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Abstract

Analytical solutions for 2D and slab turbulence energies in the solar corona are presented, including a derivation of
the corresponding correlation lengths, with implications for the proton and electron temperatures in the solar
corona. These solutions are derived by solving the transport equations for 2D and slab turbulence energies and their
correlation lengths, as well as proton and electron pressures. The solutions assume background profiles for the solar
wind speed, solar wind mass density, and Alfvén velocity. Our analytical solutions can be related to those obtained
from joint Parker Solar Probe and Solar Orbiter Metis coronagraph observations, as reported in Telloni et al. We
find that the solution for 2D turbulence energy in the absence of nonlinear dissipation decreases more slowly
compared to the dissipative solution. The solution for slab turbulence energy with no dissipation exhibits a more
rapid increase compared to the dissipative solution. The proton heating rate is found to be about 82% of the total
plasma heating rate at 6.3 R, which gradually decreases with increasing distance, eventually becoming ~80% of
the total plasma heating rate at ~13 R, consistent with that found by Bandyopadhyay et al. (2023). These
analytical solutions provide valuable insight for our understanding of turbulence, and its effect on proton and
electron heating rates, in the solar corona. We compare the numerically solved turbulent transport equations for the
2D and slab turbulence energies, correlation lengths, and proton and electron pressures with the analytical
solutions, finding good agreement between them.
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1. Introduction

The corona, the outermost layer in the solar atmosphere, is
formed by heated plasma partially confined by strong open and
closed magnetic field lines that control the plasma energy and
pressure density. The solar corona is heated to temperatures of
millions of degrees Kelvin to form the solar wind, whose speed
transitions from subsonic to supersonic. Despite extensive
research since the late 1950s (Parker 1958, 1965), under-
standing the complex mechanisms leading to coronal heating
and solar wind acceleration remains a persistent challenge. The
launches of the Parker Solar Probe (PSP; Fox et al. 2016) and
Solar Orbiter (SO; Miiller et al. 2020) have provided in situ
observations closer to the Sun than ever before. Recent studies
have used the proximity of these two spacecraft to the Sun to
advance our understanding of the mechanisms governing solar
coronal heating and solar wind generation (Kasper et al. 2021;
Telloni et al. 2022b; Zank et al. 2022; Bale et al. 2023; Raouafi
et al. 2023).

One of the promising explanations for coronal heating and
solar wind acceleration resides in the concept of the dissipation
of coronal and solar wind turbulence. Two specific models
have been proposed to describe turbulence and its transport in
the solar corona—one is dominated by Alfvén waves
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(Matthaeus et al. 1999; Dmitruk et al. 2001; Oughton et al.
2001; Dmitruk et al. 2002; Suzuki & Inutsuka 2005; Cranmer
et al. 2007; Chandran & Hollweg 2009; Chandran et al. 2010;
Verdini et al. 2010; Cranmer et al. 2013; Woolsey &
Cranmer 2014; Usmanov et al. 2018) and the other by 2D
nonlinear vortical or magnetic flux rope-like structures (Zank
et al. 2018a; Adhikari et al. 2020, 2022a; Zank et al. 2021;
Telloni et al. 2022a, 2023a).

In the Alfvén wave turbulence models, the motion of mini-
granular, granular, and super-granular magnetic fields in the
photosphere is hypothesized to launch a series of low-
frequency magnetohydrodynamic (MHD) waves, namely
Alfvén waves. As the Alfvén waves propagate away from the
Sun, they undergo partial non-Wentzel-Kramers—Brillouin
(non-WKB) reflection due to solar wind density and magnetic
field gradients (Hollweg 1986; Marsch & Tu 1990; Matthaeus
et al. 1999; Zank et al. 2012). These counter-propagating
Alfvén waves interact nonlinearly, and they generate quasi-2D
fluctuations (Shebalin et al. 1983) that cascade energy from
larger to smaller scales, which eventually heats the coronal
plasma (Matthaeus et al. 1999; Dmitruk et al. 2001; Oughton
et al. 2001; Dmitruk et al. 2002; Suzuki & Inutsuka 2005;
Cranmer et al. 2007; Chandran & Hollweg 2009; Chandran
et al. 2010; Verdini et al. 2010; Cranmer et al. 2013; Woolsey
& Cranmer 2014).

On the other hand, using the 2D nonlinear structure
description, the solar corona is heated to millions of Kelvin
through the dissipation of small-scale highly anisotropic MHD
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turbulence dominated by advected structures. These small-scale
structures are continuously pumped out in open and closed
magnetic field regions by the highly dynamical, mixed polarity
“magnetic carpet” (Schrijver & Title 2002) undergoing
repeated small-scale interchange reconnection events to gen-
erate 2D turbulent advected structures. In the nearly incom-
pressible (NI) MHD 2D+slab coronal turbulence model
proposed by Zank et al. (2018a), the heating of the solar
corona is primarily due to the dissipation of 2D structures,
which provides enough power to drive the solar wind (Adhikari
et al. 2020, 2022a; Telloni et al. 2023a). Recently, evidence of
interchange reconnections in the low solar corona have been
presented by Bale et al. (2023) and Raouafi et al. (2023).

