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O P T I C S

High-fidelity and high-speed wavefront shaping by 
leveraging complex media
Li-Yu Yu and Sixian You*

High-precision light manipulation is crucial for delivering information through complex media. However, existing 
spatial light modulation devices face a fundamental speed-fidelity tradeoff. Digital micromirror devices have 
emerged as a promising candidate for high-speed wavefront shaping but at the cost of compromised fidelity due 
to the limited control degrees of freedom. Here, we leverage the sparse-to-random transformation through com-
plex media to overcome the dimensionality limitation of spatial light modulation devices. We demonstrate that 
pattern compression by sparsity-constrained wavefront optimization allows sparse and robust wavefront repre-
sentations in complex media, improving the projection fidelity without sacrificing frame rate, hardware complex-
ity, or optimization time. Our method is generalizable to different pattern types and complex media, supporting 
consistent performance with up to 89% and 126% improvements in projection accuracy and speckle suppression, 
respectively. The proposed optimization framework could enable high-fidelity high-speed wavefront shaping 
through different scattering media and platforms without changes to the existing holographic setups, facilitating 
a wide range of physics and real-world applications.

INTRODUCTION
Light scattering is ubiquitous in fog, biological tissues, and other com-
plex media with inhomogeneous and disordered structures, which 
prohibits direct access to the scene beyond a short transport mean free 
path, e.g., 100 μm in biological tissues (1–4). Over the past two de-
cades, precise manipulation of light has been demonstrated in and 
through various complex media, promising a wide range of applica-
tions in microendoscopy (5–10), noninvasive deep-tissue imaging 
(11–19), holographic optical tweezers (20, 21), microfabrication 
(22–24), and optical telecommunications (25, 26). The rapid progress 
in wavefront shaping in complex media can be partly attributed to the 
increasing availability and performance of spatial light modulation de-
vices such as liquid crystal–based spatial light modulators (LC-SLMs) 
and digital micromirror devices (DMDs). These devices compensate 
for the scattering process by generating conjugated light fields through 
transmission matrix (TM) inversion (5, 6, 11, 17, 27, 28), optical phase 
conjugation (time reversal) (13, 29–31), or iterative wavefront optimi-
zation (16, 19, 32–34). For applications that require light manipulation 
with high spatiotemporal precision, such as holographic optogenetics 
(35, 36), multimode fiber-based endoscopy (5–10), and holographic 
three-dimensional (3D) printing (22–24), high-speed and high-fidelity 
wavefront shaping through complex media is in high demand for fast 
and precise projection of optimized light fields.

However, almost any existing spatial light modulation devices 
have a fundamental tradeoff between speed and accuracy due to 
hardware limitations, including data transfer rates, driving voltages, 
and heat dissipation. This tradeoff between speed and accuracy is 
evinced by the competition between the frame rate, pixel count, and 
modulation depth in the spatial light modulation devices, resulting 
in dimensionality limitation in wavefront shaping problems (37). 
For example, LC-SLMs feature high-precision (8 to 12 bits) phase 
modulation and have been demonstrated for high-fidelity wavefront 
shaping in various complex media (6, 17, 28, 38–40), yet the frame 

rates are limited to 50 to 600 Hz. While a 350-kHz 1D SLM has been 
demonstrated for wavefront shaping in complex media (41), its high 
frame rate is at the cost of a total 1088 degrees of freedom, which 
limits the enhancement ratio and, consequently, the focusing quali-
ty. On the other hand, DMDs can achieve a frame rate of up to 
22 kHz enabled by a high-speed micro-electro-mechanical system, 
while the precision can be unsatisfactory for high-fidelity wavefront 
shaping due to the limited modulation depth (1 to 2 bits) in ampli-
tude. To enable high-precision wavefront shaping in high-speed ap-
plications, a wide variety of approaches, including the Lee hologram 
method (42, 43), the superpixel method (44), and the island algo-
rithm (45), have been proposed to convert a binary DMD pattern 
into a complex wavefront, which is commonly used in TM-based 
approaches.

