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Abstract

Magnetic field fluctuations measured in the heliosheath by the Voyager spacecraft are often characterized as
compressible, as indicated by a strong fluctuating component parallel to the mean magnetic field. However, the
interpretation of the turbulence data faces the caveat that the standard Taylor’s hypothesis is invalid because the
solar wind flow velocity in the heliosheath becomes subsonic and slower than the fast magnetosonic speed, given
the contributions from hot pickup ions (PUIs) in the heliosheath. We attempt to overcome this caveat by
introducing a 4D frequency-wavenumber spectral modeling of turbulence, which is essentially a decomposition of
different wave modes following their respective dispersion relations. Isotropic Alfvén and fast mode turbulence are
considered to represent the heliosheath fluctuations. We also include two dispersive fast wave modes derived from
a three-fluid theory. We find that (1) magnetic fluctuations in the inner heliosheath are less compressible than
previously thought, an isotropic turbulence spectral model with about 25% in compressible fluctuation power is
consistent with the observed magnetic compressibility in the heliosheath; (2) the hot PUI component and the
relatively cold solar wind ions induce two dispersive fast magnetosonic wave branches in the perpendicular
propagation limit, PUI fast wave may account for the spectral bump near the proton gyrofrequency in the
observable spectrum; (3) it is possible that the turbulence wavenumber spectrum is not Kolmogorov-like although
the observed frequency spectrum has a −5/3 power-law index, depending on the partitioning of power among the
various wave modes, and this partitioning may change with wavenumber.

Unified Astronomy Thesaurus concepts: Heliosheath (710); Interplanetary turbulence (830); Solar wind
termination (1535)

1. Introduction

The solar wind plasma interacts with the interstellar medium
and creates the heliospheric bubble (Parker 1961). Within the
heliosphere, the supersonic and super-Alfvénic solar wind
expands until it reaches the heliospheric termination shock
(HTS) where the solar wind flow decelerates and becomes
subsonic. The inner heliosheath is the region between the HTS
and the heliopause (HP; Zank 1999, 2015). The Voyager 1 and
2 spacecraft entered the inner heliosheath in 2004 and 2007,
respectively. Both Voyagers measured turbulent magnetic field
fluctuations during their journey across the heliosheath (e.g.,
Burlaga et al. 2008; Burlaga & Ness 2012; Fraternale et al.
2019). The turbulence in the inner heliosheath is often
characterized as compressible, as suggested by the observed
comparable parallel and perpendicular fluctuations with respect
to the mean magnetic field (e.g., Burlaga et al. 2006, 2014;
Richardson & Burlaga 2013; Fraternale et al. 2019; Zhao et al.
2019).

An important yet underappreciated caveat of turbulence
measurements in the heliosheath is that the standard Taylor’s
hypothesis is expected to be invalid. In the simplest terms,
Taylor’s hypothesis converts the observed timescale into a
length scale based on the flow velocity relative to the observer,
i.e., frequency Ω into wavenumber k, or k=Ω/U

(Taylor 1938). The underlying assumption is that the flow
velocity U is much larger than the characteristic propagation
speed of the fluctuations. According to measurements made by
the Voyager Plasma Science and Low-Energy Charged
Particles instruments, the flow velocity in the heliosheath is
about 150 km s−1 or less (e.g., Richardson & Decker 2014;
Cummings et al. 2021), which is slower than the typical fast
magnetosonic speed (e.g., > 200 km s−1) due to the dominant
pickup ion (PUI) pressure in the heliosheath (e.g., Zank et al.
2018). This is of course expected for the downstream fluid in
the shock frame. The Voyager spacecraft speed is ∼17 km s−1

and is ignored in this paper. Despite this fact, Taylor’s
hypothesis is still used in many investigations of Voyager
observations in the heliosheath. An argument that may be made
for using Taylor’s hypothesis is that the flow velocity is
approximately perpendicular to the mean magnetic field. Since
Alfvén and slow magnetosonic waves reduce to nonpropagat-
ing structures in the perpendicular propagation limit, it may be
argued that the flow velocity is still larger than the wave speed.
However, this is not a sufficient justification for Taylor’s
hypothesis, the reason being that waves do not propagate
perpendicular to the mean magnetic field exclusively. The
implicit application of Taylor’s hypothesis can lead to an
incorrect interpretation of the Voyager turbulence data. In the
inner heliosphere, e.g., near Earth orbit, the solar wind is
typically a low-β (ratio between thermal and magnetic
pressure) plasma. The “2D + slab” model suggests that
turbulence is dominated by the nonpropagating 2D structures,
whose wavevector is perpendicular to the mean magnetic field.
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This is based on the nearly incompressible magnetohydro-
dynamic (MHD) theory (e.g., Zank & Matthaeus 1992, 1993;
Zank et al. 2017) in the β= 1 or β∼ 1 limit. The heliosheath is
a high-beta plasma (β? 1) due to the dominant PUI thermal
pressure and thus turbulence in the heliosheath is not expected
to have a dominant 2D component due to the weak background
magnetic field. For parallel propagating waves, although the
wave propagation speed such as the Alfvén speed is
∼50 km s−1, which is slower than the typical flow velocity of
150 km s−1, it can still be comparable or larger than the flow
velocity parallel to the mean magnetic field. To summarize,
Taylor’s hypothesis is expected to break down for the Voyager
observations in the heliosheath due to two reasons: (i) the flow
velocity is slower than the speed of fast magnetosonic waves
propagating in all directions; and (ii) the parallel flow velocity
may also be slower than the Alfvén wave speed.

To overcome the limitation of Taylor’s hypothesis, Zhao
et al. (2024) presented a method based on models of the
frequency-wavenumber spectrum (or 4D ω−k spectrum) of
turbulence and applied the method to the inner heliosphere,
especially for regions close to the Sun where the solar wind
speed is comparable to the Alfvén speed. Their results show
that the full 4D description of turbulent fluctuations including
the effects of nonzero frequency has important consequences
for the spacecraft observed 1D reduced turbulence spectrum. In
this work, a similar method is applied to the heliosheath
observations. There are some important distinctions from the
previous work. Specifically, (1) fast magnetosonic modes and
Alfvén modes are both considered in the 4D spectral modeling
while Zhao et al. (2024) considered Alfvén waves and
nonpropagating structures; (2) the wavenumber spectrum is
assumed to be isotropic due to the high-beta environment of the
heliosheath; and (3) two dispersive fast wave mode branches
from the multifluid model of nonequilibrated PUIs, solar wind
ions, and electrons are included in the 4D spectrum modeling.
This paper is organized as follows. In Section 2, we introduce
the 4D turbulence spectral model applicable to the heliosheath.
In Section 3, we discuss the comparison between the derived
1D reduced observable spectra and Voyager observations in the
heliosheath. Section 4 provides a summary and discussion.

