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High-fidelity and high-speed wavefront shaping by

leveraging complex media

Li-Yu Yu and Sixian You*

High-precision light manipulation is crucial for delivering information through complex media. However, existing
spatial light modulation devices face a fundamental speed-fidelity tradeoff. Digital micromirror devices have
emerged as a promising candidate for high-speed wavefront shaping but at the cost of compromised fidelity due
to the limited control degrees of freedom. Here, we leverage the sparse-to-random transformation through com-
plex media to overcome the dimensionality limitation of spatial light modulation devices. We demonstrate that
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pattern compression by sparsity-constrained wavefront optimization allows sparse and robust wavefront repre-
sentations in complex media, improving the projection fidelity without sacrificing frame rate, hardware complex-
ity, or optimization time. Our method is generalizable to different pattern types and complex media, supporting
consistent performance with up to 89% and 126% improvements in projection accuracy and speckle suppression,
respectively. The proposed optimization framework could enable high-fidelity high-speed wavefront shaping
through different scattering media and platforms without changes to the existing holographic setups, facilitating

a wide range of physics and real-world applications.

INTRODUCTION

Light scattering is ubiquitous in fog, biological tissues, and other com-
plex media with inhomogeneous and disordered structures, which
prohibits direct access to the scene beyond a short transport mean free
path, e.g., 100 pm in biological tissues (I-4). Over the past two de-
cades, precise manipulation of light has been demonstrated in and
through various complex media, promising a wide range of applica-
tions in microendoscopy (5-10), noninvasive deep-tissue imaging
(11-19), holographic optical tweezers (20, 21), microfabrication
(22-24), and optical telecommunications (25, 26). The rapid progress
in wavefront shaping in complex media can be partly attributed to the
increasing availability and performance of spatial light modulation de-
vices such as liquid crystal-based spatial light modulators (LC-SLMs)
and digital micromirror devices (DMDs). These devices compensate
for the scattering process by generating conjugated light fields through
transmission matrix (TM) inversion (5, 6, 11, 17, 27, 28), optical phase
conjugation (time reversal) (13, 29-31), or iterative wavefront optimi-
zation (16, 19, 32-34). For applications that require light manipulation
with high spatiotemporal precision, such as holographic optogenetics
(35, 36), multimode fiber-based endoscopy (5-10), and holographic
three-dimensional (3D) printing (22-24), high-speed and high-fidelity
wavefront shaping through complex media is in high demand for fast
and precise projection of optimized light fields.

However, almost any existing spatial light modulation devices
have a fundamental tradeoft between speed and accuracy due to
hardware limitations, including data transfer rates, driving voltages,
and heat dissipation. This tradeoff between speed and accuracy is
evinced by the competition between the frame rate, pixel count, and
modulation depth in the spatial light modulation devices, resulting
in dimensionality limitation in wavefront shaping problems (37).
For example, LC-SLMs feature high-precision (8 to 12 bits) phase
modulation and have been demonstrated for high-fidelity wavefront
shaping in various complex media (6, 17, 28, 38-40), yet the frame
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rates are limited to 50 to 600 Hz. While a 350-kHz 1D SLM has been
demonstrated for wavefront shaping in complex media (41), its high
frame rate is at the cost of a total 1088 degrees of freedom, which
limits the enhancement ratio and, consequently, the focusing quali-
ty. On the other hand, DMDs can achieve a frame rate of up to
22 kHz enabled by a high-speed micro-electro-mechanical system,
while the precision can be unsatisfactory for high-fidelity wavefront
shaping due to the limited modulation depth (1 to 2 bits) in ampli-
tude. To enable high-precision wavefront shaping in high-speed ap-
plications, a wide variety of approaches, including the Lee hologram
method (42, 43), the superpixel method (44), and the island algo-
rithm (45), have been proposed to convert a binary DMD pattern
into a complex wavefront, which is commonly used in TM-based
approaches.

Despite the development of holographic coding schemes for
DMDs, the light shaping performance remains constrained by the
speed-fidelity tradeoff that is ultimately dictated by the frame rate,
pixel count, and pixel modulation depth of the spatial light modu-
lation devices, analogous to the space-bandwidth product in imag-
ing and holography (46). Such speed-fidelity tradeoft in wavefront
shaping becomes pronounced for high-bandwidth signals, such as
high-speed projection of complex patterns (38-40, 47-49), which
approaches the intrinsic dimensionality limitation of the devices.
To address the artifacts arising from the limited degrees of freedom
of a single frame (binary pixel modulation depth), end-to-end (50)
and deep learning-based methods (51) were proposed to take ad-
vantage of scientific understanding (mathematical models) or ob-
servations (training datasets) of a specific system to accommodate
the underlying artifacts. However, these methods either require
precise calibration of a specific forward model corresponding to a
predefined system configuration or substantial training datasets
from specific types of complex media, which makes these methods
system- and data-dependent, limiting their generalizability to vari-
ous systems and complex media platforms. Fidelity can also be im-
proved by directly performing binary optimization (52, 53) of the
binary mask (which is nondifferentiable) for the entire DMD frame,
which is at the cost of considerable computational complexity and
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convergence to suboptimal solutions. To compensate for the limit-
ed modulation depth of a single frame in a more system- and data-
agnostic way, temporal multiplexing (47, 49) has been exploited to
remedy the low projection quality but at the cost of a roughly 10-
fold reduction in the frame rate. An alternative approach, that is
also system- and data-agnostic yet at the full frame rate, is the utili-
zation of the phase-only constraint in DMD-based wavefront shap-
ing techniques. This method involves optimizing the wavefront
using only the phase information, while the amplitude is set to a con-
stant value. Optimizing the wavefront with a phase-only constraint is
one of the most popular and successful methods in computer-
generated holography, microscopy, and wavefront shaping in com-
plex media using phase-only SLMs. While this approach has been
successfully demonstrated on DMDs (7, 8, 43), it omits the possibil-
ity of simultaneous amplitude and phase modulation (54, 55) and
could be susceptible to ill-posedness and ill-conditionedness of the
inverse problem without proper regularization (10, 56), leading to
suboptimal inverse solutions with limited projection fidelity.

To fill this gap, we leverage the intrinsic random multiplexing in
complex media to remedy the dimensionality limitation problem of
spatial light modulation devices, allowing for a sparse and robust
wavefront representation to achieve high-fidelity projection through
complex media at a full DMD frame rate. We propose a sparsity-
constrained optimization framework that accounts for two physical
properties: (i) the limited degrees of freedom of spatial light modu-
lation devices and (ii) the sparse-to-random transformation caused
by the light scattering in complex media (Fig. 1A). To overcome the
speed-fidelity tradeoft, we investigate the underlying limitations of
DMD-based wavefront shaping and the sparse representations of
wavefronts in a random basis provided by complex media, yielding
a robust and efficient optimization framework that enables high-
fidelity projection of high-bandwidth signals without compromis-
ing the frame rate (Fig. 1B and the “Sparsity-constrained wavefront
optimization” section). By incorporating the dimensionality limita-
tion through [ regularization, our approach demonstrates consis-
tently higher-fidelity projections across different types of complex
media, showing up to an 89% increase in projection accuracy and a
126% improvement in speckle suppression through graded-index
multimode fibers, step-index multimode fibers, and diffusers at the
speed of 22 kHz.