The dissipation of turbulence is directly related to the heating
of solar wind protons and electrons. Recently, Bandyopadhyay
et al. (2023) used PSP data from the first 10 PSP encounters to
study proton and electron heating rates in the near-Sun
environment. Intriguingly, their findings indicate that the
protons experience about 80% of the total plasma heating rate
at a distance of approximately 13 R, and about 70% of the
total plasma heating rate near 1au. This contrasts with the
prevailing literature (e.g., Breech et al. 2009; Cranmer et al.
2009; Engelbrecht & Strauss 2018; Usmanov et al. 2018;
Chhiber et al. 2019; Adhikari et al. 2021), which typically
assumes that about 60% of the dissipated turbulence energy
heats the solar wind protons, while the remaining turbulence
energy is allocated to heating solar wind electrons. Kinetic
Alfvén waves, typically observed in regions possessing strong
Alfvén velocity gradients, are thought to be among the
candidate mechanisms that heat electrons in the magnetosphere
(e.g., Nykyri et al. 2021). Some studies have found that, in the
expanding solar wind, Alfvén-cyclotron waves may also heat
alpha particles (He™ ™", Maneva et al. 2013). However, in this
manuscript, we focus on the heating of the solar wind protons
and electrons due to the dissipation of low-frequency
turbulence.

Turbulence-driven solar wind models incorporating solar
coronal heating (e.g., Usmanov et al. 2018; Adhikari et al.
2020) are typically solved numerically. In this manuscript, we
derive analytical solutions for 2D and slab turbulence energies,
their corresponding correlation lengths, and the proton and
electron temperatures, utilizing reasonable approximations
applicable to the conditions in the solar corona. These
analytical solutions are derived by solving the 2D and slab
turbulence transport equations for the total turbulence energy
and correlation length, and proton and electron pressure
equations, incorporating assumed background profiles for the
solar wind speed, solar wind density, and Alfvén velocity.
Although simplified, these analytical solutions provide a useful
and practical, if approximate, tool to study turbulence in an
inhomogeneous flow, and they are useful extensions of the
earlier analytical solutions by Zank et al. (1996). We also
numerically solve the coupled transport equations for the 2D
and slab turbulence energies and correlation lengths, as well as
the proton and electron pressures, and compare the numerical
solutions with the analytical solutions. This comparison gives
us confidence in the accuracy of the analytical solutions to
describe the turbulence and thermodynamic properties of the
solar wind measured by PSP and SO. The solutions, as
illustrated in Telloni et al. (2023b), provide a simple estimate of
the proton and electron heating rates in the solar corona. We
present the derivation of analytical solutions for 2D and slab
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turbulence energies and correlation lengths, as well as proton
and electron temperatures, in Section 2, and we discuss the
results in Section 3. Finally, we present our conclusions in
Section 4.

2. Transport Equations and Analytical Solutions

The transport equations for both 2D and slab turbulence in
the low and O(1) plasma beta (3,) regimes can be expressed in
a conservation form that closely resembles the standard form of
the WKB transport equation for the wave energy density
(Wang et al. 2022) but with a dissipation term on the right-hand
side of the equations, the latter distinguishing the turbulence
transport equations from the linear WKB expression (techni-
cally, a generalized form of the wave pressure is incorporated
and the expansion to derive the underlying transport equations
is neither linear nor small-amplitude; Zhou & Matthaeus 1990a,
1990b; Zank et al. 1996, 2012, 2017; Wang et al. 2022).
Despite making the connection between the WKB formalism
and the turbulence transport models developed in Zank et al.
(2012, 2017) and Wang et al. (2022), it is more convenient to
work directly with the nonconservation form of the turbulence
transport equations.

2.1. 2D Turbulence Transport Equations

Accordingly, we consider the transport equation for 2D total
turbulent energy E;° (=(u>?) + (B%)/uop, where (u>?) is
the 2D fluctuating kinetic energy, (B™?)/uop is the 2D
fluctuating magnetic energy density, <B°°2> is the 2D fluctuat-
ing magnetic energy, p is the solar wind mass density, and g is
the magnetic permeability of free space) and the corresponding
correlation length A,,, which can be expressed in the form
(Zank et al. 2017; Adhikari et al. 2022b)

dEz® 1 dUu U
U = ——EX(1 + o3)— — —EX(1 + oy
I > T ( D)dr r T ( D)
Eoo3/2
PR ()
Ud;\—:C = 2BEf'/2, 2)

Equation (1) is derived by assuming zero 2D cross-helicity (i.e.,
EZ = ((z72) — (z*72))/2 = 0, where (z°*?) denotes
the outward/inward 2D Elsésser energy) and Equation (2) by
assuming Xy = 2L = 2)\ and \, = A\ = A\, where \}
is the correlation length of the 2D residual energy E3°(=(u>?)
— (B™%)/uop), and A\E is the correlation length of the 2D
outward /inward Elsiisser energy (see Zank et al. 2017, for the
details). Here, o35 (=E;°/E;°) is the normalized residual
energy, U is the solar wind speed, and « and § are the von
Karman-Taylor constants. By dividing Equation (1) by UEf°
and using Equation (2), we obtain

d 1 d 1+ 0%
—logE’ = ——({1 + o3)—1logU —
dr ghr 2( D)dr & r
_0d e, 3)
G dr
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Integration of Equation (3) yields
—(1+0})/2 —a/0
Ef° Ur? A
=L = ( = , (4)

00 2 0
Ero Uory Ao

where we assume o~ constant. Note that the normalized
(2D/slab) residual energy may vary with radial distance
(Adhikari et al. 2015, 2020, 2022a, 2022b; Zank et al.
2018a; Chen et al. 2020; Zank et al. 2021; Kleimann et al.
2023). The parameters E75, Uo, and A2 are the total 2D
turbulence energy, solar wind speed, and the 2D correlation
length at a reference point ry. Equation (4) is a solution of
Equation (1), and it shows that E° is a function of solar wind
speed, heliocentric distance, and the 2D correlation length. It is
important to note that the presence of A\, controls the
dissipation rate for E;°, but it does not partition the turbulence
energy into proton and electron heating rates. In the absence of
the dissipation term, the solution takes the form

Er° ( Ur? )<1+vi§)/2 -
ESS Uprd '
and it reduces to
Er (v ©
E7 Uorg

for o3y = 0. Equation (6) corresponds to a WKB-like solution
of Equation (1) (bearing in mind that Equation (1) was not
derived under the assumption of small-amplitude fluctuations,
and linearity is imposed here post facto by neglecting the
dissipation term), indicating that E;° depends not only on r, but
also on U. If U = const., Equation (6) implies E;° ~ r~!,
similar to the result in Zank et al. (1996).