2. Method

As shown by Zhao et al. (2024) and Fredricks & Coroniti
(1976), the observed turbulence power spectrum can be related
to the 4D frequency-wavenumber spectrum via

k k UP P d kd, , 1obs
3ò w d w wW = W - -( ) ( ) ( · ) ( )

where Ω is the observed frequency (in the instrument frame), ω
is the fluctuation frequency in the plasma flow frame, U is the
flow velocity relative to the spacecraft, and k represents the
wavevector measured in the plasma flow frame. Intuitively,
Equation (1) means that the observed fluctuation at a given
frequency Ω is a superposition of wave modes with various
wavevectors and frequencies being Doppler shifted to the
observed frequency.

Based on Equation (1), the key to understand the observed
spectrum Pobs(Ω) is to model the 4D spectrum P(ω, k). The
standard Taylor’s hypothesis essentially means P(ω, k)= P(k)
and neglects the fluctuation intrinsic frequency. However, Zhao
et al. (2024) showed that the full 4D spectrum including the
effects of nonzero frequency has important consequences for

the observation of the turbulence spectrum when the wave
speed is comparable to the flow speed. Here, we follow the
method and model the 4D frequency-wavenumber spectrum by
convolution of the 3D wavenumber spectrum P(k) and the
frequency response function F(ω, k),

k k kP P F, , . 2w w=( ) ( ) ( ) ( )

The frequency response F(ω, k) can incorporate the effects of
both nonlinear broadening and the wave dispersion relations.
The sweeping model of Kraichnan (1964) suggests a Gaussian
broadening function (Bourouaine & Perez 2018), while recent
numerical simulations suggest a Lorentzian broadening func-
tion (Yuen et al. 2023). In these scenarios, the frequency
response function F(ω, k) can be characterized by either a
Gaussian or Lorentzian function, respectively, to describe the
broadening of the 4D power spectrum around the wave
resonance frequency (or zero for nonpropagating modes).
Previous studies suggest that frequency broadening is usually a
small correction to the prediction of the observed spectrum,
which affects only the spectrum near the spectral break, and the
general spectral shape remains unchanged (e.g., Narita 2017;
Bourouaine & Perez 2019; Zhao et al. 2024). Given the
uncertainty associated with the 3D wavenumber spectral model
P(k) and dispersion relations of the dispersive waves in the
heliosheath, it is safe to assume that the issue of frequency
broadening is of secondary importance in the problem
considered here. Thus, we neglect frequency broadening in
this paper and take the frequency response function F(ω, k) to
be a Dirac delta function δ(ω− ω0(k)) with the wave frequency
ω0 determined by its dispersion relation ω0(k). The 4D power
spectrum P(ω, k) is thereby a decomposition of different wave
modes following their respective dispersion relations.
Voyager observations in the inner heliosheath suggest a

strong magnetic compressibility, represented by the power ratio
between the parallel fluctuations and perpendicular fluctuations
(e.g., Fraternale et al. 2019). We consider the MHD Alfvén and
fast magnetosonic waves to quantitatively investigate the
compressibility observed by Voyager 1 and 2. The MHD slow
modes are neglected in this study because they are heavily
damped and may not exist as propagating waves in high-beta
collisionless plasma (e.g., Zank et al. 2014; Majeski et al.
2023). However, compressible mirror modes may replace slow
modes in the perpendicular propagation limit when the solar
wind ion temperature anisotropy T⊥/T∥> 1. It is indeed
possible that mirror modes do contribute to the compressive
fluctuations observed in the heliosheath. However, for
simplicity, they are not included in the present spectral
modeling and will be considered in the future. To model the
4D turbulence spectrum P(ω, k), one has to determine the 3D
spatial spectral model. The common “2D+slab” model of
turbulence in the inner heliosphere is not appropriate for the
high-beta heliosheath since the magnetic field is not strong
enough to warrant the use of a dominant 2D component. In this
work, we consider an isotropic turbulence model for simplicity
due to the weak background magnetic field. We use the
convention that the mean magnetic field B0 is in the z-direction,
the bulk flow velocity U is in the x–z plane, and the y-axis
completes the right-hand triplet. Isotropic turbulence is
assumed in the sense that P(k) depends only on the magnitude
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of the wavevector, k k k kx y z
2 2 2= + +∣ ∣ and kx, ky, and kz are

the three components of the wavevector.
Therefore, the 4D frequency-wavenumber power spectrum

for the isotropic turbulence can be described as,

k k kP P, , 30w d w w= -( ) ( ) ( ( )) ( )

where

⎧
⎨⎩

k
k k

P
P k k
P

,
, otherwise.

40 0 0

0
=

>a-
( ) (∣ ∣ ) ∣ ∣ ( )

Here, P0 determines the spectral power for normalization and α

represents the spectral index in wavenumber space. The
bendover wavenumber k0 corresponds to the correlation scale
of turbulence spectrum. The wavenumber power spectrum P(k)
contains the sum of the diagonal components Pxx, Pyy, and Pzz

of the power spectral density (PSD) tensor, which represent the
power contained in the fluctuations along the three coordinate
axes x, y, and z. For isotropic Alfvénic turbulence,
ω0(k)= |kzVA|, where VA is the Alfvén speed, and the 3D
spectral density contains the incompressible components only,
i.e., P(k)∼ Pxx+ Pyy. The flow-frame frequency ω is set to be
always positive while the wavevector k= (kx, ky, kz) can be in
any direction, meaning that counter-propagating Alfvén modes
with equal strength are included as well. Although nonpropa-
gating structures are not explicitly considered in our spectral
model, they are still present in the isotropic Alfvénic turbulence
because the dispersion relation kzVA suggests that Alfvén waves
reduce to zero-frequency nonpropgating modes in the perpend-
icular wavevector limit. The magnetic fluctuations are
decoupled from the velocity fluctuations in such limit and
may be interpreted as “magnetic islands” (Zank et al.
2021, 2023, 2024). Thus, the magnetic power of the isotropic
Alfvénic turbulence considered here is nonzero when propa-
gating perpendicularly and is considered as a zero-frequency
mode in our calculations. We can then derive the predicted 1D
frequency spectrum of the isotropic Alfvénic turbulence
component using Equations (1) and (3):

k

k

P P k U k U k V d k

P

k U k V U k k dk dk .