Despite the development of holographic coding schemes for 
DMDs, the light shaping performance remains constrained by the 
speed-fidelity tradeoff that is ultimately dictated by the frame rate, 
pixel count, and pixel modulation depth of the spatial light modu-
lation devices, analogous to the space-bandwidth product in imag-
ing and holography (46). Such speed-fidelity tradeoff in wavefront 
shaping becomes pronounced for high-bandwidth signals, such as 
high-speed projection of complex patterns (38–40, 47–49), which 
approaches the intrinsic dimensionality limitation of the devices. 
To address the artifacts arising from the limited degrees of freedom 
of a single frame (binary pixel modulation depth), end-to-end (50) 
and deep learning–based methods (51) were proposed to take ad-
vantage of scientific understanding (mathematical models) or ob-
servations (training datasets) of a specific system to accommodate 
the underlying artifacts. However, these methods either require 
precise calibration of a specific forward model corresponding to a 
predefined system configuration or substantial training datasets 
from specific types of complex media, which makes these methods 
system- and data-dependent, limiting their generalizability to vari-
ous systems and complex media platforms. Fidelity can also be im-
proved by directly performing binary optimization (52, 53) of the 
binary mask (which is nondifferentiable) for the entire DMD frame, 
which is at the cost of considerable computational complexity and 
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convergence to suboptimal solutions. To compensate for the limit-
ed modulation depth of a single frame in a more system- and data-
agnostic way, temporal multiplexing (47, 49) has been exploited to 
remedy the low projection quality but at the cost of a roughly 10-
fold reduction in the frame rate. An alternative approach, that is 
also system- and data-agnostic yet at the full frame rate, is the utili-
zation of the phase-only constraint in DMD-based wavefront shap-
ing techniques. This method involves optimizing the wavefront 
using only the phase information, while the amplitude is set to a con-
stant value. Optimizing the wavefront with a phase-only constraint is 
one of the most popular and successful methods in computer-
generated holography, microscopy, and wavefront shaping in com-
plex media using phase-only SLMs. While this approach has been 
successfully demonstrated on DMDs (7, 8, 43), it omits the possibil-
ity of simultaneous amplitude and phase modulation (54, 55) and 
could be susceptible to ill-posedness and ill-conditionedness of the 
inverse problem without proper regularization (10, 56), leading to 
suboptimal inverse solutions with limited projection fidelity.

To fill this gap, we leverage the intrinsic random multiplexing in 
complex media to remedy the dimensionality limitation problem of 
spatial light modulation devices, allowing for a sparse and robust 
wavefront representation to achieve high-fidelity projection through 
complex media at a full DMD frame rate. We propose a sparsity-
constrained optimization framework that accounts for two physical 
properties: (i) the limited degrees of freedom of spatial light modu-
lation devices and (ii) the sparse-to-random transformation caused 
by the light scattering in complex media (Fig. 1A). To overcome the 
speed-fidelity tradeoff, we investigate the underlying limitations of 
DMD-based wavefront shaping and the sparse representations of 
wavefronts in a random basis provided by complex media, yielding 
a robust and efficient optimization framework that enables high-
fidelity projection of high-bandwidth signals without compromis-
ing the frame rate (Fig. 1B and the “Sparsity-constrained wavefront 
optimization” section). By incorporating the dimensionality limita-
tion through l1 regularization, our approach demonstrates consis-
tently higher-fidelity projections across different types of complex 
media, showing up to an 89% increase in projection accuracy and a 
126% improvement in speckle suppression through graded-index 
multimode fibers, step-index multimode fibers, and diffusers at the 
speed of 22 kHz.

RESULTS
Sparsity constraint for DMD-based wavefront shaping
In experiments, we observe that DMDs show higher fidelity when 
the targets are sparser in the Fourier plane due to the limited de-
grees of freedom (Fig. 2C and fig. S1). To gain quantitative insight 
into the relationship between the wavefront fidelity and the spar-
sity in the Fourier plane, we conduct a simulation and an experi-
ment (see the “Simulation and implementation of Lee hologram 
method” section for implementation details) of DMD-based wave-
front shaping using the Lee hologram method (42, 43) in a Fourier 
domain setup without complex media, similar to Fourier trans-
form holography (Fig. 2A) (57). Here, we use the number of foci in 
the Fourier plane of a wavefront (M) to evaluate the wavefront 
sparsity. The simulation result in Fig. 2B illustrates that projecting 
more foci in the Fourier plane simultaneously leads to a decreased 
projection quality, which is in agreement with the experimental 
result shown in Fig. 2C and fig. S1. Note S1 details a simplified 