RESULTS

Sparsity constraint for DMD-based wavefront shaping

In experiments, we observe that DMDs show higher fidelity when
the targets are sparser in the Fourier plane due to the limited de-
grees of freedom (Fig. 2C and fig. S1). To gain quantitative insight
into the relationship between the wavefront fidelity and the spar-
sity in the Fourier plane, we conduct a simulation and an experi-
ment (see the “Simulation and implementation of Lee hologram
method” section for implementation details) of DMD-based wave-
front shaping using the Lee hologram method (42, 43) in a Fourier
domain setup without complex media, similar to Fourier trans-
form holography (Fig. 2A) (57). Here, we use the number of foci in
the Fourier plane of a wavefront (M) to evaluate the wavefront
sparsity. The simulation result in Fig. 2B illustrates that projecting
more foci in the Fourier plane simultaneously leads to a decreased
projection quality, which is in agreement with the experimental
result shown in Fig. 2C and fig. S1. Note S1 details a simplified
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theoretical explanation for our experimental observations by de-
riving the wavefront error as a result of the limited control degrees
of freedom of DMDs. These observations and analyses demon-
strate the intrinsic tradeoff between fidelity and the complexity
(i.e., bandwidth) of the pattern projected by DMDs. Because of the
preference of sparse patterns, such dimensionality limitation of
DMD-based wavefront shaping can be potentially described by the
sparsity of the wavefront in the Fourier plane. Compared to phase-
only and binary constraints, incorporating the intrinsic sparsity
constraint of the hardware as a [; minimization offers a balance
between experimental projection fidelity and numerical optimali-
ty. It allows wavefronts with nonuniform amplitude distributions
while being a practical solution for DMDs. In addition, the spar-
sity constraint in the form of ; minimization can potentially converge
better and faster, which will be important for noisy measurements and
applications that requires short precomputing time as we will discuss
in the “High-fidelity light shaping via sparsity-constrained optimiza-
tion” section. Now that we gain quantitative and physical insights into
the sparsity constraints for DMD-based wavefront shaping, next, we
investigate how to build on these insights in the optimization frame-
work to enable high-fidelity high-speed light manipulation through
complex media in the following sections.

Sparse-to-random transformation via complex media
Given the observation that higher fidelity is associated with lower
bandwidth (sparse) targets (Fig. 2, B and C, and fig. S1), we seek a
way to convert the high-bandwidth signals (arbitrary, generic pat-
terns) to low-bandwidth ones to accommodate the sparsity con-
straint of DMDs. We find that, rather than being detrimental to
precise wavefront shaping, complex media can support sparse rep-
resentations of generic patterns in a random basis defined by a set of
speckle patterns, which we refer to as the sparse-to-random trans-
formation in this article. The theoretical foundation of the sparse-
to-random transformation is attributable to the theory of random
projections for dimensionality reduction (58). This property, to-
gether with /; minimization, allows the recovery of a generic pattern
through scattering by a relatively sparse and robust wavefront at the
input end, which overcomes the hardware sparsity constraint of
DMDs (Fig. 2, D and E). These key insights are consistent with the
theory of compressive sensing [incoherence and random sensing
(59, 60)] and have been supported by the numerical and experimen-
tal observations (Fig. 2, D and E, and fig. S2) that patterns are com-
pressible in the random basis provided by scattering media.
Consistent with the results in Fig. 2 (B and C), without the
complex media, the simulated projection quality is poor due to the
dimensionality limitation of DMDs shown in the simulation in
Fig. 2D. However, using the same number of foci in the Fourier
plane (i.e., same M), the light shaping fidelity in the output plane is
substantially improved with the addition of complex media with a
sampling ratio M/N = 1.0 (defined as the ratio between the number
of foci M and the total number of the input modes N). Note that the
number of foci is equivalent to the number of nonzero input modes
generated by the wavefront in the presence of complex media. Such
enhancement in the shaping fidelity is experimentally validated in
Fig. 2E. Moreover, this sparse-to-random transformation is more
pronounced in complex media with stronger scattering, leading to
considerable enhancements in the quality of the dense pattern pro-
jection (Fig. 2E and fig. S3). To investigate the effectiveness of a
sparse input in generating generic images, we progressively decrease
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Fig. 1. Design principle of sparsity-constrained light shaping through complex media. (A) The challenge of achieving arbitrary light manipulation in complex media
can be addressed by recognizing and leveraging two physical properties in the optimization framework: the dimensionality limitation of wavefront shaping and the
sparse-to-random transformation of complex media. (B) The wavefront optimization problem in complex media involves optimizing the pattern displayed on a spatial
light modulation device to generate a given target pattern in or through a scattering medium. To achieve high-fidelity pattern projection at a full frame rate, a sparsity
constraint in the Fourier plane of the DMD is introduced through /; regularization as a physics prior, which leverages the fact that patterns are compressible in a random
basis provided by complex media to overcome the limited control degrees of freedom.

the sampling ratio and compare the performance with the reference
image directly generated from the inverse solution. Figure 2D shows
that reduction of input modes does not necessarily lead to reduction
of projection accuracy, and a relatively low sampling ratio is suffi-
cient to yield an image of comparable quality to the reference image
(around 0.25 in this example). A few more numerical examples of
pattern compression in the random basis provided by complex me-
dia are shown in fig. S2. These numerical and experimental results
show that (i) most patterns are compressible using the random basis
provided by the complex media, and (ii) the sparse-to-random
transformation of the complex media, together with /; minimiza-
tion, allows sparse reconstruction of generic patterns, which conve-
niently compensates for the dimensionality limitation of DMDs.
Note S2 details a more thorough analysis and discussion on the pat-
tern compression property of complex media.
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High-fidelity light shaping via