5

A
x x z z z A

U

z z z A x y z y z

obs
3

1

2 2 2 2

x

ò

ò

dW = + + - W

=

= + - W + +

( ) ( ) ( ∣ ∣ )

∣ ∣

∣ ∣
( )

∣ ∣

The second component we consider in the heliosheath is
isotropic fast-mode turbulence, which can be modeled
similarly with the MHD fast-mode dispersion relation,
i.e., ω0(k)=) |k|Vf, where the fast-mode wavevector k=
(kx, ky, kz). The square of the MHD fast speed Vf

2 =
V C V C V C4 cos 2kBA i A i A i
2 2 2 2 2 2 2 2 1 2

0q+ + + -( (( ) ) ) , where
Ci represents the sound speed of ions including both PUIs
and solar wind ions. B0 is along the z-direction, so

k k k kcos kB z x y z
2 2 2

0q = + + . The corresponding observable
frequency spectrum for MHD fast mode is calculated from

k kP P k U k U V d k. 6F
x x z z fobs

3ò dW = + + - W( ) ( ) ( ∣ ∣ ) ( )

The integral here can then be reduced to a 2D integral as
follows,

P
kV k

P k k k k k dk dk
1

, , , , .

7

F

f y
x y x z z x zobs òW =

¶ ¶
W( )

∣ ( ) ∣
( ( ) )

( )

One has to be careful in choosing the integration limits of kx
and kz because for a given observable frequency Ω there may
be no solution for ky if kx and kz are too large. Technical details
about the computation of the integral are shown in the
Appendix.
Besides the standard MHD waves within a single-fluid

plasma, Zieger et al. (2015, 2020) also derived the dispersion
relation of warm multifluid plasma for perpendicular wave
propagation. The three-fluid model includes a low-temperature
ion component that represents the relatively “cold” solar wind
ions, a higher-temperature ion component that represents the
hotter PUIs, and a electron component. The thermal velocity of
the relatively “cold” solar wind ions is much smaller than that
of the PUIs. Note that the PUIs here represent particles in the
energy range of 1−10 keV, while suprathermal particles with
energies >10 keV are neglected. In the perpendicular wave-
number limit, the MHD fast magnetosonic wave is then split
into a high-frequency fast (HFF) mode that propagates in the
hotter PUIs and a low-frequency fast mode (LFF) propagating
in thermal solar wind ions. While Zieger et al. (2015)
considered a Maxwellian distributed (isotropic) PUI fluid, a
more general description of PUI-mediated plasma waves,
including collisionless heat conduction and viscosity due to
pitch-angle scattering, was proposed by Zank et al. (2014),
where dispersion curves for the outer heliosphere (>10 au),
inner heliosheath, and very local interstellar medium (VLISM)
were presented. The role of the nearly isotropic PUI
distribution and the role of PUI heat flux in the damping of
the wave modes were discussed. An 11th-order polynomial
dispersion relation is obtained in Zank et al. (2014) and is much
too complicated to be included for the analysis presented here.
However, we note that the dispersion curves of two separate
PUI and solar wind ion fast modes, when propagating
perpendicularly in the heliosheath, are similar in both Zank
et al. (2014) and Zieger et al. (2015). For simplicity, we use the
dispersion relations of two fast magnetosonic mode waves
derived in Zieger et al. (2015). An interesting feature of the
multifluid fast modes is that they are dispersive waves,
meaning that their propagation speed depends not only on
the wavevector k direction but also on its magnitude.
Dispersive waves can cause the spacecraft's observed fre-
quency spectrum to deviate from the power-law shape of the
wavenumber spectrum, as suggested by Zieger et al. (2020). In
their three-fluid model, the dispersion relation for perpendicular
fast magnetosonic modes can be expressed as the solutions to
the quadratic equation of 0

2w (Zieger et al. 2015).

A k A k A k 0, 82 0
4

1 0
2

0w w- + =( ) ( ) ( ) ( )
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⎛
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⎠
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Here, kcg gj jj
2 2 2w w= +* . ωgj, ωpj, and cj are the gyrofrequency,

the plasma frequency, and the sound speed of species j (solar
wind ion, PUI, and electron), and c represents the speed of
light. The two solutions of 0

2w from Equation (8) represent two
branches of fast wave modes, both of which are dispersive on
fluid scales. Note that Equation (8) is for perpendicular waves
only (k∥= 0), i.e., k is the wavenumber perpendicular to the
magnetic field in the dispersion relation 8.

Once we know the dispersion relations of HFF and LFF
modes, one has to consider a suitable spatial spectral model to
construct the 4D frequency-wavenumber spectra. Since the two
fast-mode waves from Zieger et al.’s (2015) model consider
perpendicular wavenumbers only, the 4D spectrum for
HFF and LFF branches can be modeled as P(ω, k)=
G(k⊥)δ(ω− ωpui,sw). Here, ωpui(|k⊥|) and ωsw(|k⊥|) represent
the HFF mode frequency and LFF frequency, respectively,
which can be obtained from Equation (8). We assume the
wavenumber spectrum G(k⊥) to be a broken power law for
both HFF and LFF branches:

⎧
⎨⎩

k
k k

G
P k k

P

,

, otherwise,
12
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0 0
=
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^
^

-
^( )

(∣ ∣ ) ∣ ∣
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where Pj determines the spectral power of the fast mode driven
by species j, PUI, and solar wind ion; and α represents the
spectral index in k-space. Therefore, the predicted frequency
spectrum to be observed is calculated from

k

k

P G k U dk dk

P G k U dk dk

;
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sw sw
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The integral in Equations (5), (6), and (13) can be evaluated
numerically and the technical details of the numerical
integration are included in the Appendix.