theoretical explanation for our experimental observations by de-
riving the wavefront error as a result of the limited control degrees 
of freedom of DMDs. These observations and analyses demon-
strate the intrinsic tradeoff between fidelity and the complexity 
(i.e., bandwidth) of the pattern projected by DMDs. Because of the 
preference of sparse patterns, such dimensionality limitation of 
DMD-based wavefront shaping can be potentially described by the 
sparsity of the wavefront in the Fourier plane. Compared to phase-
only and binary constraints, incorporating the intrinsic sparsity 
constraint of the hardware as a l1 minimization offers a balance 
between experimental projection fidelity and numerical optimali-
ty. It allows wavefronts with nonuniform amplitude distributions 
while being a practical solution for DMDs. In addition, the spar-
sity constraint in the form of l1 minimization can potentially converge 
better and faster, which will be important for noisy measurements and 
applications that requires short precomputing time as we will discuss 
in the “High-fidelity light shaping via sparsity-constrained optimiza-
tion” section. Now that we gain quantitative and physical insights into 
the sparsity constraints for DMD-based wavefront shaping, next, we 
investigate how to build on these insights in the optimization frame-
work to enable high-fidelity high-speed light manipulation through 
complex media in the following sections.

Sparse-to-random transformation via complex media
Given the observation that higher fidelity is associated with lower 
bandwidth (sparse) targets (Fig. 2, B and C, and fig. S1), we seek a 
way to convert the high-bandwidth signals (arbitrary, generic pat-
terns) to low-bandwidth ones to accommodate the sparsity con-
straint of DMDs. We find that, rather than being detrimental to 
precise wavefront shaping, complex media can support sparse rep-
resentations of generic patterns in a random basis defined by a set of 
speckle patterns, which we refer to as the sparse-to-random trans-
formation in this article. The theoretical foundation of the sparse-
to-random transformation is attributable to the theory of random 
projections for dimensionality reduction (58). This property, to-
gether with l1 minimization, allows the recovery of a generic pattern 
through scattering by a relatively sparse and robust wavefront at the 
input end, which overcomes the hardware sparsity constraint of 
DMDs (Fig. 2, D and E). These key insights are consistent with the 
theory of compressive sensing [incoherence and random sensing 
(59, 60)] and have been supported by the numerical and experimen-
tal observations (Fig. 2, D and E, and fig. S2) that patterns are com-
pressible in the random basis provided by scattering media.

Consistent with the results in Fig. 2 (B and C), without the 
complex media, the simulated projection quality is poor due to the 
dimensionality limitation of DMDs shown in the simulation in 
Fig. 2D. However, using the same number of foci in the Fourier 
plane (i.e., same M), the light shaping fidelity in the output plane is 
substantially improved with the addition of complex media with a 
sampling ratio M/N = 1.0 (defined as the ratio between the number 
of foci M and the total number of the input modes N). Note that the 
number of foci is equivalent to the number of nonzero input modes 
generated by the wavefront in the presence of complex media. Such 
enhancement in the shaping fidelity is experimentally validated in 
Fig.  2E. Moreover, this sparse-to-random transformation is more 
pronounced in complex media with stronger scattering, leading to 
considerable enhancements in the quality of the dense pattern pro-
jection (Fig.  2E and fig.  S3). To investigate the effectiveness of a 
sparse input in generating generic images, we progressively decrease 
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the sampling ratio and compare the performance with the reference 
image directly generated from the inverse solution. Figure 2D shows 
that reduction of input modes does not necessarily lead to reduction 
of projection accuracy, and a relatively low sampling ratio is suffi-
cient to yield an image of comparable quality to the reference image 
(around 0.25 in this example). A few more numerical examples of 
pattern compression in the random basis provided by complex me-
dia are shown in fig. S2. These numerical and experimental results 
show that (i) most patterns are compressible using the random basis 
provided by the complex media, and (ii) the sparse-to-random 
transformation of the complex media, together with l1 minimiza-
tion, allows sparse reconstruction of generic patterns, which conve-
niently compensates for the dimensionality limitation of DMDs. 
Note S2 details a more thorough analysis and discussion on the pat-
tern compression property of complex media.

High-fidelity light shaping via 
sparsity-constrained optimization
By leveraging the sparse-to-random transformation in complex me-
dia, we propose a sparsity-constrained optimization framework which 
incorporates the dimensionality limitation of devices in the form of l1 
regularization (Fig. 1B and the “Sparsity-constrained wavefront opti-
mization” section). We test the performance of the sparsity-constrained 
optimization framework (referred to as GD + L1) in the experimental 
setup shown in fig. S5 (see the “Experimental setup and characteriza-
tion of transmission matrix” section for more details) using a graded-
index multimode fiber (GIF50C, Thorlabs) as the complex medium 
and compare it with two commonly used methods: Gerchberg-Saxton 
(GS) algorithm (61, 62) with phase-only constraint at the conjugate 
plane of the DMD and gradient descent (GD) method (50, 63) without 
constraints. The implementation details of three methods are provided 