sparsity-constrained optimization

By leveraging the sparse-to-random transformation in complex me-
dia, we propose a sparsity-constrained optimization framework which
incorporates the dimensionality limitation of devices in the form of ;
regularization (Fig. 1B and the “Sparsity-constrained wavefront opti-
mization” section). We test the performance of the sparsity-constrained
optimization framework (referred to as GD + L1) in the experimental
setup shown in fig. S5 (see the “Experimental setup and characteriza-
tion of transmission matrix” section for more details) using a graded-
index multimode fiber (GIF50C, Thorlabs) as the complex medium
and compare it with two commonly used methods: Gerchberg-Saxton
(GS) algorithm (61, 62) with phase-only constraint at the conjugate
plane of the DMD and gradient descent (GD) method (50, 63) without
constraints. The implementation details of three methods are provided
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Fig. 2. Numerical and experimental illustration of the sparsity constraint of wavefront shaping and the sparse-to-random transformation of complex media. (A)
Schematics illustrating sparsity-constrained DMD-based wavefront shaping. Without scattering, the set of attainable wavefronts is limited by the degrees of freedom of
the DMD, which can be expressed as a sparsity constraint in the Fourier domain. However, this dimensionality limitation can be overcome by the sparse-to-random trans-
formation through a complex medium, which supports a sparse representation of a generic pattern in a random basis. (B) Simulation of wavefront shaping in the Fourier
plane without scattering. The wavefront mean squared error (MSE) increases with a larger number of foci (M). The number of foci in the Fourier plane represents the
wavefront sparsity and is equivalent to the number of nonzero input modes in the presence of complex media. Ten different random distributions of foci are simulated,
and the resulting MSE is averaged. (C) Experimental results of different pattern sparsity in the Fourier plane using the Lee hologram method. (D) Simulation of pattern
reconstruction with different sampling ratios (the fraction of the number of input modes) through a diffuser. (E) Experimental results of wavefront shaping in media with
different levels of scattering strength, including free space and a diffuser with 1500 and 600 grit polishes (DG10-1500 and DG10-600, Thorlabs, respectively). Scale bars,
10 pm.

in notes S3 and S4. The sparsity-constrained optimization consistently Here, we dive in the graded-index multimode fiber experiment
outperforms the GS algorithm and the GD method for various targets  to gain quantitative insights into why sparsity-constrained optimi-
(Figs. 3A and 4), achieving considerably higher-fidelity light manipu-  zation yields considerably better results and why this can be po-
lation through the fiber (higher accuracy and better speckle suppres-  tentially extended to almost any existing DMD-based wavefront
sion; see the “Extension to different complex media” and the “Extension  shaping systems, different complex media types, and different light
to different target patterns” sections for more details). manipulation target pools. The root cause of the improvement can
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be dissected from three perspectives. First, from the perspective of
compressive sensing, generic patterns are compressible in a random
basis (59, 60), and complex media provides a natural platform as an
analogue randomizing compressor (64, 65) (for more examples, see
fig. S2). Thus, transforming a wavefront by a random matrix togeth-
er with /; minimization is an effective compression strategy for a
wide variety of patterns through complex media.

Second, from the perspective of DMD shaping fidelity, the in-
herent limitation of DMDs can be approximated by the number
of nonzero modes in the Fourier domain (Fig. 2, B and C, and
note S1), which fits well with the /; minimization of the com-
pression strategy. Our objective function leverages this synergy
between the sparse representation of solutions and the dimen-
sionality limitation of wavefront shaping. The random property
of complex media allows the conversion of a high-bandwidth sig-
nal to a low-bandwidth one in a random basis with a sampling
rate far below the Nyquist sampling rate. Such sparsity perfectly
remedies the dimensionality limitation of DMDs, and these two
properties can be seamlessly combined and efficiently solved in
the shared domain of the Fourier plane of the DMD and the input
plane of scattering media. Such synergy results in better solution
optimality (i.e., wavefront shaping fidelity) and better solution
feasibility (i.e., the consistency between the predicted outputs and
the experimental outputs), as presented in Fig. 3A. A comprehensive

discussion on the tradeoff between the solution feasibility and op-
timality is entailed in note S5.

Third, from the perspective of robustness and practicality, com-
pared to other constraints (e.g., phase-only or binary), l; minimiza-
tion has the theoretical guarantee that it can stably and accurately
reconstruct nearly sparse signals from markedly undersampled data
in an incoherent domain (60). Figure 3B illustrates the robustness of
this sparsity-constrained optimization method, of which the mean
squared error (MSE) curves consistently descend and converge in
both the simulation and the experiment. This is in contrast to the GS
method, which achieves less effective convergence due to the unnec-
essarily strong phase-only constraint, and the GD method, which
obtains inconsistent simulated and experimental results because it
overlooks the hardware constraint (for a detailed discussion, see note
S5). Besides the robustness, this simple objective function also has a
closed-form expression of its gradient, which promises high-speed,
high-fidelity wavefront shaping without the cost of high computa-
tional complexity. A derivation of the gradient of the loss function is
entailed in note S4, and a detailed analysis of the computational time
can be found in note S6.

Extension to different complex media
To show its broad applicability, we test our method on different types
of complex media, including graded-index multimode fibers (GIF50C,
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Fig. 3. Analysis of the projection performance of the sparsity-constrained optimization. (A) Simulation and experimental results of projection through a graded-
index multimode fiber (GIF50C, Thorlabs). (B) Optimization curves in simulation and experiment. The sparsity-constrained method (GD + L1) achieves consistent high-
quality fiber output in simulation and experiment, which is attributed to the sparse representation it finds in the random basis provided by the complex medium [i.e., the
predicted fiber input in (A)]. The scale bars for experimental outputs, predicted fiber inputs, and predicted fiber outputs are 10 pm, and the scale bar for wavefront inverse

solutions is T mm.
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Fig. 4. Experimental demonstration of enhanced projection quality in different complex media. (A) Graded-index multimode fiber. (B) Step-index multimode fiber.

(C) Diffuser. Scale bars, 10 pm.

Thorlabs), step-index multimode fibers (FGO50LGA, Thorlabs), and
diffusers (DG10-600, Thorlabs). We use the same experimental setup
for all three experiments, as shown in fig. S5. The experimental TM of
each medium is characterized as described in the “Experimental setup
and characterization of transmission matrix” section. After calibrating
the TMs, we optimize the projections through each medium using
the three methods described in the “High-fidelity light shaping via
sparsity-constrained optimization” section. The implementation de-
tails of the optimization are provided in note S3. Despite differences in
the underlying scattering mechanisms, the proposed method demon-
strates consistent improvements in the projection quality in Fig. 4 and
Table 1 by leveraging the sparse-to-random transformation exhibited
in all three media to overcome the dimensionality limitation of wave-
front shaping. The proposed method shows a substantial improvement
of up to 2.73 dB in peak signal-to-noise-ratio (PSNR), which translates
to an 89% enhancement in projection accuracy. A complete panel of
the projected images in Table 1 can be found in fig. S11 and table S1. To
characterize the effectiveness of the proposed method in reducing
background speckle noise in the projected images, we calculate the
speckle suppression in Table 1, which is defined as the ratio of the light
intensity of the foreground and background. It is also referred to as
Weber contrast in visual perception and imaging processing (66). The
proposed method achieves a remarkable enhancement of speckle sup-
pression up to 126% compared to the other two methods. Such consis-
tent improvement in different types of complex media demonstrates
the generalizability of the proposed method, and it can be readily ad-
opted for various light manipulation projects involving complex media.