3. Results

3.1. Voyager 2 Observations in the Heliosheath

To go beyond the standard Taylor’s hypothesis, we apply the
4D frequency-wavenumber spectral modeling method to
Voyager observations in the inner heliosheath. We select an
interval in the inner heliosheath observed by Voyager 2 to
illustrate how the observed fluctuations can be decomposed
into a combination of wave modes with different powers
through spectral modeling. Figure 1 displays the daily averaged
magnetic field magnitude |B|, azimuthal f, and elevation θ
angles of the magnetic field directions, solar wind proton speed

Up, density np, and temperature Tp measured by Voyager 2
during the period from 2013 October 29 to 2015 January 1. The
data are not uniform in temporal resolution and the highest
resolution for magnetic field measurements is 48 s (gray lines
in the top three panels). In panel (g), we show the wavelet
spectrogram of the normalized reduced magnetic helicity σm
based on 48 s magnetic field measurements. σm is calculated
from the two perpendicular magnetic fluctuation components,
i.e., B B B2 Im Trm 1 2s d d= ^ ^*( ˜ ˜ ) ( ), where the tilde represents
wavelet-transformed quantities. BTr( ) is the magnetic trace
spectrum. From this figure, there are no clear signatures of a
particular wave pattern during the interval because the
spectrogram does not have a certain period of time dominated
by relatively large positive or negative σm values associated
with wave polarization with respect to the background
magnetic field (Zhao et al. 2021a, 2021b). Panel (h) shows
the scale-dependent k B, 0q , i.e., the angle between the wave-
vector k and the local mean magnetic field. The wavevector k is
estimated by the singular value decomposition method
(Santolík et al. 2003). However, it should be noted that 48 s
resolution magnetic field data are only available for very short
periods of time, resulting in large data gaps. We simply linearly
interpolate through the data gaps and discard the high-
frequency part (i.e., period p� 104 s) of the spectrogram in
panels (g) and (h). The low-frequency range can be recovered
well by linear interpolation due to its low-pass filtering effect
(Fraternale et al. 2019). As shown in the figure, in the
frequency range 10−6−10−4 Hz, k B, 0q is predominantly around
90° in most of the time period, which may indicate that waves
propagate mainly in a direction quasi-perpendicular to the local
mean magnetic field.
During this period, near the maximum of solar cycle 24, the

radial distance increases from 103.1 to 106.8 au, with an
average distance of about 105 au. The azimuthal angle f has no
primary peak and fluctuates between Parker spiral magnetic
field directions 270° and 90°. The elevation angle θ is also
widely distributed and does not lie along 0°. These features
have been identified as a sector zone (Burlaga et al. 2017). The
averaged magnetic field magnitude is about 0.1 nT. The angle
between the mean magnetic field B0 and the mean solar wind
speed U0 is about 43° during this time period. The averaged
solar wind flow velocity Up is ∼145 km s−1, averaged density
np is about 0.002 cm−3, and averaged temperature Tp is about
51,703 K. We assume that the PUI number density npui in the
inner heliosheath is about 1/4 of the solar wind proton density,
and the temperature Tpui is about 180 times the solar wind
proton temperature (Zank et al. 2009, 2018). The electron
number density ne is assumed to be np+ npui, and the
temperature Te is assumed to be the same as the solar wind
proton temperature Tp. Table 1 lists all other relevant
parameters used in this paper. As requested, we also include
the neutral hydrogen number density nH. Note that nH is not
directly used in our model and is not directly observed by the
Voyager spacecraft. Neutral atom imaging and PUI observa-
tions, combined with modeling, provide some constraints on
the properties of neutral populations. For example, Zhao et al.
(2019) used a interstellar neutral density of 0.1 cm−3 (which is
also the main neutral population in the heliosheath) to fit the
PUI measurements by New Horizons. However, the exact
number of nH depends critically on other model
parameters, such as the ionization rate and ionization cavity
size. Bzowski et al. (2009) found that nH at the termination

4

The Astrophysical Journal, 973:26 (12pp), 2024 September 20 Zhao et al.



shock is about 0.09± 0.022 cm−3 based on Ulysses PUI
observations.

During this 428 days period, only about 28% of the 48 s
cadence magnetic field data are valid. For such unequally
spaced time series, we use the Lomb–Scargle periodogram

method (Lomb 1976; Scargle 1982; Zechmeister & Kür-
ster 2009; VanderPlas 2018) to obtain the power spectrum
density (PSD) over the frequency space after dividing the
428 days time series into f15 subintervals with an overlap of
50% between adjacent intervals. The final PSD of the magnetic

Figure 1. Overview of the Voyager 2 magnetic field and solar wind proton measurements in the inner heliosheath during the period from 2013 October 29 to 2015
January 1. Panels (a)–(c) show the daily averaged (black lines) magnetic field magnitude |B|, the azimuthal f, and the elevation θ angles of the magnetic field. The 48 s
resolution magnetic field data are shown as gray lines. Panel (d) shows the daily averaged solar wind proton velocity Up in the RTN reference frame, with the radial
velocity UR in red, the tangential velocity UT in green, the normal speed UN in blue, and the total speed in black. Panels (e) and (f) show solar wind proton density np
and temperature Tp, respectively. Panels (g) and (h) show the wavelet spectrogram of the normalized reduced magnetic helicity σm and the angle between wavevector k
and the local mean magnetic field k B, 0q , respectively.

Table 1
Magnetic Field and Plasma Parameters in the Inner Heliosheath

|B| Up np nH npui ne Tp Tpui Te VA Cs Vf β ωgp ωpe

(nT) (km s−1) cm−3 (cm−3) (cm−3) (cm−3) (MK) (MK) (MK) (km s−1) (km s−1) (km s−1) (rad s−1) (rad s−1)

0.1 145 0.002 0.1 0.0005 0.0025 0.052 9.36 0.052 44 164 170 17 0.01 2821

Note. The Alfvén speed VA and the sound speed Cs are calculated over all species of charged particles (solar wind protons, electrons, and PUIs). The estimated fast
magnetosonic speed Vf assumes perpendicular propagation only. The plasma beta β takes into account the PUI pressure. ωgp denotes the proton gyrofrequency and ωpe

the electron plasma frequency.
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field fluctuations is obtained by averaging the PSDs in these
subintervals. As noted in Fraternale et al. (2019), the spectrum
in the low-frequency range (e.g., for frequencies less than
∼2× 10−5 Hz) can be well restored by linearly interpolating
the data gaps and then performing the Fourier transform on its
autocorrelation function. Figure 2 shows the combined PSD of
the magnetic fluctuations in the inner heliosheath. We perform
the Lomb–Scargle periodogram on 48 s cadence magnetic field
measurements to obtain the PSD in the frequency range
between 10−5 and 10−2 Hz. For frequencies below 10−5 Hz,
the analysis is based on the Fourier-transformed autocorrelation
function calculated using linear interpolation of 48 s magnetic
field data. The spectra of the R, T, and N components of the
magnetic field are plotted separately. The parallel and
perpendicular spectra are calculated with respect to the mean
magnetic field B0 direction. We note that there are some spike-
like structures in the PSD at around 10−5 Hz. We caution that
these spikes are unphysical. It can be seen from Figures 1(g)
and (h) that there are no obvious features of specific wave
modes or nonpropagating structures at around 10−5 Hz. The
reason these spikes arise in the frequency spectra in Figure 2 is

due to the large data gaps and depends also on the spectral
estimation technique used to process these data gaps. For the
48 s magnetic field measurements made by Voyager 2, the
typical frequency of the large data gaps Ωgap is about 10