Fig. 1. Design principle of sparsity-constrained light shaping through complex media. (A) The challenge of achieving arbitrary light manipulation in complex media 
can be addressed by recognizing and leveraging two physical properties in the optimization framework: the dimensionality limitation of wavefront shaping and the 
sparse-to-random transformation of complex media. (B) The wavefront optimization problem in complex media involves optimizing the pattern displayed on a spatial 
light modulation device to generate a given target pattern in or through a scattering medium. To achieve high-fidelity pattern projection at a full frame rate, a sparsity 
constraint in the Fourier plane of the DMD is introduced through l1 regularization as a physics prior, which leverages the fact that patterns are compressible in a random 
basis provided by complex media to overcome the limited control degrees of freedom.
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in notes S3 and S4. The sparsity-constrained optimization consistently 
outperforms the GS algorithm and the GD method for various targets 
(Figs. 3A and 4), achieving considerably higher-fidelity light manipu-
lation through the fiber (higher accuracy and better speckle suppres-
sion; see the “Extension to different complex media” and the “Extension 
to different target patterns” sections for more details).

Here, we dive in the graded-index multimode fiber experiment 
to gain quantitative insights into why sparsity-constrained optimi-
zation yields considerably better results and why this can be po-
tentially extended to almost any existing DMD-based wavefront 
shaping systems, different complex media types, and different light 
manipulation target pools. The root cause of the improvement can 

Fig. 2. Numerical and experimental illustration of the sparsity constraint of wavefront shaping and the sparse-to-random transformation of complex media. (A) 
Schematics illustrating sparsity-constrained DMD-based wavefront shaping. Without scattering, the set of attainable wavefronts is limited by the degrees of freedom of 
the DMD, which can be expressed as a sparsity constraint in the Fourier domain. However, this dimensionality limitation can be overcome by the sparse-to-random trans-
formation through a complex medium, which supports a sparse representation of a generic pattern in a random basis. (B) Simulation of wavefront shaping in the Fourier 
plane without scattering. The wavefront mean squared error (MSE) increases with a larger number of foci (M). The number of foci in the Fourier plane represents the 
wavefront sparsity and is equivalent to the number of nonzero input modes in the presence of complex media. Ten different random distributions of foci are simulated, 
and the resulting MSE is averaged. (C) Experimental results of different pattern sparsity in the Fourier plane using the Lee hologram method. (D) Simulation of pattern 
reconstruction with different sampling ratios (the fraction of the number of input modes) through a diffuser. (E) Experimental results of wavefront shaping in media with 
different levels of scattering strength, including free space and a diffuser with 1500 and 600 grit polishes (DG10-1500 and DG10-600, Thorlabs, respectively). Scale bars, 
10 μm.

D
ow

nloaded from
 https://w

w
w

.science.org at M
assachusetts Institute of Technology on A

ugust 30, 2024



Yu and You﻿, Sci. Adv. 10, eadn2846 (2024)     3 July 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

5 of 12

be dissected from three perspectives. First, from the perspective of 
compressive sensing, generic patterns are compressible in a random 
basis (59, 60), and complex media provides a natural platform as an 
analogue randomizing compressor (64, 65) (for more examples, see 
fig. S2). Thus, transforming a wavefront by a random matrix togeth-
er with l1 minimization is an effective compression strategy for a 
wide variety of patterns through complex media.

Second, from the perspective of DMD shaping fidelity, the in-
herent limitation of DMDs can be approximated by the number 
of nonzero modes in the Fourier domain (Fig. 2, B and C, and 
note S1), which fits well with the l1 minimization of the com-
pression strategy. Our objective function leverages this synergy 
between the sparse representation of solutions and the dimen-
sionality limitation of wavefront shaping. The random property 
of complex media allows the conversion of a high-bandwidth sig-
nal to a low-bandwidth one in a random basis with a sampling 
rate far below the Nyquist sampling rate. Such sparsity perfectly 
remedies the dimensionality limitation of DMDs, and these two 
properties can be seamlessly combined and efficiently solved in 
the shared domain of the Fourier plane of the DMD and the input 
plane of scattering media. Such synergy results in better solution 
optimality (i.e., wavefront shaping fidelity) and better solution 
feasibility (i.e., the consistency between the predicted outputs and 
the experimental outputs), as presented in Fig. 3A. A comprehensive 

discussion on the tradeoff between the solution feasibility and op-
timality is entailed in note S5.