Extension to different target patterns
In Fig. 5, we generate diffraction-limited foci through a graded-
index fiber (GIF50C, Thorlabs), which is an important application

Yu and You, Sci. Adv. 10, eadn2846 (2024) 3 July 2024

in endoscopic imaging. Compared to standard matrix inversion
method with phase-only conjugate wavefronts (67), our method ef-
fectively suppresses the residual field in the background region and
achieves a slightly higher focusing efficiency. This is consistent with
the discussion in the “High-fidelity light shaping via sparsity-
constrained optimization” section that our method effectively iden-
tifies the sparse and robust representations of generic patterns in
the random basis. The relatively small improvement is owing to the
already sparse solution in the random speckle basis, which is also
the fiber input domain, for a diffraction-limited point as shown in
fig. S3. For a more complicated pattern of which the inverse solu-
tion is denser in the random speckle basis (e.g., the second row in
fig. S3), the effect of imposing a proper sparsity constraint in the
optimization is substantial. In addition to diffraction-limited point
focusing, we also demonstrate a wide variety of masks and patterns
that can be applied in holographic optogenetics, compressive imag-
ing, and optical communications through scattering, as illustrated
in Figs. 6 and 7. In all of the examples, our method achieves a con-
sistent improvement throughout with a higher image contrast and
lower speckle noise.

DISCUSSION

The presented results demonstrate that the proposed sparsity-
constrained wavefront optimization framework can substantially en-
hance the projection quality across various types of complex media. It
is worth noting that our method shares a resemblance with compres-
sive sensing using random matrices together with /; minimization for
sparse signal recovery (60). Complex media serve as a natural, non-
engineered randomizer for encoding wavefront information (64, 65)
in a low-dimensional space composed of random speckles. Finding
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Table 1. Quantitative evaluation of projection quality through various complex media. The average peak signal-to-noise ratio (PSNR), multiscale structural
similarity (MS-SSIM), and Weber contrast values are computed on the target patterns shown in fig. S11. Bolded values highlight performance improvement.
GI-MMF, graded-index multimode fiber; SI-MMF, step-index multimode fiber. The breakdown results are entailed in table S1.

GI-MMF SI-MMF Diffuser
GS GD GD + L1 GS GD GD + L1 GS GD GD + L1
PSNR 16.44 15.09 17.48 16.20 15.65 17.60 15.63 15.20 18.39
MS-SSIM 0.66 0.50 0.73 0.58 0.50 0.65 0.44 0.38 0.62
WC* 9.47 6.13 15.01 4.68 4.18 7.19 4.09 4.66 9.24
*Weber contrast (WC) is defined as (I — )/l (66), where | and I, are the luminance of the foreground and the background, respectively.
Target Inv (phase) GD GD+ L1
' 1
l 0
10°
r 102
. 10-#

Power ratio 0.69

0.40 0.71

Fig. 5. Diffraction-limited foci through a graded-index multimode fiber. Three exemplary foci at different locations are demonstrated using different methods: Inv
(phase), matrix inversion with phase-only wavefronts. GD + L1, sparsity-constrained optimization method. The insets are the corresponding log-scale images. The values
are the average power ratio (80) of 77 foci on a grid with a 5 pm spacing at the distal end. Scale bars, 10 pm.

this sparse representation is the key to achieving high-fidelity wave-
front shaping with limited degrees of freedom. Our method success-
fully leverages the intrinsic dimensionality limitation of DMDs and
pattern compression by the sparse-to-random transformation through
complex media, yielding substantially enhanced projection fidelity
with single-shot wavefront shaping. Notably, the concept of sparsity
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here is twofold: (i) the dimensionality limitation of spatial light modu-
lation devices and (ii) the low-dimensional representations of generic
patterns in the random basis formed by complex media. It differs from
the definition in the propagation invariant mode domain that the in-
termodal coupling is limited to the adjacent modes in multimode
fibers (68). Subsequently, we discuss the advantages of our method,
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followed by its potential limitations, in the context of real-world
applications.

First, the problem we intend to solve in this work is the intrinsic
tradeoff of hardware performance, speed, and fidelity, in holographic
wavefront shaping stemming from the dimensionality limitation. In
other words, we aim to address the system bandwidth limit deter-
mined by the spatiotemporal complexity, i.e., the capability of gener-
ating complex spatial wavefronts with a high temporal resolution.
Our optimization framework achieves high-fidelity projection of
complex patterns at DMD’s full frame rate via pattern compression by
the complex media. The high-fidelity projection of complex patterns
at submillisecond and micrometer-level spatiotemporal resolution
could potentially amplify a wide range of applications for monitoring
or controlling targets dynamically, including optogenetics (35, 36, 51,
69, 70), microfabrication (22-24), optical manipulation (20, 21), and
compressive endoscopic imaging (9, 71-73). Alternatively, for appli-
cations that do not require such a high frame rate, the excess frame
rate can be leveraged for extended projection depth in microscopy
(74) or higher spectral resolution in hyperspectral imaging (75).

In addition, our method is computationally efficient due to its
simple mathematical formulation compared to the alternative meth-
ods for generating high-bandwidth signals through complex media
(e.g., phase retrieval algorithms, binary optimization, and neural
networks). This means that the high-speed, high-fidelity perfor-
mance does not come with high computational complexity, making
it a practical solution in the real-world applications. As bench-
marked in note S6, it takes 0.5 s to optimize 1000 target patterns
with a low-end graphics processing unit. Although further accelera-
tion is required to grant “on-the-fly” computing for applications that
require instant calibration (76), such precomputing speed and fidel-
ity enhancement at DMD'’s full speed can be readily used for appli-
cations that demand higher spatiotemporal precision but show
resilience to changes in TM, e.g., deep optogenetics and imaging in
living animals (7, 69).

Besides, our method can be generalized to different system con-
figurations and types of complex media because it builds on two
intrinsic properties—the dimensionality limitation of DMDs and
pattern compression by complex media. By identifying and incor-
porating the sparsity constraints associated with limited degrees of
freedom, our optimization framework can serve as a robust physics
prior for dimensionality reduction of problems in combination with
other methods such as temporal multiplexing, end-to-end methods,
and deep learning-based methods. Such synergy is possible because
our method approaches the problem by explicitly incorporating the
dimensionality limitation into the wavefront optimization problem,
making it a good complement to the existing wavefront shaping
toolsets.