−5 Hz
or a period of ∼1 day (Fraternale et al. 2019). For the Lomb–
Scargle periodogram used in Figure 2, large spikes can appear
at Ωgap in the PSD and unphysical power leakage may arise
below Ωgap. For frequencies below Ωgap, linear interpolation
can overcome this defect and recover low frequencies well, as
shown in Figure 1. Nevertheless, the observed frequency
spectrum has a power-law shape at frequencies above 10−6 Hz
and the power-law index is roughly consistent with −5/3. The
PSD magnitudes of the T and N components are comparable
and much higher than that of the R component. The mean
magnetic field B0 is mainly along the T direction, i.e., at an
angle of 30° with the T direction, 78° with the N direction, and
63° with the R direction. Therefore, the parallel spectrum P∥
predominantly comes from the BT fluctuations, while the
perpendicular spectrum P⊥ is mainly contributed by BR and BN

fluctuations. The bottom right panel shows that the magnetic
compressibility, P∥/P⊥, is much stronger than in the inner

Figure 2. PSD of the magnetic field fluctuations observed by Voyager 2 in the inner heliosheath for the same time interval as in Figure 1. Panels (a)–(d) show the
PSDs of the magnetic field components BR, BT, and BN, parallel and perpendicular fluctuations, respectively. The parallel spectrum P∥ represents the PSD along the
mean magnetic field B∥ direction, and the perpendicular spectrum P⊥ is the sum of the PSDs in the two perpendicular directions B⊥1 and B⊥2. A Kolmogorov
spectrum f−5/3 is shown as a reference.
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heliosphere, where the compressible power is typically ∼10%
of the total power, or equivalently P∥/P⊥∼ 1/9 or
P P 0.1Tr ~ , with PTr being the total trace spectrum (e.g.,
Belcher & Davis 1971; Smith et al. 2006). The comparable
parallel P∥ and perpendicular P⊥ spectra suggest an appreciable
level of compressibility, which was also reported in previous
studies (Burlaga et al. 2017).

3.2. Model of Power Spectrum with MHD Waves

In this section, we present the spectral modeling results
based on the assumption of an isotropic spectrum with a broken
power-law shape as discussed in Section 2. We assume that the
PUI number density is about 1/4 of the solar wind proton
number density and the temperature is about 180 times the
solar wind proton temperature (Zank et al. 2018). We project
the Voyager 2 measured mean bulk speed U0 into the mean
field coordinate system (i.e., B0 is along z-direction and U0 is
on the x–z plane), thus Ux= 97 km s−1, Uy= 0, and Uz=
106 km s−1. In addition, the Alfvén speed VA= 44 km s−1 and
the sound speed Cs= 164 km s−1 are obtained based on the
estimated PUIs density and temperature (Zhao et al. 2019). We
consider the wavenumber spectrum Equation (4) with the
parameters k0= 3× 10−9 km−1, α= 5/3, and P0= 2×
10−10 nT2 km3 for both Alfvén and fast-mode turbulence.
These parameters are chosen so that the magnitude and shape
of the resulting predicted frequency spectrum roughly agree
with the observed magnetic fluctuation PSD shown in Figure 2.

Based on Equations (5) and (6), we show the observable
frequency spectra Pobs(Ω) of the isotropic Alfvén and fast-
mode turbulence in Figure 3. We choose the frequency range of
10−6

–10−2 Hz according to typical Voyager observations (e.g.,
Fraternale et al. 2019). As can be seen from the figure, the

spectral indices do not deviate from the α values set in the
wavenumber spectra. However, although the Alfvén mode
turbulence and the fast-mode turbulence have the same
wavenumber spectrum, i.e., all parameters in the 3D spatial
spectral model are set the same for both, the observable spectra
of the Alfvén mode and the fast mode are different in terms of
the spectral power. This illustrates the breakdown of the
standard Taylor hypothesis because the spacecraft observed
frequency spectrum cannot be directly transformed from the
wavenumber spectrum. From Figure 3, MHD fast-mode
turbulence has higher observed power due to its higher
propagation speed. As discussed before, the physical meaning
of Equation (1) is that the turbulence observed at a given
frequency is a superposition of fluctuations with various
wavevectors and flow-frame frequencies, all Doppler shifted
to the same observed frequency. In the spacecraft frame, fast
modes propagate at a speed of U V Cx A s

2 2+ + ~ 267 km s−1

in x-direction and U V Cmax ,z A s+ ~( ) 270 km s−1 in z-direc-
tion, while Alfvén waves propagate at Ux= 97 km s−1 in the x-
direction and Uz+ VA∼ 150 km s−1 in z-direction. Compared
to Alfvén waves, fast-mode waves with longer wavelengths can
be Doppler shifted to the same observed frequency due to their
larger propagation speed. Since the longer-wavelength modes
contain stronger fluctuations, fast-mode turbulence is Doppler
boosted to a higher power than Alfvénic turbulence. This is
analogous to the results shown in Zhao et al. (2024) and
Goldstein et al. (1986), where the difference in the propagation
speed of outward and inward Alfvén waves can lead to an
apparent imbalance in the observed fluctuations close to
the Sun.
If turbulence in the heliosheath is indeed a superposition of

isotropic Alfvén and fast modes, then our method enables the
calculation of the power fraction in these two components, as
indicated by the spectral power normalization parameter P0.
Specifically, we use the MHD fast mode to approximately
characterize the observed compressible fluctuations and the
Alfvén mode to represent the observed incompressible
fluctuations. Figure 4(a) shows the modeled spectra for
isotropic fast turbulence PF

m and isotropic Alfvén turbulence
PA
m, compared with the observed parallel Po and perpendicular
Po^ spectra, respectively. Po^ and PA

m have been multiplied by a
factor of 10 for presentation purposes. We note that the spectral
indices of the calculated observable spectra for the isotropic
Alfvén turbulence and fast-mode turbulence still retain the
Kolmogorov shape consistent with their wavenumber spectra
(α= 5/3). From Figure 2, we know that the ratio of the
observed parallel to perpendicular power spectra is about 1.
However, if we assume that the Alfvén and fast modes have the
same power normalization parameter P0, then the power ratio
between their observable spectra PFast/PAlfvén∼ 3, as shown in
Figure 3. Therefore, in order to make their observable spectra
consistent with the actual observed P∥ and P⊥, we find that the
value of P0 for the Alfvén mode needs to be three times that of
the fast-mode component. Specifically, we use P 6A