From Equations (2) and (4), we obtain

v/ 3
5d\f

Y/ = koU—G+05)/4p=(1+05)/2 )

where ko = 26\ (ER)! 2 (Uyrd)1 o074, Integration of Equation
(7) yields
\a/20+1
>
a/28+ 1

where ¢ is the integration constant. To solve Equation (8), we
assume a background profile for U of the form

P
U= Uo(i) : ©)

ro

— ko f U-G+oB)/A=(+05) 20 1 ¢ (8)

where p denotes a scaling index for the solar wind speed and is
obtained from observations. Equation (8) is then -easily
integrated for

. 4 26/(a+20)
== ll +zO{(i) - 1}] : (10)
)\0 ro

where zo=4(a + 28)/(—=5p + 2 — (p + 2)0%) (ro/ N)(EL?/Up)
and 7z = (=5p + 2 — (p + 2)0})/4. On using Equations (9)
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and (10), Equation (4) becomes

EP B ( r )(p+2)(1+au)/2

=
Erg 1o

4 ~2a/(a+20)
x ll + Zo{(L) -~ 1” . (11)
ro

Equations (10) and (11) are the expressions for the 2D
correlation length and 2D turbulence energy as a function of
distance.

Using the relationship Ef° = (u>?) + (B™?)/pop=
(ra+ DB Juop = (1 + 05)/(1 — o) + 1}(B*?) /iy,
where r, is the Alfvén ratio, Equation (11) can be simplified as

<Boo2> ( r )(P+2)(3+Uf)c)/2

ro

7 —2a/(a+203)
X ll + zo{(L) — 1}] , (12)
ro

where <B§°2> is the 2D fluctuating magnetic energy at rq. In the
absence of the nonlinear dissipation term and o} = 0,
Equation (12) reduces to

L

B \n

, 13)

—3(p+2)/2
ro )

which is a WKB-like solution. For a constant solar wind speed
(i.e., p = 0), Equation (13) yields (B>?) ~ r—2, which is similar
to the finding of Zank et al. (1996). Equations (12) and (13) are
the expressions for the 2D fluctuating magnetic energy as a
function of distance.

2.2. Nl/slab Turbulence Transport Equations

The transport equation for the NI/slab total turbulent energy
Ef(=(u*?) + (B*?)/p,p, where (u2) is the slab turbulent
kinetic energy, (B2)/jp is the slab turbulent magnetic energy
density, and (B'2) is the slab fluctuating magnetic energy) and
the corresponding correlation length A, can be expressed in the
form (Zank et al. 2017; Adhikari et al. 2022b)

dE} 1dU .

U+, = ———E/+@2b—- 1)=E

( ”) 5 5> BT ( )r T

EJEX!/?
_Ed_pE}k - Qo-LT . (14)
2p dr Ao
U + VA)d—A* = 2ﬂﬁE;°1/2. (15)
dr Moo

Equation (14) is derived by assuming equipartition between the
slab fluctuating magnetic and kinetic energies. As before,
Equation (15) is derived by assuming Xj = 2A% = 2\, and
Af = Ay = A4, where )i is the correlation length for the slab
outward /inward Elsisser energy and Xf, is the correlation
length for the slab residual energy (see Zank et al. 2017, for the
details). Here, V, is the Alfvén velocity, and b(=1/2) is the
structural similarity parameter. We solve Equation (14) using
Equation (15), and subsequently dividing by (U + V,)EJ, to
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obtain
Dogpre— 1 AU Vo 4,
dr 2(U + Vy) dr 2(U + Vy) dr
_0d e (16)
G dr
The magnetic field B, the solar wind mass density, and the Alfvén velocity are given by
7o \2 r —(p+2) , —Q2-p)/2
B = Bo(—o) 5 p = po|l — 3 Va= Vao| — ) (17
r o o

where the radial profile for p is obtained from the conservation of mass, i.e., r2pU = const. By, po, and V,, are the magnetic field,
solar wind mass density, and the Alfvén velocity at ro. Using Equations (9) and (17), Equation (16) gives
(p—4)/2
4 yogEr = — P ! L pt2 (r/ro) _ 94 ey, (18)
dr 2ro r/ro + 1/Mao(r/roy /% 2Myoro (r/ro)? + 1/Mag(r/ro)?=2/2 3 dr
where Myo = Up/Vag is the Alfvén Mach number. Integration of Equation (18) yields

E} | o Mao(r/rg)P/2+1 @D/ 0HD ¢ \+2/2( —o/f
Efy [ 1+ Myo ] (_) A ,
where E;f, and \J are the slab turbulence energy and the slab correlation length at r.