Third, from the perspective of robustness and practicality, com-
pared to other constraints (e.g., phase-only or binary), l1 minimiza-
tion has the theoretical guarantee that it can stably and accurately 
reconstruct nearly sparse signals from markedly undersampled data 
in an incoherent domain (60). Figure 3B illustrates the robustness of 
this sparsity-constrained optimization method, of which the mean 
squared error (MSE) curves consistently descend and converge in 
both the simulation and the experiment. This is in contrast to the GS 
method, which achieves less effective convergence due to the unnec-
essarily strong phase-only constraint, and the GD method, which 
obtains inconsistent simulated and experimental results because it 
overlooks the hardware constraint (for a detailed discussion, see note 
S5). Besides the robustness, this simple objective function also has a 
closed-form expression of its gradient, which promises high-speed, 
high-fidelity wavefront shaping without the cost of high computa-
tional complexity. A derivation of the gradient of the loss function is 
entailed in note S4, and a detailed analysis of the computational time 
can be found in note S6.

Extension to different complex media
To show its broad applicability, we test our method on different types 
of complex media, including graded-index multimode fibers (GIF50C, 

Fig. 3. Analysis of the projection performance of the sparsity-constrained optimization. (A) Simulation and experimental results of projection through a graded-
index multimode fiber (GIF50C, Thorlabs). (B) Optimization curves in simulation and experiment. The sparsity-constrained method (GD + L1) achieves consistent high-
quality fiber output in simulation and experiment, which is attributed to the sparse representation it finds in the random basis provided by the complex medium [i.e., the 
predicted fiber input in (A)]. The scale bars for experimental outputs, predicted fiber inputs, and predicted fiber outputs are 10 μm, and the scale bar for wavefront inverse 
solutions is 1 mm.
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Thorlabs), step-index multimode fibers (FG050LGA, Thorlabs), and 
diffusers (DG10-600, Thorlabs). We use the same experimental setup 
for all three experiments, as shown in fig. S5. The experimental TM of 
each medium is characterized as described in the “Experimental setup 
and characterization of transmission matrix” section. After calibrating 
the TMs, we optimize the projections through each medium using 
the three methods described in the “High-fidelity light shaping via 
sparsity-constrained optimization” section. The implementation de-
tails of the optimization are provided in note S3. Despite differences in 
the underlying scattering mechanisms, the proposed method demon-
strates consistent improvements in the projection quality in Fig. 4 and 
Table 1 by leveraging the sparse-to-random transformation exhibited 
in all three media to overcome the dimensionality limitation of wave-
front shaping. The proposed method shows a substantial improvement 
of up to 2.73 dB in peak signal-to-noise-ratio (PSNR), which translates 
to an 89% enhancement in projection accuracy. A complete panel of 
the projected images in Table 1 can be found in fig. S11 and table S1. To 
characterize the effectiveness of the proposed method in reducing 
background speckle noise in the projected images, we calculate the 
speckle suppression in Table 1, which is defined as the ratio of the light 
intensity of the foreground and background. It is also referred to as 
Weber contrast in visual perception and imaging processing (66). The 
proposed method achieves a remarkable enhancement of speckle sup-
pression up to 126% compared to the other two methods. Such consis-
tent improvement in different types of complex media demonstrates 
the generalizability of the proposed method, and it can be readily ad-
opted for various light manipulation projects involving complex media.

Extension to different target patterns
In Fig. 5, we generate diffraction-limited foci through a graded-
index fiber (GIF50C, Thorlabs), which is an important application 

in endoscopic imaging. Compared to standard matrix inversion 
method with phase-only conjugate wavefronts (67), our method ef-
fectively suppresses the residual field in the background region and 
achieves a slightly higher focusing efficiency. This is consistent with 
the discussion in the “High-fidelity light shaping via sparsity-
constrained optimization” section that our method effectively iden-
tifies the sparse and robust representations of generic patterns in 
the random basis. The relatively small improvement is owing to the 
already sparse solution in the random speckle basis, which is also 
the fiber input domain, for a diffraction-limited point as shown in 
fig. S3. For a more complicated pattern of which the inverse solu-
tion is denser in the random speckle basis (e.g., the second row in 
fig. S3), the effect of imposing a proper sparsity constraint in the 
optimization is substantial. In addition to diffraction-limited point 
focusing, we also demonstrate a wide variety of masks and patterns 
that can be applied in holographic optogenetics, compressive imag-
ing, and optical communications through scattering, as illustrated 
in Figs. 6 and 7. In all of the examples, our method achieves a con-
sistent improvement throughout with a higher image contrast and 
lower speckle noise.