0 = ´
10 10- nT2 km3 and P 2 10F

0
10= ´ - nT2 km3 to quantitatively

model the observed perpendicular Po^ and parallel Po fluctua-
tion spectra. In panel (b), we show the modeled compressibility
compared to the observed magnetic compressibility, which is
expressed as the power ratio between parallel and perpend-
icular fluctuations. The gray curve indicates the observed
compressibility calculated by P Po o

^ , the orange curve shows
the smoothed ratio as a result of 10 data points moving average,

Figure 3. The observable power spectra of isotropic Alfvén and fast turbulence
assuming that both have exactly the same wavenumber spectra. The Voyager 2
solar wind proton measurements and the estimated PUI density and
temperature in the inner heliosheath are used in the calculation of the
dispersion relations for the two wave modes.

7

The Astrophysical Journal, 973:26 (12pp), 2024 September 20 Zhao et al.



and the red curve shows the power ratio between the modeled
fast turbulence and the modeled Alfvén turbulence. Since
P P3A F
0 0= is required to obtain the consistent compressibility

as measured by Voyager 2, it means that the actual ratio
between compressible fluctuation power and incompressible
fluctuation power is ∼1/3, which is noticeably higher than the
nominal value of 1/9 for the solar wind near the Earth (Belcher
& Davis 1971; Pine et al. 2020), but not as high as the ratio of 1
suggested by direct measurements (Burlaga et al. 2006;
Burlaga & Ness 2009).

3.3. Model of Power Spectrum with Dispersive Waves

Since the hotter PUIs and relatively “cold” solar wind ions
may introduce separate fast magnetosonic modes based on the
multifluid description (e.g., Zank et al. 2014; Zieger et al.
2015), we also consider the observable frequency spectrum for
these two types of dispersive waves. Figure 5(a) shows the
dispersion relation of the two dispersive fast branches HFF and
LFF from Equation (8) together with two MHD fast modes
(MHDF) for comparison. The phase velocities of the two
MHDF modes are calculated by considering only the solar
wind ions (MHDFsw) and by considering both PUIs and solar
wind ions (MHDFsp), respectively. In plotting Figure 5, the
solar wind ion parameters are based on observations from
Voyager 2 in the helisheath (Figure 1). The PUI and electron
parameters are based on theoretical assumption and numerical
simulation results (Zank et al. 2018; Zieger et al. 2020) and all
are listed in Table 1. As discussed in Section 2, we consider
perpendicular propagation only for both HFF and LFF modes.
The HFF branch (blue-solid line) is due to the higher-
temperature PUIs and the LFF mode branch (orange solid
line) is due to the lower-temperature core solar wind ions. The
LFF branch has a resonance frequency at the proton
gyrofrequency ωgp. An interesting feature is that the HFF
branch has a cutoff frequency also at ωgp, i.e., this branch
cannot exist below the cutoff frequency ωgp. The HFF branch is
actually the ion Bernstein wave mode, i.e., an electrostatic ion
cyclotron wave propagating perpendicular to the magnetic

field. In contrast, the solar wind ion-driven LFF branch is very
similar to the MHD fast mode by considering different ion
species. For instance, the LFF mode at the small wavenumbers
(k� 0.003 ωpe/c∼ 3× 10−5 km−1) basically follows the dis-
persion relation of MHDFsp, where the phase speed is
calculated by V CA s

2 2+ for the perpendicular propagation.
The phase speed for MHDFsp mode, V 168f

sp  km s−1,
includes both PUIs and solar wind ions contributions. At large
wavenumbers (k� 0.01 ωpe/c∼ 10−4 km−1), the LFF mode
follows the MHD fast mode MHDFsw, where the phase speed,
V 56f

sw  km s−1, is calculated from solar wind ions only. In
Figure 5(b), we compute the spacecraft observable frequency
spectra for each mode based on Equation (13). The presence of
two dispersive fast-mode branches causes extra complications
to spectral modeling. Physically, it is not clear how fluctuation
power is divided between the two branches of fast modes, so
assumptions have to be made in the present work. Here,
we make the simplest assumption that both branches have
the same power spectrum in wavenumber space, i.e.,
P P 2 100
lff

0
hff 10= = ´ - and α= 5/3 in Equation (12). The

LFF mode at small wavenumbers can be replaced by the
MHDFsp and the spectrum observed at large frequencies should
be dominated by the HFF mode due to its larger phase velocity.
Here, we derive the spacecraft frame frequency spectra of the
HFF (blue dashed–dotted line) and the MHDFsp (orange line)
for simplicity. The difference between the MHDFsp and the
isotropic MHD fast mode shown in Figure 3 is that the
MHDFsp only has perpendicular propagation (k has only kx and
ky) to be consistent with the LFF mode, while the isotropic
MHD fast mode in Figures 3 and 4 has 3D wavevector (kx, ky,
and kz). It can be seen that the MHDFsp still retains the −5/3
spectral shape as its wavenumber spectrum. We also show the
frequency spectrum of the isotropic Alfvén mode taken from
Figure 4. The total PSD (solid-black line) is plotted as the sum
of the three (HFF, MHDFsp, and Alfvén), which exhibits a clear
spectral bump near the proton gyrofrequency that is caused by
the HFF mode. At low-frequency range (10−6