To find the solution for A, we integrate Equation (15), i.e.,

19)

ro

1 Ep'/?
U+Vy A

1%M=mf dr. (20)

Using Equations (10), (11), and (17), Equation (20) gives
—(p+2)(1+05)/4
l%&zhf (r/ro) ” d(r/r), 21)

[(r/ro)? — 1/Mao(r/ro)?=272][1 + zo{(r/ro)* — 1}]
where k = 25E}62r0/ (Uy /\20). Equation (21) can be numerically solved as

A* x (r/ro)f(p+2)(1+a%°)/4
2x k
N0 e"p[ lfro [(r/70)" — 1/Muo(r/ro)? 2721[1 + 20((r/r0) — 1)1

*
Equation (19) can then be written in the form

Ef [ L+ Mao(r/ro)/"! ](2”””(”2’ (L)(’”M
E}, 1 + My

x (r/ro)—(p+2>(l+a,°§)/4 —a/B
. 2
" [eXP {k' | o i e T e 1T rO)}] @3

In the absence of the nonlinear dissipation term, Equation (23) reduces to the form

Eff _ [ L+ Myo(r/rg)?2 1 2702 (L)(””W
E;‘O 1 + MAO r() ’
Similarly, the expression for the slab fluctuating magnetic energy (B2) can be derived in the form

—a/B
d(r/ro) ] : (22)

ro

(24)

(Bs?) ro
x _ o.?)o —a/B
X[exp{kkf (r/ o)y P+DU+05)/4 d(r/nﬂ}] ’ )

o [(r/r0)? — 1/Mao(r/ro)?=2/21[1 + zo{(r/ro)® — 1}]
where (B %) is the slab fluctuating magnetic energy at r,. Equation (25) reduces to

<B*2> 1+ MAO(r/ro)p/2+1 -(2p+2)/(p+2) - —(p+2)/2
(B [ 1+ Mao ] (%) ’
in the absence of the nonlinear dissipation term. We note that Equations (24) and (26) may not represent the WKB-like solutions,
because the derivation of Equation (14) includes the mixing term (see Zank et al. 2017).

) _ [ 1t M/ ]“P”W”)

r )(P+2)/2
1 + My

(26)

4
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2.3. Proton and Electron Pressure Transport Equations

The transport equation for the electron pressure P, is given
by

dP, dU
U= + P —
dr e dr

where 7,(=5/3) is the polytropic index, v, is the collisional
frequency between electrons and protons, P, is the proton
pressure, ¢, is the electron heat flux, and S7 is the heating rate
for electrons. Dividing the above equation by UP, and
integrating with respect to r yields

I/e[,(P
logP, + Y. logU + 2~,logr = (7. — 1) f

+(%e

where we use V -q,=1/r*0/ 8r(r2q”,g). To simplify the first
integral on the right-hand side (rhs) of the above equation, we
consider P, — P,~ P,, assuming that the proton pressure is
much larger than the electron pressure. Then, the first integral
becomes (v, — 1) fl/LpPp/ (UP)dr. We also assume a linear
relationship between v,,P, and UP,/r, g, and UP,, and S; and
UP,/r, such that

Sf =K, ; (29)
r

q, = K,UFE; (30)

Vep b = UP €1y

where Ky, K., and K, are proportlonality constants. Note that
Equation (29) is similar to Equation (5) in Pine et al. 2020.
However, their Equation (5) is related to proton heating, as
shown in Equation (35) below. Although Equations (29) and
(35) are presented in an approximate form derived through
dimensional analysis to simplify the integration of their
respective integrals, they describe the heating rates for
electrons and protons, respectively. Unlike the partitioning of
the turbulence energy into proton and electron heating rates,
Equations (29) and (35) calculate the electron and proton
heating rates, based on values of the parameters K, K., Ko, and
K, that yield analytical proton and electron temperatures
similar to observations. There is a limitation in these equations,
in that they are derived assuming a linear relationship.
However, one can test the linear assumption using a 2D +
slab  dissipation  rate =2ap(Ex*Y? /Ay + EFEXY2/N0),
since the dissipation of turbulence energy is thought to be

Vpe(Pe - Pp)
log P, + yplogU + 2y, logr = (9, — 1) fU—Pdr + (0

U
+ Z'YeTPe = (% — 1)[Vep(Pp - Fk) —
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responsible for heating solar wind protons and electrons (Smith
et al. 2006; Breech et al. 2009; Verdini et al. 2010; Usmanov
et al. 2014; Zank et al. 2018b; Adhikari et al. 2021). In the right

Vg, + 51, 27)

panel of Figure 7, we show the relationship between the 2D +
slab dissipation rate and the proton + electron heating rate
S¢ + SP(=K,UR/r + K,UF,/r). Indeed, they show a linear
relationship. Here, S denotes the proton heating rate. In

Yoy ~ 1) 4 o, - 1)f q”ed —2(9—1)f e ,

(28)

addition to their formulation being similar to Equation (5) in
Pine et al. (2020), we verify their accuracy by comparing the
solution for the proton + electron heating rate in these forms
with the 2D + slab turbulent dissipation rate, as shown in the
left panel of Figure 7. Similarly, Equation (30) describes the
electron heat flux, and it is also similar to Equation (63) of
Chandran et al. (2011). Equation (28) can then be solved easily
for the electron temperature 7, as

T ’ (=D (p+2—-Ko—K,)/(1+K,(7,— 1))
T (_) , (32)

where Y? is the electron temperature at ry. We use P, = n kgT,,
where n, is the electron density and kg is the Boltzmann
constant. The 2D and slab turbulence may impact the parallel
and perpendicular electron pressures (P and P, respectively)
in different ways. However, here we only consider the scalar
pressure, which includes the combined effect of 2D + slab
turbulence.