While our method has shown promising results, there is still
room for further enhancement. First, the sparsity constraint in our
approach approximates the wavefront error caused by limited am-
plitude modulation depth, but a real wavefront error also depends
on the distribution of its angular spectrum as discussed in note S1.
To improve the accuracy, one possible approach is to design a wave-
front loss function that considers the effect of spectrum distribu-
tion. Despite this limitation, the sparsity constraint has a strong
merit in its simplicity, offering an elegant understanding of the di-
mensionality limitation of spatial light modulation devices and ease
of implementation. Second, the method is based on the character-
ization of the TM, which is susceptible to perturbations especially in
a dynamic system. With the recent advancement in the compressive
sampling techniques based on memory effect (68, 77, 78) and single-
ended calibration techniques based on reciprocity-induced symme-
try (10), the characterization process can be considerably accelerated.
In view of some slowly varying random scattering systems such as
multimode fiber-based endoscopes in which the TM can sustain for
hours and the calibration time is not the bottleneck (7), the speed-
up offered by our method remains beneficial. Last, compared to
phase-only constraints, one inherent drawback of allowing complex

MS-SSIM 0.74

0.67

MS-SSIM 0.68

Fig. 6. Potential applications of high-fidelity high-speed wavefront shaping through scattering. (A) Generation of masks for holographic optogenetics. (B) Genera-
tion of periodic patterns for compressive imaging (e.g., single-pixel imaging). MS-SSIM, multiscale structural similarity. Scale bars, 10 pm.
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Target

GS

GD

GD + L1

0

Fig. 7. Experimental demonstration of gray-level image projection through scattering. The experiment involves testing 50 images extracted from the Fashion-MNIST
dataset, with five examples from each of the 10 categories. Ten exemplary projected images are presented. Scale bar, 10 pm. Table 2 displays the quantitative evaluation

of the projected image quality.

Table 2. Quantitative evaluation of projection quality of the Fashion-MNIST images through multimode fiber. Average PSNR and MS-SSIM of the
Fashion-MNIST images that are projected using a graded-index multimode fiber. The values in the parentheses are the SD. Bolded values highlight performance

improvement.

Method GS GD GD +L1
PSNR 18.36 (2.89) 17.22(2.95) 19.30 (3.13)
MS-SSIM 0.64 (0.09) 0.55 (0.09) 0.72(0.10)

wavefront solutions in optimization is the lower power efficiency
due to the rejection of partial incident light on the DMD (fig. S8B).
To improve power efficiency, one can increase the strength of the
sparsity constraint in the optimization or penalize low efficiency by
calculating the normalized power of the wavefront solution on the
DMD plane (¥ in Eq. 3). From the hardware perspective, this issue
can be potentially mitigated by a higher laser power as DMDs have
a high damage threshold.

METHODS

Sparsity-constrained wavefront optimization

As shown schematically in Fig. 1B, our proposed sparsity-constrained
wavefront optimization method seeks to solve for an inverse solution
X that minimizes the loss function L given a desired projection
pattern y;

3(\ = argmin E(X; Yt) (1)

The loss function L consists of two terms: a data fidelity term that
penalizes the difference between the target projection pattern y; and
the pattern y estimated by the forward model y = Tx and a physics
prior term that represents the sparsity constraint through /; regular-
ization, also known as LASSO regression (79)

1
£0sy) = 3 lly, = Tl +Mixl, (2)
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The introduction of [} regularization tends to suppress the coef-
ficients of the less representative features to zero. The resulting solu-
tion falls onto a low-dimension manifold and therefore has a sparse
representation. This optimization problem can be solved using the
GD method, and the inverse solution X can be used to obtain the
estimated wavefront ¥ in the image plane by performing an inverse
Fourier transform

PEn) =F HRE ) 3)

Here, (€, n) and (&, n’) are Cartesian coordinates in the image
plane and in the Fourier plane, respectively. Last, the estimated
wavefront is encoded as a binary DMD hologram using the Lee ho-
logram method (54)

(6 = 5 + ssgn{cos[k, - €+ ) — & m] - cos[we ]} ()

where ¢(E,1) = Arg[V(E,1)] is the phase of the estimated wavefront,
71

]

w(E,n) = arcsin[ is the arcsine of the normalized amplitude,

max

and ky is the modulated carrier frequency determining the angle of
the first diffraction order.

Simulation and implementation of Lee hologram method

The simulations of binary Lee holograms demonstrated in Fig. 2 (B and
D) and figs. S2 and S3 are constructed using scalar diffraction
theory. To compute the wavefront in the Fourier plane generated by
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a binary Lee hologram in the image plane, we perform two steps: (i)
Fourier transform of the binary hologram and (ii) screening the
field outside the aperture of the spatial filter centered at the first dif-
fraction order in the Fourier domain. Our simulations use a binary
hologram with 512 x 512 pixels and a superpixel size of 4 X 4 in the
Lee hologram method.

To model the transmission of light through a complex medium
characterized by a TM as shown in Fig. 2D, we convert the simulated
wavefront in the Fourier plane (F{u(&, n)}) to the pixel-based in-
put mode domain of the TM by calculating the overlap integral with
each input pixel mode ;

X; = H yiF{uldA (5)
where x =[x, %2, ..., x,] | is a vectorized input of the TM. In the pattern
reconstruction simulation shown in Fig. 2D, the solutions are obtained
by selecting the input modes with the M greatest absolute values of the
coefficients and setting the remaining coefficients to zero.

The experimental setup of the Lee hologram method is depicted
in fig. S5. The standard configuration consists of a DMD and a 4f
system with a spatial filter located in the Fourier plane. We use the
same parameters for the number of pixels and the size of superpixels
as in our simulation. In our setup, we use an objective (OBJ1) to
couple the wavefront into the complex medium. To observe the
wavefront generated by the Lee hologram method in the Fourier
plane, we remove the complex medium shown in fig. S5 and adjust
two objectives to be confocal. To examine the image projection
through complex media, we use the same setup as depicted in fig. S5.

Experimental setup and characterization of TM

In the experimental setup depicted in fig. S5, a 100-mW, 488-nm
continuous-wave laser (Sapphire 488 SF NX, Coherent) is used for
illumination. The laser beam is expanded by a 4f system (L1 and L2)
with X10 magnification to match a circular region of 7 cm in diam-
eter, equivalently 512 pixels, on the DMD (V-7001, Vialux). The Lee
hologram method is applied to generate a predefined complex wave-
front in the first diffraction order, and the other diffraction orders
are blocked with a spatial filter in the Fourier plane. An objective
(RMS20X, Olympus) is used to focus the wavefront onto the input
plane of a complex medium, and another objective (RMS10X,
Olympus) collects the resulting speckle in the output plane. The
speckle image is formed on a monochrome camera (Mako G-040B,
Allied Vision) after passing through a 4f system (OBJ2 and L5) with
%16.7 magnification. For the fibers used in the experiments (GIF50C
and FGO50LGA, Thorlabs), the length is approximately 15 cm.