–10−2 Hz), the
theoretical predicted total PSD is consistent with the PSD

Figure 4. Panel (a) shows the comparison between the modeled observable spectrum of the isotropic Alfvén turbulence Pm
A and Voyager 2 measured perpendicular

spectrum Po^, and between the observable spectrum of the isotropic fast mode Pm
F and the measured parallel spectrum Po . The measured parallel and perpendicular

spectra (Po and Po^) are the same as in Figure 2. For ease of presentation, Po^ and Pm
A have been multiplied by 10. Panel (b) shows a comparison of the magnetic

compressibility, i.e., the ratio between the parallel and perpendicular spectra P∥/P⊥. The gray curve shows the Voyager 2 measured value, the orange curve denotes
the smoothed compressibility, and the red curve shows the ratio between the modeled observable spectra for fast turbulence and Alfvén mode turbulence.
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measured by Voyager 2 (cyan line). In fact, the HFF mode only
contributes to the observed total PSD at frequencies above the
proton gyrofrequency, and its power can be negligible below it,
which is consistent with the cutoff behavior shown in Panel (a).
The spectral bump at the proton gyrofrequency is also present
in the simulation by Zieger et al. (2020), which is due to the
ion–ion resonance instability that drives the inverse cascade of
turbulence. Since the highest cadence of magnetic field
measurements made by Voyager 2 in the heliosheath is 48 s,
the spectrum can be measured only below the Nyquist
frequency of about 0.01 Hz or less than 10−4 km−1. The
gray-shaded area in Panel (b) represents the unexplored region
that cannot be seen by Voyager 2 because of the low signal-to-
noise in this frequency range. We also note that the presence of
the spectral bump shown in the total observable PSD depends
on how we distribute the fractional power among these three
modes. Panel (b) shows the resulting observable spectrum with
a fractional power ratio of Alfvén, HFF, and MHDFsp as 3:1:1
is consistent with the observed PSD at the frequency range
10−6

–10−2 Hz.
We note that the nature of the LFF mode is that it is

dominated by the solar wind ions at larger wavenumbers, while
it reduces to a single-fluid-like fast mode at smaller
wavenumbers. This is more clearly described in Figure 5(a).
At frequencies larger than the resonance frequency of the LFF
mode or the cutoff frequency of the HFF mode (i.e., r

sww ), the
dispersion of the LFF mode is roughly consistent with the
MHD fast mode that considers solar wind ions only (e.g.,
MHDFsw). But at lower frequencies (

r
sww w< ), the LFF mode

reduces to a single-fluid-like fast mode including the contrib-
ution of both solar wind ions and PUIs (e.g., MHDFsp).
Therefore, the PSD at the current spacecraft resolution does not
necessarily reflect solar wind ion dominated turbulence only,
but rather the effects of a single-fluid-like system with
contributions from both solar wind ions and PUIs. Most likely,
the solar wind ion dominated turbulence is important for PSD
near the highest observable frequency (∼10−2 Hz), and

turbulence is single-fluid-like at lower frequencies. PUI-
dominated turbulence is likely important for even higher
frequencies. It is possible that that there are significant
unobserved powers at higher frequencies predicted by Zieger
et al. (2015, 2020), but we are not aware of available data at
higher frequencies measured by the Voyager spacecraft to
verify this.
Simulations by Zieger et al. (2020) suggested that the

breakdown of Taylor’s hypothesis can also cause the spectral
index of the observed frequency spectrum to deviate from the
spectral index of the corresponding wavenumber spectrum.
They show that a wavenumber spectrum of k 4~ ^

- can produce
the observed spectrum of ∼f−5/3. This is possible for
dispersive waves because the spectral power at a higher
wavenumber is more strongly enhanced by the Doppler shift,
making the frequency spectrum flatter than the wavenumber
spectrum. However, this effect is not included in our results
because the wavenumber regime of strong dispersion corre-
sponds to high frequencies that are barely resolved by the
Voyagers' data. Another complication is that the decomposition
between the high-frequency and LFF modes is not well
understood. Since this decomposition depends on the wave-
number, the possibilities are almost endless and likely cannot
be constrained by observations. A more detailed theoretical
description of the full 4D spectrum is needed for further
progress in this direction.

4. Discussions and Conclusions

In this paper, we discuss the compressive properties of
turbulence in the inner heliosheath. A possible origin of the
compressible turbulence observed in the heliosheath are the
solar wind fluctuations upstream of the HTS. These fluctuations
interact with the quasi-perpendicular HTS and are transmitted
downstream with an enhanced PSD (Zank et al. 2021). Fast
mode turbulence in the heliosheath can be further transmitted
across the HP to generate compressible turbulence in the
interstellar medium (Zank et al. 2017), as seen by the Voyager

Figure 5. Panel (a) shows the dispersion relations of the PUI HFF mode (blue-solid line) and solar wind ion LFF mode (orange solid line) from a three-fluid model
(Zieger et al. 2015). The purple-dashed line MHDFsw shows the MHD fast mode considering only solar wind ions. The green-dashed line MHDFsp denotes the MHD
fast mode considering both PUIs and solar wind ions. The plasma frame frequency ω is normalized to the proton gyrofrequency ωgp, and the wavenumber k is
normalized to the electron inertial length c/ωpe. The dashed–dotted horizontal line represents the cutoff frequency of the HFF mode and the resonance frequency of the
LFF mode. The dotted horizontal line represents the resonance frequency of the HFF mode. Panel (b) shows the observable frequency spectrum for each mode. The
solid-black line shows the total frequency spectrum calculated from the sum of the HFF, MHDFsp, and isotropic Alfvén modes, which is consistent with the PSD
observed by Voyager 2 in the frequency range 10−6

–10−2 Hz (cyan curve). The gray-shaded area indicates the region that cannot be seen by Voyager 2 due to the low
signal-to-noise ratio in this frequency range.
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spacecraft (Zhao et al. 2020; Burlaga et al. 2022). The standard
Taylor’s hypothesis is commonly used to interpret in situ
observed turbulent signals throughout the heliosphere and in
the interstellar medium. However, the implicit application of
Taylor’s hypothesis can lead to incorrect interpretation of
fluctuation measurements, especially when the characteristic
propagation speed of the fluctuations is larger or comparable to
the flow speed, a condition that applies to both the inner
heliosphere and inner heliosheath regions. We introduce a 4D
frequency-wavenumber spectral modeling method to overcome
this caveat. A 4D ω–k spectrum can be used to extend the
standard Taylor’s hypothesis through the inclusion of the
fluctuation frequencies. We find that the inclusion of temporal
(or frequency space) changes of the fluctuations has important
implications for the interpretation of turbulence measurements
in the inner heliosheath by Voyager 1 and 2 or future missions,
such as New Horizons, which is expected to cross the HTS in
the next few years, and the Interstellar Probe. Our results
demonstrate that:

(1) In situ observations in the heliosheath favor the
identification of fast modes over Alfvén modes, which leads
to a much higher magnetic compressibility observed in the
heliosheath. We caution that this is an observational bias and
the true compressibility needs to be revisited through spectral
modeling.