Similarly, the transport equation for proton pressure P, is
given by

dF, dU U
U—L + 4,P,— +27,—P,=(y, — 1)
dr dr r
X[Vpe(g - Pp) + Szp], (33)

where ~,(=5/3) is the polytropic index and v, is the
collisional frequency between solar wind protons and electrons.
Dividing the above equation by UP, and integrating with
respect to r yields

(34)

14
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To simplify the first integral on the rhs, as before, we
suppose that the proton pressure is much larger than the
electron pressure, so P,—P,~— P, We then obtain
—(vp — DJvye/Udr = — (7, — DK, fPe/ (rP,)dr ~ 0. Therefore,
we neglect the first integral on the rhs of Equation (34). To
integrate the second integral, we assume a linear relationship
between S and UP,/r, such that

UP,
SP = K,—~, (35)

r

where K, is a proportionality constant. Equation (35) is similar
to Equation (5) in Pine et al. (2020; see also Vasquez et al.
2007). Equation (34) can then be solved easily for the proton
temperature 7}, as

T r —(p—D(p+2-K))
5= (7) : (36)
0

where 72 is the proton temperature at ro. We use P, = n,kgT,,
where n,, is the proton density. As above, we only consider the
scalar proton pressure. We also assume that the electron density
is equal to the proton density (n, ~n,), to maintain charge
neutrality. The values for the parameters K,,, K., and K, can be
obtained from the least-squares method, where we assume
K.=K,. Equation (36) with K,=1.24 yields the proton
temperature with a radial profile of r~*°, consistent with the
result of Adhikari et al. (2022a).

We numerically solve the coupled transport equations
describing the 2D and slab turbulence energies and correlation
lengths (i.e., Equations (1), (2), (14), and (15)), and the proton
and electron pressures (i.e., Equations (27) and (33)), using the
background profiles described by Equations (9) and (17). In
contrast to Equations (29) and (35), S7 and S; can be obtained
using a turbulent dissipation rate as (Smith et al. 2001; Verdini
et al. 2010; Adhikari et al. 2015; Zank et al. 2018b; Adhikari
et al. 2021)

5

S,"’zZozfp,o( T + XLT

Ao Aso
S = 2af, p( 7)1 + T/\T . (37
o0 o0

where f,, and f, determine the fraction of turbulence energy for
proton and electron heating rates, respectively. We note that,
although Bandyopadhyay et al. (2023) and the left panel of
Figure 4 show that the proton heating rate corresponds to about
80% of the total plasma heating rate near the Sun (~13.3 R.),
we use f, = 0.65 and f, = 0.33 because not all the turbulence
energy is necessarily used to heat the solar wind protons and
electrons (see the left panel of Figure 7, where the 2D + slab
turbulent heating rate is slightly larger the proton + electron
heating rate). We use the fixed values for f, and f, because the
proton and electron heating rates change slightly in the range of
distance 6.3-13.3 R (see the right panel of Figure 4). The
collision frequency between proton and electron is given by

Adhikari et al.
(Zank et al. 2014a; Adhikari et al. 2023)

ne —3.—
Vpe = mlogA x 1.97 x 1073571, (38)

which is similar to Equation (13) of Cranmer et al. (2009). We
use logA = 2. According to Cranmer et al. (2009), we can
assume that v, ~ v,,. Similarly, we use the electron heat flux
as (Bandyopadhyay et al. 2023)

1n(q”’“) — 07752 — 24069x — 0.0574x%, (39
9
where x = In(r/(lau)) and gy =0.01 erg cm 2s L

3. Results

We calculate the background profiles for the solar wind
speed, Alfvén velocity, and solar wind mass density using
Equations (9) and (17). These equations are expressed as a
function of radial distance, and they include a scaling index for
the solar wind speed “p.” We find p =0.23 using a least-
squares method for the solar wind speed values obtained from
Telloni et al. (2023b; black dots in the left panel of Figure 1).
This result implies that the solar wind speed increases as
(r/r9)°? between 6.3 R., and 13.3 R., as indicated by the
black curve in the left panel of Figure 1, which overlays the
black dots. Likewise, we plot the Alfvén velocity using
Equation (17), indicated by a red curve in the left panel of
Figure 1, showing that the Alfvén velocity decreases as
(r/ro)""%, closely consistent with the Telloni et al. (2023b)
results (red dots). Note that the red and black filled circles in
the left panel are the PSP-measured Alfvén velocity and solar
wind speed. Clearly, the Alfvén velocity is larger than the solar
wind speed, as would be appropriate for a sub-Alfvénic flow. In
the right panel of Figure 1, we plot the solar wind mass density
(black curve), which shows that the solar wind mass density
decreases as (r/ry)~>23. The black curve is very similar to the
result (black dots) of Telloni et al. (2023b), including the PSP-
measured value (black filled circle). The radial profiles for the
solar wind speed, Alfvén velocity, and solar wind mass density
are incorporated in the analytical solutions for 2D and slab
turbulence energies, as well as their corresponding correlation
lengths, and the proton and electron temperatures. We also
remind the reader that the Alfvén velocity is not included in the
computation of the 2D turbulence energy and correlation length
in the low 3, < 1 or 3, ~ 1 plasma beta regime.