To determine the TM of the complex medium, we perform raster
scanning at the proximal end in the Fourier plane of the DMD and
acquire the corresponding complex-field speckles at the distal end
(27, 67). For each of the complex media used in the experiments, we
scan 1941 foci with a spacing of 1.0 pm across a circular region with
a diameter of 50 pm. To achieve a diffraction-limited beam during
raster scanning, we calibrate the wavefront aberration caused by the
DMD using Zernike polynomials of 20th order. The resulting speck-
les are split into two orthogonal linear polarization states by a beam
displacer and measured using off-axis holography. To reduce phase
instability, we measure a reference speckle to characterize and com-
pensate the temporal phase variation caused by environmental vi-
bration. Last, we combine the two submatrices associated with the
two polarization states in the output to generate the TM.

Yu and You, Sci. Adv. 10, eadn2846 (2024) 3 July 2024

Supplementary Materials
This PDF file includes:

Supplementary Notes S1 to S7

Figs. 5110 512

Table S1

References

REFERENCES AND NOTES

1. V.Ntziachristos, Going deeper than microscopy: The optical imaging frontier in biology.
Nat. Methods 7, 603-614 (2010).

2. A.P.Mosk, A. Lagendijk, G. Lerosey, M. Fink, Controlling waves in space and time for
imaging and focusing in complex media. Nat. Photonics 6, 283-292 (2012).

3. H.Cao, A. P.Mosk, S. Rotter, Shaping the propagation of light in complex media. Nat.
Phys. 18, 994-1007 (2022).

4. S.Gigan, O. Katz, H. B. de Aguiar, E. R. Andresen, A. Aubry, J. Bertolotti, E. Bossy,

D. Bouchet, J. Brake, S. Brasselet, Y. Bromberg, H. Cao, T. Chaigne, Z. Cheng, W. Choi,

T. Cizmar, M. Cui, V. R. Curtis, H. Defienne, M. Hofer, R. Horisaki, R. Horstmeyer, N. Ji,

A.K. LaViolette, J. Mertz, C. Moser, A. P. Mosk, N. C. Pégard, R. Piestun, S. Popoff,

D. B. Phillips, D. Psaltis, B. Rahmani, H. Rigneault, S. Rotter, L. Tian, I. M. Vellekoop, L. Waller,
L.Wang, T. Weber, S. Xiao, C. Xu, A. Yamilov, C. Yang, H. Yilmaz, Roadmap on wavefront
shaping and deep imaging in complex media. J. Phys. Photonics 4, 042501 (2022).

5. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, Scanner-free
and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev.
Lett. 109, 203901 (2012).

6. D.Loterie, S. Farahi, |. Papadopoulos, A. Goy, D. Psaltis, C. Moser, Digital confocal
microscopy through a multimode fiber. Opt. Express 23, 23845-23858 (2015).

7. S.Turtaev, I.T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, T. Cizmar,
High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci.
Appl. 7,92 (2018).

8. S.Ohayon, A. Caravaca-Aguirre, R. Piestun, J. J. DiCarlo, Minimally invasive multimode
optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express
9, 1492-1509 (2018).

9. L.V.Amitonova, J. F. de Boer, Endo-microscopy beyond the abbe and nyquist limits. Light
Sci. Appl. 9, 81 (2020).

10. S.-Y.Lee, V. J. Parot, B. E. Bouma, M. Villiger, Reciprocity-induced symmetry in the
round-trip transmission through complex systems. APL Photonics 5, 106104 (2020).

11. 1. M. Vellekoop, A. P. Mosk, Focusing coherent light through opaque strongly scattering
media. Opt. Lett. 32,2309-2311 (2007).

12. S.Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, Image transmission through an
opaque material. Nat. Commun. 1,81 (2010).

13. C-L.Hsieh, Y. Pu, R. Grange, G. Laporte, D. Psaltis, Imaging through turbid layers by
scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt.
Express 18,20723-20731 (2010).

14. O.Katz, E. Small, Y. Bromberg, Y. Silberberg, Focusing and compression of ultrashort
pulses through scattering media. Nat. Photonics 5, 372-377 (2011).

15. K. Si, R. Fiolka, M. Cui, Fluorescence imaging beyond the ballistic regime by ultrasound-
pulse-guided digital phase conjugation. Nat. Photonics 6, 657-661 (2012).

16. R.Horstmeyer, H. Ruan, C. Yang, Guidestar-assisted wavefront-shaping methods for
focusing light into biological tissue. Nat. Photonics 9, 563-571 (2015).

17. A.Boniface, J. Dong, S. Gigan, Non-invasive focusing and imaging in scattering media
with a fluorescence-based transmission matrix. Nat. Commun. 11, 6154 (2020).

18. S.Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, W. Choi, Deep optical imaging within
complex scattering media. Nat. Rev. Phys. 2, 141-158 (2020).

19. D. Aizik, I. Gkioulekas, A. Levin, Fluorescent wavefront shaping using incoherent iterative
phase conjugation. Optica 9, 746-754 (2022).

20. M. Horodynski, M. Kithmayer, A. Brandstotter, K. Pichler, Y. V. Fyodorov, U. Kuhl, S. Rotter,
Optimal wave fields for micromanipulation in complex scattering environments. Nat.
Photonics 14, 149-153 (2020).

21. LT.Leite, S.Turtaev, X. Jiang, M. Siler, A. Cuschieri, P. S. J. Russell, T. Cizmér, Three-
dimensional holographic optical manipulation through a high-numerical-aperture
soft-glass multimode fibre. Nat. Photonics 12, 33-39 (2018).

22. E.E.Morales-Delgado, L. Urio, D. B. Conkey, N. Stasio, D. Psaltis, C. Moser, Three-dimensional
microfabrication through a multimode optical fiber. Opt. Express 25, 7031-7045 (2017).

23. P.Delrot, D. Loterie, D. Psaltis, C. Moser, Single-photon three-dimensional
microfabrication through a multimode optical fiber. Opt. Express 26, 1766-1778 (2018).

24. G.Konstantinou, A. Boniface, D. Loterie, E. Kakkava, D. Psaltis, C. Moser, Improved
two-photon polymerization through an optical fiber using coherent beam shaping. Opt.
Lasers Eng. 160, 107232 (2023).

25. D.J.Richardson, J. M. Fini, L. E. Nelson, Space-division multiplexing in optical fibres. Nat.
Photonics 7,354-362 (2013).

100f 12

$20T ‘0¢ 3snSny uo A3o[ouyos] JO AMINSU] $}IOSNYILSSEIA] J& S10°00USI0S MMM //:sd1iy WOy papeo[umMo(]



SCIENCE ADVANCES | RESEARCH ARTICLE

26.

27.

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Yu and You, Sci. Adv. 10, eadn2846 (2024)

H. Ruan, J. Xu, C. Yang, Optical information transmission through complex scattering
media with optical-channel-based intensity streaming. Nat. Commun. 12, 2411 (2021).
S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, Measuring the
transmission matrix in optics: An approach to the study and control of light propagation
in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

P. Pai, J. Bosch, M. Kithmayer, S. Rotter, A. P. Mosk, Scattering invariant modes of light in
complex media. Nat. Photonics 15, 431-434 (2021).