DISCUSSION
The presented results demonstrate that the proposed sparsity-
constrained wavefront optimization framework can substantially en-
hance the projection quality across various types of complex media. It 
is worth noting that our method shares a resemblance with compres-
sive sensing using random matrices together with l1 minimization for 
sparse signal recovery (60). Complex media serve as a natural, non-
engineered randomizer for encoding wavefront information (64, 65) 
in a low-dimensional space composed of random speckles. Finding 

Fig. 4. Experimental demonstration of enhanced projection quality in different complex media. (A) Graded-index multimode fiber. (B) Step-index multimode fiber. 
(C) Diffuser. Scale bars, 10 μm.
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this sparse representation is the key to achieving high-fidelity wave-
front shaping with limited degrees of freedom. Our method success-
fully leverages the intrinsic dimensionality limitation of DMDs and 
pattern compression by the sparse-to-random transformation through 
complex media, yielding substantially enhanced projection fidelity 
with single-shot wavefront shaping. Notably, the concept of sparsity 

here is twofold: (i) the dimensionality limitation of spatial light modu-
lation devices and (ii) the low-dimensional representations of generic 
patterns in the random basis formed by complex media. It differs from 
the definition in the propagation invariant mode domain that the in-
termodal coupling is limited to the adjacent modes in multimode 
fibers (68). Subsequently, we discuss the advantages of our method, 

Table 1. Quantitative evaluation of projection quality through various complex media. The average peak signal-to-noise ratio (PSNR), multiscale structural 
similarity (MS-SSIM), and Weber contrast values are computed on the target patterns shown in fig. S11. Bolded values highlight performance improvement. 
GI-MMF, graded-index multimode fiber; SI-MMF, step-index multimode fiber. The breakdown results are entailed in table S1.

GI-MMF SI-MMF Diffuser

GS GD GD + L1 GS GD GD + L1 GS GD GD + L1

PSNR 16.44 15.09 17.48 16.20 15.65 17.60 15.63 15.20 18.39

MS-SSIM 0.66 0.50 0.73 0.58 0.50 0.65 0.44 0.38 0.62

WC* 9.47 6.13 15.01 4.68 4.18 7.19 4.09 4.66 9.24

*Weber contrast (WC) is defined as (I − Ib)/Ib (66), where I and Ib are the luminance of the foreground and the background, respectively.

Fig. 5. Diffraction-limited foci through a graded-index multimode fiber. Three exemplary foci at different locations are demonstrated using different methods: Inv 
(phase), matrix inversion with phase-only wavefronts. GD + L1, sparsity-constrained optimization method. The insets are the corresponding log-scale images. The values 
are the average power ratio (80) of 77 foci on a grid with a 5 μm spacing at the distal end. Scale bars, 10 μm.
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followed by its potential limitations, in the context of real-world 
applications.

First, the problem we intend to solve in this work is the intrinsic 
tradeoff of hardware performance, speed, and fidelity, in holographic 
wavefront shaping stemming from the dimensionality limitation. In 
other words, we aim to address the system bandwidth limit deter-
mined by the spatiotemporal complexity, i.e., the capability of gener-
ating complex spatial wavefronts with a high temporal resolution. 
Our optimization framework achieves high-fidelity projection of 
complex patterns at DMD’s full frame rate via pattern compression by 
the complex media. The high-fidelity projection of complex patterns 
at submillisecond and micrometer-level spatiotemporal resolution 
could potentially amplify a wide range of applications for monitoring 
or controlling targets dynamically, including optogenetics (35, 36, 51, 
69, 70), microfabrication (22–24), optical manipulation (20, 21), and 
compressive endoscopic imaging (9, 71–73). Alternatively, for appli-
cations that do not require such a high frame rate, the excess frame 
rate can be leveraged for extended projection depth in microscopy 
(74) or higher spectral resolution in hyperspectral imaging (75).

In addition, our method is computationally efficient due to its 
simple mathematical formulation compared to the alternative meth-
ods for generating high-bandwidth signals through complex media 
(e.g., phase retrieval algorithms, binary optimization, and neural 
networks). This means that the high-speed, high-fidelity perfor-
mance does not come with high computational complexity, making 
it a practical solution in the real-world applications. As bench-
marked in note S6, it takes 0.5 s to optimize 1000 target patterns 
with a low-end graphics processing unit. Although further accelera-
tion is required to grant “on-the-fly” computing for applications that 
require instant calibration (76), such precomputing speed and fidel-
ity enhancement at DMD’s full speed can be readily used for appli-
cations that demand higher spatiotemporal precision but show 
resilience to changes in TM, e.g., deep optogenetics and imaging in 
living animals (7, 69).