(2) Assuming that the wavenumber spectrum is Kolmo-
gorov-like, equipartition in the isotropic fast and Alfvénic
fluctuations will lead to an observed power ratio between the
two of ∼3:1. Since Voyager observations tend to find
comparable power in compressible and incompressible magn-
etic fluctuations in the heliosheath, our results suggest that
turbulence is less compressible than previously thought. In
other words, the fractional ratio of the compressible fluctua-
tions may account for 25% of the total fluctuations rather than
50% as suggested by Voyager observations.

(3) Hot PUIs and relatively cold solar wind ions may
introduce two fast wave mode branches, namely a HFF due to
the PUI component and an LFF driven by solar wind ions. Both
modes are dispersive waves and can affect the observed
spectral shape of turbulence, leading to discrepancies between
the wavenumber spectrum and the observed 1D frequency
spectrum. The PUI-driven HFF mode has a cutoff frequency at
the proton gyrofrequency and may lead to an observable
spectral bump near the proton gyrofrequency depending on the
power partitioning among different wave modes.

We caution that the multifluid fast-mode waves, HFF and
LFF, are derived based on an isotropic distribution of PUIs and
only admit perpendicular propagation (Zieger et al. 2015).
Since PUIs in the heliosheath undergo pitch-angle scattering,
the isotropic assumption may not be valid. A more general fluid
model is developed by Zank et al. (2014) with collisionless heat
flux and viscosity included, and waves modes can experience
damping because of it. However, in the perpendicular
propagation limit, Zank et al. (2014) and Zieger et al. (2015)
give the same results, i.e., PUI fast magnetosonic wave and
solar wind ion fast wave. Using a more general form of the
dispersive fast wave turbulence (Zank et al. 2014) in any
propagation direction will be considered in future work. In
addition, the isotropic turbulence spectral model (i.e., spectral
power depends on the magnitude of wavenumber only) that we
used in this work may not be accurate, though it is justifiable

due to the weak magnetic field in the heliosheath. Anisotropic
turbulence models may be worth considering for comparison.
We also assume that fast-mode turbulence only contributes

to the compressive component of the spectral power. This is
certainly an oversimplification because the fast mode is
expected to contain both compressive and incompressible
magnetic field fluctuations. If the fast-mode polarization
conditions are taken into account, we would expect the
power ratio between Alfvén and fast-mode turbulence to
decrease. However, the qualitative conclusion still holds that
the compressibility is overestimated when using standard
Taylor’s hypothesis to interpret the data. Furthermore, the
present model does not include compressible mirror modes
that may exist downstream of the HTS (Liu et al. 2007). Due
to the high plasma beta in the heliosheath, it is possible that
mirror modes do contribute to the observed compressive
fluctuations. However, including mirror modes will intro-
duce further complications to the modeling of the observed
spectra, and there are no direct observations of temperature
anisotropy in the heliosheath. We therefore defer this to a
future study.
Another caveat in this work is the assumed PUI number

density and temperature in the heliosheath. Since PUIs are not
directly measured by the Voyagers, there are uncertainties
associated with the parameters related to PUIs. The most
important parameter is the PUI pressure because it dominates
the sound speed calculation. The results are less sensitive to
PUI number density given that it is expected to be smaller than
the relatively “cold” solar wind ions.
To summarize, the 4D power spectrum modeling is a

decomposition of different wave modes following their
respective dispersion relations. To go beyond Taylor’s
hypothesis, the key is to use the 4D ω–k spectrum to model
the observed 1D reduced spectrum. We emphasize that a
quantitative spectral modeling of the measured fluctuations is
critical for the interpretation of in situ turbulence data
without Taylor’s hypothesis. Future turbulence modeling
efforts in the heliosheath will be of great importance (Opher
et al. 2023).
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Appendix
Calculation of the Frequency Spectrum

Here, we describe how the integration is computed to obtain
the frequency spectrum. For Alfvénic turbulence, the 2D
integration is relatively straightforward. The integration limit is
−∞ to ∞ for both ky and kz. The integrand is symmetric about
ky= 0, so the integral can be written as

⎜ ⎟
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Numerically, since most power in the 3D spectrum is due to
small-wavenumber fluctuations, the integral may be approxi-
mated with finite limits.

For fast-mode turbulence, we convert the 3D integral to 2D
by integrating over ky using the delta function, to obtain

A2

P P k k k k k dk dk, , ,
kV k x y x z z x zobs

1 2
0
2 2

f y ky0
òW = + W +

¶ ¶

( )

( ) ( ( ) )
∣ ( ) ∣

where ky0 is determined by the argument of the delta function,
i.e.,

k U k U k k k V k k k, , 0,

A3

x x z z x y z f x y z
2

0
2 2

0+ + + + - W =( )
( )

to be solved numerically for ky0. There are two solutions with
opposite signs and they contribute equally to the integral, so we
can simply keep the positive one (denoted as ky+= |ky0|) and
double the result. The integration limits for kx and kz are not
−∞ to ∞ because Equation (A3) does not have a real solution
when |kx| or |kz| is too large. In fact, the left-hand side of
Equation (A3) has a minimum at ky= 0. Essentially, the
integration domain corresponds to the region where the
minimum is not positive.

The integration domain is illustrated in Figure 6, where the
log of the integrand for Ω= 10−6 is plotted in the kx− kz plane
and we set the integrand to zero outside the domain. Based on
these, the integral is expressed as follows,

P
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We integrate kx first. Given kz (and Ω), the limits of kx are found
by solving Equation (A3), and letting ky0= 0. It can be shown
that there are two real solutions in general when kz is also in the
proper range, corresponding to the lower and upper limits of
the integration kx1 and kx2. The limits in kz are determined,

again, based on Equation (A3) by requiring

A5

k U k U k k V k k F kmin , 0.x x z z x z f x z z
2 2+ + + - W º =

( )
[ ( ) ] ( )

The minimum is achieved where the derivative equals zero, i.e.,

k
k U k U k k V k k, 0. A6

x
x x z z x z f x z

2 2¶
¶

+ + + - W =[ ( ) ] ( )

This yields the relation between kx and kz for the minimum, and
thus F(kz)= 0 can be solved numerically for the limits kz1 and
kz2.
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