Z.Yaqoob, D. Psaltis, M. S. Feld, C. Yang, Optical phase conjugation for turbidity
suppression in biological samples. Nat. Photonics 2, 110-115 (2008).

D. Feldkhun, O.Tzang, K. H. Wagner, R. Piestun, Focusing and scanning through scattering
media in microseconds. Optica 6, 72-75 (2019).

Z.Cheng, C. Li, A. Khadria, Y. Zhang, L. V. Wang, High-gain and high-speed wavefront
shaping through scattering media. Nat. Photonics 17, 299-305 (2023).

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, N. Davidson,
Real-time wavefront shaping through scattering media by all-optical feedback. Nat.
Photonics 7,919-924 (2013).

P. Lai, L. Wang, J. W.Tay, L. V. Wang, Photoacoustically guided wavefront shaping for
enhanced optical focusing in scattering media. Nat. Photonics 9, 126-132 (2015).

T. Yeminy, O. Katz, Guidestar-free image-guided wavefront shaping. Sci. Adv. 7, eabf5364
(2021).

N. C. Pégard, A. R. Mardinly, I. A. Oldenburg, S. Sridharan, L. Waller, H. Adesnik,
Three-dimensional scanless holographic optogenetics with temporal focusing (3d-shot).
Nat. Commun. 8, 1228 (2017).

H. Ruan, J. Brake, J. E. Robinson, Y. Liu, M. Jang, C. Xiao, C. Zhou, V. Gradinaru, C. Yang,
Deep tissue optical focusing and optogenetic modulation with time-reversed
ultrasonically encoded light. Sci. Adv. 3, eaa05520 (2017).

H. Cao, T. Cizmar, S. Turtaev, T. Tyc, S. Rotter, Controlling light propagation in multimode
fibers for imaging, spectroscopy, and beyond. Adv. Opt. Photonics 15, 524-612 (2023).

B. Rahmani, D. Loterie, E. Kakkava, N. Borhani, U. Tegin, D. Psaltis, C. Moser, Actor neural
networks for the robust control of partially measured nonlinear systems showcased for
image propagation through diffuse media. Nat. Mach. Intell. 2, 403-410 (2020).

M. PI&schner, T. Cizmér, Compact multimode fiber beam-shaping system based on GPU
accelerated digital holography. Opt. Lett. 40, 197-200 (2015).

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, C. Moser, Multimode optical fiber
transmission with a deep learning network. Light Sci. Appl. 7, 69 (2018).

0.Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, R. Piestun, Wavefront shaping in
complex media with a 350 kHz modulator via a 1d-to-2d transform. Nat. Photonics 13,
788-793 (2019).

W.-H. Lee, Binary synthetic holograms. Appl. Opt. 13, 1677-1682 (1974).

D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, High-speed scattering medium
characterization with application to focusing light through turbid media. Opt. Express 20,
1733-1740 (2012).

S. A. Goorden, J. Bertolotti, A. P. Mosk, Superpixel-based spatial amplitude and phase
modulation using a digital micromirror device. Opt. Express 22, 17999-18009 (2014).

F. Zamkotsian, G. Pariani, R. Alata, L. Oggioni, P. Lanzoni, C. Bertarelli, A. Bianco, The island cgh,
a new coding scheme: Concept and demonstration. Opt. Express 27, 26446-26458 (2019).

G. Zheng, R. Horstmeyer, C. Yang, Wide-field, high-resolution fourier ptychographic
microscopy. Nat. Photonics 7, 739-745 (2013).

A. B. Ayoub, D. Psaltis, High speed, complex wavefront shaping using the digital
micro-mirror device. Sci. Rep. 11, 18837 (2021).

B. Lee, D. Yoo, J. Jeong, S. Lee, D. Lee, B. Lee, Wide-angle speckleless dmd holographic
display using structured illumination with temporal multiplexing. Opt. Lett. 45,
2148-2151 (2020).

D. B. Flaes, H. Stolzové, T. Cizmar, Time-averaged image projection through a multimode
fiber. Opt. Express 29, 28005-28020 (2021).

B.Lee, D.Kim, S. Lee, C. Chen, B. Lee, High-contrast, speckle-free, true 3d holography via
binary cgh optimization. Sci. Rep. 12, 2811 (2022).

M. H. Eybposh, N. W. Caira, M. Atisa, P. Chakravarthula, N. C. Pégard, Deepcgh: 3D
computer-generated holography using deep learning. Opt. Express 28, 26636-26650 (2020).
D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, Focusing light through
random photonic media by binary amplitude modulation. Opt. Express 19, 4017-4029 (2011).
X. Zhang, P. Kner, Binary wavefront optimization using a genetic algorithm. J. Opt. 16,
125704 (2014).

M. Mirhosseini, O. S. Magaia-Loaiza, C. Chen, B. Rodenburg, M. Malik, R. W. Boyd, Rapid
generation of light beams carrying orbital angular momentum. Opt. Express 21,
30196-30203 (2013).

A. Georgieva, A. V. Belashov, N. V. Petrov, Optimization of dmd-based independent
amplitude and phase modulation by analysis of target complex wavefront. Sci. Rep. 12,
7754 (2022).

T.Tu¢kova, M. Siler, D. E. B. Flaes, P. J&kl, S. Turtaev, S. Kratky, R. Heintzmann, H. Uhlitov4,
T. Cizmar, Computational image enhancement of multimode fibre-based holographic
endo-microscopy: Harnessing the muddy modes. Opt. Express 29, 38206-38220 (2021).

3July 2024

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

G. W. Stroke, Lensless fourier-transform method for optical holography. Appl. Phys. Lett. 6,
201-203 (1965).

W. B. Johnson, J. Lindenstrauss, Extensions of lipschitz mappings into a hilbert space.
Contemp. Math. 26, 189-206 (1984).

E.J. Candes, T. Tao, Near-optimal signal recovery from random projections: Universal
encoding strategies? IEEE Trans. Inf. Theory 52, 5406-5425 (2006).

E.J. Candes, M. B. Wakin, An introduction to compressive sampling. IEEE Signal Process.
Mag. 25,21-30 (2008).

R.W. Gerchberg, A practical algorithm for the determination of phase from image and
diffraction plane pictures. Optik 35, 237-246 (1972).

T. Cizmar, K. Dholakia, Shaping the light transmission through a multimode optical fibre:
Complex transformation analysis and applications in biophotonics. Opt. Express 19,
18871-18884 (2011).

J. Zhang, N. Pégard, J. Zhong, H. Adesnik, L. Waller, 3d computer-generated holography
by non-convex optimization. Optica 4, 1306-1313 (2017).