Besides, our method can be generalized to different system con-
figurations and types of complex media because it builds on two 
intrinsic properties—the dimensionality limitation of DMDs and 
pattern compression by complex media. By identifying and incor-
porating the sparsity constraints associated with limited degrees of 
freedom, our optimization framework can serve as a robust physics 
prior for dimensionality reduction of problems in combination with 
other methods such as temporal multiplexing, end-to-end methods, 
and deep learning–based methods. Such synergy is possible because 
our method approaches the problem by explicitly incorporating the 
dimensionality limitation into the wavefront optimization problem, 
making it a good complement to the existing wavefront shaping 
toolsets.

While our method has shown promising results, there is still 
room for further enhancement. First, the sparsity constraint in our 
approach approximates the wavefront error caused by limited am-
plitude modulation depth, but a real wavefront error also depends 
on the distribution of its angular spectrum as discussed in note S1. 
To improve the accuracy, one possible approach is to design a wave-
front loss function that considers the effect of spectrum distribu-
tion. Despite this limitation, the sparsity constraint has a strong 
merit in its simplicity, offering an elegant understanding of the di-
mensionality limitation of spatial light modulation devices and ease 
of implementation. Second, the method is based on the character-
ization of the TM, which is susceptible to perturbations especially in 
a dynamic system. With the recent advancement in the compressive 
sampling techniques based on memory effect (68, 77, 78) and single-
ended calibration techniques based on reciprocity-induced symme-
try (10), the characterization process can be considerably accelerated. 
In view of some slowly varying random scattering systems such as 
multimode fiber-based endoscopes in which the TM can sustain for 
hours and the calibration time is not the bottleneck (7), the speed-
up offered by our method remains beneficial. Last, compared to 
phase-only constraints, one inherent drawback of allowing complex 

Fig. 6. Potential applications of high-fidelity high-speed wavefront shaping through scattering. (A) Generation of masks for holographic optogenetics. (B) Genera-
tion of periodic patterns for compressive imaging (e.g., single-pixel imaging). MS-SSIM, multiscale structural similarity. Scale bars, 10 μm.
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wavefront solutions in optimization is the lower power efficiency 
due to the rejection of partial incident light on the DMD (fig. S8B). 
To improve power efficiency, one can increase the strength of the 
sparsity constraint in the optimization or penalize low efficiency by 
calculating the normalized power of the wavefront solution on the 
DMD plane ( ̂v  in Eq. 3). From the hardware perspective, this issue 
can be potentially mitigated by a higher laser power as DMDs have 
a high damage threshold.

METHODS
Sparsity-constrained wavefront optimization
As shown schematically in Fig. 1B, our proposed sparsity-constrained 
wavefront optimization method seeks to solve for an inverse solution 
x̂ that minimizes the loss function  given a desired projection 
pattern yt

The loss function  consists of two terms: a data fidelity term that 
penalizes the difference between the target projection pattern yt and 
the pattern y estimated by the forward model y = Tx and a physics 
prior term that represents the sparsity constraint through l1 regular-
ization, also known as LASSO regression (79)

The introduction of l1 regularization tends to suppress the coef-
ficients of the less representative features to zero. The resulting solu-
tion falls onto a low-dimension manifold and therefore has a sparse 
representation. This optimization problem can be solved using the 
GD method, and the inverse solution x̂ can be used to obtain the 
estimated wavefront v̂  in the image plane by performing an inverse 
Fourier transform

Here, (ξ, η) and (ξ′, η′) are Cartesian coordinates in the image 
plane and in the Fourier plane, respectively. Last, the estimated 
wavefront is encoded as a binary DMD hologram using the Lee ho-
logram method (54)

where ϕ(ξ, η) = Arg[v̂(ξ, η)] is the phase of the estimated wavefront, 
w(ξ, η) = arcsin

[
∣v̂∣

∣v̂∣max

]
 is the arcsine of the normalized amplitude, 

and k0 is the modulated carrier frequency determining the angle of 
the first diffraction order.

