) and evolved under H exhibits an exponentially
decaying return amplitude,

eiEIt <I‘6_thu> _ Z ’<Z~’I>’26—i(Ei—E1)t
7

:LF@F%J

= F(t) ~e 11 (C.17)

which reflects the physical picture of FGR. Recent work [74-76] has connected FGR and
its breakdown to the many-body localization (MBL) to ETH crossover®'. Ref. [76], in
particular, argues that an exponential decay of the (modulus-squared) return amplitude is
generic feature of ETH satisfying systems so long as the perturbation is not large enough to
modify the entropy function. In contrast the argument of ref. [21] would suggest a Gaussian
decay of the return amplitude. Various numerical calculations [30, 74, 76] corroborate a
regime of exponential decay in 1 dimension, however, we are unaware of any numerical
work in higher dimensions where the tension arises.

To understand the tension, it may be enlightening to study how the moment calculation

32 Our analysis complements that in

eq. (C.14) influences the time dependence of F(t)
appendix A of ref. [30] by focusing on the decay of F'(t) where they focused on the decay of
F(w). At late times, the return amplitude saturates to the overlap of two microcanonically

random vectors,

e Bt (1)e7 Y [y — e=9/2, (C.18)
The smooth F' functions will not capture this saturation but determine what form the
return amplitude takes prior to the saturation time. First we estimate the saturation time,
tsat, under the Gaussian form implied by eq. (C.12),

_ _ S 1%
e Athat/Z = e S/2 > tsat = E ~ O ( A) (Clg)

where V is the volume of the system. Next, eq. (C.14) determines only the first p derivatives
of F(t) where p ~ O (\/Z) is the first (even) central moment for which the error crosses

31We are grateful to Philip Crowley for bringing this work to our attention.

32neglecting phase factors throughout
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the mean. Then we can estimate the error of the Gaussian description from its Taylor

series,
CDUAPP| 1 [eA22)2
F(t) — A2 o | LT DHAE] 1 e (C.20)
p! A"
—A%t2/2

The error approximation derived in (C.20) implies that e
imation to F(t) for ¢ < teary defined as

is only a reliable approx-

p
2

eiAtharly/2 ~ L %
e/ P
A?t? 1 1
— = oW (7 ()7 ) = 02785+ 4 O <>
P P
= tearty ~ O(A7T) (C.21)

where € is a small O(1) error threshold and W is the Lambert W function. Eq. (C.21)
implies that increasing the size of A will actually shorten the validity of the moment calcu-
lation. This is physical since we are scaling p and A simultaneously and F(t) grows sharp
as A7l ~ O (A_%) which is faster than the constraint in eq. (C.21) grows tight. Thus, the
Gaussian ansatz of ref. [21] can be expected to accurately capture the decay of F(t) for a
large number of periods A~! yet only for a vanishing period of time in the thermodynamic
limit. Furthermore, eq. (C.19) shows that ts¢ diverges in the thermodynamic limit. We
conclude that the argument of ref. [21] cannot determine the form of F(t), or by extension
F(w), over all physically relevant scales.

Ref. [76] uses a statistical analysis of the Jacobi diagonalization algorithm applied to
ETH satisfying systems to develop the following picture for the return amplitude. Initial-
izing the system in an eigenstate of Hy and perturbing it to H, the return amplitude is
expected to experience an early time Gaussian decay, intermediate exponential decay, and
a late time saturation, i.e.

Fearly(t) = €7J2t2/2
e Hot <I|€_th|I> = Finter(t) oce : (0'22)

—5/2

e (saturation)

For a sufficiently weak perturbation a Gaussian description only holds at very early times
with J2 ~ A? ~ Ag. For a sufficiently strong volume-scaling perturbation the Gaussian
decay may saturate early and entirely preempt the exponential regime with J? ~ A3 > A2
and. Then, inserting Feany(t) for F(t) into egs. (C.20) and (C.21), we get,

21In(1
e(JQ—AQ)tgarly/2 — 1= — tearly = w
2
— 2~ |14+ ‘ A*=A*+0 (\/74) (0.23)

w (6_1(627T)%> P
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and our estimate of teay indicates that the area-scaling perturbation, H4p, should be
considered weak with J? ~ A? ~ AZ. Returning to the frequency space picture, the
exponential cut-off of F(t) after teany will constrain the form of F(w) on scales below
teaily O(AY*). However, the width of F(w), Ag & A ~ O(AY?) is parametrically
larger than this scale in D > 1 dimensions. Thus, F'(w) should appear Gaussian in D > 1
dimensions over scales comparable to A ~ O(A'/?). F(w) must also respect an O(1) cutoff
at very large scales w ~ O(A) [66].

We conclude that the tension between the Gaussian and Lorentzian forms in D > 1
dimensions boils down to relevant timescales. The F' function in eq. (1.2) captures the
return amplitude of a system prepared in an eigenstate of H4 + Hp and evolved under the
Hamiltonian Hs + Hp + Hap. We expect that the return amplitude will vanish rapidly
as a Gaussian at very early times, but continue to decay as an exponential for a much
longer period until saturation. Future work should clarify how the various arguments in

the literature capture different aspects of this picture.

D Operator thermalization

We wish to show in this section that the ETH, eq. (1.1), is a consequence of the MBBC.
Consider a local Hermitian operator X supported on a local Hilbert space of dimension dx
and an associated rotation,

dx—1
Ux(s) =X = me (D.1)

where the second equality states that Ux is a finite polynomial in X and follows from the
Cayley—Hamilton theorem. For |i) an eigenstate of a Hamiltonian H, |i(s)) = Ux(s) |i) is
an eigenstate of Hamiltonian H(s) = Ux(s)HUx(—s). We can decompose H (s) as

H(s)=H+ (H(s)—H)=H+V(s) (D.2)

where V (s) is a small O(1) perturbation so long as X is a local operator and H and sum
of local terms. Then, by eq. (2.8) we can assert the following,

(1()[i2(28) Yi2(28)[ -~ [in (ns) Xin(ns)[ir (s)) = e~ DS E Fy(s; B ) (D.3)

where we have considered n distinct eigenstates of H and rotated them each by a different
angle s. Since distinct eigenstates are orthogonal, F (0; E;&) = 0. In fact, the first n — 1
derivatives of F'x with respect to s at s = 0 must vanish as well,

n(dx—1)
e~ (n—1)S(E )FX Z Z Q{m} Y e (X))

m=0 3>, mi=m
=0-8" 4+ 405"+ g1y Xiyip - Xiiy + O(s") (D4)

where gy} collects the sum of products of p,, and we have defined the expansion q{m}(s) =
Do Q{m}7m15m/. In general, the terms py, and gy,,} will depend only on the characteristic

— H8 —



polynomial of X and are finite for any dx. Thus we can extract correlations of X from the
following non singular limit,

Xivig - Xipiy = ll_rg% q{_11...1},n3_"6_(”—1)S(E)Fx(8; )= e—(n—l)S(E)f(E;@’) (D.5)

and we arrive at our desired result. The approach of this section suggests a sufficient
criteria for operators to satisfy the ETH in the sense of eq. (1.1): For a given operator X,
Ux(s)HUx(—s) is close to H even as X mixes a large number of eigenstates.
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