In the left panel of Figure 2, we present the radial profiles for
2D and slab total turbulence energies with increasing distance.
We use the following values for the parameters: a = 0.026,
B=a/2, o =-06, r=63 R., Uy=26406kms ',
Vio=1.04x 10°kms ™', py=8.57 x 10 ¥ kgm>, A\ =
1.8 x 105 km, A2 = 9 x 10* km, E;fy = 6.81 x 10°km*s 2,
and EfS = 2.72 x 10*km?s 2. In the left figure, the solid
black curve identifies the slab turbulence energy, calculated
from Equation (23), and the dashed cyan curve is the numerical
solution. The two solutions are identical. The radial profile of
E; follows an approximate (r/ry)*> profile, indicating an
increase in slab turbulence energy with increasing distance in
the sub-Alfvénic flow. The solid black curve closely aligns
with the PSP-measured value (black filled circle) at 13.3 R,
The black dots and filled circles denote the outward-
propagating Alfvén wave energy, and they are obtained from
Telloni et al. (2023b). Note that the black dots are derived
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represents a PSP-measured value. Right: 2D (solid red and dashed green curves) and slab (solid black and dashed cyan curves) correlation lengths as a function of

distance.

using the conservation of wave action approach (Velli 1993),
which does not incorporate the dissipation of outwardly
propagating Alfvén waves. Notably, the black dots exhibit a
larger magnitude compared to the black curve, which includes
the turbulent dissipation term. Here, the black dotted curve
represents the analytical solution for slab turbulence energy in
the absence of the dissipation term. Therefore, it does not
include the loss of energy through turbulent dissipation, and it
exhibits a more rapid increase, followed by a (r/ry)%"°
dependence, as compared to the solid black curve. We also
note that this solution does not represent a WKB-like solution
for slab turbulence energy, as Equation (14) also includes the
mixing term (see Zank et al. 2017). The solid red curve and
dashed green curve represent the analytical and numerical
solutions for 2D turbulence energy E;°, showing the same
amplitude and a decrease characterized by an r—"'® trend. Note
that, at 6.3 R, the value of E;° is assumed to be four times that

of E;. Similarly, the red dotted curve denotes the solution for
E;° in the absence of nonlinear dissipation term, which
decreases as r_0‘44, more slowly than the solution including the
dissipation term.

In the right panel of Figure 2, we show the radial profiles for
the 2D and slab correlation lengths of the total turbulence
energy as a function of heliocentric distance. The analytical and
numerical solutions (solid red and dashed green curves) for the
2D correlation length are identical, and they increase with
increasing distance. Similarly, the analytical and numerical
correlation lengths for slab turbulence energy (black and
dashed cyan curves) show the same magnitude and increase as
a function of distance. Specifically, the 2D and slab correlation
lengths follow radial profiles of r°® and %!, respectively.

In Figure 3 (left), we plot the radial evolution of the 2D
(B*?) and slab (B?2) fluctuating magnetic energies from
6.3 R, to 13.3 R, In the figure, the solid red and dashed green
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as a function of radial distance. The black star is the result of Bandyopadhyay et al. (2023).

curves represent the analytical and numerical solutions for 2D
fluctuating magnetic energy, while the solid black and dashed
cyan curves represent the slab fluctuating magnetic energy. The
dotted red and black curves denote the analytical solutions for
(B>?) and (B*2) in the absence of the nonlinear dissipation
term. The (B*°?) follows a radial trend of r~>*', while (B2)
has a radial profile of r~*’. Conversely, the 2D and slab
solutions in the absence of the nonlinear dissipation term
exhibit radial profiles of r~>° and r~'*°, respectively. This
indicates that the latter solution for 2D and slab fluctuating
magnetic energy decreases more slowly than the previous
solution. Additionally, both the 2D total turbulence energy and
the 2D fluctuating magnetic energy decrease with increasing
distance in the sub-Alfvénic flow. In contrast, the slab total
turbulence energy increases, while the slab fluctuating magn-
etic energy decreases.

In Figure 3 (right), we show the ratio between (B>%)'/? and
B, as well as that of (B*Z)l/ 2 and B, as a function of distance.
As the distance increases, the ratio of (B>%)'/? and B (solid red
curve) increases as r*>°, while the ratio of (B2)'/? and B (solid
black curve) increases as P17, Likewise, in the absence of
the nonlinear dissipation term, (B°?)'/?/B and (B2)'/?/B
increase as °° and r1'27, respectively. This indicates that, in
the latter case, the ratio increases more rapidly compared to the
previous case.

In the left panel of Figure 4, we plot the temperatures of
protons (solid black, solid green, and dotted black curves) and
electrons (solid red, solid cyan, and dotted red curves) as a
function of heliocentric distance. In the figure, the solid black
and red curves denote the analytical results. The solid cyan and
green curves represent the full numerical solutions. The dotted
black and red curves correspond to the proton and electron
temperatures obtained by Telloni et al. (2023b). To obtain the
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Figure 5. The description of this figure is similar to that of Figure 4. Electron and proton temperatures and their heating rates are plotted in the absence of electron heat
flux (K, =1.24, K, = 0.9, Ky = 0.9, and K, = 0), shown by dashed curves, and in the absence of both electron heat flux and Coulomb collisions (K, = 1.24,
K.=1.5, Ko =0, and K, = 0), shown by solid curves. In the left panel, the solid and dashed curves overlap with each other.