Simulation and implementation of Lee hologram method
The simulations of binary Lee holograms demonstrated in Fig. 2 (B and 
D) and figs.  S2 and S3 are constructed using scalar diffraction 
theory. To compute the wavefront in the Fourier plane generated by 

x̂ = argmin
x

(x; yt) (1)

(x; yt) =
1

2
��yt − �Tx���

2

2
+ λ‖x‖1 (2)

v̂(ξ, η) =ℱ
−1{x̂(ξ�, η�)} (3)

û(ξ, η) =
1

2
+

1

2
sgn

{
cos

[
k0 ⋅ (ξ + η) − ϕ(ξ, η)

]
− cos

[
w(ξ, η)

]}
(4)

Fig. 7. Experimental demonstration of gray-level image projection through scattering. The experiment involves testing 50 images extracted from the Fashion-MNIST 
dataset, with five examples from each of the 10 categories. Ten exemplary projected images are presented. Scale bar, 10 μm. Table 2 displays the quantitative evaluation 
of the projected image quality.

Table 2. Quantitative evaluation of projection quality of the Fashion-MNIST images through multimode fiber. Average PSNR and MS-SSIM of the 
Fashion-MNIST images that are projected using a graded-index multimode fiber. The values in the parentheses are the SD. Bolded values highlight performance 
improvement. 

Method GS GD GD + L1

PSNR 18.36 (2.89) 17.22 (2.95) 19.30 (3.13)

MS-SSIM 0.64 (0.09) 0.55 (0.09) 0.72 (0.10)
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a binary Lee hologram in the image plane, we perform two steps: (i) 
Fourier transform of the binary hologram and (ii) screening the 
field outside the aperture of the spatial filter centered at the first dif-
fraction order in the Fourier domain. Our simulations use a binary 
hologram with 512 × 512 pixels and a superpixel size of 4 × 4 in the 
Lee hologram method.

To model the transmission of light through a complex medium 
characterized by a TM as shown in Fig. 2D, we convert the simulated 
wavefront in the Fourier plane (ℱ{u(ξ, η)}) to the pixel-based in-
put mode domain of the TM by calculating the overlap integral with 
each input pixel mode ψi

where x = [x1, x2, …, xn]T is a vectorized input of the TM. In the pattern 
reconstruction simulation shown in Fig. 2D, the solutions are obtained 
by selecting the input modes with the M greatest absolute values of the 
coefficients and setting the remaining coefficients to zero.

The experimental setup of the Lee hologram method is depicted 
in fig. S5. The standard configuration consists of a DMD and a 4f 
system with a spatial filter located in the Fourier plane. We use the 
same parameters for the number of pixels and the size of superpixels 
as in our simulation. In our setup, we use an objective (OBJ1) to 
couple the wavefront into the complex medium. To observe the 
wavefront generated by the Lee hologram method in the Fourier 
plane, we remove the complex medium shown in fig. S5 and adjust 
two objectives to be confocal. To examine the image projection 
through complex media, we use the same setup as depicted in fig. S5.

Experimental setup and characterization of TM
In the experimental setup depicted in fig. S5, a 100-mW, 488-nm 
continuous-wave laser (Sapphire 488 SF NX, Coherent) is used for 
illumination. The laser beam is expanded by a 4f system (L1 and L2) 
with ×10 magnification to match a circular region of 7 cm in diam-
eter, equivalently 512 pixels, on the DMD (V-7001, Vialux). The Lee 
hologram method is applied to generate a predefined complex wave-
front in the first diffraction order, and the other diffraction orders 
are blocked with a spatial filter in the Fourier plane. An objective 
(RMS20X, Olympus) is used to focus the wavefront onto the input 
plane of a complex medium, and another objective (RMS10X, 
Olympus) collects the resulting speckle in the output plane. The 
speckle image is formed on a monochrome camera (Mako G-040B, 
Allied Vision) after passing through a 4f system (OBJ2 and L5) with 
×16.7 magnification. For the fibers used in the experiments (GIF50C 
and FG050LGA, Thorlabs), the length is approximately 15 cm.

To determine the TM of the complex medium, we perform raster 
scanning at the proximal end in the Fourier plane of the DMD and 
acquire the corresponding complex-field speckles at the distal end 
(27, 67). For each of the complex media used in the experiments, we 
scan 1941 foci with a spacing of 1.0 μm across a circular region with 
a diameter of 50 μm. To achieve a diffraction-limited beam during 
raster scanning, we calibrate the wavefront aberration caused by the 
DMD using Zernike polynomials of 20th order. The resulting speck-
les are split into two orthogonal linear polarization states by a beam 
displacer and measured using off-axis holography. To reduce phase 
instability, we measure a reference speckle to characterize and com-
pensate the temporal phase variation caused by environmental vi-
bration. Last, we combine the two submatrices associated with the 
two polarization states in the output to generate the TM.

Supplementary Materials
This PDF file includes:
Supplementary Notes S1 to S7
Figs. S1 to S12
Table S1
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