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet,

1. Carron, Imaging with nature: Compressive imaging using a multiply scattering
medium. Sci. Rep. 4, 5552 (2014).

A. Saade, F. Caltagirone, |. Carron, L. Daudet, A. Drémeau, S. Gigan, F. Krzakala, Random
projections through multiple optical scattering: Approximating kernels at the speed of
light. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) pp. 62156219 (2016).

E. Peli, Contrast in complex images. J. Opt. Soc. Am. A 7, 2032-2040 (1990).

S.Turtaey, I.T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, T. Cizmar, Comparison of
nematic liquid-crystal and dmd based spatial light modulation in complex photonics.
Opt. Express 25, 29874-29884 (2017).

S.Li, C. Saunders, D. J. Lum, J. Murray-Bruce, V. K. Goyal, T. Cizmér, D. B. Phillips,
Compressively sampling the optical transmission matrix of a multimode fibre. Light Sci.
Appl. 10, 88 (2021).

P.Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schérer, R. W. Friedrich, High-resolution optical
control of spatiotemporal neuronal activity patterns in zebrafish using a digital
micromirror device. Nat. Protoc. 7, 1410-1425 (2012).

N. Farah, A. Levinsky, I. Brosh, I. Kahn, S. Shoham, Holographic fiber bundle system for
patterned optogenetic activation of large-scale neuronal networks. Neurophotonics 2,
045002 (2015).

L.V. Amitonova, J. F. de Boer, Compressive imaging through a multimode fiber. Opt. Lett.
43,5427-5430 (2018).

K. Abrashitova, L. V. Amitonova, High-speed label-free multimode-fiber-based
compressive imaging beyond the diffraction limit. Opt. Express 30, 10456-10469 (2022).
G. Calisesi, A. Ghezzi, D. Ancora, C. D’Andrea, G. Valentini, A. Farina, A. Bassi,
Compressed sensing in fluorescence microscopy. Prog. Biophys. Mol. Biol. 168, 66-80
(2022).

M. Stibarek, P. Ondrackova, T. Tu¢kova, S. Turtaev, M. Siler, T. Pikélek, P. J4kl, A. Gomes,

J. Krej¢i, P. Kolbabkova, H. Uhlitova, T. Cizmar, 110 pm thin endo-microscope for
deep-brain in vivo observations of neuronal connectivity, activity and blood flow
dynamics. Nat. Commun. 14, 1897 (2023).

U. Ktrtim, P. R. Wiecha, R. French, O. L. Muskens, Deep learning enabled real time speckle
recognition and hyperspectral imaging using a multimode fiber array. Opt. Express 27,
20965-20979 (2019).

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, R. Piestun, Real-time resilient focusing
through a bending multimode fiber. Opt. Express 21, 12881-12887 (2013).
S.Li,S.A.R.Horsley, T. Tyc, T. Cizmar, D. B. Phillips, Memory effect assisted imaging
through multimode optical fibres. Nat. Commun. 12,3751 (2021).

W.-Y. Chen, M. O'Toole, A. C. Sankaranarayanan, A. Levin, Enhancing speckle statistics for
imaging inside scattering media. Optica 9, 1408-1416 (2022).

R.Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B 58,
267-288 (1996).

A.D. Gomes, S. Turtaev, Y. Du, T. Cizmar, Near perfect focusing through multimode fibres.
Opt. Express 30, 10645-10663 (2022).

D. Fradkin, D. Madigan, Experiments with random projections for machine learning, in
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (ACM, 2003), pp. 517-522.

F.Yang, S. Liu, E. Dobriban, D. P. Woodruff, How to reduce dimension with pca and
random projections? IEEE Trans. Inf. Theory 67, 8154-8189 (2021).

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, C. Yang, Translation
correlations in anisotropically scattering media. Nat. Phys. 11, 684-689 (2015).

S. Kaski, “Dimensionality reduction by random mapping: Fast similarity computation for
clustering”in 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE
World Congress on Computational Intelligence (Cat. No.98CH36227) (IEEE, 1, vol.1, 1998),
pp.413-418.

L. Streich, J. C. Boffi, L. Wang, K. Alhalaseh, M. Barbieri, R. Rehm, S. Deivasigamani,

C.T. Gross, A. Agarwal, R. Prevedel, High-resolution structural and functional deep brain

110f12

$20T ‘0¢ 3snSny uo A3o[ouyos] JO AMINSU] $}IOSNYILSSEIA] J& S10°00USI0S MMM //:sd1iy WOy papeo[umMo(]



SCIENCE ADVANCES | RESEARCH ARTICLE

imaging using adaptive optics three-photon microscopy. Nat. Methods 18, 1253-1258
(2021).

86. D.P.Kingma, J. Ba, Adam: A method for stochastic optimization. 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (ICLR, 2015).

Acknowledgments: We would like to express our sincere gratitude to M. Villiger and
S.-Y. Lee for valuable insights and guidance on the optical system setup and technical
issues. We also extend our appreciation to K. Monakhova for providing constructive
comments on an earlier version of the manuscript that greatly improved its clarity and
quality. Funding: This project has been made possible in part by MathWorks Fellowship
and Shannon Fellowship (L.-Y.Y.), Scialog Advanced Bioimaging Award 27995, Jameel
Clinic, and a grant from 5022-Chan Zuckerberg Initiative DAF, an advised fund of Silicon

Yu and You, Sci. Adv. 10, eadn2846 (2024) 3 July 2024

Valley Community Foundation. Author contributions: Conceptualization: L.-Y.Y. and S.Y.
Methodology: L.-Y.Y. Investigation: L.-Y.Y. Visualization: L.-Y.Y. Supervision: S.Y. Funding
acquisition: S.Y. Writing—original draft: L.-Y.Y. and S.Y. Writing—review and editing: L.-Y.Y.
and S.Y. Competing interests: The authors declare that they have no competing interests.
Data and materials availability: All data needed to evaluate the conclusions in the paper
are present in the paper and/or the Supplementary Materials. The codes for the
sparsity-constrained wavefront optimization are available at https://doi.org/10.5061/
dryad.wdbrv15wk.

Submitted 1 December 2023
Accepted 29 May 2024
Published 3 July 2024
10.1126/sciadv.adn2846

120f 12

$20T ‘0¢ 3snSny uo A3o[ouyos] JO AMINSU] $}IOSNYILSSEIA] J& S10°00USI0S MMM //:sd1iy WOy papeo[umMo(]


https://doi.org/10.5061/dryad.wdbrv15wk
https://doi.org/10.5061/dryad.wdbrv15wk

	High-fidelity and high-speed wavefront shaping by leveraging complex media
	INTRODUCTION
	RESULTS
	Sparsity constraint for DMD-based wavefront shaping
	Sparse-to-random transformation via complex media
	High-fidelity light shaping via sparsity-constrained optimization
	Extension to different complex media
	Extension to different target patterns

	DISCUSSION
	METHODS
	Sparsity-constrained wavefront optimization
	Simulation and implementation of Lee hologram method
	Experimental setup and characterization of TM

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