analytical results of the proton and electron temperatures, we
use the following values: K, =1.24, K, = 0.6, K, = 0.6, and
K,=0.6, T,o=1.12x 10° K, and T,0=5.6 x 10° K, where
T,o and T, are the PSP-measured values at 13.3 R.. Note
again that the K,,, K,, and K, values can be obtained from the
least-squares method. These analytical results can exhibit
different radial profiles for different K,,, K., and K, values.
Similarly, these values may change with heliocentric distance
(Quataert 1998; Chandran et al. 2010; Howes 2010; Chen et al.
2020; Roy et al. 2022; Shankarappa et al. 2023). However, in
the region of interest in this study, using fixed values for K,
K., and K, yields analytical results for the solar wind proton
and electron temperatures, as well as the proton and electron
heating rates, that are similar to the observed values measured
by PSP. In addition, the analytical result for the proton
temperature shows a radial profile of r_0'66, consistent with that
of Adhikari et al. (2022a). The analytical result for the electron
temperature is similar to the result of Telloni et al. (2023b),
showing a radial profile of ~%%°. Similarly, in the left panel of
Figure 6, the theoretical heat flux is close to the PSP-measured
heat flux at ~13.3 R.,. Furthermore, the analytical results of the
proton and electron temperatures are compared with their
numerical results, where the numerical results decrease more
rapidly than the analytical results. However, the analytical
proton and electron temperatures are (1-1.04) and (1-1.13)
times larger than their numerical solutions, indicating that they
are relatively close. These comparisons gives us confidence that
the analytical equations for proton and electron temperatures
can be used to explain the observed proton and electron
temperatures measured by PSP and SO, despite assuming
T,>T,. The proton temperature (black curve) deviates from
the result (black dots) of Telloni et al. (2023b). Note that
Telloni et al. (2023b) traced back the proton temperature based
on a radial profile of 7' derived from the statistical analysis of
proton temperatures in the super-Alfvénic solar wind flow.
The right panel of Figure 4 plots the heating rate for protons
(black curve) and electrons (red curve). These heating rates are
calculated from Equations (35) and (29). At 6.3 R, the proton
heating rate accounts for approximately 82% of the total
heating rate, exhibiting a slight decrease followed by an r*%*
profile with increasing distance, and it is consistent with the

result (black star) of Bandyopadhyay et al. (2023) at about
13.3 R.. Conversely, the electron heating rate at 6.3 R is
about 18% of the total heating rate, and it increases with a
radial trend of 7*'* as a function of distance.

Figure 5 shows the proton and electron temperatures (left
panel) and their heating rates (right panel) for two cases: one in
which the electron heat flux is neglected (K, =1.24, K, =0.9,
Ky=0.9, and K, = 0), and the other in which both the electron
heat flux and Coulomb collisions are neglected (K, =1.24,
K.=15, Ky=0, and K,=0). Note again that these values
yield the radial profiles of the (analytical) proton and electrons
temperatures as r % and %%, respectively. In both cases,
the proton and electron temperatures are identical. However,
their heating rates differ. In the absence of electron heat flux,
the electron heating rate ranges between 20% and 30% of the
total heating rate (red dashed curve), larger than that (red curve)
in the right panel of Figure 4. Consequently, this results in a
decrease in the proton heating rate, ranging between 80% and
70% of the total heating rate (black dashed curve). In the
absence of both the electron heat flux and Coulomb collisions,
the electron heating rate further increases between 30% and
40% of the total heating rate, while the proton heating rate
further decreases to the range of 70% and 60% of the total
heating rate. In this case, the effects of 2D and slab turbulence
on P and P, might be more relevant. However, we only
consider the scalar pressure (or temperature) in this study.

The left panel of Figure 6 shows the electron heat flux (black
curve) as a function of distance. The electron heat flux
decreases with distance according to (r/ry)~>*, and it is close
to that (black star) of Bandyopadhyay et al. (2023), which was
derived from PSP measurements. The right panel displays the
collision frequency between electrons and protons (v,,) as a
function of distance, exhibiting a radial profile of (r/ry)~%C.

The top left panel of Figure 7 shows the heating rates as a
function of heliocentric distance. In the figure, the black
curve denotes the turbulent heating rate, calculated from
the dissipation terms for 2D and slab turbulence, i.e.,
turbulent heating rate = 2ap(E53/2/ )\, + EFE'/2/).) (Equations (1)
and (14)), where the first term inside the parenthesis
corresponds to the dissipation of 2D turbulence and the second
term to that of slab turbulence. The red curve denotes the
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details.

proton + electron heating rate (S + Sf), calculated by
adding the proton and electron heating rates, Equations (35)
and (29). The heating rates are largest at 6.3 R., and they
decrease as a function of distance. The two heating rates are
close, as shown in the bottom left panel, where their ratio
ranges between 1 and 1.2. The 2D + slab turbulent heating rate
is slightly larger than the proton + electron heating rate, where
the previous heating rate decreases as r >’ and the latter
heating rate as r >°'. This may also indicate that all of the
dissipated turbulent energy may not only heat the protons and
electrons, but that some fraction of the dissipated turbulent
energy may go into creating a nonthermal population of ions
(e.g., stochastic acceleration by magnetic islands; Zank et al.
2014b; Khabarova & Zank 2017; Zhao et al. 2018; Adhikari
et al. 2019), and a nonthermal population of electrons. The
right panel of Figure 7 shows the relationship of the 2D—+slab
turbulent heating rate with the proton + electron heating rate.

10

The solid curve lies above the dotted curve, which represents
that the 2D + slab turbulent heating rate and the proton +
electron heating rate are equal. It is evident that the previous
heating rate exhibits a nearly linear relationship with the latter
heating rate.

4. Discussion and Conclusions

We presented analytical solutions for 2D and slab total
turbulence and fluctuating magnetic energies, their correlation
lengths, and the proton and electron temperatures for the sub-
Alfvénic flow. These analytical solutions use background
profiles for the solar wind speed, solar wind mass density, and
Alfvén velocity. Specifically, our analytical solutions include a
scaling index for the solar wind speed “p.” We calculated the
radial evolution of 2D and slab turbulence energies and
correlation lengths, as well as the proton and electron
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temperatures and their heating rates in the extended solar
coronal region between 6.3 and 13.3 R.. In addition, we also
numerically solved the coupled transport equations describing
the 2D and slab turbulence energies and correlation lengths, as
well as the electron and proton pressures, and compared the
analytical solutions with the PSP-measured values at about
13.3 R, as well as the numerical solutions. We summarize our
findings as follows.

1. The radial evolutions for the solar wind speed, solar wind
mass density, and Alfvén velocity exhibit radial profiles
of the form (r/rp)°%, (r/ro) 2?3, and (r/ry) 0%,
respectively. These radial profiles are closely aligned
with the results of Telloni et al. (2023b), as well as PSP-
measured values at 13.3 R..

2. The analytical solution for slab turbulence energy is
consistent with the PSP-measured outward-propagating
Alfvén wave energy at 13.3 R as reported by Telloni
et al. (2023b), and it is consistent with the numerical
solution of the slab turbulence energy. However, it is
comparatively lower than the outward Alfvén wave
energy obtained using the wave action conservation
approach (Velli 1993), which neglects dissipation of the
turbulence. The evolution of slab turbulence energy
follows a radial trend of (r/ry)*, and in the absence of
the dissipative term, the slab turbulence energy exhibits a
radial profile of (/ry)*7°.

3. The analytical solution for 2D total turbulence energy
follows a radial profile of (r/ry)~ '3, while neglecting
dissipation results in the analytical solution for the 2D
total turbulence energy decreasing more slowly as
(r/roy %*. The analytical and numerical solutions for
the 2D total turbulence energy are identical as a function
of heliocentric distance.

4. The analytical and numerical solutions for 2D and slab
correlation lengths follow radial profiles of the form
(r/19)%3¢ and (r/ry)*!, respectively.

5. The analytical and numerical solutions for 2D and slab
fluctuating magnetic energies exhibit radial profiles of
(r/ro) 34 and (r/ro)"1%7, respectively.

6. The ratio between the 2D magnetic field fluctuations and
the large-scale magnetic field increases as (r/ry)°2°, but
more slowly than the ratio of the slab magnetic field
fluctuations to the large-scale magnetic field (r/r)"!".

7. The analytical solution for electron temperature follows a
radial profile of (r/ry)~%%, whereas the analytical solution
for proton temperature follows (r/r) *%. At 6.3 R.,
the heating rate for protons accounts for about 82% of
the total plasma heating rate, decreases according to
(r/ro)~*%, and becomes ~80% of the total plasma heating
rate at 13.3 R, consistent with the result of Bandyopad-
hyay et al. (2023). Conversely, the heating rate for
electrons at 6.3 R, is about 18% of the total heating rate
and increases as (r/ro)*!4. If the electron heat flux is
neglected, the proton heating rate falls between the range
of 70% and 80% of the total plasma heating rate, while the
electron heating rate increases and falls in the range
between 30% and 20% of the total heating rate. If both the
electron heat flux and Coulomb collisions are neglected,
the heating rate for protons decreases further, ranging
between 60% and 70% of the total plasma heating rate,
while the electron heating rate increases further and ranges
between 40% and 30% of the total plasma heating rate.
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8. Although we assume that T, > T,, the analytical results
for proton and electron temperatures are in fact relatively
close to the numerical results for proton and electron
temperatures, respectively.

9. The electron heat flux in the sub-Alfvénic flow has a
radial profile of (r/ry)~>*°, and it is close to the estimate
presented by Bandyopadhyay et al. (2023) at about
13.3 Rs. The collision frequency between protons and
electrons exhibits a radial profile of (r/ry) 9.

The analytical solutions presented in this manuscript provide
valuable insight into turbulence in the sub-Alfvénic region of
the solar corona, as well as coronal heating and solar wind
acceleration. The analytical solutions provide a simple model
against which to evaluate in situ and remote measurements
made of the solar corona by PSP and SO, in particular with
respect to modern turbulence theories thought to be responsible
for the heating of the solar corona and acceleration of the
solar wind.
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Appendix
NI/Slab Turbulence Transport Equations in the U >V,
Flow

For U > V,, Equation (16) can be simplified as

d

1d ad
—logEf = —=—"1logU — ——log X*, Al
ar ET 2ar 8 B dr & (AD

using b = 1/2. The integration of the above equation yields

B (2)1/2(&)(#3
Uy o -

Similarly, in a super-Alfvénic flow (assuming U>>V,),
Equation (15) reduces to

Ef

(A2)
Efy

0o\1/2
ilog X = Zﬁu. (A3)
dr AU
By substituting Equations (9), (10), and (11) into
Equation (A3) and then integrating, we obtain
ka/z021
XE “
== [m((i) - 1) + 1} : (A4)
)\* ro
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where ky = 26(EfS)2/(\% Uy). We express Equation (A2) in
terms of distance as

r —p/2 N —aka/ Bz0z1
= (_) ZO((—) - 1) +1 . (AS5)
ro ro

Equation (A5) shows that the slab turbulence energy decreases
with increasing distance in the super-Alfvénic (U > V,) flow.
Similarly, the slab fluctuating magnetic energy can be
expressed in terms of radial distance as

<B>|<2> r —Gp+4)/2 @ —aka/Bzoz1
*2 =|— 00| — —11+1 .
(Bo™) o To

(A6)

Ef

*
Ero

Equations (A4), (AS), and (A6) show the radial dependence of
the correlation length, total turbulence energy, and the
fluctuating magnetic energy of slab turbulence in the super-
Alfvénic solar wind flow.
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